Fundamental Solutions of Pseudo-Differential Operators over p-Adic Fields.

W. A. ZUNIGA-GALINDO (*)

Abstract - We show the existence of fundamental solutions for *p*-adic pseudo-differential operators with polynomial symbols.

1. Introduction.

Let K be a p-adic field, i.e. a finite extension of \mathbb{Q}_p the field of p-adic numbers. Let R_K be the valuation ring of K, P_K the maximal ideal of R_K , and $\overline{K} = R_K / P_K$ the residue field of K. The cardinality of \overline{K} is denoted by q. For $z \in K$, $v(z) \in \mathbb{Z} \cup \{+\infty\}$ denotes the valuation of z, $|z|_K = q^{-v(z)}$ and $ac(z) = z\pi^{-v(z)}$ where π is a fixed uniformizing parameter for R_K . Let Ψ denote an additive character of K trivial on R_K but not on P_K^{-1} .

A function $\Phi: K^n \to \mathbb{C}$ is called a Schwartz-Bruhat function if it is locally constant with compact support. We denote by $\mathcal{S}(K^n)$ the \mathbb{C} -vector space of Schwartz-Bruhat functions over K^n . The dual space $\mathcal{S}'(K^n)$ is the space of distributions over K^n . Let $f = f(x) \in K[x]$, $x = (x_1, \ldots, x_n)$, be a non-zero polynomial, and β a complex number satisfying $\operatorname{Re}(\beta) > 0$.

If
$$x = (x_1, ..., x_n), y = (y_1, ..., y_n) \in K^n$$
, we set $[x, y] := \sum_{i=1}^n x_i y_i$.

A p-adic pseudo-differential operator $f(\partial, \beta)$, with symbol $|f|_K^{\beta}$, is an

(*) Indirizzo dell'A.: Department of Mathematics and Computer Science, Barry University, 11300 N.E. Second Avenue, Miami Shores, Florida 33161, USA. E-mail: wzuniga@mail.barry.edu

operator of the form

(1.1)
$$f(\partial, \beta) \colon \quad \mathcal{S}(K^n) \quad \to \quad \mathcal{S}(K^n)$$

$$\Phi \quad \to \quad \mathcal{F}^{-1}(|f|_K^\beta \mathcal{F}(\Phi)),$$

where

(1.2)
$$\mathcal{F}: \quad \mathcal{S}(K^n) \quad \to \qquad \qquad \mathcal{S}(K^n)$$

$$\Phi \quad \to \int\limits_{K^n} \Psi(-[x, y]) \, \Phi(x) \, dx$$

is the Fourier transform. The operator $f(\partial, \beta)$ has self-adjoint extension with dense domain in $L^2(K^n)$. We associate to $f(\partial, \beta)$ the following p-adic pseudo-differential equation:

(1.3)
$$f(\partial, \beta) u = g, \quad g \in S(K^n).$$

A fundamental solution for (1.3) is a distribution E such that u = E * q is a solution.

The main result of this paper is the following.

THEOREM 1.1. Every p-adic pseudo-differential equation $f(\partial, \beta) u = g$, with $f(x) \in K[x_1, ..., x_n] \setminus K$, $g \in S(K^n)$, and $\beta \in \mathbb{C}$, $\text{Re}(\beta) > 0$, has a fundamental solution $E \in S'(K^n)$.

The p-adic pseudo-differential operators occur naturally in p-adic quantum field theory [11], [6]. Vladimirov showed the existence of a fundamental solutions for symbols of the form $|\xi|_K^a$, $\alpha > 0$ [10], [11]. In [7], [6] Kochubei showed explicitly the existence of fundamental solutions for operators with symbols of the form $|f(\xi_1, ..., \xi_n)|_K^a$, $\alpha > 0$, where $f(\xi_1, ..., \xi_n)$ is a quadratic form satisfying $f(\xi_1, ..., \xi_n) \neq 0$ if $|\xi_1|_K + \ldots + |\xi_n|_K \neq 0$. In [8] Khrennikov considered spaces of functions and distributions defined outside the singularities of a symbol, in this situation he showed the existence of a fundamental solution for a padic pseudo-differential equation with symbol $|f|_K \neq 0$. The main result of this paper shows the existence of fundamental solutions for operators with polynomial symbols. Our proof is based on a solution of the division problem for p-adic distributions. This problem is solved by adapting the ideas developed by Atiyah for the archimedean case [1], and Igusa's theorem on the meromorphic continuation of local zeta functions [3], [4]. The connection between local zeta functions (also called Igusa's local zeta functions) and fundamental solutions of p-adic pseudo-differential operators has been explicitly showed in particular cases by Jang and Sato [5], [9]. In [9] Sato studies the asymptotics of the Green function G of the following pseudo-differential equation

(1.4)
$$(f(\partial, 1) + m^2) u = g, \quad m > 0.$$

The main result in [9, theorem 2.3] describes the asymptotics of G(x) when the polynomial f is a relative invariant of some prehomogeneous vector spaces (see e.g. [3, Chapter 6]). The key step is to establish a connection between the Green function G(x) and the local zeta function attached to f.

All the above mentioned results suggest a deep connection between Igusa's work on local zeta functions (see e.g. [3]) and *p*-adic pseudo-differential equations.

2. Local zeta functions and division of distributions.

The local zeta function associated to f is the distribution

(2.1)
$$\langle |f|_K^s, \Phi \rangle = \int_{K^n} \Phi(x) |f(x)|_K^s dx,$$

where $\Phi \in \mathcal{S}(K^n)$, $s \in \mathbb{C}$, Re(s) > 0, and dx is the Haar of K^n normalized so that $vol(R_K^n) = 1$. The local zeta functions were introduced by Weil [12] and their basic properties for general f were first studied by Igusa [3], [4]. A central result in the theory of local zeta functions is the following.

THEOREM 2.1 (Igusa, [3, Theorem 8.2.1]). The distribution $|f|_K^s$ admits a meromorphic continuation to the complex plane such that $\langle |f|_K^s, \Phi \rangle$ is a rational function of q^{-s} for each $\Phi \in \mathcal{S}(K^n)$. In addition the real parts of the poles of $|f|_K^s$ are negative rational numbers.

The archimedean counterpart of the previous theorem was obtained jointly by Bernstein and Gelfand [2], independently by Atiyah [1]. The following lemma is a consequence of the previous theorem.

LEMMA 2.1. Let $f(x) \in K[x_1, ..., x_n]$ be a non-constant polynomial, and β a complex number satisfying $\text{Re}(\beta) > 0$. Then there exists a distribution $T \in \mathcal{S}'(K^n)$ satisfying $|f|_K^{\beta} T = 1$.

PROOF. By theorem 2.1 $|f|_K^s$ has a meromorphic continuation to \mathbb{C} such that $\langle |f|_K^s, \Phi \rangle$ is a rational function of q^{-s} for each $\Phi \in S(K^n)$. Let

$$|f|_K^s = \sum_{m \in \mathbb{Z}} c_m (s+\beta)^m$$

be the Laurent expansion at $-\beta$ with $c_m \in \mathcal{S}'(K^n)$ for all m. Since the real parts of the poles of $|f|_K^s$ are negative rational numbers by theorem 2.1, it holds that $|f|_K^{s+\beta} = |f|_K^\beta |f|_K^s$ is holomorphic at $s = -\beta$. Therefore $|f|_K^\beta c_m = 0$ for all m < 0 and

(2.3)
$$|f|_K^{s+\beta} = c_0 |f|_K^{\beta} + \sum_{m=1}^{\infty} c_m |f|_K^{\beta} (s+\beta)^m.$$

By using the Lebesgue lemma and (2.3) it holds that

(2.4)
$$\lim_{s \to -\beta} \langle |f|_{K}^{s+\beta}, \Phi \rangle = \int_{K^{n}} \Phi(x) dx = \langle 1, \Phi \rangle$$
$$= c_{0} |f|_{K}^{\beta}.$$

Therefore we can take $T = c_0$.

If $T \in \mathcal{S}'(K^n)$ we denote by $\mathcal{F}T \in \mathcal{S}'(K^n)$ the Fourier transform of the distribution T, i.e. $\langle \mathcal{F}T, \Phi \rangle = \langle S, \mathcal{F}(\Phi) \rangle$, $\Phi \in \mathcal{S}(K^n)$.

3. Proof of the main result.

By lemma 2.1 there exists a $T \in \mathcal{S}'(K^n)$ such that $|f|_K^\beta T = 1$. We set $E = \mathcal{F}^{-1}T \in \mathcal{S}'(K^n)$ and assert that E is a fundamental solution for (1.3). This last statement is equivalent to assert that $\mathcal{F}(\Phi) = (\mathcal{F}E) \mathcal{F}(g)$ satisfies $|f|_K^\beta \mathcal{F}(\Phi) = \mathcal{F}(g)$. Since $|f|_K^\beta \mathcal{F}(\Phi) = |f|_K^\beta \mathcal{F}(E) \mathcal{F}(g) = |f|_K^\beta T \mathcal{F}(g) = \mathcal{F}(g)$, we have that E is a fundamental solution for (1.3).

4. Operators with twisted symbols.

Let $\chi: R_K^{\times} \to \mathbb{C}$ be a non-trivial multiplicative character, i.e. a homomorphism with finite image, where R_K^{\times} is the group of units of R_K . We put formally $\chi(0) = 0$. If $f(x) \in K[x_1, ..., x_n] \setminus K$, we say that $\chi(ac(f))|f|_K^{\beta}$, with $\beta \in \mathbb{C}$, $\text{Re}(\beta) > 0$, is a *twisted symbol*, and call the

pseudo-differential operator

$$(4.1) \quad \Phi \to f(\partial, \beta, \chi) \ \Phi = \mathcal{F}^{-1}(\chi(ac(f)) | f|_K^{\beta} \mathcal{F}(\Phi)), \qquad \Phi \in \mathcal{S}(K^n),$$

a twisted operator. Since the distribution $\chi(ac(f))|f|_K^\beta$ satisfies all the properties stated in theorem 2.1 (cf. [3, Theorem 8.2.1]), theorem 1.1 generalizes literally to the case of twisted operators. In [6, chapter 2] Kochubei showed explicitly the existence of fundamental solutions for twisted operators in some particular cases.

REFERENCES

- [1] M. F. Atiyah, Resolution of singularities and division of distributions, Comm. Pure Appl. Math., 23 (1970), pp. 145-150.
- [2] I. N. BERNSTEIN S. I. GELFAND, Meromorphic property of the functions P^λ, Functional Anal. Appl., 3 (1969), pp. 68-69.
- [3] IGUSA JUN-ICHI, An introduction to the theory of local zeta functions, AMS/IP studies in advanced mathematics, v. 14, 2000.
- [4] J. IGUSA, Complex powers and asymptotic expansions, I Crelles J. Math., 268/269 (1974), pp. 110-130; II, ibid., 278/279 (1975), pp. 357-368.
- [5] Y. Jang, An asymptotic expansion of the p-adic Green function, Tohoku Math. J., 50 (1998), pp. 229-242.
- [6] A. N. Kochubei, Pseudodifferential equations and stochastics over nonarchimedean fields, Marcel Dekker, 2001.
- [7] A. N. Kochubei, Fundamental solutions of pseudo-differential equations associated with p-adic quadratic forms, Izvestiya Math., 62 (1998), pp. 1169-1189
- [8] A. Khrennikov, Fundamental solutions over the field of p-adic numbers, St. Peterburgh Math. J., 4 (1993), pp. 613-628.
- [9] FUMIHIRO SATO, p-adic Green functions and zeta functions, Commentarii Mathematici Universitatis Sancti Pauli, 51 (2002), pp. 79-97.
- [10] V. S. VLADIMIROV, On the spectrum of some pseudo-differential operators over p-adic number field, Algebra and Analysis, 2 (1990), pp. 107-124.
- [11] V. S. VLADIMIROV I. V. VOLOVICH E. I. ZELENOV, p-adic Analysis and mathematical physics, World Scientific, Singapore, 1994.
- [12] A. Weil, Sur la formule de Siegel dans le théorie des groupes classiques, Acta Math., 113 (1965), pp. 1-87.

Manoscritto pervenuto in redazione il 2 dicembre 2002.