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Periodicity in K-groups of Certain Fields.

PAUL ARNE (STVER (*)

ABSTRACT - Let k be a field of characteristic different from p. We study the p-tor-
sion and the p-cotorsion in the higher algebraic K-groups of k. Under a cer-
tain hypothesis we find that these groups are periodic. Some (co)-descent
properties are also pointed out.

1. Introduction.

Let k be a field of characteristic different from p. In the main part of
this paper we will assume that the p-cohomological dimension cd, (k) of &
is less than three. Additionally, we will assume that the group
HE (k; Q,/7,(1)) is trivial for ¢ = 2. For such a k we first prove some pe-
riodicity results for its algebraic K-groups. Second we discuss some (co)-
descent properties for the same groups. These results are easily deduced
from the Bloch-Lichtenbaum spectral sequence, denoted by BLSS from
now on, with finite coefficients. We claim no originality whatsoever for
this part. The BLSS for a field such as above resembles the BLSS for a
complex surface. That example was first considered by Suslin [Su2].

There are several versions of the BLSS, cf. [BL], [F'S], [Le2], [RW]
and [We]. Assume k has characteristic zero. The mod p” BLSS for k is a
third quadrant cohomological spectral sequence with input the higher
Chow groups of k¥ with mod p" coefficients, and abutment the mod p"” al-
gebraic K-groups of k. Suslin [Su3] has proved that the higher Chow
groups of k are isomorphic to the motivic cohomology groups of k. We let
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subscript IU indicate motivic cohomology. From the mentioned results,
the mod p” BLSS for k takes the form:

E3»"=Hg " (k; Zip*(=n)) = K_,,—,(k; Z/p").

The outcome of Weibel’s valuation trick from [We] is a mod p* BLSS for
fields of positive characteristic. The idea is to replace k by a field F'(k) of
characteristic zero, and whose motivie cohomology and algebraic K-the-
ory groups are naturally isomorphic to the same groups for k. Assume k
has positive characteristic [, where [ # p. Define R (k) to be the Cohen [-
ring of k, and define inductively R, (k) to be R,,_;(k)[t]/(t' — 7) where 7
is a uniformizing parameter for K, _ (k) and » = 1. The quotient field of
the union

colim (Ry(k) c Ry (k) cRy(k)C...)

has the desired properties of F(k).

Next we explain the relation between the motivic cohomology groups
and the étale cohomology groups of k. The Bloch-Kato conjecture [BK]
at the prime p predicts that the Galois symbol

KM (F)/p*—Hi(F; Z/p*(n))

is an isomorphism for every field F' of characteristic different from p. Vo-
evodsky proved this conjecture in [Vo] for the prime p = 2. For p = 2 the
Bloch-Kato conjecture was originally formulated by Milnor [Mi]. Suslin
and Voevodsky proved in [SV] that if the Bloch-Kato conjecture is true

at the prime p, then there exists natural isomorphisms
: Hi(k; Z/p* (1)) for 0<n<t,
H (s 74p" (1)) = {

otherwise .

By specialization we get the following result (for two groups A and B
we let A X B denote an Abelian extension of B by A).

THEOREM 1.1. Assume cd,(k) < 2. If p is an odd prime, we also as-
sume that the Bloch-Kato conjecture holds at p.
(a) The mod p* algebraic K-groups of k are given up to extensions by
Hi(k; Z/p* (1)) or n=21—1,
Ko e; zipry = | e 2P0 _ ” .
Hi(k; Z/p" (i + 1)) X[ HY(k; Z/p* (1))  for m=2i>0.
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(b) The extension above is split by the anti-Chern classes of Kahn
if p is odd, or p=2 and k contains a primitive fourth root of
unity.

REMARK 1.2. Part (b) of Theorem 1.1 is due to Kahn, see Theorem
3.1 in [Ka2]. The results from [F'S] and [Le2] make it plain that Theo-
rem 1.1, and hence some of the results in this paper may be generalized
to certain schemes with mod p étale cohomological dimension less than
three.

In Section 2 we prove results which appear to be new. For this we will
only consider fields with the properties stated in the beginning of the in-
troduction. The assumptions on k can often be checked in practice. Our
results reveal a periodicity phenomena for the p-torsion and the p-cotor-
sion in the algebraic K-groups of such a field. The proofs are very ele-
mentary and straightforward. However, the results might be useful in
specific examples. The same remarks apply to the results in Section 3.
Let k' /k be a Galois extension of fields as above. In Proposition 3.3 we
point out the connection between the Galois (co)-invariants of the alge-
braic K-groups of k' and the algebraic K-groups of k.

2. Periodicity in K-groups.

Assume cd, (k) < 2. Then the long exact sequence in étale cohomolo-
gy induced by the coefficient extension 0—7/p(n)—Q,/Z,(n)—
—Q,/7,(n)—0 shows that the group HEZ(k; Q,/7,,(n)) is divisible. We
impose the additional assumption that the latter group is trivial for n =
= 2. For an Abelian group A we let A{p} = lVJpVA be its maximal p-torsion

subgroup. Let k be an algebraic closure of k.
First we translate the additional assumption into a statement about
the K-groups of k. Consider the diagram

KZn(k; @p/Zp) — K2n(l_c; Qp/Zp)
/)’\L \Lﬁ
KZn—l(k){p} - KZW,—I(E){p}

where the vertical maps are the Bockstein maps. From Theorem 1.1; the
upper horizontal map is injective, since it can be identified with the natu-
ral injective map Hg(k; Q,/Z,(n)) —H§(k; Q,/Z,(n)). We know the
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Bockstein map for k is an isomorphism from [Su]. Hence the Bockstein
map for k is an isomorphism, and it follows that K, (k) ® Q,/Z, is the
trivial group for all »=1. Note also that K,, ;(k){p} injects into

Kanl(l_‘:){p}
The previous remarks combined with Theorem 1.1 give an isomor-
phism:

2.1) HY(k; Q,/7, (1)) =K, 1 (k){p}.

Let e, denote the exponent of the multiplicative group (Z/p”)*, and let
1, (k) denote the group of nth roots of unity in k.

LEMMA 22. Let m,n=1. Then , K, (k) is isomorphic to
»7 Kot + me,)—1(k) and there is an exact sequence

23) 0— HA (ks 7/p" (1)) = Ky, (k) > Kz, 1 (k).

In particular, the group Koy, (k) contains an element of order p”.
ProoF. From (21) we find an isomorphism HJ(k; Z/p”(n))i

ivazn,l(k). Now employ the Gal(k®/k)-module isomorphism

7/p’(n) ="7/p”(n +e,) where k° is a separable closure of k. The last

claim follows from ,»Ks,,,, - 1(k) = v Ky, _1(k) = HY(k; 7Z/p¥(0)) and the

fact that the absolute Galois group of k acts trivially on Z/p”(0) by defi-
nition of the Tate twist. =

REMARK 2.4. If k contains a primitive p'th root of unity, then:
(k) = Ky (k) = K (k) = ...

This follows since 7/p” (1) is independent of the twist © under the given
assumption.

We claim the Bockstein exact sequence in K-theory and Theorem 1.1
combine to make a commutative diagram:

0 —— K2n(k)/pv - KZn(k; Z/PV) %p”K%fl(k) —0

| | -

0—>HE(k; Z/p*(n + 1)) > Ky, (k; Z/p") — H(k; Z/p” (n)) =0

For k there is a unique choice of isomorphism on the right hand side that
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makes the diagram commutative. For k we choose the isomorphism that
is compatible with the inclusion into k. This gives a natural isomor-
phism:

(2.5) Ky, (k)/p"—=HEg(k; Z/p*(n + 1))

LEMMA 2.6. Let m,n=1. Then K,,(k)/p’ 1is isomorphic to
Ko+ me,)(k)/p” and there is an exact sequence

@7 Ko a(k) 5 Ky 5 (k) — H2(k; Z/p" () —0.

Proor. Given (2.5), the proof is a verbatim copy of the argument for
Lemma 2.2. The periodicity can be decreased according to Remark
24, =

The mod p” Bockstein exact sequence in K-theory and Theorem 1.1
give the short exact sequence

28) 0K, 1(k)/p*—Hi(k; Z/p* () =, Kz, - 2(k) =0

The sequence (2.8) splits if » is a multiple of e, and k is a number field
which satisfies the assumptions in Theorem 1.1. These assumptions are
satisfied unless k is real and p = 2, cf. Theorem 4.5 [RW]. Indeed, Lem-
ma 2.2 shows that the mod p"” reduction of K,,,, (k) is a full subgroup
of HX(k; 7Z/p”(me,)), hence a direct summand. These remarks motivate
the following observation.

LEMMA 2.9. If (2.8) splits for n and n + me,, then:
Kanl(k)/pveap"KZ?sz(k) = K2(7z+me1,)71(k)/pvEBpVKZ(ner,e,,)fZ(k)-

In particular, if Ky, 1(k)/p" is finite and isomorphic to
KZ(’I’[ +me,) — l(k)/p Vr then p”KZn - Z(k) = p"KZ(n +me,) — Z(k) Likewise, if
v Kon_2(k) is  finite and isomorphic to v Koy s me,)-2(K), then
K2n -1 (k)/PV = KZ(n +me,) — 1 (k)/pv

PrOOF. The first claim is clear from periodicity of Hé (k; Z/p”(n)).
The remaining claims follow from the cancellation property of finite
groups, see [Hi]. m

The exact sequences (2.3), (2.7) and (2.8) imply the next result.
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THEOREM 2.10. Let n=2. Then we have the exact sequence
(2.11) 0_)Hé0t(k;Z/pV(n))_>K2n—1(k)p_)KZW—l(k)_)Hélt(k;Z/py(n))_)

— Ky 5(k) 5> Ky (k) > HE (k3 Z/p"* (n)) =0 .

REMARK 2.11. Sequence (2.11) inserted n =2 and with Ky(k) re-
placed with its indecomposable part is known from [Lel] and
[MS].

3. (Co)-descent.

Let k'/k be a Galois extension of fields with group I". We keep the as-
sumptions that ed,(k) <2 and H(k; Q,/Z,(n)) =0 for all n =2, and
likewise for k'. Consider the Hochschild-Serre spectral sequence

(1) ES'=HI,Hi(k'; Q,/Z,(n) = HE "(k; Q,/Z,(n))
and the Tate spectral sequence:
B2 Ey*'=H,TI, Hy(k'; Q,/7,(n)) = Hg’* " '(k; Q,/7,(n)).

Here (3.1) is a first quadrant cohomological spectral sequence. More-
over, (3.2) is discussed in Chapter I Appendix 1 [Se] and in Proposition
3.1.1 [Kal]. This is a second quadrant cohomological spectral sequence.
The following result is now trivial to prove.

ProPOSITION 8.3. Let MY denote HE(k'; Q,/Z,(n)), and let n=2.
We have the exact sequences

0—H (I, M)~ Ky,, 1 (; Q) 7)) —> Koy 1 (k'30,/ 7)) —H (I, M °)—0
and:
0—=Hy(I,MY—=Ky, _5(k'; Q) Zy) r— Ky, 5 (k; Q) Z,)—H, (I, M")—0.
In addition we have the naturally induced isomorphisms
Koy o(k; Q,/7,) > Ko, o(k'; Q,/7,)"

and:

Koo 1(k"5 Q7)) r— K, 1 (k; Q,/Z,).
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The d?-differentials in (3.1) and (3.2) give isomorphisms
H(T, Ky, —1(k'; Qy/Z,) = HO AT, Ky (k"5 Q,/Z,))
and
Hq+2(r, KQn—I(k,; Qﬁ/zp))in(r, Kgn_g(lﬂ’; ‘QJ[,/ZP))
for all g=1.

REMARK 3.4. It follows that K, (k){p} iKgn_l(lc’){p}r, and
the transfer map induces a surjection K, (k' ){p}r—> Ko, _2(K){p}.
That surjection is an isomorphism if Ky, »(k'){p} is reduced. The
first claim follows from the diagram displayed in the beginning of Sec-
tion 2, and the second claim follows from an obvious Bockstein se-
quence argument.
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