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On the Curves of Constant Relative Width.

ANDRZEJ MIERNOWSKI (*) - WITOLD MOZGAWA (**)

ABSTRACT - We study some geometric problems concerned with the ovals of con-
stant width relative to certain oval. In particular, we give the six vertex theo-
rem for such curves.

1. Introduction.

In this paper we consider the class of plane strictly convex closed
curves of class at least C 2 . Such curves will be called ovals throughout
the paper. Let us fix an oval B . For any oval C , let v C (t) denote the
width of C in the direction of the vector e it 4 ( cos t , sin t) in the fixed co-
ordinate system. Following the papers [Ch], [KH], [Oh], [Sh] we give the
following definition.

DEFINITION 1.1. An oval C is said to be of constant width d relative
to the oval B if v C (t) 4d Qv B (t) for every t� [0 , 2p).

Note that the ovals of constant relative width are the natural genera-
lization of the ovals of constant width since if the oval B is a circle then
obviously C is an oval of constant width in an ordinary sense.

We start with a geometric characterization of such ovals. Next, we
consider the ovals of the same constant width relative to B with the com-
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mon Steiner centroid. For these pairs, we prove among the others, the
six vertex theorem for the relative curvature radius. Moreover, we prove
that these ovals have at least six common tangents and six common nor-
mals with equal orientation and at least six normals with opposite orien-
tation. We give also a simple construction of a counterpart of the
Reuleaux triangle in the class of ovals of constant width relative to an
ellipse.

2. Basic facts.

Let pB (t) (resp. pC (t)) be the distance from the origin O to the sup-
port line lB (t) (resp. lC (t)) to B (resp. C) perpendicular to the vector e it .
It is well known that the parametrization of B (resp. C) is given by
zB (t) 4pB (t) e it 1p

.
B (t) ie it (resp. zC (t) 4pC (t) e it 1p

.
C (t) ie it).

Let qB (t) 4zB (t)2zB (t1p) and qC (t) 4zC (t)2zC (t1p). We have

THEOREM 2.1. The following conditions are equivalent:

(1) an oval C is of constant width d relative to B ,

(2) for each t� [0 , 2p) the angle between the vectors z
.

B (t) and
qB (t) is equal to the angle between the vectors z

.
C (t) and qC (t).

PROOF. The condition (1) means that

pC (t)1pC (t1p) 4d Q (pB (t)1pB (t1p) ) .(2.1)

We have

z
.

B (t) 4 (pB (t)1p
..

B (t) ) ie it

z
.

C (t) 4 (pC (t)1p
..

C (t) ) ie it

and

»
qB (t)

NqB (t)N
, ie it«4 »

qC (t)

NqC (t)N
, ie it« .(2.2)

Let us suppose that the equality (2.2) holds. Then

(p
.

B (t)1p
.

B (t1p) )(pC (t)1pC (t1p) )2

2(p
.

C (t)1p
.

C (t1p) )(pB (t)1pB (t1p) )40 .
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Hence, we have

pC (t)1pC (t1p)

pB (t)1pB (t1p)
4const . r

Let RC and RB denote the curvature radii of the ovals C and B , re-
spectively. If the oval C is of constant width d relative to B then

pC (t)1pC (t1p) 4d Q (pB (t)1pB (t1p) )

p
..

C (t)1p
..

C (t1p) 4d Q (p
..

B (t)1p
..

B (t1p) ) .

Hence

RC (t)1RC (t1p) 4d Q (RB (t)1RB (t1p) ) .(2.3)

Then we have the following theorem:

THEOREM 2.2. An oval C is of constant width d relative to B if and
only if the condition (2.3) holds.

PROOF. Suppose (2.3) holds. Let

qB (t) 4l B (t) ie it 1m B (t) e it .

Then

l B (t) 4 p
.

B (t)1p
.

B (t1p)

m B (t) 4pB (t)1pB (t1p) .

Similarly, if qC (t) 4l C (t) ie it 1m C (t) e it then

l C (t) 4 p
.

C (t)1p
.

C (t1p)

m C (t) 4pC (t)1pC (t1p) .

From the formula (2.3) we have

(m C (t)2d Qm B (t) )1 (m
..

C (t)2d Qm
..

C (t) )40 .
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All, the solutions of the above equation are of the form

m C (t)2d Qm B (t) 4a 1 sin t1a 2 cos t .

But since

m C (t)2d Qm B (t) 4m C (t1p)2d Qm B (t1p)

then a 1 4a 2 40, m C (t) 4d Qm B (t) and v C (T) 4d Qv(t). r

By integrating the equality pC (t)1pC (t1p) 4d Q (pB (t)1pB (t1p) )
we get

2dLB 4d �
0

2p

(pB (t)1pB (t) ) dt4 �
0

2p

(pC (t)1pC (t1p) ) dt42LC ,

where LB and LC denote the lengths of B and C , respectively. Hence, we
have obtained

THEOREM 2.3. (Barbier theorem)

LC 4d QLB .

REMARK. In the special case when B is a circle the above theorems
give the well-known theorems for the constant width curves.

Note that among the curves of constant width the only centrally sym-
metric curves are circles. In our setting we have

THEOREM 2.4. There exists exactly one centrally symmetric curve
in the class of ovals of constant width d relative to B

PROOF. From the formulas pC (t) 4pC (t1p) and pC (t)1pC (t1p) 4

4d Q (pB (t)1pB (t1p) ) , it follows that

pC (t) 4
d Q (pB (t)1pB (t1p) )

2
. r

EXAMPLE. Consider the ellipse B : x 2

25
1

y 2

9
41. Its support function

is given by the formula pB (t) 4k25 cos2 t19 sin2 t . Figure 2.1 presents
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Fig. 2.1. – Oval of constant width 1 relative to the ellipse.

the curve of constant width 1 relative to B described by the support
function

pC (t) 4k25 cos2 t19 sin2 t10.2 cos 3 t .

3. Area of ovals of constant relative width.

We know from the isoperimetric inequality that among all sets of
constant width d the circle has the largest area. In our context, we have
the following

THEOREM 3.1. In the class of all sets of constant width d relative to
B the unique centrally symmetric curve has the largest area.

PROOF. We can take for B the unique centrally symmetric curve in
this class. Let C be any curve of constant width 1 relative to B . Consider
the Fourier expansions

pC (t) 4a0 1 !
n41

Q

(an cos nt1bn sin nt)

pB (t) 4A0 1 !
n41

Q

(An cos nt1Bn sin nt) .

We can choose the origin O of the coordinate system at the point of sym-
metry of B . Then

pB (t) 4pB (t1p)
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and then we have An 4Bn 40 for n odd. From formula (2.1) we
obtain

A0 4a0 , An 4an , Bn 4bn for n even.

From the well-known formula expressing the enclosed area in terms
of Fourier coefficients of the support function (cf. [Gr]) we have

P(C) 4pa0
2 2

p

2
2 !

n2even
(n 2 21)(An

2 1Bn
2 )2

p

2
!

n2odd
(n 2 21)(an

2 1bn
2 )

P(B) 4pa0
2 2

p

2
!

n2even
(n 2 21)(An

2 1Bn
2 ).

Thus

P(C) GP(B)

and

P(C) 4P(B) ` B4C . r

We note that in the papers [Ch], [KH], [Oh], [Sh] the counterpart
of the Blaschke-Lebesgue theorem concerning the minimal area in this
setting is given.

4. Extrema connected with ovals of constant relative width.

Consider two curves C1 , C2 of the same constant width d relative to B .
Assume that the origin of the coordinate system is the Steiner centroid
of C1 and C2 . If p2 and p2 are the support functions of C1 and C2

then

p1 (t) 4a0 1 !
n42

Q

(an cos nt1bn sin nt),

p2 (t) 4a0 1 !
n42

Q

(cn cos nt1dn sin nt)

and a2n 4c2n , b2n 4d2n . Thus, we have immediately

p1 (t)2p2 (t) 4 !
n43

n2odd

((an 2cn ) cos nt1 (bn 2dn ) sin nt) .

From the generalized Sturm theorem (cf. [Hu]) we have
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THEOREM 4.1. Assume that C1 and C2 are ovals of the same con-
stant width d relative to B with the common Steiner centroid O. Let p1

and p2 be their support functions with respect to O. Then there exist at
least six points t� [0 , 2p) such that p1 (t) 4p2 (t).

Observe that the equality of the support functions is equivalent to the
identity of the tangent lines. Thus, we have

THEOREM 4.2. Under the assumptions of theorem 4.1 the ovals C1

and C2 have at least six common tangents.

COROLLARY 4.1. Any two ovals of the same constant width d rela-
tive to B with the identical Steiner centriod have at least six common
points.

Similarly, we get

THEOREM 4.3. Two ovals satisfying the assumptions of Theorem
4.1 have at least six common normals with equal orientation and at
least six normals with opposite orientation.

Let us consider the curvature radii R1 (t) and R1 (t) of ovals C1 and C2

of the same constant width d relative to B . We can assume that C1 and C2

have common curvature centroid at the origin. Then

R1 (t)2R2 (t) 4p1 (t)1p
..

1 (t)2p2 (t)2p
..

2 (t) 4

4 !
n43

n2odd

((12n 2 )(an 2cn ) cos nt1 (12n 2 )(bn 2dn ) sin nt) .

Thus, we obtained

THEOREM 4.4. Under the above assumptions there exist at least six
values t� [0 , 2p) such that R1 (t) 4R2 (t).

As a consequence of Theorem 4.4 we get

THEOREM 4.5. The function g(t) 4
R1 (t)

R2 (t)
has at least six extrema in

the interval [0 , 2p).

PROOF. It is sufficient to compare the graphs of the function g(t) and
the constant function y41. r



Andrzej Miernowski - Witold Mozgawa64

REMARK. When the model curve B is a circle then C1 and C2 are
curves of equal constant width. If C1 is a circle then theorem 4.5 gives the
well-known six-vertex theorem for curves of constant width.

5. Curves of constant width relative to an ellipse.

In the general case, in the papers [Ch], [KH], [Oh], [Sh] there is
given a construction of curve of a constant relative width of the minimal
area. In the class of curves of constant width 1 relative to an ellipse

B : x 2

a 2
1

y 2

b 2
41 we have a very simple method to obtain such a

curve.

Consider the affine transformation f : x 84x , y 84
a

b
y . It is easy to

check that f maps the class of curves of constant width 1 relative to B on-
to the class of curves of constant width 2a . Thus the inverse map f 21

transforms the Reuleaux triangle of width 2 onto the elliptic Reuleaux
triangle of constant width 1 relative to B .

PROPOSITION 5.1. Each elliptic Reuleaux triangle of width 1 rela-

tive to B has the area equal to 2pab2
abk3

2
.

Let us consider an arbitrary oval C . For a fixed direction k we consid-
er the longest chord parallel to k . The tangent lines to C at the ends of
this chord are parallel and their direction k 8 is called the conjugate di-
rection to k .

REMARK. In general, this relation is not symmetric.

The next theorem is probably well-known, so we give it without
proof.

Fig. 5.1. – Elliptic Reuleaux triangles.
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THEOREM 5.1. (Apollonius theorem) All parallelograms circum-
scribed to an oval with sides parallel to conjugate directions have the
same area.

In the class of ovals of constant width 1 relative B we have

THEOREM 5.2.

(1) The conjugacy relation for ovals of constant width d relative B
is symmetric,

(2) The area of any parallelogram circumscribed to an oval of
constant width 1 relative B with sides parallel to conjugate directions
is equal to 4ab.

REMARK For any oval of the constant width 1 relative a certain oval
B the area of the parallelogram with sides parallel to conjugate direc-
tions is constant and the same is true for any oval in this class.
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