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Periodicity in K-groups of Certain Fields.

PAUL ARNE ØSTVÆR (*)

ABSTRACT - Let k be a field of characteristic different from p . We study the p-tor-
sion and the p-cotorsion in the higher algebraic K-groups of k . Under a cer-
tain hypothesis we find that these groups are periodic. Some (co)-descent
properties are also pointed out.

1. Introduction.

Let k be a field of characteristic different from p . In the main part of
this paper we will assume that the p-cohomological dimension cdp (k) of k
is less than three. Additionally, we will assume that the group
Hét

2 (k ; Qp /Zp (i) ) is trivial for iF2. For such a k we first prove some pe-
riodicity results for its algebraic K-groups. Second we discuss some (co)-
descent properties for the same groups. These results are easily deduced
from the Bloch-Lichtenbaum spectral sequence, denoted by BLSS from
now on, with finite coefficients. We claim no originality whatsoever for
this part. The BLSS for a field such as above resembles the BLSS for a
complex surface. That example was first considered by Suslin [Su2].

There are several versions of the BLSS, cf. [BL], [FS], [Le2], [RW]
and [We]. Assume k has characteristic zero. The mod p n BLSS for k is a
third quadrant cohomological spectral sequence with input the higher
Chow groups of k with mod p n coefficients, and abutment the mod p n al-
gebraic K-groups of k . Suslin [Su3] has proved that the higher Chow
groups of k are isomorphic to the motivic cohomology groups of k . We let
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subscript M indicate motivic cohomology. From the mentioned results,
the mod p n BLSS for k takes the form:

E2
m , n 4HM

m2n (k ; Z/p n (2n) ) ¨ K2m2n (k ; Z/p n ) .

The outcome of Weibel’s valuation trick from [We] is a mod p n BLSS for
fields of positive characteristic. The idea is to replace k by a field F(k) of
characteristic zero, and whose motivic cohomology and algebraic K-the-
ory groups are naturally isomorphic to the same groups for k . Assume k
has positive characteristic l , where lcp . Define R0 (k) to be the Cohen l-
ring of k , and define inductively Rn (k) to be Rn21 (k)[t] /(t l 2p) where p
is a uniformizing parameter for Rn21 (k) and nF1. The quotient field of
the union

colim (R0 (k) %R1 (k) %R2 (k) %R)

has the desired properties of F(k).
Next we explain the relation between the motivic cohomology groups

and the étale cohomology groups of k . The Bloch-Kato conjecture [BK]
at the prime p predicts that the Galois symbol

Kn
M (F) /p nKHét

n (F ; Z/p n (n) )

is an isomorphism for every field F of characteristic different from p . Vo-
evodsky proved this conjecture in [Vo] for the prime p42. For p42 the
Bloch-Kato conjecture was originally formulated by Milnor [Mi]. Suslin
and Voevodsky proved in [SV] that if the Bloch-Kato conjecture is true
at the prime p , then there exists natural isomorphisms

HM
n (k ; Z/p n (i) ) `

.
/
´

Hét
n (k ; Z/p n (i) )

0

for 0 GnG i ,

otherwise .

By specialization we get the following result (for two groups A and B
we let AJB denote an Abelian extension of B by A).

THEOREM 1.1. Assume cdp (k) G2. If p is an odd prime, we also as-
sume that the Bloch-Kato conjecture holds at p .

(a) The mod p n algebraic K-groups of k are given up to extensions by

Kn (k ; Z/p n ) `

.
/
´

Hét
1 (k ; Z/p n (i) )

Hét
2 (k ; Z/p n (i11) ) JHét

0 (k ; Z/p n (i) )

for n42 i21,

for n42 iD0.
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(b) The extension above is split by the anti-Chern classes of Kahn
if p is odd, or p42 and k contains a primitive fourth root of
unity.

REMARK 1.2. Part (b) of Theorem 1.1 is due to Kahn, see Theorem
3.1 in [Ka2]. The results from [FS] and [Le2] make it plain that Theo-
rem 1.1, and hence some of the results in this paper may be generalized
to certain schemes with mod p étale cohomological dimension less than
three.

In Section 2 we prove results which appear to be new. For this we will
only consider fields with the properties stated in the beginning of the in-
troduction. The assumptions on k can often be checked in practice. Our
results reveal a periodicity phenomena for the p-torsion and the p-cotor-
sion in the algebraic K-groups of such a field. The proofs are very ele-
mentary and straightforward. However, the results might be useful in
specific examples. The same remarks apply to the results in Section 3.
Let k 8 /k be a Galois extension of fields as above. In Proposition 3.3 we
point out the connection between the Galois (co)-invariants of the alge-
braic K-groups of k 8 and the algebraic K-groups of k .

2. Periodicity in K-groups.

Assume cdp (k) G2. Then the long exact sequence in étale cohomolo-
gy induced by the coefficient extension 0 KZ/p(n) KQp /Zp (n) K

KQp /Zp (n) K0 shows that the group Hét
2 (k ; Qp /Zp (n) ) is divisible. We

impose the additional assumption that the latter group is trivial for nF

F2. For an Abelian group A we let A]p( 40
n p n A be its maximal p-torsion

subgroup. Let k be an algebraic closure of k .
First we translate the additional assumption into a statement about

the K-groups of k . Consider the diagram

K2n (k ; Qp /Zp ) K K2n (k ; Qp /Zp )

bI Ib

K2n21 (k)]p( K K2n21 (k)]p(

where the vertical maps are the Bockstein maps. From Theorem 1.1; the
upper horizontal map is injective, since it can be identified with the natu-
ral injective map Hét

0 (k ; Qp /Zp (n) ) KHét
0 (k; Qp /Zp (n) ). We know the
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Bockstein map for k is an isomorphism from [Su]. Hence the Bockstein
map for k is an isomorphism, and it follows that K2n (k)7Qp /Zp is the
trivial group for all nF1. Note also that K2n21 (k)]p( injects into
K2n21 (k)]p(.

The previous remarks combined with Theorem 1.1 give an isomor-
phism:

Hét
0 (k ; Qp /Zp (n) ) K

`

K2n21 (k)]p( .(2.1)

Let en denote the exponent of the multiplicative group (Z/p n )3 , and let
m n (k) denote the group of nth roots of unity in k .

LEMMA 2.2. Let m , nF1. Then p n K2n21 (k) is isomorphic to
p n K2(n1men )21 (k) and there is an exact sequence

0 KHét
0 (k ; Z/p n (n) ) KK2n21 (k) K

p n

K2n21 (k) .(2.3)

In particular, the group K2men21 (k) contains an element of order p n .

PROOF. From (2.1) we find an isomorphism Hét
0 (k; Z/p n(n))K

`

K
`

p n K2n21 (k). Now employ the Gal (k s /k)-module isomorphism
Z/p n (n) `Z/p n (n1en ) where k s is a separable closure of k . The last
claim follows from p n K2men21 (k) `p n K2en21 (k) `Hét

0 (k ; Z/p n (0) ) and the
fact that the absolute Galois group of k acts trivially on Z/p n (0) by defi-
nition of the Tate twist. r

REMARK 2.4. If k contains a primitive p nth root of unity, then:

m p n (k) `p n K3 (k) `p n K5 (k) `R

This follows since Z/p n (i) is independent of the twist i under the given
assumption.

We claim the Bockstein exact sequence in K-theory and Theorem 1.1
combine to make a commutative diagram:

0 KK2n (k) /p nKK2n (k ; Z/p n )Kp n K2n21 (k)K0

I V I`

0 KH 2
ét (k ; Z/p n (n11) ) KK2n (k ; Z/p n ) KH 0

ét (k ; Z/p n (n) ) K0

For k there is a unique choice of isomorphism on the right hand side that
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makes the diagram commutative. For k we choose the isomorphism that
is compatible with the inclusion into k. This gives a natural isomor-
phism:

K2n (k) /p nK
`

Hét
2 (k ; Z/p n (n11) )(2.5)

LEMMA 2.6. Let m , nF1. Then K2n (k) /p n is isomorphic to
K2(n1men ) (k) /p n and there is an exact sequence

K2n22 (k) K
p n

K2n22 (k) KHét
2 (k ; Z/p n (n) ) K0 .(2.7)

PROOF. Given (2.5), the proof is a verbatim copy of the argument for
Lemma 2.2. The periodicity can be decreased according to Remark
2.4. r

The mod p n Bockstein exact sequence in K-theory and Theorem 1.1
give the short exact sequence

0 KK2n21 (k) /p nKHét
1 (k ; Z/p n (n) ) Kp n K2n22 (k) K0 .(2.8)

The sequence (2.8) splits if n is a multiple of en and k is a number field
which satisfies the assumptions in Theorem 1.1. These assumptions are
satisfied unless k is real and p42, cf. Theorem 4.5 [RW]. Indeed, Lem-
ma 2.2 shows that the mod p n reduction of K2men21 (k) is a full subgroup
of Hét

1 (k ; Z/p n (men ) ), hence a direct summand. These remarks motivate
the following observation.

LEMMA 2.9. If (2.8) splits for n and n1men , then:

K2n21 (k) /p n5p n K2n22 (k) `K2(n1men )21 (k) /p n5p n K2(n1men )22 (k) .

In particular, if K2n21 (k) /p n is finite and isomorphic to
K2(n1men )21 (k) /p n , then p n K2n22 (k) ` p n K2(n1men )22 (k). Likewise, if
p n K2n22 (k) is finite and isomorphic to p n K2(n1men )22 (k), then
K2n21 (k) /p n

`K2(n1men )21 (k) /p n .

PROOF. The first claim is clear from periodicity of Hét
1 (k ; Z/p n (n) ).

The remaining claims follow from the cancellation property of finite
groups, see [Hi]. r

The exact sequences (2.3), (2.7) and (2.8) imply the next result.
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THEOREM 2.10. Let nF2. Then we have the exact sequence

(2.11) 0KHét
0 (k; Z/p n (n))KK2n21 (k)K

p n

K2n21 (k)KHét
1 (k; Z/p n (n))K

KK2n22 (k) K
p n

K2n22 (k) KHét
2 (k ; Z/p n (n) ) K0 .

REMARK 2.11. Sequence (2.11) inserted n42 and with K2 (k) re-
placed with its indecomposable part is known from [Le1] and
[MS].

3. (Co)-descent.

Let k 8/k be a Galois extension of fields with group G . We keep the as-
sumptions that cdp (k) G2 and H 2

ét (k ; Qp /Zp (n) ) 40 for all nF2, and
likewise for k 8 . Consider the Hochschild-Serre spectral sequence

E2
s , t 4H s (G , H t

ét (k 8 ; Qp /Zp (n) ) ) ¨ H s1 t
ét (k ; Qp /Zp (n) )(3.1)

and the Tate spectral sequence:

E2
2s , t 4Hs (G , H t

ét (k 8 ; Qp /Zp (n) ) ¨ H 2s1 t
ét (k ; Qp /Zp (n) ) .(3.2)

Here (3.1) is a first quadrant cohomological spectral sequence. More-
over, (3.2) is discussed in Chapter I Appendix 1 [Se] and in Proposition
3.1.1 [Ka1]. This is a second quadrant cohomological spectral sequence.
The following result is now trivial to prove.

PROPOSITION 3.3. Let M q denote H q
ét (k 8 ; Qp /Zp (n) ), and let nF2.

We have the exact sequences

0KH 1 (G, M 0)KK2n21 (k; Qp /Zp)KK2n21 (k 8;Qp /Zp)GKH 2 (G,M 0)K0

and:

0KH2 (G, M 1)KK2n22 (k 8; Qp /Zp)GKK2n22 (k; Qp /Zp)KH1 (G, M 1)K0 .

In addition we have the naturally induced isomorphisms

K2n22 (k ; Qp /Zp ) K
`

K2n22 (k 8 ; Qp /Zp )G

and:

K2n21 (k 8 ; Qp /Zp )GK
`

K2n21 (k ; Qp /Zp ) .
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The d 2-differentials in (3.1) and (3.2) give isomorphisms

H q (G , K2n21 (k 8 ; Qp /Zp ) ) K
`

H q12 (G , K2n22 (k 8 ; Qp /Zp ) )

and

Hq12 (G , K2n21 (k 8 ; Qp /Zp ) ) K
`

Hq (G , K2n22 (k 8 ; Qp /Zp ) )

for all qF1.

REMARK 3.4. It follows that K2n21 (k)]p( K
`

K2n21 (k 8 )]p(G , and
the transfer map induces a surjection K2n22 (k 8 )]p(G ˆ K2n22 (k)]p(.
That surjection is an isomorphism if K2n22 (k 8 )]p( is reduced. The
first claim follows from the diagram displayed in the beginning of Sec-
tion 2, and the second claim follows from an obvious Bockstein se-
quence argument.

R E F E R E N C E S

[BK] S. BLOCH - K. KATO, p-adic étale cohomology, Inst. Hautes Études Sci.
Publ. Math., 63 (1986), pp. 107-152.

[BL] S. BLOCH - S. LICHTENBAUM, A spectral sequence for motivic cohomology,
UIUC K-Theory preprint server (1995).

[FS] E. M. FRIEDLANDER - A. A. SUSLIN, The spectral sequence relating alge-
braic K-theory to motivic cohomology, UIUC K-Theory preprint server
(1999).

[Hi] R. HIRSHON, On cancellations in groups, Amer. Math. Monthly, 76 (1969),
pp. 1037-1039.

[Ka1] B. KAHN, Deux théorèmes de comparaison en cohomologie étale; applica-
tions, Duke Math. J., 69 (1993), pp. 137-165.

[Ka2] B. KAHN, On the Lichtenbaum-Quillen conjectures, Algebraic K-theory
and algebraic topology (P. G. Goerss and J. F. Jardine, eds.), NATO ASI
Series C, vol. 407, Kluwer, 1993, pp. 147-166.

[Le1] M. LEVINE, The indecomposable K3 of fields, Ann. Scient. Éc. Norm.
Sup., T.22 (1989), pp. 255-344.

[Le2] M. LEVINE, K-theory and motivic cohomology of schemes, UIUC K-The-
ory preprint server (1999).

[MS] A. S. MERKURJEV - A. A. SUSLIN, The group K3 for a field, Math. USSR
Izv., 36 (1991), pp. 541-565.

[Mi] J. MILNOR, Algebraic K-theory and quadratic forms, Invent. Math., 9
(1970), pp. 318-344.

[RW] J. ROGNES - C. A. WEIBEL, Two-primary algebraic K-theory of rings of
integers in number fields, J. Amer. Math. Soc., 13 (2000), pp. 1-54.

[Se] J.-P. SERRE, Galois cohomology, Springer Verlag, 1997.



Paul Arne Østvær8

[Su1] A. A. SUSLIN, On the K-theory of algebraically closed fields, Invent.
Math., 73 (1983), pp. 241-245.

[Su2] A. A. SUSLIN, Algebraic K-theory and motivic cohomology, Proc. Intern.
Congress Math., Zürich 1994, Birkhäuser, 1995, pp. 342-351.

[Su3] A. A. SUSLIN, Higher Chow groups and étale cohomology, Cycles, trans-
fers and motivic homology theories, Annals of Math. Studies, 143, Prince-
ton University Press, 1999.

[SV] A. A. SUSLIN - V. VOEVODSKY, The Bloch-Kato conjecture and motivic co-
homology with finite coefficients, The arithmetic and geometry of alge-
braic cycles, NATO ASI Series C, vol. 548, Kluwer, 2000, pp. 117-
189.

[Vo] V. VOEVODSKY, The Milnor conjecture, Preprint (1996).
[We] C. A. WEIBEL, Lecture IX, Bloch’s higher Chow groups, Algebraic K-the-

ory and its applications, World Scientific, 1999, pp. 95-104.


