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On Nonlinear Elliptic Problems with Discontinuities.

ANTONELLA FIACCA (*) - NIKOLAOS MATZAKOS (**)
NIKOLAOS S. PAPAGEORGIOU (***)

ABSTRACT - In this paper we examine nonlinear elliptic equations driven by the p-
Laplacian and with a discontinuous forcing term. To develop an existence the-
ory we pass to an elliptic inclusion by filling in the gaps at the discontinuity
points of the forcing term. We prove three existence theorems. The first is a
multiplicity result and proves the existence of two bounded solutions one
strictly positive and the other strictly negative. The other two theorems deal
with problems at resonance and prove the existence of solutions using Lan-
desman-Lazer type conditions.

1. Introduction.

In this paper we study quasilinear problems with discontinuities. We
prove three existence theorems. The first is a multiplicity result, which
proves the existence of two bounded solutions, one strictly positive and
the other strictly negative. The other two existence theorems concern a
resonant eigenvalue problem and prove the existence of a solution using
Landesman-Lazer type conditions.

Elliptic equations with discontinuities have been studied in the past,
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almost exclusively for semilinear problems. A representative sample of
the techniques used to analyze the problem, can be found in the follow-
ing works: Ambrosetti-Badiale [2] (they use Clarke’s dual variational
principle), Chang [9] (he uses nonsmooth critical point theory), Rauch
[21] (his approach is based on truncation and penalization techniques)
and finally Stuart [23] (he uses the method of upper and lower solutions).
Recently there has been an increasing interest for the study of quasilin-
ear elliptic problems involving the p-Laplacian differential operator. We
refer to the works of Anane-Gossez [4], Arcoya-Calahorrano [6], Boccar-
do-Drabek-Giachetti-Kucera [7], Bougouima [8], Costa-Magalhaes [10]
and El Hachimi-Gossez [11]. Of these works, only Arcoya-Calahorrano
[6], and Carl-Dietrich [8] deal with problems with discontinuities and
Arcoya-Calahorrano [6] assume that the right hand side function f has
only a jump discontinuity at x40. The approach of Arcoya-Colahorrano
[6] is variational, while Carl-Dietrich [8] combine variational techniques
with the method of upper and lower solutions. The other works assume a
continuous forcing term and use either a variational approach based on
the smooth critical point theory (Anane-Gossez [4], Costa-Magalhaes
[10] and El Hachimi-Gossez [11]) or degree theoretic methods (Boccar-
do-Drabek-Giachetti-Kucera [7]). Concerning the resonant eigenvalue
problem studied in the second part of the paper using a Landesman-Laz-
er type condition, previous works in this direction deal with semilinear
equations. We refer to the classical work of Landesman-Lazer [17] and
the more recent ones by Landesman-Robinson-Rumbos [18] and Robin-
son-Landesman [22]. Here we examine a quasilinear resonant problem
driven by the p-Laplacian and our approach uses degree theoretic
methods. In the first part, in the analysis of the discontinuous quasilin-
ear problem we employ the method of upper and lower solutions com-
bined with techniques from the theory of nonlinear operators of mono-
tone type.

2. Preliminaries.

Let X be a reflexive Banach space and X * its topological dual. A map
A : D’XK2X * is said to be «monotone«, if for all x *�A(x), y *�A(y)
we have (x *2y *, x2y) F0 (here by (Q , Q) we denote the duality brack-
ets for the pair (X , X *)). If (x *2y *, x2y) 40, implies that x4y we
say that A is «strictly monotone». The map A is said to be «maximal
monotone», if (x *2y *, x2y) F0 for all x�D and all x *�A(x), imply
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y�D and y *�A(y). It easy to see that this condition implies that the
graph of A , GrA4 ][x , x *] �X3X *: x *�A(x)(, is maximal with re-
spect to inclusion among the graphs of all monotone maps. Using the
above definition of maximality, we can check that the graph of a maximal
monotone map A is sequentially closed in X3X *w and in Xw 3X * (here
by Xw and Xw* we denote the spaces X and X * with their respective weak
topologies). A map A : XKX * which is single-valued and everywhere
defined (i.e. D4X) is said to be «demicontinuous», if xn Kx in X , im-
plies A(xn ) K

w
A(x). A monotone, demicontinuous map A : XKX * is

maximal monotone. A map A : D’XK2X * is said to be «coercive», if D is
bounded or D is unbounded and inf ]Vx * V : x *�A(x)( KQ as VxVKQ .
A maximal monotone and coercive map, is surjective.

An operator A : XK2X * is said to be «pseudomonotone» if

(a) for every x�X , A(x) is nonempty, weakly compact and convex
in X *;

(b) A as a set-valued map is upper semicontinuous from every fi-
nite dimensional subspace Z of X into X *w (i.e. for every C’X * nonempty
and weakly closed, the set A21 (C)4]x�Z : A(x)OCc( is closed in Z);

and

(c) if xn K
w

x in X , x *n �A(xn ), nF1, and lim(x *n , xn 2x) G0, then
for every y�X , we can find x *(y) �A(x) such that (x *(y), x2y) G

G lim(x *n . xn 2y).

If A is bounded (i.e. map bounded sets into bounded sets) and satis-
fies condition (c) above, then it satisfies condition (b) too. An operator
A : XK2X * is said to be «generalized pseudomonotone», if for xn*�
�A(xn ), nF1, which satisfy xn K

w
x in X , x *n K

w
x in X * and lim(x *, xn 2

2x) G0, we have x *�A(x) and (x *, xn ) K (x *, x). Every maximal mo-
notone operator is generalized pseudomonotone. Also a pseudomono-
tone operator is generalized pseudomonotone. The converse is true if A
has nonempty, weakly compact and convex values and it is bounded. A
pseudomonotone and coercive operator is surjective. For details on these
and related issues we refer to the books of Hu-Papageorgiou [14] and
Zeidler [25].

In our analysis we will need some facts about the spectrum of the
negative p-Laplacian 2D p x42div (VDxV

p22 Dx) with Dirichlet bound-
ary conditions, i.e of (D p , W0

1, p (Z) ). More precisely let Z’RN be a
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bounded domain with a Lipschitz boundary G and consider the following
nonlinear eigenvalue problem

{2div (VDx(z)V

p22 Dx(z) ) 4lNx(z)Np22 x(z) a.e. on Z

xNG
40

} .(1)

The least real number l for which (1) has a nontrivial solution, is the
first (principal) eignevalue of (2D p , W0

1, p (Z) ) and is denoted by l 1 . The
first eigenvalue l 1 is positive, isolated and simple (i.e. the associated
eigenfunctions are constant multiples of each other). Furthermore we
have a variational characterization of l 1 via the Rayleigh quotient, i.e.

l 1 4 min y VDxVp
p

xp
p

: x�W0
1, p (Z), xc0z .(2)

The minimum is realized at the normalized eigenfunction u1 . Note
that if u1 minimizes the Rayleigh quotient, then so does Nu1N and so we
infer that the first eigenfunction u1 does not change sign on Z . In fact we
can show that u1 (z) c0 a.e. on Z and so we may assume that u1 (z) D0
a.e. on Z . For details we refer to Anane [3] and Lindqvist [20].

The Liusternik-Schnirelmann theory gives, in addition to l 1 , a whole
strictly increasing sequence of positive numbers 0 El 1 El 2 EREl n E

ER for which there exist nontrivial solutions of problem (1). In other
words, the spectrum s (2D p ) of the negative p-Laplacian on W0

1, p (Z)
contains at least these points ]l n (nF1 . Nothing is know in general about
the possible existence of other points in s (2D p ) ’ [l 1 , Q). Since l 1 D0
is isolated, we can define

l2 4 inf [lD0 : l is an eigevalue of (2D p , W0
1, p (Z) ), lcl 1 ] Dl 1 .

Recently Anane-Tsouli [5] proved that the second Liusternik-
Schnirelmann eigenvalue l 2 equals l2 .

3. Multiple bounded solutions.

In this section we prove the existence of two bounded solutions, one
positive and the other negative for a quasilinear elliptic equation with a
discontinuous right hand side. So let Z’RN be a bounded domain with
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C 2-boundary G . We examine the following Dirichlet problem:

{2div (VDx(z)V

p22 Dx(z) ) 4 f (z , x(z) ) a.e. on Z

xNG
40, 2 GpEQ

} .(3)

We do not assume that f (z , Q) is continuous. So problem (3) need not have
a solution. To develop an existence theory, we need to pass to a multival-
ued approximation of (3) by, roughly speaking, filling in the gaps at the
discontinuity points of f (z , Q) (see Chang [9], Rauch [21] and Stuart [23].
So we introduce following two functions:

f1 (z , x) 4 lim
x 8Kx

f (z , x 8 ) 4 lim
eI0

ess inf
Nx 82xNEe

f (z , x 8 )

and

f2 (z , x) 4 lim
x 8Kx

f (z , x 8 ) 4 lim
eI0

ess sup
Nx 82xNEe

f (z , x 8 ) .

Then instead of (3) we consider the following quasilinear elliptic
inclusion:

{2div (VDx(z)V

p22 Dx(z) ) � f×(z , x(z) ) a.e. on Z

xNG
40

} ,(4)

where f×(z , x) 4 [ f1 (z , x), f2 (z , x) ] 4 ]y�R : f1 (z , x) GyG f2 (z , x)(. It
is problem (4) that we will investigate.

We introduce the following hypotheses on the forcing term
f (z , x)
H(f )1 : f : Z3RKR is a measurable function such that

(i) f1 and f2 are N-measurable functions (i.e. if x : ZKR is a mea-
surable function, then zK f1 (z , x(z) ) and zK f2 (z , x(z) ) are both mea-
surable);

(ii) there exist a�L Q (Z) and cD0 such that for almost all z�Z
and all x�R

Nf (z , x)NGa(z)1cNxNp21 ;

(iii) there exists u�L Q (Z)1 such that lim
NxNKQ

f (z , x)

NxNp22 x
Gu(z) uni-

formly for almost all z�Z and u(z) Gl 1 a.e. on Z with strict inequality on
a set positive Lebesgue measure;

(iv) lim
NxNK0

f (z , x)

NxNp22 x
Dl 1 uniformly for almost all z�Z.
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By virtue of hypothesis H( f )1(iii), we see that given eD0, we can
find M4M(e) D0 such that for almost all z�Z and all xDM we
have

f (z , x) G (u(z)1e)NxNp22 x ,

while for almost all z�Z and all xE2M , we have

f (z , x) F (u(z)1e)NxNp22 x .

Moreover, hypothesis H( f )1 (ii) implies that for almost all z�Z and
all NxNGM , we have Nf (z , x)NGaM (z), with aM �L Q (Z)1 , aM c0. So fi-
nally we can write that for almost all z�Z

f (z , x) G (u(z)1e)NxNp22 x1aM (z) for all xF0

f (z , x) F (u(z)1e)NxNp22 x2aM (z) for all xG0 .

We will start our investigations, by examining the following two aux-
iliary problems:

(5) {2div (VDW(z)Vp22DW(z))4(u(z)1e)NW(z)Np22W(z)1aM(z) a.e. on Z

W NG
40

} ,

and

(6) {2div (VDcV(z)p22Dc(z))4(u(z)1e)Nc(z)Np22c(z)2aM (z) a.e. on Z

c NG
40

} .

PROPOSITION 1. If hypotheses H( f )1 hold and eD0 is small, then
problem (5) has a solution W�C 1 (Z) such that W(z) D0 for all z�Z and
¯W

¯n
(z) E0 for all z�G such that W(z) 40.

PROOF. Let A : W0
1, p (Z) KW 21, q (Z)g 1

p
1

1

q
41h be the nonlinear

operator defined by

aA(x), yb 4�
Z

VDx(z)V

p22 (Dx(z), D(y(z) )RN dz for all x , y�W0
1, p (Z) .

Here by aQ , Qb we denote the duality brackets for the pair
(W0

1, p (Z), W 21, q (Z) ). Also let Jw : W 1, p
0 (Z) KL q (Z) ’W 21, q (Z) be de-
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fined by

Jw (x)(Q) 4 (u(Q)1e)Nx(Q)Np22 x(Q)1aM (Q) .

Let K4A2Ju : W0
1, p (Z) KW 21, q (Z).

Claim 1: K is pseudomonotone.

Indeed let xn K
w

x in W0
1, p (Z) and assume that

limaA(xn )2Ju (xn ), xn 2xb G0 .(7)

If by (Q , Q)pq we denote the duality brackets for the pair
(L p (Z), L q (Z) ), we see that aJu (xn ), xn 2xb 4 (Ju (xn ), xn 2x)pq . From
the compact embedding of W0

1, p (Z) into L p (Z), we have that xn Kx in
L p (Z) and so (Ju (xn ), xn 2x)pq K0 as nKQ . So from (7) we obtain
that

limaA(xn ), xn 2xb G0 .

But it is easy to check that A is monotone, demicontinuous, hence
maximal monotone and generalized pseudomonotone. Therefore

aA(xn ), xn b K aA(x), xb as nKQ .

Hence K is generalized pseudomonotone and obviously bounded. So
K is pseudomonotone.

Claim 2: There exists bD0 such that V(x) 4VDxVp
p 2s

Z
w(z)Nx(z)Np dzF

FbVDxV

p
p for all x�W0

1, p (Z).

Note that because w(z) Gl 1 a.e. on Z and (2), VF0. Suppose that the
claim was not true. Then we can find ]xn (nF1 ’W0

1, p (Z) with VDxn Vp 41
such that V(xn ) I0 as nKQ . From the weak lower semicontinuity of
the norm in a Banach space, we have VDxVp

p G lim VDxn Vp
p . So

0 4 lim V(xn ) 4 lim kVDxn Vp
p 2�

Z

w(z)Nxn (z)Np dzl
F lim VDxn Vp

p 2 lim�
Z

w(z)Nxn (z)Np dz

FVDxVp
p 2�

z

w(z)Nx(z)Np dz4V(x) F0 .
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Therefore we obtain

VDxVp
p 4�

Z

w(z)Nx(z)Np dzGl 1 VxVp
p ( hypothesis H( f )1 (iii) )

hence VDxVp
p 4�

Z

w(z)Nx(z)Np dz4l 1 VxVp
p ( see (2.3)) .(8)

From the choice of the sequence ]xn (nF1 ’W0
1, p (Z), we have

V(xn ) 412�
Z

w(z)Nxn (z)Np dzK0 as nKQ

hence 1 4 s
Z

w(z)Nx(z)Np dz4VDxVp
p (see (8)).

If follows that xc0. Then from (8), we see that x4u1 and so x(z) D0
for all z�Z . So because of hypothesis H( f )1 (iii) we have

�
Z

w(z)Nx(z)Np dzEl 1 VxVp
p

which contradicts (8). This proves the claim.

Claim 3: If eD0 small K : W0
1, p (Z) KW 21, q (Z) is coercive.

For every x�W0
1, p we have

aK(x), xb 4 aA(x)2Ju (x), xb 4VDxVp
p 2�

Z

w(z)Nx(z)Np dz2eVxVp
p 2VaM VQ

FbVDxVp
p 2

e

l 1

VDxVp
p 2VaM VQ ( from claim 2 and (2))

4 gb2
e

l 1
h VDxVp

p 2VaM VQ .

Let eD0 be such that eEbl 1 . From the above inequality we infer
that K is coercive.

Now recall that the pseudomonotone (claim 1), coercive (claim 2) op-
erator K is surjective. So we can find f�W0

1, p (Z) such that

A(f) 4Jw (f) in L q (Z) .
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Let h�C0
Q (Z). We have

¨

aA(f), hb 4 (Jw (f), h)pq

�
Z

VDfV

p22 (Df , Dh)RN dz4 (Jw (f), h)pq .

Note that 2div (VDWV

p22 DW) �W 21, q (Z) (Adams [1], theorem 3.10,
p. 50 or Hu-Papageorgiou [15], theorem A.1.25, p. 866). So we ob-
tain

a2div (VDWV

p22 DW , hb 4 (Jw (W), h)pq 4 aJw (W), hb .

Since C0
Q (Z) is dense in W0

1, p (Z) (the predual of W 21, q (Z)), we con-
clude that

2div (VDWV

p22 DW) 4Jw (W) in L q (Z)

hence

(9) {2div (VDW(z)Vp22DW(z)4(w(z)1e)NW(z)Np22W(z)1aM (z) a.e. on Z

W NG
40

} .

From Ladyzenskaya-Uraltseva [16] (theorem 7.1, p. 286, see also
Gilbarg-Trudinger [13], p. 277), we have that W�L Q (Z). Then from
theorem 1 of Lieberman [19], we have that W�C 1 (Z).

Next we will show that W(z) D0 for all z�Z . Let W2 (z) 4

4 max [2W(z), 0 ]. From Gilbarg-Trudinger [13], p. 146, we know that
W2�W0

1, p (Z)

DW2 (z) 4 {2DW(z)

0

a.e. on ]WE0(

a.e. on ]WF0(
}

and of course W2F0. Using W2 as our test function we have

¨

aA(W), W2 b 4 (Ju (W), W2 )pq

2�
Z

VDW2
V

p dz1�w(z)NW2Np dz1eVW2
Vp

p 4�
Z

aM W2 dzF0

( since aM F0) .
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Using claim 2, we obtain

2gb2
e

l 1
h VDW2

Vp
p F0 .

Since from the choice of eD0, we have 0 Eb2
e

l 1

, it follows that

W24constant on Z. From (9) we have

2div (VDW(z)Vp22DW(z))1Vw1eVQNW(z)Np22W(z)FaM (z)F0 a.e. on Z .

Invoking theorem 5 of Vazquez [24], since Wc0 (see (9) and recall the

aM c0), we have that W(z) D0 for z�Z and ¯W

¯n
(z) E0 for all z�G such

that W(z) 40. r

In a similar fashion we can prove the following proposition.

PROPOSITION 2. If hypotheses H( f )1 hold and eD0 is small, then
problem (6) has a solution c�C 1 (Z) such that c(z) E0 for all z�Z and
¯c

¯n
(z) E0 for all z�G such that c(z) 40.

As we already mentioned in the introduction, our approach will also
use the method of upper and lower solutions. For this reason we intro-
duce the following notions (see Carl-Dietrich [8], p. 267):

DEFINITION. (a) A function x�W0
1, p (Z) is an «upper solution» for

problem (2) if

�
Z

VDxV

p22 (Dx , Du)RN dzF�
Z

f2 (z , x(z) ) u(z) dz for all u�W0
1, p (Z)1 ,

xNG
F0 .

(b) A function y�W 1, p (Z) is «lower solution» for problem (2) if

�
Z

VDyV

p22 (Dy , Du)RN dzG�
Z

f1 (z , x(z) ) u(z) dz for all u�W0
1, p (Z)1 ,

yNG
G0 .
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Recall that for almost all z�Z

and

f2 (z , x) G (w(z)1e)NxNp22 1aM (z) for all xF0

f1 (z , x) F (w(z)1e)NxNp22 2aM (z) for all xG0 .

So from propositions 1 and 2, we infer that W and c are upper and
lower solutions of (2) respectively.

Next by virtue of hypothesis H( f )(iv), we can find dD0 such that for
almost all z�Z and all 0 ExGd , we have

hence

l 1 NxNp22 xE f (z , x)

l 1 NxNp22 xG f1 (z , x) .
(10)

Let u1 be the principal eigenfunction corresponding to the eigenvalue
l ! D0. Since by hypothesis the boundary G is a C 2-manifold, as before by
virtue of theorem 1 of Lieberman [19], we have that u1 �C 1 (Z) and fur-
thermore we can say that u(z) D0 for all z�Z (see also Anane [4]). Let
0 Ej 1 E1 be small enough so that 0 Ej 1 u1 (z) Gd for all z�Z . Also
from the comparison principle (see theorem 5 of Garcia Melian-Sabina de
Lis [12]), we know that we can find r1 D0 such that j 1 u1 (z) Er1 W(z) for

all z�Z . Then j 1

r1

u1 (z) EW(z) for all z�Z . If we set j4
j 1

r1

and u4ju1 ,

we have that 0 Eu(z) Gd for all z�Z and so for all v�W0
1, p (Z)1 we can

write

�
Z

VDuV

p22 (Du , Dv)RN dz4l 1�
Z

NuNp22 uvdz

G�
Z

f1 (z , u(z) ) v(z) dz , uNG
40 .

Hence by definition u�C 1 (Z) is a lower solution for problem (2).
Then we work with the ordered upper and lower solution pair ]W , u(

and obtain the following existence result.

PROPOSITION 3. If hypotheses H( f ) hold, then problem (4) has a
bounded solution x�W0

1, p (Z) such that x(z) D0 a.e. on Z .

PROOF. Our proof is based on truncation and penalization techniques
and on the theory of nonlinear operators of monotone type.
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We introduce the trunction map t : W0
1, p (Z) KW0

1, p (Z) defined by

t(x)(z) 4
.
/
´

W(z)

x(z)

u(z)

if W(z) Gx(z)

if u(z) Gx(z) GW(z)

if x(z) Gu(z) .

It is easy to check that t(Q) is continuous.
Also we introduce the penalty function b : Z3RKR defined by

b(z , x) 4

.
/
´

(x2W(z) )p21

0

2(u(z)2x)p21

if W(z) Gx

if u(z) GxGW(z)

if xGu(z) .

From this definition it is clear that b(z , x) is Caratheodory function
(i.e. zKb(z , x) is measurable and xKb(z , x) is continuous) and
NbN(z , x) Ga1 (z)1c1NxNp21 a.e. on Z with a1 �L q (Z), c1 D0. Moreover,
we have

�
Z

b(z , x(z) ) x(z) dzFc2 VxVp
p 2c3

for some c2 , c3 D0 and for all x�L p (Z).
We consider the following auxiliary problem

{2div (VDx(z)V

p22 Dx(z) ) � f×(t , t(x)(z) )2b(z , x(z) ) a.e. on Z

xNG
40

} .(11)

As before let A : W0
1, p (Z) KW 21, q (Z) be the operator defined by

aA(y), yb 4�
Z

VDx(z)V

p22 (Dx(z), Dy(z) )RN dz .

We know the A is monotone, demicontinuous, hence maximal mono-
tone. Also let B : L p (Z) KL q (Z) be the Nemitsky operator correspond-
ing to the penalty function b , i.e. B(x)(Q) 4b(Q , x(Q) ). From Krasnoselski-
i’s theorem, we know that B is continuous. Finally let F : W0

1, p (Z) K

K2L q (Z) be defined by F(x) 4 ]h�L q (Z) : h(z) � f×(z , t(x)(z) ) a.e. on Z(.
Note that by virtue of hypothesis H( f )1 (i) zK f×(z , t(x)(z) ) is a graph
measurable multifunction and so by the Yankov-von Neumann-Aumann
selection theorem (see Hu-Papageorgiou [14], theorem II. 2.14, p. 158)
we see that F has nonempty values which are clearly weakly compact
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and convex. Moreover, F is bounded. Introduce the multifunction R4

4A1B2F : W0
1, p (Z) K2W 21, q (Z) 0]R( (recall that W0

1, p ’L p (Z) and
L q (Z) ’W 21, q (Z) ).

Claim 1: R is pseudomonotone and coercive.

Clearly R is bounded. Thus in order to prove the pseudomonotonicity
of R it suffices to show that R is generalized pseudomonotone. To this
end let xn K

w
x in W 1, p

0 (Z), vm K
w

v in W 21, q (Z) vn �R(xn ), nF1, and as-
sume that limavn , xm 2xb G0. We have vn 4A(xn )1B(xn )2wn , with
wn �F(xn ), nF1.

Then

avn , xn 2xb4 aA(xn )1B(xn )2wn , xn 2xb

4 aA(xn ), xn 2xb1 (B(xn ), xn 2x)pq 2 (wn , xn 2x)pq .

Since W0
1, p (Z) is embedded compactly in L p (Z), we have xn Kx in

L p (Z). So (B(xn ), xn 2x)pq K0. Also since F is bounded, we have that
]wn (nF1 ’L q (Z) is bounded and so (wn , xn 2xpq ) K0 as nKQ . There-
fore finally we can say that

limaA(xn ), xn 2xb G0 .

Because A is maximal monotone, it is generalized pseudomonotone
and so

¨

A(xn ) K
w

A(x) in W0
1, p (Z) and aA(xn ), xn b K aA(x), xb

VDxn Vp KVDxVp .

Recall that Dxn K
w

Dx in L p (Z , RN ) and because L p (Z , RN ) is uni-
formly convex it has the Kadec-Klee property and so Dxn KDx in
L p (Z , RN ), i.e. xn Kx in W0

1, p (Z) (see Hu-Papageorgiou [14] Lemma
I.1.7.4, p. 28). Hence we have A(xn ) K

w
A(x) in W 21, q (Z) (demicontinuity

of A), B(xn ) KB(x) in L q (Z) (continuity of B) and by passing to a subse-
quense if necessary, wn K

w
w in L q (Z), hence wn Kw in W 21, q (Z). Using

proposition VII.3.9, p. 694, of Hu-Papageorgiou [14], we have that w�
�F(x). So vn K

w
v4A(x)1B(x)2w in W 21, q (Z) with w�F(x) and

avn , xn b K av , xb. This proves the generalized pseudomonotonicity of R ,
thus the pseudomonotonicity.
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Also for every x�W0
1, p (Z) and every v�R(x), we have

av , xb4 aA(x), xb1 (B(x), x)pq 2 (w , x)pq ( for some w�F(x) )

FVDxVp
p 1c2 VxVp

p 2c3 2VwVq VxVp ( by Hölders inequality) .

Recall that Nw(z)NGa(z)1cVWVQ
p21 a.e. on Z with a�L Q (Z). So we

obtain

av , xb FVDxVp
p 1c2 VxVp

p 2c4 for some c4 D0 .

From this inequality it follows that R is coercive. This completes the
proof of the claim.

We know that a pseudomonotone, coercive operator is surjective. So
there exists x�W0

1, p (Z) such that 0 �R(x), hence 0 4A(x)1B(x)2w
for some w�F(x). As in the proof of proposition 1, from the operator
equation A(x) 4w2B(x) in W 21, q (Z), we obtain that x�W0

1, p (Z) is a
solution of (11).

Claim 2: 0 Eu(z) Gx(z) GW(z) for almost all z�Z .
Since u�W0

1, p (Z) is a lower solution of (2), we have

�
Z

VDuV

p22 (Du , Dh)RN dzG�
Z

f1 (z , u(z) ) hdz for all h�W0
1, p (Z)1 .(12)

Also x�W0
1, p (Z) being a solution of (11), it satisfies

�
Z

VDxV

p22 (Dx , Dh)RN dz4�
Z

whdz2�
Z

b(z , x(z) ) hdz(13)

with w�L q (Z), f1 (z , t(x)(z) ) Gw(z) G f2 (z , t(x)(z) ) a.e. on Z . In (12) and
(??) use as test function h4 (u2x)14 max [ (u2x), 0 ] �W0

1, p (Z)1 and
then subtract (12) from (13). We obtain

F

�
Z

(VDxV

p22 Dx2VDuV

p22 Du , D(u2x)1 )RN

�
Z

(w(z)2 f1 (z , u(z) ) )(u2x)1 dz2�
Z

b(z , x(z) )(u2x)1 dz .
(14)

We know that (see Gilbarg-Trudinger [13], p. 46)

D(u2x)1 (z) 4
.
/
´

D(u2x)(z)

0

a.e. on ]xEu(

a.e. on ]xFu( .
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So we obtain

4

�
Z

(VDxV

p22 Dx2VDuV

p22 Du , D(u2x)1 )RN

�
]xEu(

(VDxV

p22 Dx2VDuV

p22 Du , Du2Dx)RN dzG0 .
(15)

Also we have

(16) �
Z

(w(z)2f1 (z, u(z)))(u2x)1dzF0 since f1(z, u(z))Gw(z) a.e. on Z

and

�
Z

b(z , x(z) )(u2x)1 dz42 �
]xEu(

(u2x)p21 (u2x) dz .(17)

Using (15), (16) and (17) in (14), we obtain

�
Z

(u2x)p
1 dzG0

hence u(z) Gx(z) for almost all z�Z .
With a similar argument we can show that x(z) GW(z) a.e. on Z . Thus

finally we have that u(z) Gx(z) GW(z) a.e. on Z and so t(x) 4x ,
b(z , x(z) ) 40. From these facts it follows that x�W0

1, p (Z) solves
(2). r

Using once again hypothesis H( f )1 (iv), we can find dD0 such that
for almost all z�Z and all 2dGxE0, we have

hence

l 1 NxNp22 xD f (z , x)

l 1 NxNp22 xF f2 (z , x) .
(18)

As before let 0 Ej 2 E1 small enough so that 0 E2j 2 u1 (z) Gd for
all z�Z . From proposition 2 we have that c�C 1 (Z), c(z) E0 for all z�
�Z . As before we can find c2 D1 such that c2 c(z) E2j 2 u1 (z) for all z�Z .

Then c(z) E2
j 2

r2

u1 (z) for all z�Z . If we set j4
j 2

r2

D0 and u× 42ju1 ,

we see using (18) that u× �C 1 (Z) is an upper solution of (2). Working with
the upper-lower solution pair ]u×, c( as in proof of proposition 3, we
obtain:
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PROPOSITION 4. If hypotheses H( f )1 hold, then problem (4) has a
bounded solution y�W0

1, p (Z) such that y(z) E0 a.e. on Z .

Combining propositions 3 and 4, we obtain the following multiplicity
theorem for problem (4).

THEOREM 5. If hypotheses H( f ) hold, then problem (4) has two
bounded solutions x , y�W0

1, p (Z) such that y(z)E0Ex(z) a.e. on Z .

4. Quasilinear resonant problems.

As before let Z’RN be a bounded domain with a C 2-boundery G . In
this section we study the following quasilinear resonant problem:

(19) {2div (VDx(z)Vp22Dx(z))2l 1Nx(z)Np22x(z)4f (z,x(z))2h(z) a.e. on Z

xNG
40

} .

As in the previous section, we do not assume that f (z , Q) is continuous.
So in order to have an existence theory, we pass to a multivalued version
of (19), by introducing the multifunction f×(z , x) 4 [ f1 (z , x), f2 (z , x) ]. So
instead of (19), we consider the following elliptic inclusion:

(20) {2div (VDx(z)Vp22Dx(z))2l 1Nx(z)Np22x(z)�f×(z,x(z))2h(z) a.e. on Z

xNG
40

} .

Our hypotheses on the forcing term f are the following:

H(f )2 : f : Z3RKR is a measurable function such that

(i) f1 and f2 are N-measurable functions;

(ii) for almost all z�Z and all x�R , Nf (z , x)NGa(z) with a�
�L q (Z).

Let f1 (z) 4 lim
xK1Q

f1 (z , x) 4 lim
MK1Q

ess inf
xDM

f1 (z , x) and f2 (t) 4

4 lim
xK2Q

f2 (z , x) 4 lim
MK1Q

ess sup
xE2M

f2 (z , x). The Landesman-Lazer type

condition that we will use is the following:

H0 : h�L q (Z) and s
Z

f1 (z) u1 (z) dzE s
Z

h(z) u1 (z) dzE s
Z

f2 (z) u1 (z) dz

where u1 �C 1 (Z) is the normalized principal eigenfunction of
(2D r , W0

1, p (Z) ).
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LEMMA 6. If Z’RN is an open subset F : Z3Rk KRk is a multi-
function which has nonempty, compact and convex values and

(i) F is measurable, i.e. for all y�Rk , the R-valued function
(z , x) Kd(y , F(z , x) ) 4 inf [Vy2vV : v�F(z , x) ] is measurable;

(ii) for every z�Z , F(z , Q) is upper semicontinuous, i.e. for all
C’Rk nonempty, closed F 2

z (C) 4 ]x�Rk : F(z , x)OCcR( is
closed,

then for every eD0 there exists a Caratheodory function ge : Z3Rk K

KRk such that ge (z , x) �F(z , Be (x) )1eB1 for all (z , x) �Z3Rk where
Be (x) 4 ]y�Rk : Vy2xVGe( and B1 4 B1 (0).

PROOF. Let Se (z) 4 ]h( �C(Rk , Rk ) : h(x) �F(z , Be (x) )1eB1 for all
x�Rk . From theorem I.4.41, p. 106 of Hu-Papageorgiou [14] we know
that Se (z) c for all z�Z . Set F1 (z , x) 4F(z , Be (x) )1eB1 . By virtue of
corollary I.2.20, p. 42, of Hu-Papageorgiou [14], we have that F1 has
nonempty, closed values. Moreover, we can easily verify that xK

KF1 (z , x) has closed graph and this by virtue of proposition I.2.23, p. 43,
of Hu-Papageorgiou [14] implies that xKF1 (z , x) is upper semicontinu-
ous.

For every x�Rk we have

GrF1 (Q , x) 4 ](z , y) �Z3Rk : y�F(z , Be (x) )1eB1 ( .

Set G4 ](z , y , u) �Z3Rk 3Rk : y�F(z , x1u)1eB1 , u� Be (0)(.
Because of hypothesis (i), we have that G�B(Z)3B(Rk )3B(Rk ), with
B(Z) (resp B(Rk )) being the Borel s-field of Z (resp. of Rk) (see proposi-
tion II.1.7, p. 142, of Hu-Papageorgiou [14]). Note that

GrF1 (Q , x) 4projZ3B(Rk ) G .

Moreover, from the Levin-Novikov projection theorem (see Hu-Pa-
pageorgiou [14], theorem II.1.21, p. 146), we have that

GrF1 (Q , x) 4projZ3B(Rk ) G�B(Z)3B(Rk ) ,

hence zKF1 (z , x) is a measurable multifunction (Hu-Papageorgiou [14],
p. 150).

Let ]xm (mF1 ’Rk be a dense sequence and recall that because
F1 (z , Q) is upper semicontinuous, for every v�Rk , xKd(v , F1 (z , x) ) is
lower a semicontinuous R1-valued function (see Hu-Papageorgiou [14],
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p. 61). We have

GrSe4 ](z , h) �Z3C(Rk , Rk ) : h(x) �F1 (z , x) for all x�Rk (

4 ](z , h) �Z3C(Rk , Rk ) : d(h(x), F1 (z , x) ) 40 for all x�Rk (

4 1
mF1

](z , h) �Z3C(Rk , Rk ) : d(h(xm ), F1 (z , xm ) 40)(,

hence GrSe�B(Z)3B(C(Rk , Rk ) ).
Thus we can apply the Yankov-von Neumann-Aumann selection the-

orem (see Hu-Papageorgiou [14], theorem II.2.14, p. 158) to obtain
h e : ZKC(Rk , Rk ) a measurable map such that h e (x) �Se (z) for all z�Z .
Then ge (z , x) 4h e (z)(z) is the desired Caratheodory selector. r

Now we can state and prove our existence theorem for problem (20).
Our method of proof is based on degree theoretic arguments.

THEOREM 7. If hypotheses H( f )2 and H0 hold, then problem (20)
has a solution x�W0

1, p (Z).

PROOF. As in previous proofs let A : W0
1, p (Z) KW 21, q (Z) be the

nonlinear operator defined by

aA(x), yb 4�
Z

VDxV

p22 (Dx , Dy)RN dz .

The operator A is strictly monotone, demicontinuous, hence maximal
monotone. It is also coercive, thus it is surjective. Therefore A is a bijec-
tion and so we can define A 21 : W 21, q (Z) KW0

1, p (Z). We claim that A 21

is continuous and bounded. To this end let vn Kv in W 21, q (Z) and set
xn 4A 21 (vn ), nF1. We have A(xn ) 4vn and so aA(xn ), xn b 4VDxn Vp

p 4

4 avn , xn b GVvn V* Vxn V . From Poincare’s inequality it follows that
]xn (nF1 ’W0

1, p (Z) is bounded. So by passing to a subsequence if necess-
ary, we may assume that xn K

w
x in W0

1, p (Z). Note that [xn , vn ] �GrA ,
nF1, and [xn , vn ] Kw3s [x , v] in W0

1, p (Z)3W 21, q (Z). Since the graph
of the maximal monotone map A is sequentially closed in W0

1, p (Z)w 3

3W 21, q (Z), it follows that [x , v] �GrA , i.e. x4A 21 (v). Also aA(xn ), xn 2

2xb 4 avn , xn 2xb K0 and so by generalized pseudomonotonicity we have
aA(xn ), xn b K aA(x), xb, i.e. VDxn Vp KVDxVp . As before by the Kadec-Klee
property we have xn Kx in W0

1, p (Z) and so A 21 is continuous and
bounded.

From their definition, it is clear that xK f1 (z , x) is a lower semicon-
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tinuous function and xK f2 (z , x) is an upper semicontinuous functions.
So from Hu-Papageorgiou [14], p. 37, we have that xK f×(t , x) is an up-
per semicontinuous multifunction. Moreover, because of hypothesis
H( f )2 (i), (z , x) K f×(z , x) is measurable. Using lemma 6, for every 0 E

EeE1, we can find a Caratheodory function ge : Z3RKR satisfying
ge (z , x) � f×(z , Be )1Be for all (z , x) �Z3R , where Be4 [2e , e]. Let
g×e : L p (Z) KL q (Z) be the Nemitsky operator corresponding to the func-
tion ge (z , x); i.e. g×e (x)(Q) 4ge (Q , x(Q) ). We know that g×e is continuous and
bounded (Krasnoselskii’s theorem). Also let J : L p (Z) KL q (Z) be de-
fined by J(x)(Q) 4Nx(QN)p22 x(Q). Clearly J is continuous and bounded.
Exploiting the compact embedding of W0

1, p (Z) into L p (Z), we infer that
A 21 (l 1 J1g×e2h) : L p (Z) KL p (Z) is a compact map (i.e is continuous
and maps bounded sets into relatively compact sets).

Consider the following parametric family of fixed point problems:

x4 tA 21 (l 1 J1g×e2h)(x), 0 E tE1 .(21)

We will obtain an a priori bound in L p (Z), independent of t . Suppose
that is not possible. Then we can find xn �W0

1, p (Z) ’L p (Z), tn � (0 , 1 ),
nF1, such that

A(xn ) 4 tn
p21 (l 1 J(xn )1g×e (xn )2h)(22)

(from th (p21)0-homogeneity of A) and VxVp KQ , tn K t� [0 , 1 ].

Let yn 4
xn

Vxn Vp

, nF1. Divide equation (22) by Vxn Vp
p21 . We obtain

A(yn ) 4 tn
p21 l 1 J(yn )1

tn
p21

Vxn Vp
p21

g×e (xn )2
tn

p21

Vxn Vp
p21

h .

Note that Vge (xn )VqGVaVq 11 for all nF1 and so { tn
p21

Vxn Vp
p21 }

nF1

’
’L p (Z) is bounded. Also we have

¨

¨

aA(yn ), yn b 4 tn
p21 l 1 (J(yn ), yn )pq 1

tn
p21

Vxn Vp
p21

(g×e (xn ), yn )pq

2
tn

p21

Vxn Vp
p21

(h , yn )pq

VDyn Vp
p Gl 1 Vyn Vp

p 1j 1 Vyn Vp for some j 1 D0 ,

VDyn V

p
p Gl 1 1j 1 ( since Vyn Vp 41) .

So by Poincare’s inequality, it follows that ]yn (nF1 ’W0
1, p (Z) is
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bounded. So we may assume that

yn K
w

y in W0
1, p (Z), yn Ky in L p (Z), yn (z) Ky(z) a.e. on Z

and Nyn (z)NGk(z) a.e. on Z with k�L p (Z).

Note that tn
p21 l 1 J(yn ) K t p21 l 1 J(y) in L q (Z) and tn

p21

Vxn Vp
p21

J(yn ),
tn

p21

Vxn Vp
p21

hK0 in L q (Z).

As before exploiting the fact that A being maximal monotone has a
graph which is sequentially closed in W0

1, p (Z)w 3W 21, q (Z), in the limit
we obtain

A(y) 4 t p21 l 1 J(y), 0 G tG1(23)

and so VDyn Vp KVDyVp . As before from this convergence and since
Dyn K

w
Dy in L p (Z , RN ), we conclude that yn Ky in W0

1, p (Z), with yc0,
since VyVp 41. Moreover, from (23) and (2), we have that t41 and y46

6u1 . Assume without any loss of generality that y4u1 (the analysis of the
other case is similar). Recall that u1 (z) D0 for all z�Z and so xn (z) K1

1Q a.e. on Z . We have

¨

¨

aA(yn ), yn b2 tn
p21 l 1 (J(yn ), yn )pq 4

tn
p21

Vxn Vp
p21

(g×e (xn ), yn )pq

2
tn

p21

Vxn Vp
p21

(h , yn )pq

tn
p21

Vxn Vp
p21

[ (g×e (xn ), yn )pq 2 (h , yn )pq ] D0

( from (2) and since 0 E tn E1 for all nF1)

(g×e (xn ), yn )pq D (h , yn )pq for all nF1 .

By construction, we have that for almost all z�Z and all nF1

f1 (z , vn (z) )2eG g×e (xn )(z) G f2 (z , vn (z) ), 1eNvn (z)2xn (z)NEe .

So vn (z) K1Q a.e. on Z . Hence in the limit we have ge (z) G f1 (z)1e
a.e. on Z . Also (g×e (xn ), yn )pq K (g×e (x), u1 )pq and (h , yn )pq K (h , u1 )pq .
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Therefore we can write that

¨

(h , u1 )pq G ( f11e , u1 )pq

0 Ej4�
Z

h(z) u1 (z) dz2�
Z

f1 (z) u1 (z) dzGeVu1 V1 ( hypothesis H0 ) .

Choose eD0 so that eVu1 V1 Ej . Then we have a contradiction. This
means that the solution of (22) are bounded in L p (Z) and the bound is in-
depent of 0 E tE1. Invoking the Leray-Schauder alternative theorem,
we obtain xe�W0

1, p (Z) such that

A(xe )2l 1 J(xe ) 4 g×e (xe )2h .

Next let e m 4
1

m
and xe m

4xm �W0
1, p (Z) be the coresponding solutions.

We claim that ]xm (mF’W0
1, p (Z) is bounded. Suppose this is not the

case. This we may assume that Vxm VK1Q . Setting g×e m
4 g×m , we

have

¨

¨

¨

A(xm )2l 1 J(xm )1g×m (xm )2h

aA(xm ), xm b 4l 1 (J(xm ), xm )pq 1 (g×m (xm ), xm )pq 2 (h , xm )pq

VDxm Vp
p Gl 1 Vxm Vp

p 1Va1 Vq Vxm Vp ( with a1 (Q) 4a(Q)111h(Q) �L q (Z) )

Vxm Vp K1Q ( by Poincare’ s inequality ).

Let ym 4
xm

Vxm Vp

, mF1. Note that ]ym (mF1 ’W0
1, p (Z) is bounded and

so as before by passing to a subsequence if necessary, we may assume
that

ym K
w

y in W0
1, p (Z), ym Ky in L p (Z), ym (z) Ky(z) a.e. on Z

and Nym (z)NGk2 (z) a.e. on Z , k2 �L p (Z).
We have

¨

¨

A(ym ) 4l 1 J(ym )1
1

Vxm Vp
p21

g×m (xm )2
1

Vxm V

p21
p

h

A(y) 4l 1 J(y) (as before since A is maximal monotone)

y46u1 ( since yc0 because VyVp 41).

(24)

Again without any loss of generality we assume that y4u1 . This
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means that xm (z) K1Q a.e. on Z . From the construction of gm (z , x) we
have

f1 (z , vm (z) )2
1

m
G g×m (xm )(z) G f2 (z , vm (z) )1

1

m

with vm �L p (Z) such that Nvm (z)2xm (z)NE
1

m
a.e. on Z . Hence

vm (z) K1Q a.e. on Z as mKQ.
Thus we have

lim g×m (xm )(z) G lim f2 (z , vm (z) ) G f1 (z) a.e. on Z .

Also ] g×m (xm )(mF1 ’L q (Z) is bounded and so may assume that
g×m (xm ) K

w
g in L q (Z). We have

¨

¨

(g×m (xm ), ym )pq F (h , ym )pq ( from (24) and (2) )

( g , u1 )pq F (h , u1 )pq

�
Z

f1 (z) u1 (z) dzF�
Z

h(z) u1 (z) dz ,

which contradicts hypothesis H0 . Therefore ]xn (nF1 ’W0
1, p (Z) is bound-

ed and so we may assume that xm Kx in W0
1, p , xm Kx in L p (Z), xm (z) K

Kx(z) a.e. on Z and Nxm (z)NGk3 (z) a.e. on Z with k3 �L p (Z).
For every mF1 we have

A(xm ) 4l 1 J(xm )1g×m (xm )2h

and J(xm ) KJ(x) in L q (Z), g×m (xm ) K
w

g in L q (Z), thus g×m (xm ) Kg in
W 21, q (Z). As before exploiting the fact that GrA is sequentially closed
in W0

1, p (Z)w 3W 21, q (Z), in the limit we obtain

A(x) 4l 1 J(x)1g2h .(25)

Note that

f1 (z , vm (z) )2
1

m
G g×m (xm )(z) G f2 (z , vm (z) )1

1

m

with Nvm (z)2xm (z)NG
1

m

a.e. on Z
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Hence vm (z) Kx(z) a.e. on Z . Therefore in the limit as mKQ we
obtain

¨

f1 (z , x(z) ) G lim
mKQ

f1 (z , vm (z) ) Gg(z) G lim f2 (z , vm (z) )

G f2 (z , x(z) )

a.e. on Z.

g(z) � f×(z , x(z) ) a.e. on Z

Finally as in the proof of proposition 1, from (25) we conclude that
x�W0

1, p (Z) is a solution of (20). r

We can have another existence theorem, using a different Landes-
man-Lazer type hypothesis.

H1 : h�L q (Z) and s
Z

f2 (z) dzE s
Z

h(z) dzE s
Z

f1 (z) dz .

THEOREM 8. If hypotheses H( f )2 and H1 hold, then problem (20)
has a solution x�W0

1, p (Z).

PROOF. The proof follows the steps of that of theorem 7. So we only
indicate where it differs. In this case we have (keeping the notation of
the proof of theorem 7)

¨

A(yn )2 tn
p21 J(yn ) 4

tn
p21

Vxn Vp
p21

(ge×(xn )2h)

2tn
p21 (J(yn ), 1 )pq 4

tn
p21

Vxn V

p21
p

(ge×(xn )2h , 1 )pq

(1 is the constant equal to 1 function ).

From the proof of theorem 7 we have that 2tn
p21 (J(yn ), 1 )pq K2

2 (J(u1 ), 1 ) E0. So for nF1 large, we have

¨

2tn
p21 (J(yn ), 1 )pq E0

(g×e (xn ), 1 )pq E (h , 1 )pq .

Passing to the limit and since lim g×e (xn )(z) F lim f1 (z , vn (z) )2eF

F f1 (z)2e a.e. on Z (since xn (z) KQ a.e. on Z and Nvn (z)2xn (z)NGe a.e.
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on Z), we obtain via Fatou’s lemma

¨

( f12e)pq G (h , 1 )pq

�
Z

( f1 (z)2h(z) ) dz4jGeNZN .

By hypothesis H1 , jD0. So if we choose eD0 such that eNZNEj , we
have a contradiction. The rest of the proof follows the steps of the proof
of theorem 7 with some minor obvious modifications. r
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