Periodicity in K-groups of Certain Fields.

Paul Arne Østvær (*)

ABSTRACT - Let k be a field of characteristic different from p. We study the p-torsion and the p-cotorsion in the higher algebraic K-groups of k. Under a certain hypothesis we find that these groups are periodic. Some (co)-descent properties are also pointed out.

1. Introduction.

Let k be a field of characteristic different from p. In the main part of this paper we will assume that the p-cohomological dimension $\operatorname{cd}_p(k)$ of k is less than three. Additionally, we will assume that the group $H^2_{\operatorname{\acute{e}t}}(k;\mathbb{Q}_p/\mathbb{Z}_p(i))$ is trivial for $i \geq 2$. For such a k we first prove some periodicity results for its algebraic K-groups. Second we discuss some (co)-descent properties for the same groups. These results are easily deduced from the Bloch-Lichtenbaum spectral sequence, denoted by BLSS from now on, with finite coefficients. We claim no originality whatsoever for this part. The BLSS for a field such as above resembles the BLSS for a complex surface. That example was first considered by Suslin [Su2].

There are several versions of the BLSS, cf. [BL], [FS], [Le2], [RW] and [We]. Assume k has characteristic zero. The mod p^{ν} BLSS for k is a third quadrant cohomological spectral sequence with input the higher Chow groups of k with mod p^{ν} coefficients, and abutment the mod p^{ν} algebraic K-groups of k. Suslin [Su3] has proved that the higher Chow groups of k are isomorphic to the motivic cohomology groups of k. We let

^(*) Indirizzo dell'A.: Department of Mathematical Sciences, The Norwegian University of Science and Technology, Trondheim, Norway. E-mail: ostvar@math.ntnu.no

subscript \mathfrak{M} indicate motivic cohomology. From the mentioned results, the mod p^{ν} BLSS for k takes the form:

$$E_2^{m,n} = H_{\mathfrak{M}}^{m-n}(k; \mathbb{Z}/p^{\nu}(-n)) \Rightarrow K_{-m-n}(k; \mathbb{Z}/p^{\nu}).$$

The outcome of Weibel's valuation trick from [We] is a mod p^{ν} BLSS for fields of positive characteristic. The idea is to replace k by a field F(k) of characteristic zero, and whose motivic cohomology and algebraic K-theory groups are naturally isomorphic to the same groups for k. Assume k has positive characteristic l, where $l \neq p$. Define $R_0(k)$ to be the Cohen l-ring of k, and define inductively $R_n(k)$ to be $R_{n-1}(k)[t]/(t^l-\pi)$ where π is a uniformizing parameter for $R_{n-1}(k)$ and $n \geq 1$. The quotient field of the union

$$\operatorname{colim}(R_0(k) \subset R_1(k) \subset R_2(k) \subset \ldots)$$

has the desired properties of F(k).

Next we explain the relation between the motivic cohomology groups and the étale cohomology groups of k. The Bloch-Kato conjecture [BK] at the prime p predicts that the Galois symbol

$$K_n^M(F)/p^{\nu} \rightarrow H_{\text{\'et}}^n(F; \mathbb{Z}/p^{\nu}(n))$$

is an isomorphism for every field F of characteristic different from p. Voevodsky proved this conjecture in [Vo] for the prime p=2. For p=2 the Bloch-Kato conjecture was originally formulated by Milnor [Mi]. Suslin and Voevodsky proved in [SV] that if the Bloch-Kato conjecture is true at the prime p, then there exists natural isomorphisms

$$H^n_{\mathfrak{M}}(k; \mathbb{Z}/p^{\,r}(i)) \cong \left\{ egin{array}{ll} H^n_{\mathrm{cute{e}t}}(k; \mathbb{Z}/p^{\,r}(i)) & ext{for } 0 \leq n \leq i \ , \\ 0 & ext{otherwise} \ . \end{array} \right.$$

By specialization we get the following result (for two groups A and B we let $A \bowtie B$ denote an Abelian extension of B by A).

THEOREM 1.1. Assume $\operatorname{cd}_p(k) \leq 2$. If p is an odd prime, we also assume that the Bloch-Kato conjecture holds at p.

(a) The mod p^{ν} algebraic K-groups of k are given up to extensions by

$$K_n(k;\,\mathbb{Z}/p^{\,\boldsymbol{\nu}})\cong \left\{ \begin{array}{ll} H^1_{\mathrm{\acute{e}t}}(k;\,\mathbb{Z}/p^{\,\boldsymbol{\nu}}(i)) & \text{for } n=2\,i-1,\\ H^2_{\mathrm{\acute{e}t}}(k;\,\mathbb{Z}/p^{\,\boldsymbol{\nu}}(i+1)) \bowtie H^0_{\mathrm{\acute{e}t}}(k;\,\mathbb{Z}/p^{\,\boldsymbol{\nu}}(i)) & \text{for } n=2\,i>0. \end{array} \right.$$

(b) The extension above is split by the anti-Chern classes of Kahn if p is odd, or p=2 and k contains a primitive fourth root of unity.

REMARK 1.2. Part (b) of Theorem 1.1 is due to Kahn, see Theorem 3.1 in [Ka2]. The results from [FS] and [Le2] make it plain that Theorem 1.1, and hence some of the results in this paper may be generalized to certain schemes with mod p étale cohomological dimension less than three.

In Section 2 we prove results which appear to be new. For this we will only consider fields with the properties stated in the beginning of the introduction. The assumptions on k can often be checked in practice. Our results reveal a periodicity phenomena for the p-torsion and the p-cotorsion in the algebraic K-groups of such a field. The proofs are very elementary and straightforward. However, the results might be useful in specific examples. The same remarks apply to the results in Section 3. Let k'/k be a Galois extension of fields as above. In Proposition 3.3 we point out the connection between the Galois (co)-invariants of the algebraic K-groups of k' and the algebraic K-groups of k.

2. Periodicity in K-groups.

Assume $\operatorname{cd}_p(k) \leq 2$. Then the long exact sequence in étale cohomology induced by the coefficient extension $0 \to \mathbb{Z}/p(n) \to \mathbb{Q}_p/\mathbb{Z}_p(n) \to \mathbb{Q}_p/\mathbb{Z}_p(n) \to \mathbb{Q}_p/\mathbb{Z}_p(n) \to 0$ shows that the group $H^2_{\operatorname{\acute{e}t}}(k;\mathbb{Q}_p/\mathbb{Z}_p(n))$ is divisible. We impose the additional assumption that the latter group is trivial for $n \geq 2$. For an Abelian group A we let $A\{p\} = \bigcup_{p} A$ be its maximal p-torsion subgroup. Let \overline{k} be an algebraic closure of k.

First we translate the additional assumption into a statement about the K-groups of k. Consider the diagram

$$K_{2n}(k; \mathbb{Q}_p/\mathbb{Z}_p) \longrightarrow K_{2n}(\overline{k}; \mathbb{Q}_p/\mathbb{Z}_p)$$

$$\downarrow^{\beta} \qquad \qquad \downarrow^{\beta}$$

$$K_{2n-1}(k)\{p\} \longrightarrow K_{2n-1}(\overline{k})\{p\}$$

where the vertical maps are the Bockstein maps. From Theorem 1.1; the upper horizontal map is injective, since it can be identified with the natural injective map $H^0_{\text{\'et}}(k; \mathbb{Q}_p/\mathbb{Z}_p(n)) \to H^0_{\text{\'et}}(\overline{k}; \mathbb{Q}_p/\mathbb{Z}_p(n))$. We know the

Bockstein map for \overline{k} is an isomorphism from [Su]. Hence the Bockstein map for k is an isomorphism, and it follows that $K_{2n}(k) \otimes \mathbb{Q}_p/\mathbb{Z}_p$ is the trivial group for all $n \ge 1$. Note also that $K_{2n-1}(k)\{p\}$ injects into $K_{2n-1}(\overline{k})\{p\}$.

The previous remarks combined with Theorem 1.1 give an isomorphism:

$$(2.1) H_{\text{\'et}}^{0}(k; \mathbb{Q}_{p}/\mathbb{Z}_{p}(n)) \xrightarrow{\cong} K_{2n-1}(k)\{p\}.$$

Let e_{ν} denote the exponent of the multiplicative group $(\mathbb{Z}/p^{\nu})^{\times}$, and let $\mu_n(k)$ denote the group of nth roots of unity in k.

LEMMA 2.2. Let $m, n \ge 1$. Then $_{p^{\nu}}K_{2n-1}(k)$ is isomorphic to $_{p^{\nu}}K_{2(n+me_{\nu})-1}(k)$ and there is an exact sequence

$$(2.3) 0 \rightarrow H^0_{\text{\'et}}(k; \mathbb{Z}/p^{\nu}(n)) \rightarrow K_{2n-1}(k) \xrightarrow{p^{\nu}} K_{2n-1}(k).$$

In particular, the group $K_{2me_{\nu}-1}(k)$ contains an element of order p^{ν} .

PROOF. From (2.1) we find an isomorphism $H^0_{\mathrm{\acute{e}t}}(k;\mathbb{Z}/p^{\nu}(n)) \stackrel{\cong}{\to}_{p^{\nu}} K_{2n-1}(k)$. Now employ the $\mathrm{Gal}\,(k^s/k)$ -module isomorphism $\mathbb{Z}/p^{\nu}(n) \cong \mathbb{Z}/p^{\nu}(n+e_{\nu})$ where k^s is a separable closure of k. The last claim follows from $_{p^{\nu}}K_{2me_{\nu}-1}(k) \cong _{p^{\nu}}K_{2e_{\nu}-1}(k) \cong H^0_{\mathrm{\acute{e}t}}(k;\mathbb{Z}/p^{\nu}(0))$ and the fact that the absolute Galois group of k acts trivially on $\mathbb{Z}/p^{\nu}(0)$ by definition of the Tate twist. \blacksquare

Remark 2.4. If k contains a primitive p^{ν} th root of unity, then:

$$\mu_{p^{\nu}}(k) \cong_{p^{\nu}} K_3(k) \cong_{p^{\nu}} K_5(k) \cong \dots$$

This follows since $\mathbb{Z}/p^{\nu}(i)$ is independent of the twist i under the given assumption.

We claim the Bockstein exact sequence in K-theory and Theorem 1.1 combine to make a commutative diagram:

$$0 \longrightarrow K_{2n}(k)/p^{\nu} \longrightarrow K_{2n}(k; \mathbb{Z}/p^{\nu}) \longrightarrow_{p^{\nu}} K_{2n-1}(k) \longrightarrow 0$$

$$\downarrow \qquad \qquad \qquad \downarrow \cong$$

$$0 \longrightarrow H_{4}^{2}(k; \mathbb{Z}/p^{\nu}(n+1)) \longrightarrow K_{2n}(k; \mathbb{Z}/p^{\nu}) \longrightarrow H_{4}^{0}(k; \mathbb{Z}/p^{\nu}(n)) \longrightarrow 0$$

For \overline{k} there is a unique choice of isomorphism on the right hand side that

makes the diagram commutative. For k we choose the isomorphism that is compatible with the inclusion into \overline{k} . This gives a natural isomorphism:

$$(2.5) K_{2n}(k)/p^{\nu} \xrightarrow{\cong} H_{\text{\'et}}^{2}(k; \mathbb{Z}/p^{\nu}(n+1))$$

LEMMA 2.6. Let $m, n \ge 1$. Then $K_{2n}(k)/p^{\nu}$ is isomorphic to $K_{2(n+me_{\nu})}(k)/p^{\nu}$ and there is an exact sequence

$$(2.7) K_{2n-2}(k) \xrightarrow{p^{\nu}} K_{2n-2}(k) \rightarrow H^{2}_{\text{\'et}}(k; \mathbb{Z}/p^{\nu}(n)) \rightarrow 0.$$

PROOF. Given (2.5), the proof is a verbatim copy of the argument for Lemma 2.2. The periodicity can be decreased according to Remark 2.4.

The mod p^{ν} Bockstein exact sequence in K-theory and Theorem 1.1 give the short exact sequence

$$(2.8) 0 \to K_{2n-1}(k)/p^{\nu} \to H^1_{\text{\'et}}(k; \mathbb{Z}/p^{\nu}(n)) \to_{p^{\nu}} K_{2n-2}(k) \to 0.$$

The sequence (2.8) splits if n is a multiple of e_{ν} and k is a number field which satisfies the assumptions in Theorem 1.1. These assumptions are satisfied unless k is real and p=2, cf. Theorem 4.5 [RW]. Indeed, Lemma 2.2 shows that the mod p^{ν} reduction of $K_{2me_{\nu}-1}(k)$ is a full subgroup of $H_{\text{\'et}}^{k}(k;\mathbb{Z}/p^{\nu}(me_{\nu}))$, hence a direct summand. These remarks motivate the following observation.

Lemma 2.9. If (2.8) splits for n and $n + me_{\nu}$, then:

$$K_{2n-1}(k)/p^{\nu} \bigoplus_{p^{\nu}} K_{2n-2}(k) \cong K_{2(n+me_{\nu})-1}(k)/p^{\nu} \bigoplus_{p^{\nu}} K_{2(n+me_{\nu})-2}(k)$$
.

In particular, if $K_{2n-1}(k)/p^{\nu}$ is finite and isomorphic to $K_{2(n+me_{\nu})-1}(k)/p^{\nu}$, then $_{p^{\nu}}K_{2n-2}(k)\cong _{p^{\nu}}K_{2(n+me_{\nu})-2}(k)$. Likewise, if $_{p^{\nu}}K_{2n-2}(k)$ is finite and isomorphic to $_{p^{\nu}}K_{2(n+me_{\nu})-2}(k)$, then $K_{2n-1}(k)/p^{\nu}\cong K_{2(n+me_{\nu})-1}(k)/p^{\nu}$.

PROOF. The first claim is clear from periodicity of $H^1_{\text{\'et}}(k; \mathbb{Z}/p^{\nu}(n))$. The remaining claims follow from the cancellation property of finite groups, see [Hi].

The exact sequences (2.3), (2.7) and (2.8) imply the next result.

Theorem 2.10. Let $n \ge 2$. Then we have the exact sequence

$$(2.11) 0 \rightarrow H^{0}_{\text{\'et}}(k; \mathbb{Z}/p^{\nu}(n)) \rightarrow K_{2n-1}(k) \xrightarrow{p^{\nu}} K_{2n-1}(k) \rightarrow H^{1}_{\text{\'et}}(k; \mathbb{Z}/p^{\nu}(n)) \rightarrow K_{2n-2}(k) \xrightarrow{p^{\nu}} K_{2n-2}(k) \rightarrow H^{2}_{\text{\'et}}(k; \mathbb{Z}/p^{\nu}(n)) \rightarrow 0.$$

REMARK 2.11. Sequence (2.11) inserted n=2 and with $K_2(k)$ replaced with its indecomposable part is known from [Le1] and [MS].

3. (Co)-descent.

Let k'/k be a Galois extension of fields with group Γ . We keep the assumptions that $\operatorname{cd}_p(k) \leq 2$ and $H^2_{\text{\'et}}(k; \mathbb{Q}_p/\mathbb{Z}_p(n)) = 0$ for all $n \geq 2$, and likewise for k'. Consider the Hochschild-Serre spectral sequence

$$(3.1) E_2^{s,t} = H^s(\Gamma, H_{\text{\'et}}^t(k'; \mathbb{Q}_p/\mathbb{Z}_p(n))) \Rightarrow H_{\text{\'et}}^{s+t}(k; \mathbb{Q}_p/\mathbb{Z}_p(n))$$

and the Tate spectral sequence:

$$(3.2) \quad E_2^{-s,\,t} = H_s(\Gamma,\,H^t_{\mathrm{\acute{e}t}}(k^{\,\prime};\,\mathbb{Q}_p/\mathbb{Z}_p(n)) \Rightarrow H^{-s+t}_{\mathrm{\acute{e}t}}(k;\,\mathbb{Q}_p/\mathbb{Z}_p(n))\,.$$

Here (3.1) is a first quadrant cohomological spectral sequence. Moreover, (3.2) is discussed in Chapter I Appendix 1 [Se] and in Proposition 3.1.1 [Ka1]. This is a second quadrant cohomological spectral sequence. The following result is now trivial to prove.

PROPOSITION 3.3. Let M^q denote $H^q_{\mathrm{\acute{e}t}}(k';\mathbb{Q}_p/\mathbb{Z}_p(n))$, and let $n \ge 2$. We have the exact sequences

$$0 \rightarrow H^1(\Gamma, M^0) \rightarrow K_{2n-1}(k; \mathbb{Q}_p/\mathbb{Z}_p) \rightarrow K_{2n-1}(k'; \mathbb{Q}_p/\mathbb{Z}_p)^{\Gamma} \rightarrow H^2(\Gamma, M^0) \rightarrow 0$$

and:

$$0 {\longrightarrow} H_2(\Gamma, M^1) {\longrightarrow} K_{2n-2}(k'; \mathbb{Q}_p/\mathbb{Z}_p)_{\Gamma} {\longrightarrow} K_{2n-2}(k; \mathbb{Q}_p/\mathbb{Z}_p) {\longrightarrow} H_1(\Gamma, M^1) {\longrightarrow} 0 .$$

In addition we have the naturally induced isomorphisms

$$K_{2n-2}(k; \mathbb{Q}_p/\mathbb{Z}_p) \stackrel{\cong}{\to} K_{2n-2}(k'; \mathbb{Q}_p/\mathbb{Z}_p)^{\Gamma}$$

and:

$$K_{2n-1}(k'; \mathbb{Q}_p/\mathbb{Z}_p)_{\Gamma} \xrightarrow{\cong} K_{2n-1}(k; \mathbb{Q}_p/\mathbb{Z}_p).$$

The d^2 -differentials in (3.1) and (3.2) give isomorphisms

$$H^{q}(\Gamma, K_{2n-1}(k'; \mathbb{Q}_p/\mathbb{Z}_p)) \stackrel{\cong}{\rightarrow} H^{q+2}(\Gamma, K_{2n-2}(k'; \mathbb{Q}_p/\mathbb{Z}_p))$$

and

$$H_{q+2}(\Gamma, K_{2n-1}(k'; \mathbb{Q}_p/\mathbb{Z}_p)) \xrightarrow{\cong} H_q(\Gamma, K_{2n-2}(k'; \mathbb{Q}_p/\mathbb{Z}_p))$$

for all $q \ge 1$.

REMARK 3.4. It follows that $K_{2n-1}(k)\{p\} \xrightarrow{\cong} K_{2n-1}(k')\{p\}^{\Gamma}$, and the transfer map induces a surjection $K_{2n-2}(k')\{p\}_{\Gamma} \rightarrow K_{2n-2}(k)\{p\}$. That surjection is an isomorphism if $K_{2n-2}(k')\{p\}$ is reduced. The first claim follows from the diagram displayed in the beginning of Section 2, and the second claim follows from an obvious Bockstein sequence argument.

REFERENCES

- [BK] S. Bloch K. Kato, p-adic étale cohomology, Inst. Hautes Études Sci. Publ. Math., 63 (1986), pp. 107-152.
- [BL] S. BLOCH S. LICHTENBAUM, A spectral sequence for motivic cohomology, UIUC K-Theory preprint server (1995).
- [FS] E. M. FRIEDLANDER A. A. SUSLIN, The spectral sequence relating algebraic K-theory to motivic cohomology, UIUC K-Theory preprint server (1999).
- [Hi] R. Hirshon, On cancellations in groups, Amer. Math. Monthly, 76 (1969), pp. 1037-1039.
- [Ka1] B. KAHN, Deux théorèmes de comparaison en cohomologie étale; applications, Duke Math. J., 69 (1993), pp. 137-165.
- [Ka2] B. Kahn, On the Lichtenbaum-Quillen conjectures, Algebraic K-theory and algebraic topology (P. G. Goerss and J. F. Jardine, eds.), NATO ASI Series C, vol. 407, Kluwer, 1993, pp. 147-166.
- [Le1] M. LEVINE, The indecomposable K₃ of fields, Ann. Scient. Éc. Norm. Sup., T.22 (1989), pp. 255-344.
- [Le2] M. LEVINE, K-theory and motivic cohomology of schemes, UIUC K-Theory preprint server (1999).
- [MS] A. S. MERKURJEV A. A. SUSLIN, The group K₃ for a field, Math. USSR Izv., 36 (1991), pp. 541-565.
- [Mi] J. MILNOR, Algebraic K-theory and quadratic forms, Invent. Math., 9 (1970), pp. 318-344.
- [RW] J. Rognes C. A. Weibel, Two-primary algebraic K-theory of rings of integers in number fields, J. Amer. Math. Soc., 13 (2000), pp. 1-54.
- [Se] J.-P. Serre, Galois cohomology, Springer Verlag, 1997.

- [Su1] A. A. Suslin, On the K-theory of algebraically closed fields, Invent. Math., 73 (1983), pp. 241-245.
- [Su2] A. A. Suslin, Algebraic K-theory and motivic cohomology, Proc. Intern. Congress Math., Zürich 1994, Birkhäuser, 1995, pp. 342-351.
- [Su3] A. A. Suslin, Higher Chow groups and étale cohomology, Cycles, transfers and motivic homology theories, Annals of Math. Studies, 143, Princeton University Press, 1999.
- [SV] A. A. Suslin V. Voevodsky, The Bloch-Kato conjecture and motivic cohomology with finite coefficients, The arithmetic and geometry of algebraic cycles, NATO ASI Series C, vol. 548, Kluwer, 2000, pp. 117-189.
- [Vo] V. Voevodsky, The Milnor conjecture, Preprint (1996).
- [We] C. A. Weibel, Lecture IX, Bloch's higher Chow groups, Algebraic K-theory and its applications, World Scientific, 1999, pp. 95-104.