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Kaplansky Classes.

EDGAR E. ENOCHS (*) - J. A. LÓPEZ-RAMOS (**)

1. Introduction.

In 1979 L. Salce introduced the notion of a cotorsion theory [15]. But
only after P. Eklof and J. Triflaj [4] proved their completeness theorem
did it become clear what an important role the notion would play in ho-
mological algebra. For example an easy application of their complete-
ness result settled the flat cover conjecture.

More recently, M. Hovey [11] has shown that there is an intimate
connection between Quillen’s model of structure on abelian categories
and complete cotorsion theories with respect to some proper class of
short exact sequences. Hovey gave examples of such model structures
using the cotorsion theories which appear in the context of the so called
Gorenstein modules (these involve generalizations of notions introduced
by Auslander [1] in connections with his study of G-dimensions). It is
now well known that over Gorenstein rings, the classes of Gorenstein in-
jective and projective modules form part of two corresponding complete
cotorsion theories (see [9] for example).

Our aim in this paper is to study classes of modules which we define
as Kaplansky classes and which behave well under Eklof and Triflaj’s
techniques. Establishing the fact that certain classes are Kaplansky
classes allows us to prove general existence theorems above covers and
envelopes in the Gorenstein setting. We also relate these classes to the
notions of m-dimension of modules (see [10]).

(*) Indirizzo dell’A.: Department of Mathematics, University of Kentucky,
Lexington, KY 40506 USA. E-mail: enochsHms.uky.edu

(**) Indirizzo dell’A.: Departamento de Algebra y Análisis Matemático, Uni-
versidad de Almería, 04120 Almería, Spain. E-mail: jlopezHual.es



Edgar E. Enochs - J. A. López-Ramos68

Given L a class of R-modules, we will denote by L» , respectively »L,
the class of R-modules M such that ExtR

1 (L , M) 40 respectively
ExtR

1 (M , L) 40, for every L� L. L» and »L are called the orthogonal
classes of L. Now, using this notation, we say that a pair of classes of
R-modules (L, C) is a cotorsion theory if and only if L»4C and » C4L.

Let F be a class of R-modules. A morphism W : FKM where F� F

is called an F-precover of M if for any morphism c : F 8KM with F 8� F

we get a commutative diagram

In case that F 84F and c4W and we can only complete the diagram by
automorphisms we say that W : FKM is an F-cover. Dually we have the
definitions of an F-preenvelope and F-envelope. We say that an F-pre-
cover W : FKM is special if Ker(W) � F». Dually we have the definitions
of an F-preenvelope, F-envelope and special F-preenvelope.

We note that F-precovers need not be surjective. But if F contains
all the projective modules, then we easily see that such a precover is sur-
jective. Likewise, F-preenvelopes are necessary injective when F con-
tains all injective modules.

By a right F-resolution of M we will mean a complex 0 KMKF 0 K

KF 1 K Q Q Q with each F i � F and such that Hom (2 , F) makes the complex
exact for any F� F. A finite complex 0 KMKF 0 K Q Q QKF n with all F i �
� F and which is made exact by all Hom (2 , F) with F� F is called a par-
tial right resolution of length n. It is clear that right and left F-resolu-
tions may be constructed using F-preenvelopes and F-precovers respect-
ively.

Finally we recall from [10] the definitions of l F and m F-dimension
of a module. We say that m F (M) 421 if M does not have an F-
preenvelope. If nF0, we write m F (M) 4n if the maximum length
of a right partial F-resolution of M is n. We will say that m F (M) 4Q

if there exists such a partial right F-resolution of M for every nF0.
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Note that by the dual of [10, Corollary 2.6], if m F (M) 4Q then
M has a right F-resolution. The l F-dimension is defined dually.

2. Kaplansky classes.

DEFINITION 2.1. Let F be a class of R-modules. Then F be is said
to be a Kaplansky class if there exists a cardinal 8 such that for every
M� F and for each x�M , there exists a submodule F of M such that x�
�F’M , F , M/F� F and Card (F) G8.

REMARK 1. The preceeding definition is based on a result of Ka-
plansky [13] which says that if P is a projective R-module and x�P
then there is a countably generated submodule S of P with x�S and
with S and P/S projective (or equivalently, with S a summand of P). It
is easy to argue that the class of injective modules and the class of flat
modules are Kaplansky (see [9, Lemma 5.3.12] for a proof of the
latter).

The next results will be used to prove the existence of preenvelopes
relative to Kaplansky classes. The two lemmas are due to F. Maeda [14]
(also see C. Jensen [12, Lemma 1.4]).

LEMMA 2.1. Let I be a right directed set. If S%I is a set such that
Card (S) G8 for 8 some infinite cardinal then there exists a right di-
rected set J such that S’J’I and with Card (J) G8.

PROOF. For each pair of elements i , j�S let k�I such that i , jGk.
Now let S0 4S and S1 the set formed by all the preceding k’s. Then
Card (S1 ) GCard (S)1Card (S3S) G8. Let now Sn be defined as be-
fore from Sn21 for nF2. Then J4 0

nF0
Sn is the desired set. r

LEMMA 2.2. Let I be a set such that Card (I) D]0 . Then there exists
a well ordered chain

J0 ’J1 ’J2 ’R’Jv’Jv11 ’RJa’R

with aEl (l an ordinal) such that 0
aEl

Ja4I and where each Ji is a

right directed set such that Card (Ji ) ECard (I).

PROOF. We well order I so that a4Ord (I) is an initial ordinal, i. e.,
Card (b) ECard (a) for every bEa.



Edgar E. Enochs - J. A. López-Ramos70

Let now (ib )bEa be a family such that the ib’s are the elements of I.
We will construct

J0 ’J1 ’J2 ’R’Jv’Jv11 ’RJb’R

such that each Jb is right directed and ib�Jb for bEa and with
Card (Jb ) ECard (I) also for each bEa.

If Card (I) 4]0 we may take every Jn finite, so let us assume that
Card (I) D]0 . Then we may get J0 ’J1 ’R’Jn ’R with each Ji finite
and with in �Jn . Then let J 84 0

n40

Q Jn . By the preceding Lemma we find

a right directed set Jv such that Jv4J 8N ]iv( verifying that
Card (Jv ) 4]0.

Now we proceed by transfinite induction. If we have Jb with
Card (Jb ) GCard (b) (b infinite) then we get Ja’Ja11 having the desired
property. If lEa is a limit ordinal and we have obtained Jb for bEa
then we define J 84 0

bEl
Jb and we enlarge J 8 to Jl such that il�Jl by the

preceding Lemma and Card (Jl ) 4Card (J 8 ) and then the result fol-
lows. r

PROPOSITION 2.3. Let F be a class of R-modules. If F is closed un-
der will ordered direct limits then it is closed under arbitrary direct
limits.

PROOF. Let ((Mi ), (r ij ) )i�I be a directed system. We will make
transfinite induction on Card (I).

If Card (I) 4nE]0 there is nothing to prove.
If Card (I) 4]0 then there exists a cofinal set J’I with

J4 ]j0 , j1 , R( where j0 E j1 ER. In this way lim
K
i�I

Mi 4 lim
K
i�J

Mj � F by
hypothesis.

We now assume that Card (I) D]0 . In this case there exists

J0 ’J1 ’J2 ’R’Jv’Jv11 ’RJa’R

aEl for l an ordinal such that 0
aEl

Ja4I where each Ja is a right direct-

ed set and Card (Ja ) ECard (I). Then lim
K
i�I

Mi 4 lim
K
aEl

glim
K
i�Ja

Mih. Since by in-

duction hypothesis lim
K
i�Ja

Mi � F, by the hypothesis in the statement we get

that lim
K
i�I

Mi � F. r
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THEOREM 2.4. Let F be a class of R-modules closed under direct
limits. Then the class H of R-modules M such that m F (M) 4Q is also
closed under direct limits.

PROOF. By the preceding we only have to show that the class of R-
modules M such that m F (M) 4Q is closed under well ordered direct
limits. So let us assume that ((Ma ), (r ba ) )aEl is a directed system in H. If
l4nEv then lim

K
Ma4Mn21 and so we have finished.

Then let l4v and let us start by showing that lim
K

Mn (nEv) is in H.
We may suppose that the F-preenvelope of each Mn is an injection (if
W : MKF is an F-preenvelope so is W(M) KF). If M0 KF 0 is an F-
preenvelope, we consider the pushout diagram of M0 KF 0 and M0 K

KM1

0KM0K F 0 KF 0 /M0K0

I I I
0KM1K P K P/M1 K0

Since P/M1 `F 0 /M0 and M1 have an F-preenvelope, say P/M1 KF and
M1 KF 8 and since there is a morphism PKF 8 we may construct an F-
preenvelope for P , PKF 1 4F5F 8. Then M1 KF 1 is an F-preenve-
lope.

Therefore we have the commutative diagram

M0K F 0

I I
M1K F 1

which has the property that if

M0K F 0

I I
M1K G
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is commutative with G� F then there exists a morphism of dia-

grams

M0K F 0 M0K F 0

I I K I I
M1K F 1 M1K G

which is the identity on M0 , M1 and F 0. If we continue with this process
we get a commutative diagram

M0K F 0

I I
M1K F 1

I I
M2K F 2

I I
÷ ÷

Now since each

Mn K F n

I I
Mn11KF n11

has the preceding property we easily see that lim
K

Mn K lim
K

F n is an
F-preenvelope.

Then by the dual of [10, Corollary 2.6] (m F (M) 4Q) C n 4

4Coker (Mn KF n ) has an F-preenvelope (nF0, and so, if we consider
the system C 0 KC 1 K Q Q Q , by the reasoning above we get that

C4 lim
K

C n 4Coker (lim
K

M n K lim
K

F n)

has an F-preenvelope. Continuing in this manner we see that

m Fg lim
K

nEv

Mnh4Q.

Now we reindex the modules M0 , M1 , R , Mv , Mv11 , R such that
Mv4 lim

K
Mn and Mv11 is the old Mv and so forth. Therefore we may as-
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sume that the system (Ma )aEl is continuous, i. e., Mb4 lim
K

nEv

Ma if b is a

limit ordinal with bEl. Then using transfinite induction it is clear that
the argument generalizes and we get that lim

K
Ma (aEl) is in H. r

THEOREM 2.5. Let R be a ring and F a Kaplansky class closed un-
der direct limits. The following assertions are equivalent:

i) m F (M) 4Q for every finitely presented R-module M.
ii) m F (M) 4Q for every R-module M.
iii) Every R-module has an F-preenvelope.
iv) F is closed under direct products.

PROOF. i) ¨ ii) is a consequence of Theorem 2.4.
ii) ¨ iii) follows from the definition of m F-dimension.
iii) ¨ iv) Let (Fi )i�I be any family of R-modules in F and

W : »
i�I

Fi KF an F-preenvelope. Then there is a morphism f : FK »
i�I

Fi

such that W i f is the identity map and so »
i�I

Fi � F.

iv) ¨ i) Let M�R-Mod finitely presented and let F� F. Since F is
a Kaplansky class, for every morphism MK

f
F there exist F 8� F and a

cardinal 8 such that Card (F 8 ) G8 and f factors MKF 8KF. Then we
say that any two morphisms MKF and MKF 8 with F , F 8� F and with
Card (F), Card (F 8 ) G8 are equivalent if and only if any diagram

can be completed by an isomorphism. Now if we take X a set of represen-
tatives of such MKF , then MK»

X
F is an F-preenvelope. The result

now follows in the usual way by considering the cokernel of this
F-preenvelope. r

REMARK 2. Given a class F of R-modules we could say that a ring
R is right F-coherent if F is closed under direct products. Then If F is
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the class of injective modules then it is clear that every ring is F-coher-
ent. If F is the class of flat modules then F-coherency becomes usual
coherency.

REMARK 3. Note that in Theorem 2.5 we don’t need the hypothesis
that the Kaplansky class is closed under direct limits to show the equiv-
alence between ii), iii) and iv).

Now we give applications of Theorem 2.5 and prove the existence of
Gorenstein injective preenvelopes.

PROPOSITION 2.6. If R is a left noetherian ring and F is the class
of Gorenstein injective left R-modules then F is a Kaplansky
class.

PROOF. Let M� F and x�M. Then there exist an exact sequence in
R-Mod

S *4 Q Q QKE 22K
d 22

E 21K
d 21

E 0K
d 0

E 1K
d 1

Q Q Q

where every E i is an injective R-module and such that M4Ker (E 0 K

KE 1 ) and remains exact whenever Hom (E , 2) is applied for any injective
R-module E. We will construct a of a Gorenstein injective submodule S
with x�S using a procedure with two steps: first we will construct an ex-
act complex in R-Mod of injective R-modules and from this we will find
another complex in R-Mod of injective R-modules such that Hom (E , 2)
leaves this complex exact.

So if x�M , since E 21 K
f

M is surjective, there is y�E 21 such that
f (y) 4x. Then consider ayb KF0 the inclusion and we get by Remark 1 a
cardinal 80 and a submodule S 21 ’E 21 pure such that ayb ’S 21 and
Card (S 21 ) G80 . Let now f (S 21 ) ’M and observe that f (S 21 ) ’E 0. As
before we get S 0 ’E 0 pure and a cardinal 81 such that Card (S 0 ) G81 .
Then consider the quotient S 0 /f (S 21 ) and get S 1 ’E 1 and 82 such that
Card (S 1 ) G82 .

Now we reverse the process in the opposite direction and consider
S 1 OE 0 /M. Then there exists a submodule D 0 of E 0 which applies
in S 1 OE 0 /M. We get again S 80 ’E 0 pure and 83 such that D 0 ’S 80

and Card (S 80 ) G83 . Let d 0 (S 80 ) and obtain S 81 ’E 1 pure and 84

such that d 0 (S 80 ) ’S 81 and Card (S 81 ) G84 . Now let S 80 OM and
since f is surjective there exists D 21 ’E 21 which applies in the
preceding module. Let f (D 21 ) ’M and D 22 ’E 22 which applies in
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f (D 21 ). We obtain S 822 ’E 22 pure and 85 such that D 22 ’S 822 and
Card (S 822 ) G85 .

Again we start the construction going forward and we consider
d 22 (S 822 ) ’E 21 and proceed as before, going n steps forward, going
back n11 steps and n12 forward again.

Then we take the union of all the complexes constructed in the «zig-
zag» process

S *4 Q Q QKS 22 KS 21 KS 0 KS 1 K Q Q Q

and we consider S4Ker (S 0 KS 1 ), which is a submodule of M which
contains the element x and that by the construction, there exists a cardi-
nal 8 such that Card (S) G8. The previous complex is exact by its con-
struction and it is formed by injective modules since all of them are pure
submodules of injective modules.

For the second step in the proof we make some preliminary remarks.
Our aim is to construct S’M with an exact sequence as before and such
that it remains exact when Hom (E , 2) is applied for every E injective.
But since R is left noetherian there is a set X of injective R-modules such
that every injective R-modules is a direct sum of copies of modules in X.
So let us take I45Ex�X Ex . Then if Hom (I , 2) makes the preceding
complex exact, Hom (E , 2) will do the same for every injective E.

Now let us consider the complex

Q Q QK
d 823

Hom (I , S 22 ) K
d 822

Hom (I , S 21 ) K
d 821

Hom (I , S 0 ) K
d 80

Q Q Q

This complex is a subcomplex of

Q Q QK
d 23

Hom (I , E 22 ) K
d 22

Hom (I , E 21 ) K
d 21

Hom (I , E 0 ) K
d 0

Q Q Q

which is exact by the above. Suppose then without lost of generality that
Ker (d 821 ) cIm (d 822 ). Then there exist S 822 ’E 22 pure and a cardinal
81 such that S 22 ’S 822 , Ker (d 821 ) ’Im (d 22 NHom (I , S 822 ) ) and
Card (S 822 ) G81. Consider now S 8 the image of S 822 by the morphism
E 22 KE 21 and let S 821 ’E 21 pure and 82 such that S 8’S 821 ,
Im (d 22 NHom (I , S 822 ) ) ’ Hom (I , S 821 ) and Card (S 821 ) G82 . Then let S 8

be the image of S 821 by the morphism E0 KM. Now we enlarge S 0 to
S 80 ’F 0 pure and we find 83 such that Im (d 21 NHom (I , S 821 ) ) ’
’ Hom (I , S 80 ) and Card (S 80 ) G83 . Then we go back again and start an-
other «zig-zag» process with Ker (d 0 NHom (I , S 80 ) ) and Im (d 21 NHom (I , S 821 ) ).
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We consider the union of all the complexes we get in this last «zig-zag»
process

T *4 Q Q QKT1 KT0 KT21 KT22 K Q Q Q

T * has the property that when Hom (E , 2) is applied we get an exact
complex for every injective R-module E , but it may happen that it is not
exact. So we apply again the «zig-zag» process we used to get S * and the
we get an exact complex but that may not remains exact when
HomR (E , 2) is applied. So again we use the same reasoning to get T *
and we obtain a new complex. The «limit» over these two procedures
gives us a module S , a cardinal 8 , and a complex S * as we de-
sired.

Finally M/S is also Gorenstein injective since the quotient complex
E * /S * is exact and it remains exact when Hom (E , 2) is applied for any
injective R-module E because E * and S * verify the two condi-
tions. r

Then as a direct consequence of Proposition 2.6 and Theorem 2.5 we
get the following result.

COROLLARY 2.7. If R is a left noetherian ring then every R-module
has a Gorenstein injective preenvelope.

REMARK 4. We note that Gorenstein injective envelopes exist for
every module over a Gorenstein ring (cf. [8]), but from the preceding
Corollary we get that only the noetherian property is needed to get
Gorenstein injective preenvelopes.

The use of Kaplansky classes to get preenvelopes doesn’t always re-
quires that the class be closed under direct products. If we drop this con-
dition and we assume that the class is closed under direct limits then we
get the following general result relating Kaplansky classes and en-
velopes.

The next result is a combination of [4, Theorem 10] and of [17, Theo-
rem 2.2.2].

THEOREM 2.8. Let F be a Kaplansky class. If F is closed under
extensions and direct limits then every module has an F»-enve-
lope.



Kaplansky classes 77

PROOF. Since F is a Kaplansky class, if F� F then F can be written
as the direct union of a continuous chain of submodules (Fa )aEl with l an
ordinal number such that F0 � F, Fa11 /Fa� F when a11 El with
Card (F0 ), Card (Fa11 /Fa ) G8 for some cardinal 8. Therefore if B is
the direct sum of all representatives of F such that their cardinals are
less than or equal to 8 , then M� F» if and only if ExtR

1 (B, M)40.
Now let N be any R-module. Now we use the procedure in [4, Theo-

rem 10] to get an exact sequence 0 KNKAKFK0 such that A� F»

and F� F and the proof follows by [17, Theorem 2.2.2]. r

REMARK 5. As an application we have that if R is noetherian and
F is the class of injective R-modules, it follows immediatly by the pre-
ceding Theorem that every R-module has an F»-envelope. We note that
when R is Gorenstein then F» becomes the class of Gorenstein injective
modules.

Now we give an application of Kaplansky classes to cotorsion theo-
ries. We recall that a cotorsion theory (L, C) is said to be complete (cf.
[11]) if it has enough injectives and projectives, that is, for every R-mod-
ule M there are exact sequences 0 KMKCKLK0 and 0 K C K L K

KMK0 respectively with C , C � C and L , L � L. Then it is clear from the
preceding that in this case every module has an L-precover and a
C-preenvelope.

DEFINITION 2.2. A cotorsion theory (L, C) is said to be perfect if
every module has an L-cover and a C-envelope.

By [9, Theorem7.2.6] it easily proved that a cotorsion theory (F, C)
where F is closed under direct limits is perfect if and only if is complete.
Now reasoning as in [9, Theorem 7.4.6] we get the following result.

THEOREM 2.9. Let F be a Kaplansky class. If F contains the pro-
jective modules and it is closed under extensions and direct limits then
(F, F» ) is a perfect cotorsion theory in R-Mod.

Now we give other applications to the so-called Gorenstein flat
modules.

We recall from [7] that an R-module M is said to be Gorenstein flat if
and only if there exists an exact sequence in R-Mod

Q Q QKF1 KF0 KF21 KF22 K Q Q Q
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of flat R-modules such that M4Ker (F21 KF22 ) and which remains ex-
act whenever E7R 2 is applied for any injective right R-module E.

In the sequel we will denote by C the smallest class of R-modules we
obtain by the following recursive definition:

i) E(M) � C for all finitely generated modules M.

ii) If M� C and T’M is a submodule, then E(M/T) � C.

This class verifies some useful and interesting properties. We easily
see that all E� C are injective. It is also shown that there exists a cardi-
nal 8 such that Card (E) G8 for all E� C and that every injective mod-
ule E may be expressed as the direct limit of a directed system of sub-
modules of E which are in C.

Then we apply all these properties to proof the following result.

PROPOSITION 2.10. Given a ring R , the class of Gorenstein flat
modules is a Kaplansky class.

PROOF. This follows by reasoning analogously to Proposition 2.6.
For this we use that every injective module E may be expressed as the
direct limit of a family of injective submodules which are in C. On the
other hand, as a consequence of the fact that the cardinal of every mod-
ule in C is bounded by a certain cardinal there exists a set of representa-
tives of C. Then we consider the module I45Ei where Ei runs over the
preceding set of representatives. Now if a sequence is such that I7R 2

leaves it exact, by the commutativity of the tensor products with direct
sums we get that Ei 7R 2 will also leave the sequence exact and from the
commutativity of direct limits and the tensor products our sequence will
remain exact under E7R 2 for every injective module E. r

If we denote by F the class of Gorenstein flat modules, then Theo-
rem 2.9 gives the following.

COROLLARY 2.11. If R be a coherent ring then (F, F» ) is a perfect
cotorsion theory.

Another application to Gorenstein flat modules is that the existence
of Gorenstein flat preenvelopes for every module is equivalent to this
class is closed under direct products. Examples of these rings are Goren-
stein rings (cf. [7]) or even the more general class appearing in [3].
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