A Note on Abelian Varieties Embedded in Quadrics.

Luis Fuentes García (*)

Abstract

We show that if A is a d-dimensional abelian variety in a smooth quadric of dimension $2 d$ then $d=1$ and A is an elliptic curve of bidegree $(2,2)$ on a quadric. This extends a result of Van de Ven which says that A only can be embedded in $\boldsymbol{P}^{2 d}$ when $d=1$ or 2 .

1. Introduction.

Let A be a d-dimensional abelian variety embedded in \boldsymbol{P}^{N}. It is well known that $2 d \leqslant N$. Moreover, in [8] Van de Ven proved that the equality holds only when $d=1$ or 2 .

It is a natural question to study the possibilities for d when the abelian variety A is embedded in any other smooth $2 d$-dimensional variety V. In particular, here we study the embedding in smooth quadrics. We obtain the following result:

THEOREM 1.1. If A is a d-dimensional abelian variety in a smooth quadric of dimension $2 d$ then $d=1$ and A is an elliptic curve of bidegree $(2,2)$ on a quadric.

We will use similar methods to Van de Ven's proof. The calculation of the self intersection of A in the quadric and the Riemann-Roch theorem for abelian varieties allow only the cases $d=1,2,3$.
(*) Indirizzo dell'A.: E.T.S. de Ingenieros de Caminos, Canales y Puertos, Universidad de A Coruña, Campus de Elviña, 15192 A Coruña, Spain. E-mail: luisfg@iccp.udc.es

Supported by EAGER.

The case $d=1$ is the classical elliptic curve of type $(2,2)$ contained in the smooth quadric of \boldsymbol{P}^{3}.

When $d=2, A$ is an abelian surface in \boldsymbol{P}^{5}. We see that is the projection of an abelian surface $A^{\prime} \subset \boldsymbol{P}^{6}$ given by a $(1,7)$ polarization. By a result [7] due to R. Lazarsfeld, this is projectively normal and it is not contained in quadrics. Therefore, A is not contained in quadrics either.

Finally, two results [5], [6] of J. N. Iyer allow us to discard the case $d=3$.

2. Proof of the Theorem.

Let $j: A \hookrightarrow Q$ be an embedding of a d-dimensional abelian variety into a $2 d$-dimensional smooth quadric, with $d>1$. The Chow ring of the smooth quadric in codimension d is generated by cocycles α and β with the relations $\alpha^{2}=\beta^{2}=1, \alpha . \beta=0$. Thus, A will be equivalent to $a \alpha+b \beta$ and

$$
\begin{equation*}
A . A=a^{2}+b^{2} . \tag{1}
\end{equation*}
$$

On the other hand, by the self-intersection formula ([4], pag 431) we have $A . A=j_{*} c_{d}\left(N_{A, Q}\right)$. To obtain $c_{d}\left(N_{A, Q}\right)$, let us consider the normal bundle sequence:

$$
0 \rightarrow T_{A} \rightarrow j * T_{Q} \rightarrow N_{A, Q} \rightarrow 0
$$

Since the tangent bundle of an abelian variety is trivial, we see that $c\left(N_{A, Q}\right)=j^{*}\left(c\left(T_{Q}\right)\right)$. We compute the class of the tangent bundle of a quadric in the following lemma:

Lemma 2.1. Let $i: Q \hookrightarrow \boldsymbol{P}^{n+1}$ be an n-dimensional smooth quadric in \boldsymbol{P}^{n+1}. Then

$$
c\left(T_{Q}\right)=(1+\bar{H})^{n+2}(1+2 \bar{H})^{-1}
$$

where $\bar{H}=i^{*} H$ and H is a hyperplane in \boldsymbol{P}^{n+1}.
Proof. We have an exact sequence:

$$
0 \rightarrow T_{Q} \rightarrow i^{*} T_{\boldsymbol{P}^{n+1}} \rightarrow N_{Q, \boldsymbol{P}^{n+1}} \rightarrow 0
$$

Since Q is a hypersurface $N_{Q, P^{n+1}} \cong \mathcal{O}_{Q}(Q) \cong \mathcal{O}_{Q}(2 \bar{H})$ and the total class of the normal bundle is $c\left(N_{Q, P^{n+1}}\right)=1+2 \bar{H}$. On the other
hand, it is well known that $c\left(T_{\boldsymbol{P}^{n+1}}\right)=(1+H)^{n+2}$. Now, from the splitting principle the claim follows.

Let us apply this lemma to the previous situation. We obtain

$$
c\left(N_{A, Q}\right)=(1+h)^{2 d+2}(1+2 h)^{-1}=\sum_{k=0}^{2 d+2}\binom{2 d+2}{k} h^{k} \sum_{l=0}^{\infty}(-2 h)^{l}
$$

where $h=j^{*} \bar{H}$. In particular, the top class is

$$
c_{d}=F_{d} h^{d}, \text { with } F_{d}=\sum_{k=0}^{d}\binom{2 d+2}{k}(-2)^{(d-k)} .
$$

Substituting this into the self-intersection formula, we have:

$$
A . A=F_{d} j_{*}\left(j^{*} \bar{H}^{d}\right)=F_{d} \bar{H}^{d} \cdot j_{*} A=F_{d}(a \alpha+b \beta) . \bar{H}^{d}=F_{d}(a+b) .
$$

Combining this expression with (1) we obtain the following relation

$$
\begin{equation*}
a^{2}+b^{2}=F_{d}(a+b) \tag{2}
\end{equation*}
$$

or equivalently,

$$
\left(a-\frac{F_{d}}{2}\right)^{2}+\left(b-\frac{F_{d}}{2}\right)^{2}=\frac{F_{d}^{2}}{2} .
$$

We are interested in bounding the degree of A, when (a, b) satisfy this equation. Note that this is a circle of center $\left(\frac{F_{d}}{2}, \frac{F_{d}}{2}\right)$ and radius $\frac{F_{d}}{\sqrt{2}}$. Since $\operatorname{deg}(A)=a+b$, it is clear that the maximal degree is reached when $(a, b)=\left(F_{d}, F_{d}\right)$, that is,

$$
\operatorname{deg}(A) \leqslant 2 F_{d}
$$

On the other hand, the abelian variety is embedded in $Q \subset \boldsymbol{P}^{2 d+1}$. When $d>2$, by Van de Ven's Theorem, it spans $\boldsymbol{P}^{2 d+1}$. Furthermore, by the Riemann-Roch theorem for abelian varieties, we know that $h^{0}\left(\mathcal{O}_{A}(h)\right)=$ $=\frac{\operatorname{deg}(A)}{d!}$. Thus, we have the following inequality:

$$
\operatorname{deg}(A) \geqslant 2(d+1)!
$$

Comparing the two bounds we see that a sufficient condition for the non-
existence of the embedding j is $F_{d}<(d+1)$!. Now,

$$
F_{d}=\sum_{k=0}^{d}\binom{2 d+2}{k}(-2)^{(d-k)} \leqslant \sum_{k=0}^{d}\binom{2 d+2}{k}(2)^{d} \leqslant 2^{d} 2^{2 d+1}=2^{3 d+1}
$$

We see that $(d+1)!>2^{3 d+1} \geqslant F_{d}$ when $d=17$. A simple inductive argument shows that this holds if $d \geqslant 17$.

If $d \leqslant 17$, using the exact value of F_{d}, we see that $(d+1)!>F_{d}$ for any $d>3$.

We conclude that the unique possibilities are $d=2$ or $d=3$.
First, suppose that A is an abelian surface contained in a quadric. $F_{2}=7$ and we can check that the unique positive integer solution of the equation (2) is $a=b=7$. Thus A must be an abelian surface of degree 14 given by the polarization $(1,7)$. Note that $A \subset Q \subset \boldsymbol{P}^{5}$ is not linearly normal, that is, it is the projection of a linearly normal abelian surface $A^{\prime} \subset \boldsymbol{P}^{6}$. The quadric Q can be lifted to a quadric containing the surface A^{\prime}.

Lazarsfeld proved in [7] that a very ample divisor of type (1, d) with $d \geqslant 13$ or $d=7,8,9$ is projectively normal. From this the following sequence is exact:

$$
0 \rightarrow H^{0}\left(I_{A^{\prime}, \boldsymbol{P}^{6}}(2)\right) \rightarrow H^{0}\left(\mathcal{O}_{\boldsymbol{P}^{6}}(2)\right) \rightarrow H^{0}\left(\mathcal{O}_{A^{\prime}}(2)\right) \rightarrow 0
$$

Since $h^{0}\left(\mathcal{O}_{\boldsymbol{P}^{6}}(2)\right)=h^{0}\left(\mathcal{O}_{A^{\prime}}(2)\right)=28$, there are not quadrics containing the abelian surface A^{\prime} and we obtain a contradiction.
Finally, suppose that $d=3$. Now, $F_{3}=24=(3+1)$!, so the degree of the abelian variety is exactly $2 F_{3}=48$. The line bundle $\mathcal{O}_{A}(h)$ corresponds to a divisor of type $(1,1,8)$ or $(1,2,4)$. But J.N.Iyer prove in [5] that a line bundle of type $(1, \ldots, 1,2 d+1)$ is never very ample. Moreover, in [6] she studies the map defined by a line bundle of type $(1,2,4)$ in a generic abelian threefold. She obtains that it is birational but not an isomorphism onto its image. Note that the very ampleness is an open condition for polarized abelian varieties (see [2]). It follows that a linear system of type $(1,2,4)$ cannot be very ample on any abelian threefold and this completes the proof.

Remark 2.2. In [1] C. Ciliberto and V. Di Gennaro obtain more general results about subvarieties of low codimension. In particular they give a bound for the degree of a d-dimensional abelian variety embedded on a smooth hypersurface of dimension $2 d$.

REMARK 2.3. The sequence $F_{d}=\sum_{k=0}^{d}\binom{2 d+2}{k}(-2)^{(d-k)}$ is related to the Fine numbers. For a reference see [3].

Acknowledgement. I thank K. Hulek for suggesting me this problem and for his advice and interest. I am grateful to the Institut für Mathematik of Hannover for its hospitality and especially to E. Schellhammer for his patience. I want also thank E. Deutsch for his remark about bounding F_{d} and its relation with the Fine numbers.

REFERENCES

[1] C. Ciliberto - V. Di Gennaro, Boundedness for low codimensional subvarieties, to Appear in Proceedings of Conference Held at the ESI of Wien in October 2000 (Editor Prof. Popov).
[2] O. Debarre - K. Hulek - J. Spandaw, Very ample linear systems on abelian varieties, Math. Ann., 300 (1994), pp. 181-202.
[3] E. Deutsch - L. Shapiro, A survey of the Fine numbers, Discrete Math., 241 (2001), pp. 241-265.
[4] R. Hartshorne, Algebraic Geometry, GTM, 52, Springer-Verlag, 1977.
[5] J. N. Iyer, Linear systems on abelian varieties of dimenson $2 g+1$, Proc. Am. Math. Soc., 130, no. 4 (2002), pp. 959-962.
[6] J. N. IYER, Line bundles of type ($1, \ldots, 1,2, \ldots, 2,4, \ldots, 4$) on abelian varieties, Int. J. Math., 12, no. 1 (2001), pp. 125-142.
[7] R. Lazarsfeld, Projectivite normale des surface abeliennes, Redige par 0. Debarre, prepublication no. 14, Europroj - C.I.M.P.A., Nice (1990).
[8] A. Van de Ven, On the embedding of Abelian varieties in projective spaces, Ann. Mat. Pura Appl., IV. Ser., 103 (1975), pp. 127-129.

Manoscritto pervenuto in redazione il 14 maggio 2003.

