
Open Research Online
The Open University’s repository of research publications
and other research outputs

Requirements-driven collaborative choreography
customization
Conference or Workshop Item
How to cite:

Mahfouz, Ayman; Barroca, Leonor; Laney, Robin and Nuseibeh, Bashar (2009). Requirements-driven collaborative
choreography customization. In: 7th International Joint Conference on Service Oriented Computing, 23-27 Nov 2009,
Stockholm, Sweden.

For guidance on citations see FAQs.

c© 2009 The Author

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://www.icsoc.org/

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Research Online

https://core.ac.uk/display/41271?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://www.icsoc.org/
http://oro.open.ac.uk/policies.html

Requirements-Driven Collaborative Choreography

Customization

Ayman Mahfouz1, Leonor Barroca
1
, Robin Laney

1
, Bashar Nuseibeh 1

1Computing Department, The Open University.

Walton Hall, Milton Keynes, MK7 6AA, UK

amahfouz@gmail.com, {L.Barroca, R.C.Laney, B.A.Nuseibeh}@open.ac.uk

Abstract. Evolving business needs call for customizing choreographed

interactions. However, conventional choreography description languages

provide only a partial view of the interaction. Business goals of each participant

and organizational dependencies motivating the interaction are not captured in

the specification of messaging. Absence of this critical business knowledge

makes it hard to reason if a particular customization satisfies the goals of

participants. Furthermore, there is no systematic means to assess the impact of

change in one participant’s process (local view) on the choreography (global

view) as well as on other participants’ processes. To this end, we argue for the

benefits of representing choreography at the level of requirements motivating

the interaction. We propose a framework that allows participants to collaborate

on customizing choreographed interactions, while reconciling their competing

business needs. To bridge the worlds of messaging and requirements, we

employ an automated technique for deriving a choreography description from
the customized requirements.

Keywords: Choreography, Requirements, Evolution, Viewpoints.

1 Introduction

A choreography description specifies the behavioral contract of participants in an

electronic interaction from a neutral point of view [1]. Mutual obligations of the

participants are specified in terms of constraints on the sequences of messages they

can exchange. Using a choreography description language (CDL), such as WS-

CDL[2], is becoming a de facto way for describing the “global” view of service-

oriented interactions.

However, these languages focus almost entirely on operational aspects such as data

formats and control flow. They fall short of capturing the business-domain knowledge

behind the interaction. In particular, both the strategic motivations driving the

participants to interact and the physical activities they are required to perform in order

to fulfill their obligations are not directly represented in choreography.

This deficiency becomes critical when the choreography has to be customized to

cater for emergent business needs. It is hard to ensure that a particular choice of

customization to an existing choreography satisfies the business goals of participants.

To this end, we propose an approach for customizing choreographed interactions at

the level of organizational requirements that motivate the interaction. Organizational

requirements models capture intentions of the participants, strategic dependencies

driving them to interact, and all activities they undertake during the interaction. This

knowledge is essential for rationalizing customizations made to the interaction.

Since business goals of one participant (local view) are often conflicting with those

of other participants, a particular choice of customization of the choreography (global

view) may not be agreeable to all participants. Hence, we propose a framework that

allows participants to collaborate on finding an alternative for customizing the

interaction agreeable to all of them.

Our framework adopts Tropos [3] for representing organizational requirements.

Tropos provides suitable notations for capturing and reasoning about a choreographed

interaction in stakeholder-friendly terms. Furthermore, whereas leading CDLs have

been criticized for inadequate formal grounding [4], the Tropos framework employs

the formal notations of Formal Tropos (FT) [5] for precisely describing constraints

that govern the behavior of participants in the interaction.

The formality of FT allows us to maintain consistency between the two

representations, organizational requirements and the choreographed-messaging

specification. We have previously shown [6] how organizational dependencies

motivate choreographed conversations. We have also detailed how choreographed

messaging can be derived from requirements [7]. In this paper we build on this work

by proposing a framework that bridges global and local views of the interaction. The

framework guides the collaborative customization of the interaction through an

automatable process.

The rest of the paper is organized as follows: Section 2 introduces the notion of

choreography customization and Abstract CDL (ACDL) using our running example.

Section 3 motivates our work and gives an overview of our approach. Section 4 shows

how we use Tropos to represent organizational requirements for an interaction.

Section 5 outlines how we support impact analysis and traceability. Our

customization process is detailed in section 6 and validated in section 7. Related work

is discussed in section 8. Section 9 concludes and outlines future work.

2 Choreographed Interactions

A choreography description specifies a contract between a group of interacting roles

in terms of sequences of messages they are allowed to exchange. Messaging between

actual participants that play the choreographed roles at runtime has to abide by this

contract. For example, consider the three roles: a patient, a medical provider (MP),

and an in insurance company (IC). One potential interaction between these roles can

be choreographed as follows:

A patient who needs to visit an MP must get an authorization from her IC first.

When the patient receives an authorization number from the IC, she requests an

appointment from the MP. After getting the confirmation the patient visits the MP

to get examined by a doctor who later sends a prescription. The MP then bills the

IC and gets back an electronic payment (Figure 1).

Fig. 1. Example choreographed medical interaction and its ACDL representation.

In this paper we use a simple pseudo-language for representing choreography in

order to focus on our approach without distracting the reader by the quirky details of a

particular CDL. Nevertheless, ACDL constructs are directly drawn from the leading

CDL, WS-CDL [2], which makes the mapping to WS-CDL constructs almost trivial.

The three ACDL constructs used in this paper are: “Send” message activity to

represent a message sent by a participant, a “Sequence” of activities that have to

execute in order, and a “Parallel” composition of activities that can proceed

simultaneously. The grammar of the language is given in Figure 2 (terminal symbols

in bold). The version of ACDL used here does not include constructs for representing

repetition or conditional choice between alternative execution branches.

Fig. 2. Abstract Choreography Description Language (ACDL) grammar.

Message sending activities specify the participant who sends the message, P1, the

participant who receives it, P2, and a literal “Message Name” that describes the

message. All activities in a “Sequence” have to execute in order, where an activity

cannot start unless the previous activity has completed. A “Sequence” activity is

completed when the last activity in the sequence is completed. Individual branches of

a “Parallel” can proceed concurrently. A “Parallel” activity is only completed when

all branches are completed. The &oOp activity is a “do-nothing” activity. Figure 1

shows the ACDL for the medical example. Indentation represents nesting of activities.

3 Customizing Choreographed Interactions

We now motivate our work and present an overview of our approach.

Insurance

Company

1. Request authorization

2.Authorize

treatment

3. Request appointment

4. Confirm appointment
5. Prescribe medication

7. Payment

6. Bill

Patient
Medical
Provider

Sequence
Patient Send AuthRequest To IC
IC Send TreatmentAuth To Patient
Patient Send AppointmentRequest To MP
MP Send AppointmentConfirm To Patient
Parallel
 MP Send Prescription To Patient
 Sequence
 MP Send Bill To IC
 IC Send Payment To MP

Choreography � Activity
Activity � Message | Sequence | Parallel | NoOp
Message � P1 Send Message Name To P2
Sequence � Sequence Activity *

Parallel � Parallel Activity *

3.1 The Problem

It is inevitable that the business requirements driving the interaction will change. As a

result, the choreography description needs to be customized to reflect the new

contract.

For example, consider an emergent need for the IC to protect itself from abuse of

coverage. To protect its assets, the IC needs to ensure that it only covers treatment

expenses for eligible patients. One way to achieve this goal is to require the MP to

verify the insurance coverage of each admitted patient. The MP is thus required to

submit the patient’s insurance information to the IC so that the IC checks the validity

of the patient’s insurance policy. The IC will not hold itself liable for covering

treatment expenses unless the MP verifies the patient information before submitting a

bill. This requirement imposes a constraint on the order in which the MP performs its

activities. A naïve realization of this added requirement is to have the MP send a

“Verify coverage” message before sending the billing message. With conventional

choreography descriptions we face two challenges:

1. It is hard to rationalize this, or any other, choice for capturing the customization
without considering how well it satisfies the emergent business need.

2. It is not clear how to assess the impact of any suggested change to the
choreography (global view) on the process of each participant (local view). For a

participant, e.g. the patient, to agree on the change they have to assess its impact

on their business goals.

These issues are exacerbated by the lack of representation of physical activities in

choreography descriptions. Physical activities that are part of the interaction contract

have to be taken into account when assessing a change.

3.2 Messaging Specification vs. Requirements

To rationalize a customization, it is crucial to consult problem-domain knowledge.

However, choreographed messaging descriptions are operational in nature. They do

not reveal much of the business rationale behind the interaction but rather focus on

how the interaction is to be carried out, i.e. the control flow between activities. On the

other hand, organizational requirements provide more abstract descriptions that focus

on the why and what aspects of the interaction. We argue that Models of

Organizational Requirements (MOR) are superior to messaging descriptions with

respect to four representational areas, each of which is crucial to assessing alternative

ways for capturing the required customization. These namely are:

1. Intention and Motivation. MOR for the interaction embody essential knowledge

about motivations driving each participant including:

• Goals the participants wants to achieve

• Dependencies between participants enabling them to achieve their goals

• Risks and liabilities introduced by the dependencies

2. Refinement Mechanisms: MOR allow for refining high level goals into activities

thereby providing rationalization of activities undertaken during the interaction.

Refinement relates different levels of abstraction thereby providing traceability all the

way down to the messaging specification.

3. Physical Activities. Electronic messaging is only part of the realization of the full

interaction. Physical activities that the participants are obliged to perform as part of

the interaction contract are not necessarily manifested in the messaging specification.

For example, the patient’s visit to the MP and its relation to other activities are not

captured in the choreography description in Figure 1.

4. Behavioral Contract. MOR can be annotated with precise specification of

participants’ obligations. We employ these behavioral annotations to guide the

refinement of models [7]. Furthermore, the use of formal logic enables automatic

checking for the satisfaction of participants’ goals.

3.3 Our Proposed Approach

We propose a framework for customizing choreographed interactions that combines

the benefits of organizational requirements with the standards-based choreographed

messaging descriptions.

While allowing the participants to collaborate on customizing the choreography

(global view), our framework allows each participant to evaluate the impact of the

customization on their individual business needs (local view). This dichotomy results

in the four views (quadrants) of figure 3. We elaborate on Q1 and Q2 in section 4.

Our choreography customization framework entails: representing choreographed

interactions at the level of organizational requirements models, performing required

customizations to these models in a collaborative manner that benefits from the

embodied domain knowledge, and deriving the resulting choreography description in

an automated manner.

Fig. 3. The four views of our choreography customization framework.

 Global Local

R
e
q
u
ir
e
m
e
n
ts
 Actor-Dependency Model

Q1

Actors, high-level goals, and organizational

dependencies

Goal-Activity Models

Q2

Goal-activity refinement for one actor

M
e
s
s
a
g
in
g
 Choreography

Q3

Observer point-of-view messaging

specification

Business Process

Q4

Specification of messages sent/received by

one actor

4 Modeling Interaction Requirements

Tropos [3] is an agent-oriented software development methodology with a focus on

organizational requirements at various levels of abstraction. We use Tropos for

modeling interaction requirements as it provides a suitable framework for

representing and reasoning about the business context for a choreographed

interaction. Its models capture goals of participants (actors) in the interaction, mutual

dependencies that motivate them to interact, and activities they undertake to fulfill

their goals. We introduce how we model the global view of a choreographed

interaction using Actor-Dependency (AD) models, how we model the local view

using Goal-Activity (GA) models, and how behavioral dynamics of the model are

described using FT.

4.1 Global View: AD Modeling

Actor-Dependency (AD) models provide a notation for representing the global view

of the interaction at a high-level of abstraction by capturing the actors (participants) in

the interaction, their high-level goals, and the inter-dependencies driving them to

interact. Figure 4 is an AD model representing the medical interaction at a high-level.

An actor is an active entity that performs actions to achieve its goals. The patient, the

MP, and the IC are all actors. Model elements can either be internal to an actor (inside

the dotted ellipse) or define dependencies whose fulfillment is delegated to other

actors. An actor may depend on another for fulfilling a goal, performing an activity,

or making some resource available.

A goal is a state of the world desired by one of the actors. For example, the “Get

Treated” goal represents the patient’s desire to get cured from an ailment. An activity

is an abstraction of a course of action with well-defined pre- and post-conditions. The

patient is required to perform the “Appear for Exam” activity to visit the MP’s office.

A resource is an informational or physical entity. For example, the “Payment”

resource represents the compensation that the MP gets from the IC in return for

providing services to the patient.

 Fig. 4. Actor-Dependency model for the medical interaction.

Facilitate Treatment

Payment Authorize
Treatment

IC

Depender

Dependee

Dependency
Patient MP

Appear
for Exam

Get Treated
Profit from
Treatment

Appointment

Prescription

Actor

Goal

 Resource Activity

4.2 Local View: GA Modeling

To detail the specification of the interaction, we successively refine AD models into

Goal-Activity (GA) models [3]. Each GA model represents an actor’s local view of

the interaction. In the process, goals are refined into sub-goals and eventually realized

by activities. Each actor considers and evaluates refinement alternatives based on how

well they satisfy their goals [8]. Activities can be further refined into sub-activities

that are either implemented by a service or carried out by a human agent.

Figure 5 shows the GA model of both the MP and the patient. Goals and activities

internal to an actor are refined inside the dotted ellipse for that actor. Each actor takes

responsibility for carrying out their internal activities during the interaction. For

example, the “Get Treated” goal was refined into activities to get an authorization

from the IC followed by getting a prescription from the MP. The latter is further

refined into activities for setting up an appointment followed by visiting the MP and

then receiving a prescription from the MP.

The business goals of participants may dictate some ordering of activities. For

example, in the analysis process the MP realized the need to manage office schedule.

Hence, the MP requires every patient to setup an appointment before they visit. Also,

physical activities may impose ordering. For example, the MP has to examine the

patient before prescribing treatment.

Fig. 5. Partial Goal-Activity diagram for the medical interaction.

4.3 Behavioral Specification: Formal Tropos

Behavioral obligations of participants can be captured in formal annotations used by

the formal counterpart of Tropos, Formal Tropos (FT). Each activity, goal, resource,

and dependency in the model is represented as an FT class, of which many instances

may be created during an “execution” of the model. An execution of an FT model

corresponds to a possible progression of the interaction. Model execution is useful for

verifying that an interaction will proceed as designed. A partial FT specification for

the “MakeAppointment” activity and the “Appointment” dependency classes is shown

in figure 6, parts of which can be deduced by applying some heuristics [5].

Patient

Get Treated

Get
Authorized

Obtain
Prescription

Make
Appointment

Visit
MP

MP

Appointment

Prescription

Profit from
Treatment

Collect
Payment

Schedule
Appointment

Appear

for
Exam

Examine
Patient

Receive
Prescription

Treat
Patient

Prescribe
Treatment

Precedes Refines

Each class has attributes that define associations with other instances in the model.

For example, the “Appointment” class has “makeApp” attribute that references the

associated instance of “MakeAppointment” class.

Valid progressions of the interaction are specified by constraining the lifecycle of

model elements using temporal logic. Creation and Fulfillment conditions define

when an instance of a class is created (instantiated) and when it becomes fulfilled.

4.3.1 Creation. Creation of a goal or a dependency is interpreted as the moment at

which the actor begins to desire the goal or need the dependency to be fulfilled. For

example, an “Appointment” dependency will be created if there is an instance of

“MakeAppointment” activity that needs to be fulfilled. For an activity, creation is the

moment at which the actor has to start performing it. Note how FT specifies that

“MakeAppointment” is created when its “super” activity, “Obtain Prescription”,

needs to be fulfilled thereby bridging two levels of abstraction. We use Cr(X) to

denote the creation event of X.

4.3.2 Fulfillment. Fulfillment condition marks the end of the lifecycle of an instance.

Fulfillment condition should hold whenever a goal is achieved, an activity is

completed, or a resource is made available. For example, the “MakeAppointment”

activity is fulfilled when the associated “Appointment” dependency has been fulfilled

(i.e. appointment confirmation was received by the patient) whereas an instance of

“Appointment” is fulfilled when the MP has completed the activity of scheduling an

appointment. We use Fi(X) to denote the fulfillment event of X.

Fig. 6. FT specification of “Appointment” and “MakeAppointment “.

5 Traceability and Impact Analysis

Our goal here is twofold: first, facilitate collaboration between participants to find a

customization on which they all agree and second: systematically determine the

messaging specification resulting from customization of requirements models.

Dependency Appointment
Depender Patient
Dependee MP
Attribute makeApp: MakeAppointment

Creation condition ¬Fulfilled(makeApp)
Fulfillment condition

∃ schedAp:SchedulApp

 (schedAp.actor = dependee ∧ Fulfilled(sa))

Activity MakeAppointment
Actor Patient

Creation condition ¬Fulfilled(super)
Fulfillment condition

∃ a:Appointment
 (a.depender = actor

 ∧ a.makeApp = self ∧ Fulfilled(a))

5.1 Impact Analysis: Bridging Local and Global Views

To allow participants to assess the suitability of a customization (from their point

of view) we must be able to determine the effect of a change in the choreography on

any participant’s process. Conversely, we need to determine the impact of changes in

any of the participant’s local model on the choreography so that other participants get

to assess suggested customizations to the choreography from their point of view.

We employ dependencies to link GA and AD models. GA models explicate which

specific activities are at both ends of each dependency, thereby providing linkage

between the local view of each participant with the global view of the interaction.

FT precisely relates the lifecycle of dependencies to that of activities at both ends of a

dependency. For example, in figure 6, note how the state of “Appointment”

dependency determines the state of “MakeAppointment” activity. The patient cannot

make progress on their internal process flow unless “Appointment” dependency is

fulfilled. On the other hand, the “Appointment” dependency is only fulfilled when the

MP have complete the “ScheduleAppointment” activity.

5.2 Traceability: Bridging Requirements to Messaging

Using FT to relate the lifecycle of activities to their “super” activity enables us to

bridge requirements models to messaging specification. We exploit this traceability

mechanism to show how dependencies drive the interaction thereby outlining an

abstract view of the choreography [6]. For example, “Appointment” dependency

indicates that the patient depends on the MP for obtaining an appointment, which

implies that both actors need to interact to fulfill the dependency.

We have exploited these semantics to automate the generation of choreographed

messaging from requirements models [7]. First, we infer the set of choreographed

events from creation/fulfillment events of activities and dependencies. Then, we use

the semantics of refinement, dependencies, and precedence between activities to come

up with a partial ordering relation over these events. Finally, from the ordering

relation, we generate a choreography description that satisfies the requirements [7].

Even though GA modeling details the activities of the interaction, it provides an

important flexibility. It defers the choice of the medium through which activities are

carried out. For example, the choreography designer may choose to include the

“Prescription” in choreographed messaging or have it be fulfilled otherwise, e.g.

paper documents, fax, etc. We take advantage of this by including all activities,

including physical activities, in the customization process.

6 Choreography Customization Process

Bridging requirements to choreography allows us to perform required

customizations to requirements models then derive the customized messaging. On the

other hand, bridging the local and global views helps ensure that customizations to a

choreography description do not violate the goals of any participant. Thus, our

proposed customization process covers the 4 quadrants of figure 3.

The driver behind choreography customization is to satisfy an emergent business

need. Several customization alternatives that satisfy this need may exist. Our process

enables participants to collaborate on finding an alternative acceptable to all of them.

Each participant gets to evaluate the suitability of alternatives from their local point of

view as well as suggest other alternatives.

An advantage of our process is that it has no fixed starting point. Customization

may start in any of the four quadrants of figure 3 and move between them. Consider

the following example manifestation of the process:

1. Participant P1 identifies an emergent business need.
2. P1 considers a change in their GA model (which is in Q2) to fulfill that need.
3. To determine the effect of the suggested change on the global view we use
dependencies to relate P1 GA model to the AD model (moving from Q2 to Q1).

4. The change in the AD model may imply (again Q1 to Q2) changes to another
participant’s, P2, GA model.

5. P2 evaluates suggested change from their point of view (Q2 again – but for P2).
6. P2 deems the suggested change unacceptable and suggests an alternative way
for fulfilling P1’s need.

7. The effect of the alternative on the AD model is worked out (Q2 to Q1).
8. A change in the AD model implies a change in the GA model of P1 (Q1 to Q2).
9. P1 agrees to the suggested alternative.
10. The choreographed messaging is then derived from the customized AD and GA
models [7] (moving from Q1 to Q3).

Each step of the process involves one of the following:

1. Switch Views. To assume one of the four views of figure 3 our customization

framework allows moving between its four quadrants as follows:

• Q1-Q3: Choreographed messaging constraints obtained from AD models as per [7].

• Q1-Q2: Ends of every dependency appearing in the AD model are activities
appearing in a GA model, as in section 5.

• Q2-Q4: Ordering of messages sent and received by one participant is constrained
by refinement and precedence between the activities of that participant as per [7].

• Q3-Q4: Messages sent/received by every participant appear in the choreographed
messaging specification. For example, as in [9], [10]

2. Evaluate Alternative. Each participant needs to ensure that a suggested

customization is acceptable from their local point of view. When a change is

suggested to their GA model (e.g. to reflect a change in the AD model), a participant

can verify that the customized model still achieves their business goals. A systematic

way to evaluate a GA model is by executing it using a simulator [5] and checking

whether every possible execution state is acceptable. If the participant deems one of

the states unacceptable, they can then suggest an alternative customization.

3. Suggest Alternative. To aid a participant suggest an alternative customization, we

provide systematic ways for finding alternatives for certain classes of customizations.

For example, by bridging requirements to messaging as in section 5, we can auto-

enumerate all possible alternatives for a customization that requires adding an event

to the choreography along with an ordering constraint [6].

4. Perform Customization. Customizations that we tackle here are those that result

from incremental, rather than radical, changes to requirements. Section 7 shows

examples of adding a dependency, an activity, and a precedence constraint.

5. Agree on an Alternative. The customization process concludes when none of the

participants objects to the candidate customization alternative. However, there is no

guarantee that a solution agreeable to all participants will be found. If a point is

reached where at least one of the participants objects to the last remaining candidate

solution, the requested customization may be deemed unreasonable. An alternative

may then be sought at a higher level requirements model, e.g. as in [3] and [8].

7 Validation

We now use the medical example to demonstrate our customization framework.

Revisiting the medical example, we start the process from the original suggested

customization to messaging:

Starting from the initial suggestion by the IC
1. The IC suggests a customization where they get a message asking them to verify
a patient’s coverage prior to receiving a bill (Q4 for IC).

2. This translates (Q4-Q3) to adding a “verify coverage” message that precedes the
billing message in the customized choreography description.

3. Consequently (Q3-Q4 for the MP), the MP has to send a “verify coverage”
message before sending the billing message (Q3).

4. The “verify coverage” request-response messages imply (Q3-Q1) an added
organizational dependency.

Adding the “Verification” dependency and required activities

5. The “Verification” dependency is then added to the AD model (Q1).
6. To initiate the fulfillment of the dependency (Q1-Q2) the MP has to perform a
“Verify Coverage” activity (Q2 for MP).

7. The new activity is added to the GA model of MP. From the original
requirement imposed by the IC, the activity has to precede “Collect Payment”.

8. The first candidate solution that satisfies the new imposed constraint is to have
the new activity immediately precede “Collect Payment”.

9. The MP analyzes the suggested solution through simulation (Q2). The MP
determines that the solution allows a state where a prescription has already been

sent to a patient whose insurance information has not been verified. This state is

deemed undesirable because if the coverage is not eventually verified, the MP

will not get paid.

10. To find an alternative point for performing the “Verify Coverage” activity, the
MP explores other alternatives [6]. Rather than directly preceding the billing

activity, “Verify Coverage” can be made to precede any other activity that

transitively-precedes the billing activity.

11. One such alternative is to have the “Verify Coverage” activity precede “Issue
Prescription”. But again, an execution of the model (Q2) deems this

unacceptable as it allows a state where a doctor wastes his time examining the

patient only to find later that she is not covered by the IC.

12. Continuing in the same manner, the MP finds the first viable solution which is
to have “Verify Coverage” precede “Examine patient”.

Adding the “Coverage” dependency and required activities

13. The MP adds a “Get Coverage Info” activity (Q2) which entails (Q1-Q2) adding
a “Coverage Info” dependency (Q1). The MP requests that the patient provides

coverage information prior to the examination,.

14. The patient adds a sub-activity, “Provide Coverage”, to “Obtain Prescription”.
The new activity is assigned to fulfill “Coverage Info” dependency (Q1-Q2).

15. The first point “Get Coverage Info” can be performed is right before
Cr(Examine Patient) and right after Fi(Visit). This implies that the patient will

physically carry the coverage information to the MP office.

16. The patient finds this option undesirable as an execution of the model (Q2 for
patient) shows it allows states where the patient goes through the trouble of

visiting the MP but not get examined, e.g. if verification fails due to some

system outage.

17. Continuing as specified in [6], a viable solution is found where verification is
made to precede the Fi(Appointment). Thus, the patient suggests providing

coverage information prior to getting the appointment confirmation.

Agreeing on a customization and concluding the process

18. To add “Get Coverage Info” right before Fi(Appointment) the MP makes it a
sub- activity of “Schedule Appointment”.

19. The MP agrees the patient’s suggestion.
20. All participants agree to the suggested solution.
21. Having agreed on a customization, the choreography messaging is then derived
automatically from the Tropos models.

Figure 7 summarizes customizations made to the Tropos models. By feeding our

choreography derivation tool [7] the Tropos model as input it outputs the ACDL

description shown in figure 8. Note that a design decision was made to realize

“Prescription” as a messaging, rather than physical, activity.

Coverage Info

Patient

 Obtain
Prescription

Provide
Coverage

Info

IC

MP

Verification

Provide
Coverage
Verification

Verify

Coverage

Collect
Payment

Get

Coverage
Info

Fig. 7. Summary of the customizations made to the requirements model.

 Schedule

Appointment

8 Related Work

Most of the research on choreography has focused on representation [11], generating

process skeletons [12], and verifying the compliance of the collective behavior of a

set of processes with a choreography description [13]. While highly-dynamic service

interactions have been a long-sought goal [14], choreography customization is an

emerging area [15] with little support for business-level reasoning [4].

Although, our work shares the spirit of attempts to integrate commitments with

Tropos [16] [17], our structured customization process and automatic derivation set

our approach apart, especially that it is not clear in [17] how activities can be related

to messaging. The Amoeba methodology [18] for evolving cross-organizational

interaction is promising, albeit it does not adequately distinguish between the local

and global views of the interaction thereby obscuring the needs of each participant.

Most of the work addressing customization of service interactions focused on

adapting orchestrations [19] [20] rather than choreography. More importantly, with

the exception of [21], the business needs driving the interaction are not addressed.

Representing organizational requirements for distributed actors is well-established

[22], and also is evolution in agent-oriented systems [23]. However, both were yet to

be applied to choreographed service interactions in a way that explicates the multiple

views on the interaction. Our work is consistent with the dichotomy given in [24],

albeit that work does not address customization. Otherwise, relating viewpoints in

service interactions was established only at the messaging level [9]. Attempts to relate

choreography to business rules have also only addressed operational aspects [25].

Finally, although UML activity diagrams [26] are widely used to represent

choreographed interactions, the formality and the levels of abstractions of Tropos [3]

make it superior for analyzing business goals and reasoning about their satisfaction.

Sequence
 Patient Send AuthRequest To IC
 IC Send TreatmentAuth To Patient
 Patient Send AppointmentRequest To MP
 MP Send GetCoverageInfo To Patient
 Patient Send CoverageInfo To MP
 MP Send VerifyCoverage To IC
 IC Send CoverageVerification To MP
 MP Send AppointmentConfirm To Patient
 Parallel
 MP Send Prescription To Patient
 Sequence
 MP Send Bill To IC
 IC Send Payment To MP

Fig. 8. Choreography description derived from the customized requirements model.

9 Conclusions and Further Work

Ever-changing business needs call for customizable choreography descriptions.

Conventional CDLs are not well-suited for customization as they embody little of the

domain knowledge required to reason about participants’ goals. In particular, the

business goals of participants and strategic dependencies motivating the interaction

are not explicitly represented. We proposed representing choreographed interactions

at the level of organizational requirements. Tropos models embody knowledge about

the goals of the participants, the dependencies driving the interaction, and all

activities performed during the interaction including physical activities not

represented in conventional CDLs.

We proposed a framework that enables participants to collaborate on customizing

the choreography (global view) while at the same time ensuring their individual

business needs (local view) are satisfied. We utilized the formality of FT to analyze

the impact of choreography customization on each participant’s processes. We

provided systematic ways for finding customization alternatives and evaluating them.

Once participants have agreed on an alternative, we use our automated technique to

derive the customized messaging specification from Tropos models. Using an

example, we demonstrated how our framework exploits domain knowledge embodied

in requirements models to decide how the required customization is to be performed.

The generated ACDL is a skeleton that needs to be refined in a design phase, e.g.

by specifying message data types. In particular, ACDL employs request-response

messaging whereas more complex patterns may realistically be needed. We will

exploit the FT for inferring more detailed messaging, such as repetition and

branching. Furthermore, we plan formalize data flow aspects of our analysis.

References

[1] C. Peltz, "Web Services Orchestration and Choreography," IEEE Computer, vol. 36, pp.

46-52, 2003.

[2] "Web Services Choreography Description Language Version 1.0,

http://www.w3.org/TR/ws-cdl-10/," W3C, 2005.

[3] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos, "Tropos: An Agent-

Oriented Software Development Methodology," Journal of Autonomous Agents and Multi-

Agent Systems, vol. 8, pp. 203-236, 2004.

[4] A. Barros, M. Dumas, and P. Oaks, "Standards for Web Service Choreography and

Orchestration: Status and Perspectives," presented at Business Process Management

Workshops, Nancy, France, 2006.

[5] A. Fuxman, L. Liu, J. Mylopoulos, M. Pistore, M. Roveri, and P. Traverso, "Specifying and

analyzing early requirements in Tropos," RE Journal, vol. 9, pp. 132-150, 2004.

[6] A. Mahfouz, L. Barroca, R. Laney, and B. Nuseibeh, "Customizing Choreography:

Deriving Conversations from Organizational Dependencies," presented at Enterprise

Distributed Object Computing Conference (EDOC), Munich, Germany, 2008.

[7] A. Mahfouz, L. Barroca, R. Laney, and B. Nuseibeh, "From Organizational Requirements
to Service Choreography," accepted for publications in SEASS'09, co-located with

IWCS'09, July 6-10, Los Angeles, USA.

[8] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani, "Formal Reasoning

Techniques for Goal Models," in Journal on Data Semantics, vol. 2800, LNCS, S.

Spaccapietra, S. T. March, and K. Aberer, Eds.: Springer, 2003, pp. 1-20.

[9] R. M. Dijkman and M. Dumas, "Service-Oriented Design: A Multi-Viewpoint Approach,"

International Journal of Cooperative Information Systems, vol. 13, pp. 337-368, 2004.

[10] J. M. Zaha, M. Dumas, A. H. M. t. Hofstede, A. P. Barros, and G. Decker, "Service

Interaction Modeling: Bridging Global and Local Views," presented at EDOC,China, 2006.

[11] J. M. Zaha, A. P. Barros, M. Dumas, and A. H. M. t. Hofstede, "Let’s Dance: A Language

for Service Behavior Modeling," presented at OTM (1), Montpellier, France, 2006.

[12] J. Mendling and M. Hafner, "From Inter-Organizational Workflows to Process Execution:
Generating BPEL from WS-CDL," presented at ACM / IEEE 8th International Conference

on Model Driven Engineering Languages and Systems, Montego Bay, Jamaica, 2005.

[13] H. Foster, S. Uchitel, J. Magee, and J. Kramer, "Model-based Verification of Web Service

Compositions," presented at 18 International Conference on Automated Software

Engineering (ASE’03), 2003.

[14] E. D. Nitto, C. Ghezzi, A. Metzger, M. P. Papazoglou, and K. Pohl, "A journey to highly
dynamic, self-adaptive service-based applications," Automated Software Engineering, vol.

15, pp. 313-341, 2008.

[15] S. Rinderle, A. Wombacher, and M. Reichert, "On the Controlled Evolution of Process

Choreographies," presented at 22nd International Conference on Data Engineering

(ICDE’06), Atlanta, GA, USA, 2006.

[16] A. U. M. and and M. P. Singh, "Incorporating Commitment Protocols into Tropos," in

Agent-Oriented Software Engineering VI, vol. 3950/2006: Springer, 2006, pp. 69-80.

[17] P. R. Telang and M. P. Singh, "Enhancing Tropos with Commitments: A Business

Metamodel and Methodology," presented at Conceptual Modeling: Foundations and

Applications, 2009.

[18] N. Desai, A. K. Chopra, and M. P. Singh, "Amoeba: A Methodology for Modeling and

Evolution of Cross-Organizational Business Processes," ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 19, 2009.

[19] A. Charfi and M. Mezini, "Aspect-Oriented Web Service Composition with AO4BPEL,"

presented at The European Conference on Web Service, Erfurt, Germany, 2004.

[20] B. Orriëns and J. Yang, "A Rule Driven Approach for Developing Adaptive Service

Oriented Business Collaborations," presented at IEEE International Conference on Services

Computing (SCC), Chicago, Illinois, USA, 2006.

[21] R. Kazhamiakin, M. Pistore, and M. Roveri, "A Framework for Integrating Business

Processes and Business Requirements," presented at Enterprise Distributed Object

Computing Conference (EDOC'04), Monterey, California, USA, 2004.

[22] E. Yu, "Towards Modeling and Reasoning Support for Early-Phase Requirements

Engineering," presented at 3rd IEEE Int. Symp. on Requirements Engineering, Washington
D.C., USA, 1997.

[23] J. Khallouf and M. Winikoff, "Goal-Oriented Design of Agent Systems: A Refinement of

Prometheus and its Evaluation," International Journal Agent-Oriented Software

Engineering, vol. 3, pp. 88-112, 2009.

[24] P. Traverso, M. Pistore, M. Roveri, A. Marconi, R. Kazhamiakin, P. Lucchese, P. Busetta,

and P. Bertoli, "Supporting the Negotiation between Global and Local Business
Requirements in Service Oriented Development," ITC-irst, Trento, Italy 2004.

[25] A. Berry and Z. Milosevic, "Extending Choreography With Business Contract

Constraints," International Journal of Cooperative Information Systems (IJCIS), vol. 14, pp.

131-179, 2005.

[26] V. Vitolins and A. Kalnins, "Semantics of UML 2.0 Activity Diagram for Business

Modeling by Means of Virtual Machine," presented at EDOC'05, Enschede, The

Netherlands, 2005.

