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Dynamics of Granular Fluids.

GIANFRANCO CAPRIZ (*) - GEORGE MULLENGER (**)

ABSTRACT - We investigate the consequences of a proposal for the balance equa-
tions of a continuum where local moment of momentum has a crucial role. We
explore, in particular, applications to the dynamics of some granular flows
and advance some, perhaps controversial, suggestions on related thermal
concepts.

1. Prologue.

In a paper where an elementary preamble to a theory of granular flu-
ids was promoted [1] and reference was made to a system of mass points,
one of us suggested a way to avoid observer dependence of some «ther-
mal-like» concepts: peculiar velocities should be read by reference to a
moving frame, whose translation velocity is the velocity of the centre of
gravity (as is usual), and whose angular velocity is dictated by the equa-
tion of balance of moment of momentum. Actually, since the Euler iner-
tia tensor Y depends on the «affine» average speed, the moving frame is
better chosen to deform affinely in accordance with the balance equation
of tensor moment of momentum. Thus one can dispense with introducing
the observer’s angular velocity, as is done in expositions of extended
thermodynamics and, more specifically for the present discussion, in [2].

For a system of k mass-points x (i) (i41, 2 R k) the relevant equations
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are (see (27) of [1]):
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where m is total mass; x , place of centre of gravity; f×, resultant of exter-
nal forces f (i) ; K is the tensor moment of momentum K4YB T ; B is the
tensor rate of average affine displacement; M× is the tensor moment of
external forces !

i
(x (i) 2x)7 f (i); H is the Reynold’s tensor evaluated on

the peculiar velocities mH4!m (i) s
. (i) 7s
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S× is the stirring-force tensor
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Note that, as a consequence of (2),

x
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The extra complication attending with the splitting of the actual velocity
into the global translatory component x

.
, the global affine component

B(x (i) 2x), and the peculiar component Gs
. (i) , offers the advantage that

quantities expressed in terms of the peculiar speeds s
. (i) are totally ob-

server independent. Within the kinetic theory of gases, because disor-
dered peculiar velocities are vastly larger than those ordinarily associat-
ed with the tensor B , the extra complication may seem unnecessary; but
that need not be so for granular gases and, more generally, for the whole
class of «kinetic continua» (i.e., continua with no paragon setting, as are
gases and most fluids). Even when improvements to the standard formu-
lation of gas dynamics are sought via a solution by iteration of the Boltz-
man equation, problems due to lack of objectivity are met and have led to
controversies: see [3] where the use of peculiar velocities read in a refer-
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ence rotating with velocity e(rot x
.
) is suggested, where e is Ricci’s third-

order permutation tensor.
Together with quantities mentioned above goes a kinetic energy

tensor
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and a corresponding kinetic energy theorem
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.
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If f× and G 21 M× were constant and S× were the total time-derivative of a
«potential» P , then a sort of principle of conservation of tensor energy
would ensue:

mW2
1

2
P1sym (x7 f×1M×) 4constant .(6)

A theory of «kinetic» continua may be based on the scheme (1) imag-
ined valid for material elements where m4r d(vol); r mass density.
True, the densities of actions corresponding to f×, M× and S× may not al-
ways be reducible to the Cauchy proposal (non-local action may be
present). However, a first approach can be tried involving: external force
per unit mass f; Cauchy’s stress T; external tensor moment M and exter-
nal stirring S , both per unit mass; corresponding tensors of internal ac-
tions A and Z and third-order hyperstresses m and s; so that the rele-
vant balance equations become
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rf1div T ,

rM2A1div m ,

rS2Z1div s .

(7)

Here S and Z must be symmetric and s must enjoy the property of minor
left symmetry.
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REMARK 1. In classical fluid dynamics the gross interpretation of
grad x

.
or, better, of its symmetric and skew components is pervasive,

random molecular motion notwithstanding. Still, to hide the effects of
the latter motion outright within the thermodynamic maelstrom may, on
occasion, curtail correct perception of phenomena. A first coarse grasp of
that recondite behaviour is offered by the tensor H (a sort of tensor of
deep ferment) through its «macroscopic» interpretation: write H in its
canonical form highlighting eigenvalues (x (s) )2 and eigenvectors h (s)

H4 !
s41

3

(x (s) )2 h (s) 7h (s)

(H being semidefinite positive its eigenvectors are non-negative,thus the
choice of notation) and read it as follows: the population of grains (sup-
posing that they all have the same mass) is spread among three tribes;
within the s-th tribe the grains move along the line spanned by h (s) , with
speed x (s) , they split into two subtribes, equally numerous but with op-
posing velocities.

Alternatively, one may imagine all grains to have (the same mass, say
mA, and) the same speed v , but the fraction of those moving along span h (s)

to be x (s)2
/(!x (s)2

). Under the latter circumstances n4r/mA is the number
density of grains; if l is the mean free path, then (v/l)(r/mA) is the number
density of collisions per unit time.

Returning to the general case, we seem justified in calling nl21 H 1/2

the collision density tensor.

REMARK 2. One finds similarities, even coincidences, but also dis-
crepancies when equations (7) are compared with those which are de-
rived from the Navier-Stokes equations to model turbulent flows (see,
for a recent essay on the latter, [4], Sects 2 and 3). A detailed critical jux-
taposition would be misplaced here and is deferred to a separate
notice.

REMARK 3. The tensor H 1/2 has properties similar to those of a ten-
sor introduced in an earlier paper of ours, (see Sect. 1 of [5]), there called
A. Just as An in [5], here H 1/2 n measures the «cross-over» rate through
the plane with normal n. That analogy apart, a fundamental difference
remains because we have removed here the contribution to the peculiar
speed of the affine motion and the Reynold’s tensor of the earlier paper,
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call it HA here, differs from H above if B does not vanish:

HA 4BYB T 1H .

2. Kinetic energy theorem. Balance of moment of momentum and
other sundry balances.

The version for a continuous body B of the kinetic energy theorem
(5), based here on the mass density W of the kinetic energy tensor speci-
fied by (4),

W4
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2
H ,

is easily obtained by operating on (7)III with x
.
7 , on (7)IV with B , sum-

ming term by term, taking the symmetric parts of each term, finally

adding again term by term the last equation (7) multiplied by 1

2
and

then, assuming smoothness, integrating over any subbody b of B, by
parts if need be, to arrive at:
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where n is the unit normal vector to ¯b , L4grad x
.
, b4grad B , the expo-

nent T indicates major transposition, and an exponent t to the third-or-
der tensor m indicates minor right transposition.

An ambiguity is left in the notation where third-order tensors ap-
pear; rather than resolve the ambiguity by excess notation we leave it
there, relying on the reader to sort it out easily. Just for once we declare
that, in indicial notation

(Bmn)ij 4Bik mkjl nl , (bmt )ij 4Bir , k mrjk .

The sum of the first two integrals on the right hand side of (8) deliv-
ers the (tensor) power of external actions (respectively, body forces,
torques, stirring actions and boundary tractions, twists and ferment in-
flux). The last integral must thus be interpreted as the tensor power of
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internal actions, of density

2sym g 1

2
Z1LT T 1BA1bmth ;(9)

hence the density of actual power is given by the scalar

2kL QT1B QA T 1b Q (mt )T 1
1

2
tr Zl .(10)

The fourth equation (7), or rather its corollary obtained by taking the
skew components of its two sides, though it exhausts the requirement of
balance of vector moment of momentum, it does not here secure auto-
matically the demand on stresses to make the internal power (10) ob-
server-independent. Two observers on frames in relative motion read
different values of L and B; the difference, in both, amounts to ew (w ,
relative angular velocity). Hence the condition

skw T4skw A .(11)

Oddly, it occurs sometimes that the constitutive choices for T and A are
such that the stronger property

T42A T(12)

applies. Then, as can easily be checked, even the the tensor power (9) is
observer-independent and reduces to

2sym k 1

2
Z1 (L2B) T T 1bmtl .

Actually, in kindred investigations but where neither moments of mo-
menta nor external torques are incorporated, (K , M , m all vanish in
(7)IV ) one can dispense with a separate fashioning of the tensor A as that
tensor would necessarily always coincide with rH again by our (7)IV , now
greatly reduced in content. Then, from (12), the stronger identification
obtains

T42rH .(13)

Thus, through this constitutive law, a formal connection is enacted with
proposals advanced in hypoelasticity, extended thermodynamics, etc.,
where the Cauchy stress is the main evolving function in an added bal-
ance equation.

Another argument bears in favour of (12), or, at least, reveals its deep
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gist. 2A represents the density of internal equilibrated tensor torques;
thus, in the absence of twist influx due to subtler mechanisms, it can be
gauged in terms of T only as follows: imagine the material element as fil-
ling a minute sphere Se of radius e , obviously «small» but not insignifi-
cant; imagine further 2A(vol Se ) to be equal to the total over the surface
of Se of the tensor moment of the traction Tn (n , unit normal to Se):

2A(vol Se ) 4 �
¯ Se

en7Tn4e u �
¯ Se

n7nh T T .

But

(vol Se ) I4e �
¯ Se

n7n ;

(I , the identity tensor) hence (12).

REMARKS When (12) applies, the tensor moment of inertia

�
b

r(x7x
..

1K
.

2BK2H)

is balanced by external actions only, i.e., by

�
b

r(x7 f1M)1�
¯b

(x7Tn1mn) ,

for any subbody b.
Another partial balance is often subsumed, at least as a constitutive

property: the rate of change of total kinetic energy tensor

u �
b

rWvl

is balanced by external tensor power only for all subbodies b. In other
words the total tensor power of internal actions sums up to zero; its den-
sity (9) vanishes. Then, necessarily

Z422 sym ]LT T 1BA1bmt ( ;(14)

Of course, such separate power balances need to be justified, if at all,
by special physical circumstances. In particular, relation (14) applies at
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best in the absence of any dissipative or stirring effects from the macro-
motion and makes sense solely in conjunction with (12), otherwise it
would not be objective. Perchance, both (12) and (14) obtain only when
written in terms of the conservative components of A and T alone.

An argument similar to one called upon above to support (12) can be
invoked in favour of the presence of some terms in (14). One needs only
gauge also 2Z(vol Se ) in terms of the virial of Tn over Se , the speed dif-
ferential with respect to the centre being now (L2B)(en),

2
4

3
pe 3 Z4sym �

Se

(L2B) en7Tn ,

hence the possible origin of the first two terms in (14).
The expressions (9), (10) have an important role in corollaries of the

definition of powerless internal constraints, i.e., of constraints such that
the power of reactive internal actions vanishes for all virtual motions the
constraints allow. For instance if the affine submotion at x is forced to
coincide with that of the macromotion around x , i.e. if B4 F

.
F 21 4L ,

then

B Q (T
r

1A
r

)T 1b Q (m
r t )T 1

1

2
trZ

r
40, (B

where the upper r is there to indicate the reactive contributions (likewise
below, an upper a indicates active components). It follows that

T
r

42A
r

T , m
r

40, tr Z
r

40 .

Under these circumstances the fourth equation (7) becomes irrelevant;
at the same time the expression of T becomes

T4 T
a

1[r(K
.

2BK2H)2rM1A
a

2div m
a

]B4L .

If the definition of a powerless constraint were to require the vanish-

ing of the tensor power of reactions, then Z
r

would have to vanish, not
only its trace.

3. Boundary value problems; Constitutive laws.

The balance equations (7) go along with appropriate conditions at the
boundaries which either render the requirements there imposed on x

.
, B
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and H or embody the local effects of the environment through the as-
signment of boundary traction Tn , twister mn and stirrer sn.

Actually, boundary conditions cannot be expected to mimic always
the standard model strictly. For instance, granularity and permeability
of the restraining walls play sometimes a decisive role; their effects on
the inner flow must be identified and portrayed mathematically, and that
portrayal demands details on the «substructure» of the boundary. In any
case, the variety of continua for which the balance laws (7) are presumed
to apply makes general statements unfeasible: loose granular matter is
hardly entrained by a moving boundary or restrained by a stationary
one, whereas no slip is allowed for viscous granular suspensions.

Besides, the ingredient still missing is a set of constitutive laws for A
and Z , T , m and s; each set characterises a member of the class of kinetic
continua. Criteria of objectivity, thermodynamic compatibility, etc. re-
strict the choice of those laws, but we do not pursue the general issues
here. Rather we pick a sufficiently comprehensive subclass, to encom-
pass interesting even if disparate cases proposed in the literature, and
we provide some explicit examples of flow.

1. Standard stress is generated by deep ferment (like pressure in the
kinetic theory of gases)

T42rH

Such simple law applies for granular gases. However, most con-
cepts and results of our analysis apply also, with some adjust-
ments, to some vaguely similar settings, e.g. granular suspensions
in a liquid. But then stress is influenced by viscous effects; addi-
tional terms enter the constitutive law for T with the involvement
of L and B. Actually, requirements of objectivity rule out direct
separate presence of these two tensors; they may enter only
through the combinations

D4sym L , sym B , L2B .

The most elementary instance is when the dependence is additive
and linear with some scalar coefficients of viscosity, say h 1 , h 2 , h 3

respectively; when the medium is compressible further coeffi-
cients appear as factors of (tr L) I and (tr B) I. Below the simplest
occurrence is surmised: the usual linear dependence on D with vis-
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cosity h 1 as coefficient and an added linear dependence on
(L2B):

T42rH12h 1 D12h 3 (L2B) ;

thus viscosity may cause entrainment of the macromotion by deep
twisting. A law of this type is suggested also in [6], see (5) of that
reference.

2. Again the simplest constitutive law is suggested for A which as-
sures the validity of the mandatory condition (11), but does not
obey (12), reflecting some of the preoccupations expressed just be-
yond equation (14):

A4rH22h 3 (L2B)T .

Insertion in equation (7)IV shows that ferment does not influence
K directly, as the terms rH cancel out whereas twist connects
macro and micromotions. A reduced version, applicable to a re-
duced balance equation, is again suggested in [6], see (4) of that
reference.

3. Twisting hyperstress is absent:

mf0 .

A linear dependence of m on grad B could be subsumed, by analo-
gy with (6) of [6].

4. Relation (14) applies provided dissipative contributions are first
crossed out in T and A; in addition, ferment is assumed to be, pos-
sibly, stifled by a sort of cross-over resistance (or collision loss)
deemed to be proportional to rH and vice versa stimulated by the
gross motion, the stimulus conjectured to be proportional to D 2 :

Z42 sym [ (L2B) rH]1arH2gD 2 ; a , g constant .

5. The simplest rule applies for the stirring hyperstress:

s42b grad (rH); b a constant ferment transfer coefficient .
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Finally, the balance equations (7), in the local version, become:
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¯t
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rf1div [2rH12h 1D12h 3 (L2B)] ,

rM T12h 3 (L2B) ,

rS1bD(rH)2arH1gD 2 .

(15)

The tensor power of internal actions amounts to

2
1

2
[arH2gD 2 14h 1 sym (LD)24r(L2B) H] .

It is not objective, as we have allowed A to be different from 2T T. The
scalar power is objective, as, then, the factor of 4h 1 reduces to D 2.

The standard case is recovered, when g40, M40 and S40, if one
assumes that Y and H vanish, and B4L (and h 1 then coincides with the
usual viscosity). If only Y were assumed to vanish, then 2rH needs to be
added to the viscous stress, H being a solution of the adjusted version of
the last equation (15).

A preliminary reflection is appropriate: the fundamental law of mo-
ments fastens together main flow and twist, forcing the constitutive laws
to forge that link or else to pay the penalty of excluding skew compo-
nents for T and A. On the contrary, a possible direct connection of main
flow with ferment, entrainment apart, is left to the hazards of the choice
of constitutive laws, e.g., on the value of the constant g below.
If alongside M and S also f vanishes, though g does not, then one can
seek a stationary solution of (15) with constant density and L , B , Y , H
constant tensors which must satisfy the following set of algebraic
equations

r(LH1HL T ) 42arH1gD 2 , tr L40 and

BY1YB T 40, rB 2 Y42h 3 (L2B) .
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Besides, x
.

must belong to the kernel of L: Lx
.
40; so, as x

.
4Lx , L 2 itself

must vanish. Notice also that, as a consequence of the third condition,
B 2 Y is equal to the symmetric tensor BYB T , hence

rB 2 Y42h 3 sym (L2B), skw L4skw B .

It is easy to verify that a solution exists where B , L and Y have only one
non-null component (say B12 , L12 and Y33 respectively) and H is deter-
mined consequently: with the choice above,

H13 4H23 4H33 40, H11 4
g

4ar
g11

L 2
12

a 2 h L 2
12 ,

H12 42
g

4a 2 r
L 3

12 , H22 4
gL 2

12

4ar
,

and T is enhanced beyond the viscous contributions.
Alternatively, and trivially, provided that a40, L and B may vanish

altogether; x
.

is then any constant vector and A any tensor field constant
along the direction of x

.
.

4. Elementary flows.

All examples, except the last one, concern plane (z 3 40, say, when
Cartesian coordinates z i are introduced) flows in an infinite channel:
2QEz 1 EQ , 0 Gz 2 Gd , and with no external bulk influences: f , M , S
vanish.

EXAMPLE 1. Granular gas with no loss in the bulk (a , b , g , h i van-
ish) nor losses on the walls. A simplest flow may be envisaged where
stirring consists in a steady bounce wall-to-wall. If u is a constant vector
along the first axis and v a similar vector but parallel to the second axis,
one can choose initial conditions so that

x
.
4u , B40, H4v7v .

Granules jog up and down accross the channel with peculiar velocity 6u
and, at the same time, move steadily down the channel. A bare image of
the flow could be thus: at each point of the channel two clouds of gran-
ules meet, one with velocity u1v and the other with velocity u2v.

The pressure exerted on the walls amounts to rNvN2.
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EXAMPLE 2. All conditions are as in the first example but in the
presence of collision loss (aD0). There exists a stationary solution
where u is again a non-vanishing constant vector whereas v decays along
the channel from the value v0 at z 1 40:

x
.
4u , B40, H4v0 7v0 e 2az 1 .

If u is the null vector (no flow down the channel), a solution independent
of x1 exists where the bouncing between walls decays exponentially in
time

H4v0 7v0 e 2at .

EXAMPLE 3. Aims to describe the effects of ferment loss due to col-
lisions with the boundary by postulating that there the loss rate be pro-
portional to ferment (g×, a positive constant)

¯H

¯t
42g×H , at z 2 40, z 2 4d .

A simple solution is found when there are no other losses as in Example
1, though ferment gradient affects the flow (bD0). The solution involves
the two constant vectors u , v as in the earlier examples, and two con-
stants x 0 and z:

x
.
4u , B40, H4x 0 v7v e 2zx12gt .

All equations (15) are trivially satisfied bar the last one which deter-
mines z in terms of g×

bz 2 2NuNz1a2g× 40 ;

an elementary discussion of subcases ensues, depending on whether the
value of a falls within the interval

gg×, g×1
Nu 2 N

4b
h

or otherwise.

EXAMPLE 4. Plane Couette flow with constant imposed sliding vel-
ocity u in the upper plane z 2 4d is one of the stationary flows hinted at
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(see end of Section 4):

x
.
4u(z 2 /d); L4

1

d
u7c2 ,

ci , unit vectors along the axes. To the usual shear stress one must
add

2
g

4a

NuN2

d 2 g11
2NuN2

a 2 d 2 h c1 7c1 2
g

4a

NuN2

d 2
c2 7c2 1

1
g

4a 2

NuN3

d 3
(c1 7c2 1c2 7c1 ) .

If a and g go to zero, then only the constant component H11 remains ar-
bitrary, all other components of H vanish. If only a vanishes, H11 is arbit-
rary again:

H12 4
gNuN2

8rd

and other components vanish.
No connection can be expected between this example and the previ-

ous ones, as here no slip is allowed at the boundary.

5. Hints for progress.

So far we have striven to obtain evolution equations largely with the
goal of portraying the behaviour either of granular gases (see, e.g., [7])
or of suspensions where the suspended granules are totally entrained by
the surrounding viscous «solvent» although they provide the essential
contribution to total inertia. Still, the balance laws (7) offer ground also
for the study of the conduct of other continua; e.g., of hyperfluids, de-
signed to model the evolution of more remote objects (see, e.g., [8]).

In this section we collect sundry remarks, handy when seeking links
with such other pursuits. First, let us recall Remark 1 in Sect. 1. Bearing
the comments there in mind, we could say that our developments above
(and any other based on (7) alone) apply when the classification of gran-
ules within the three families quoted in that remark, though admittedly
coarse, is nevertheless adequate. It seems unnecessary to go beyond it, if
the bare aspects of global «anisotropy» of the distribution of peculiar ve-
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locities are requisite: they can be evidenced already by the possibly dif-
ferent size of eigenvalues of H.

Indeed, H offers a first appraisal of disorder in peculiar velocities;
within an account in terms of H , maximum disorder is achieved when
that tensor is spherical. Consider, for ease of display, circumstances
where all granules have the same speed v but random direction n;
then

H4v 2�
S2

w(n) n7n d(area) ,

where w(n) d(area) is the fraction of granules having velocity in the im-
mediate neighbourhood of vn and S2 is the surface of the unit sphere.
When w is constant (thus equal to (4p)21), H is spherical with the
value

H4
1

3
v 2 I ;

hence we could introduce

Q4
1

v 2
H2

1

3
I

as an order tensor and repeat here developments formally identical with
those available in the theory of nematic liquid crystals [9]; in particular,
we could introduce a concept of tensorial temperance.

The changes required so as to cover the case with generic speed are
now obvious: the distribution function w(v) needs to be defined over R 3

and to satisfy the normalisation conditions

�
R3

w(v) d(vol) 41, �
R3

vw(v) d(vol) 40 ;

then,

H4 �
R3

w(v) v7v d(vol) ,

and

Q4
1

(tr H)
H2

1

3
I .
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By analogy with the instance of perfect gases, some Authors have given
special relevance to the canonical distribution

w(v) 4w 0
21 exp kU Q gNvN22 v7v2

1

3
Ihl ,

w 0 4 �
R3

exp kU Q gNvN22 v7v2
1

3
Ihl ,

thus evidencing a tensorial absolute temperature, as the inverse of the
tensorial temperance U.

Only further research will show if the field U is really decisevely bet-
ter than H in discussing real physical problems. Actually, there is a radi-
cal handicap in choosing the former: it is bound with the acceptance,
without exception, of the canonical distribution, at least if the concept of
temperature is itself not generalised, as vaguely muted in [1], Sect. 5.

Be that as it may, one exits here from the strictly mechanical
province so as to admit thermodynamic (or, at least, thermodynamic-
like) concepts, necessarily governed by the central axiom which express-
es the balance of energy. Thus we close this section by proposing a for-
mulation of that principle which may be appropriate for granular
fluids.

Actually, we could perhaps dare to suggest that there should be, for
strictly thermal phenomena in these continua, an inherent complexity
parallel to the kinetic and dynamic one already imputed to them. And,
consequently, we could conjecture that it be possible to measure, on each
element and at each instant along a process a density of thermal internal
tensor energy, a third-order heat flux tensor, etc.. But we concede that
such conjectures would be far-fetched here. We follow, rather, a middle
course and, while suggesting a tensorial form of the principle of balance
of energy to match the kinetic energy theorem (5), we take the deeper

ferment to be isotropic and thus propose spherical tensors: 1

3
eI to repre-

sent the thermal internal energy density, and 1

3
lI for the rate of heat

generation; we also downgrade the third-order heat flux tensor to the
form q7I where q is the usual heat flux vector. Of course, as in the clas-
sical theory, e , l , q are linked with the «latent» molecular ferment,
rather than the granular one argued about so far.

In conclusion, we postulate the validity, over any subbody, of a tensor
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balance equation modelled, formally, on the classical one

(16) u �
b

r g 1

3
eI1Whvl

4�
b

r sym gx
.
7f1BM1

1

2
S1

1

3
lIh1

1�
¯b

sym gx
.
7Tn1B(mn)1

1

2
sn2q7nh .

Along any process which is sufficiently regular to ensure the validity
of the kinetic energy theorem (8), equation (16) yields

u �
b

1

3
reIvl

4�
b

ksym gLT T 1BA1bmt 2
1

2
Z2grad q1

1

3
rlIhl ,

and, because the choice of b among subbodies is arbitrary, the localisa-
tion ensues

1

3
re

.
I4sym gLT T 1BA1bmt 2

1

2
Z2grad q1

1

3
rlIh .(17)

Taking the trace of both members, a more common form of the energy
principle is attained

re
.
4L QT1B QA T 1b Q (mt )T 1

1

2
tr Z2div q1l .(18)

As already remarked in Sect. 2, the first four terms in the right-hand
sides of (17) and (18) assign the power (tensor or scalar) of internal ac-
tions; the last two measure heat loss or generation.

Among the many consequences of (18) we quote here, in conclusion,
the following one: as mentioned before, when (12) applies, the first two
addenda in the right-hand side of (18) collapse into the product (L2B) Q
QT. But

L2B4G(G 21 F)l F 21 ,

which suggests a conservative instance where e depends on G 21 F (as
seems reasonable that it should) and

T4G 2T ¯e

¯(G 21 F)
F T .
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