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Fundamental domains for Shimura curves

par DAVID R. KOHEL et HELENA A. VERRILL

RÉSUMÉ. Nous décrivons un procédé permettant de déterminer
explicitement un domaine fondamental dans le demi-plan supérieur
pour une courbe de Shimura XD0 (N) associée à un ordre d’une
algèbre de quaternions A/Q. Un domaine fondamental pour
XD0(N) réalise une présentation finie du groupe des unités quater-
nioniennes modulo les unités du centre. Nous donnons des

exemples explicites pour les courbes X60(1), X015(1) et X035(1).
Le premier exemple est l’exemple classique d’un groupe triangu-
laire et le second est une version corrigée due à Michon de celui 
du livre [13] de Vignéras. Ces exemples sont aussi traités dans la
thèse d’Alsina [1]. Le dernier exemple est nouveau et fournit un
modèle des méthodes qu’il faut appliquer lorsque le groupe agit
sans points elliptiques.

ABSTRACT. We describe a process for defining and computing a
fundamental domain in the upper half plane H of a Shimura curve
XD0 (N) associated with an order in a quaternion algebra A/Q. A
fundamental demain for X0D(N) realizes a finite presentation of
the quaternion unit group, modulo units of its center. We give
explicit examples of domains for the curves X60(1), X015(1), and
X035 (1). The first example is a classical example of a triangle group
and the second is a corrected version of that appearing in the book
of Vignéras [13], due to Michon. These examples are also treated
in the thesis of Alsina [1]. The final example is new and provides
a demonstration of methods to apply when the group action has
no elliptic points.

1. Introduction to Shimura curves

Let A/Q be a quaternion algebra, and let O / Z be a maximal order in A.
We say that A is indefinite if A 0Q R is isomorphic to the matrix algebra
M2(R). By fixing an isomorphism, we obtain an exact sequence
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where 0* is the subgroup of units of positive norm, such that the image
of O§ /(+1) is a discrete subgroup of PSL2(R). We detine 1£ to be the
upper half complex plane, on which we identify PSL2(R) with via
the standard action by linear fractional transformations. We denote the
image of O§ /(+1) in PSL2(R) by where D is the discriminant of
the algebra A/Q, and define the Shimura curve to be an algebraic
model for the compatification of the quotient rf?(l)B1£. An Eichler order
of index N in O defines a subgroup of rô (1) which we denote by 
with corresponding Shimura curve Xf (N) .

In the case of the split quaternion algebra A = M2(Q) of discrimi-
nant D = 1, and maximal order 0 = M2(Z) we have the identification
C~+/{~1~ = PSL2(Z). The compactification of is obtained by
adjoining the cusps of 1£, and the Shimura curve Xô (1) can be identified
with the classical modular curve X(l). An Eichler order of index N in
M2(Z) is conjugate to the ring of matrices upper triangular modulo N,
and the family of curves can be identified with the classical family
of modular curves Xo(N).
When the algebra A is nonsplit, the quotient is already com-

pact and the Shimura curves provide a new class of curves whose
Jacobians are related to those of the modular curves Xo(N), where N =
DM. While the structure of the groups ro(N) and the fundamental do-
mains for their actions on 71 can be inferred from the group structure of

PSL2(Z) and the computation of cosets for the quotient PSL2(Z)/ro(N),
for each discriminant D it is necessary to first compute anew the group
structure and a fundamental domain for the base group associated
to a maximal order of discriminant D.

We note that the above construction depends explicitly on the choice of
Eichler order and the choice of embedding in PSL2(R). The former choice
has minimal significance-every maximal order in an indefinite algebra is
isomorphic, so we are free to choose one which is conveniently represented
for computation. The embedding in PSL2(R) is subject to uncountably
many isomorphisms given by conjugation. We reduce the latter choice
however to a choice of a real quadratic subfield K of A and a K-basis for
A, by which we obtain an isomorphism M2 (K) . Choosing a real
place v of K, the isomorphism Kv £É R, gives an isomorphism A 
M2 (R) .

In the sequel we present computations of fundamental domains for sev-
eral Shimura curves, with a description of the methods used. In the next
section we discuss representations of quaternion algebras and the structure
of units which we use for our computations. We follow with a review of
hyperbolic geometry and group actions, suHicient to prove the correctness
of our results. In the final section we give fundamental domains for the
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Shimura curves XJ5(1), X35(1), of genera 0, 1, and 3, respectively,
in terms of an explict representation. The example presents the
initial obstacle that neither Q( v’=3) nor (a(~) embeds in the algebra
ramified at 5 and 7, so there exist no torsion elements in r~5(N), hence no
elliptic points to serve as base vertices for a fundamental domain.
The background material for this work follows closely the comprehensive

book of Vignéras [13], to which we refer the reader for further information.
In addition we note a strong overlap with the recent work of Alsina ~1~, who,
in particular, computes fundamental domains for Xô5(1),
and classifies certain CM points and other invariants of Shimura curves.

2. Representations of quaternion algebras
One defines a quaternion algebra A over a field K to be a central simple

algebra of dimension four over K. The definition is often replaced by a
constructive one, setting A = K(x, y), where x and y are generators sat-
isfying relations x2 = a # 0, y2 = b 1- 0, and xy + yx = 0. In this study
we restrict to the case of K = Q, although much of what is said here for
Shimura curves generalizes to totally real number fields.
As a first example, we consider the split quaternion algebra defined by

a = b = 1. There exists an isomorphism:

We say that a quaternion algebra isomorphic to a 2 x 2 matrix algebra is
split.
A field L such that A 0K L Eéé M2(L) is said to be a splitting field for a

quaternion algebra A over K. A field extension L/K is a splitting field for
A if and only if it contains a quadratic subfield which embeds in A. For

any number field K and quaternion algebra A over K there exist infinitely
many quadratic splitting fields L/.K of A up to isomorphism.

As a second example, we consider the quaternion algebra over K defined
as above with a nonsquare in K, and take the splitting field L = Q(t),
where t2 = a. Then we obtain the splitting:

In the sequel we work with quaternion algebras over Q defined by such a
presentation and choose a matrix representation of this form.

In the study of quaternions algebras A over a number field I~, the split-
ting behaviour of A at the completions of K at the finite and infinite places
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serves to classify the algebra up to isomorphism. We say that A is split at
a place v if Av = Kv is isomorphic to a matrix algebra, and otherwise
say that A is ramified at v. A nonsplit quaternion algebra over a local field
is a division algebra which is unique up to isomorphism. A classical result
for Brauer groups of number fields says that A is ramified at a finite, even
number of places.
We define the reduced discriminant of a quaternion algebra over Q to be

the product of the finite primes which ramify and say that A is indefinite
or definite according to whether the prime at infinity is split or ramified.

3. Structure of units

We define the reduced trace and reduced norm N(x), respectively,
of an element x of a quaternion algebra A to be the trace and determinant
under any matrix representation of A. One easily verifies that these are
elements of the center K, and that x satisfies a characteristic polynomial
x2 - Tr(x)x + N(x) = 0. Hereafter we omit the adjective reduced and refer
to the trace, norm, and discriminant associated to A.
The existence of a quadratic characteristic polynomial for quaternion

elements immediately implies that any element of a quaternion algebra
A/Q not in the center must necessarily generate a quadratic extension.
We can therefore classify the units in 0* as either torsion units, existing
in some cyclotomic extension, or as lying in the free unit group of a real
quadratic suborder of 0. In terms of the matrix representation of elements,
it is standard to classify elements y of PSL2(R) in terms of their trace as
elliPtic  2), parafe (ITr(,)1 = 2), or hyPerbolic &#x3E; 2).

According to this classification, the elliptic elements have one fixed point
in 1-£, while parabolic and hyperbolic elements have one and two fixed
points, respectively, which are cuspidal-that is, in the boundary P (R)
of 1£. In the case of nonsplit quaternion unit groups 0~., we find that non-
trivial parabolic elements do not exist, and the distinction between elliptic
and hyperbolic elements is precisely that of cyclotomic and real quadratic
units. In particular we note that in a quaternion algebra over Q the only
cyclotomic units are those coming from embeddings of the fields Q( 3)
and Q( 1) .

In addition to the units in O$ /(+1) we introduce elements of the nor-
malizer group of in PSL2(R). We can find nontrivial
elements using the following lemma.

Lemma 3.1. Let p be a prime divisor of D = disc(A). If xp is an element
of O of norm p then 1rp01r;l = C7, and the image of 1rp is in N(rô (1)).
Proof. For a we have 1rpOl1r;l Ot since 7rp is a unit in Oe, so
the result holds locally at such primes. At the ramified prime p, the order
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Op = 0 Oz Zp is the unique maximal order, defined by

Since the norm is multiplicative, it follows that E Op for all x in
Op . The local-global correspondence for lattices in A implies that the result
holds globally. D

More generally the quotient is known to be an elemen-

tary 2-abelian group, generated precisely by elements of this form.

Lemma 3.2. The isomorphic to (Z/2Z)’’n, where
m is the numbers of prime divisors of D, and is generated by any set of el-
ements e 0 ) 1 pil, were are the prime divisors of
D.

Proof. See Michon [10] or Vignéras [13, Ch IV.B] D

If the trace of an element Jrp is zero then we obtain a new elliptic ele-
ment in Thus when Tô (1) fails to have elliptic elements we may
exploit the existence of elliptic points of the normalizer to build a funda-
mental domain for the group such that the vertices are distinguished
points of the curve 

As our computational model, we make an explicit identification of
with PSL2(R) so that for a fixed quadratic splitting field K/Q,

we may represent an element 7r of the normalizer by an element of
PGL+(K), 2 without extending K to by the square roots Viii.
We are able to generate "random" units in 0* by searching for funda-

mental units of real quadratic suborders, which may have norm 1 or -1.
The search for elements xp of norm p in 0 is facilitated by taking the
product of an element of norm -p with any unit in 0* of nom -1, whose
existence is proved by the following lemma.

Lemma 3.3. An Eichler order in a indefinite quaternion algebra over Q
contains a unit of norm -1.

Proof. We define the discriminant form to be the form 4N (x)
on This form is a ternary quadratic form of discriminant 4 disc(O),
which represents the discriminants of the quadratic subrings in C~ (see
Chapter 6 of Kohel [5]). It suffices to show that the discriminant form

represents a prime p congruent to 1 mod 4, since then 0 contains a real
quadratic order of discriminant p, whose fundamental unit has norm -1.
Since O is an Eichler order it is either ramified and maximal or locally iso-
morphic an upper triangular matrix algebra at each finite prime. In both
cases, the discriminant form is not zero modulo any prime p, in particular
represents the class of 1 mod 4, and by the assumption that Cl is indefi-

nite, represents both 1 and -1 at infinity. It follows that the discriminant
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form admits a representation of a primitive indefinite quadratic form which
represents 1 mod 4. By the Chebotarev density theorem, this latter form
represents a positive density of primes 1 mod 4, and the result holds. 0

We note that the lemma is false if O is not an Eichler order. For example,
if O is nonmaximal at a ramified prime p - 3 mod 4, then the discriminant
form is not primitive, as it represents only integers congruent to 0 mod p,
and no quadratic order of this discriminant contains a unit of norm -1.
The lemma also fails for a quaternion order of the form Z + 40, whose
norm form represents only integers congruent to 0 or 1 mod 4.

4. I3yperbolic geometry and group action

The metric on H defines a volume measure which permits the effective
computation of volumes of hyperbolic polygons (see Vignéras [13, Ch. IV]).
We define the arithmetic volume of such a region to be 1 / (2~r) times its
hyperbolic volume. If the region is a fundamental domain of any discrete
group acting on U such that is compact then the arithmetic volume
is a rational number. In particular we have the following formula for this
quantity when 1~ = hô ( 1 ) .
Lemma 4.1. The arithmetic volume giuen by0

Proof. See Vignéras [13], Lemme IV.3.1. 0

Let r be an discrete co-compact subgroup of PSL2(R) and let en(r) be
the number of elliptic points 2 of such that 1 {¡ E r 1 q(z) = zll = n
where z is any representative of 2 in ~-l.

Lemma 4.2. The arithmetic volume of a fundamental domain F for r
satifies the following relation:

where g(r) is the genus of the Rierrcann surface 

Proof. See Vignéras [13], Proposition IV.2.10. 0

Lemma 4.3. The numbers en of elliptic elements for F)(1) satisfy the
identities:

and en = 0 for all n greater than 3. The numbers en are zero

except for n 2, 3, 4, 6, 8, 12}.
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Proof. See Vignéras [13, Ch. IV.A-B]. D

We now generalize the formulas for the numbers of elliptic points to
include their normalizers.

Lemma 4.4. be an elliptic element of order n &#x3E; 1 in and
with a representative in 0 f1 A+ of square-free integral norm m.

Then m divides D and the possible combinations for the subring R = c

0, the minimal polynomial of y, and the integers m and n are given
in the following table.

Proof. The projective normalization ti in A oQ R of an elliptic
element -y in N(rf?(1)) of norm m is a root of unity. On the other hand,
the square of this element is an element of C7+ = rô (1) and so is quadratic
over Z. Therefore the normalized element JL is contained in the biquadratic
extension a] . The possible roots of unity are those of order 1, 2, 3,
4, 6 or 12, giving rise to elliptic elements of projective order 1, 2, 3, or 6.
It follows that the possible rings and minimal polynomials for, are those
specified. Il

For a prime p dividing the discriminant of A, a p-orientation on a maxi-
mal order 0 is a homorphism 0 --+ Fp2. An embedding R C 0 is said to be
optimal if OIR is torsion free, and an orientation distinguishes two embed-
dings of 1~ into 0 which do not commute with a collection of p-orientations
on 9 for each prime p dividing the discriminant D. As a special case of
Corollaire 111.5.12 in Vignéras [13], the number rn(O,R) of optimal, ori-
ented embeddings of a quadratic subring R in 0 is given by

where dR is the discriminant of R. We can now express the number of ellip-
tic points for a group  G  in ternis of these invariants.

Theorem 4.5. Let G be an extension off = contained 
Then the invariants en(G) are given by the following formula:
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TABLE 1. Genera of Shimura groups 

where the sum is over all imaginary quadratic orders and where

Proof. This follows from the classification of elliptic elements in Lemma 4.4
and consideration of the ramification of the cover F% (1)(H 4&#x3E; GB1-l. D

5. Examples
We present here examples of fundamental domains for rô(1), rÕ5(1), and

f35(1). This provides the base case from which domains for the families
of subgroups can be studied. We note, however, that even within
the collection of groups rô (1) associated to the maximal orders in rational
quaternion algebras the genus of the Shimura curve Xô (1) may be arbi-
trarily large. For reference we display in Figure 1 the initial genera of the
Shimura curves of discriminant D and index 1.
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5.1. Fundamental domain for r6 (1). The group is a well-known

triangle group in the literature. This group is treated in Alsina [1], where
one also finds an explicit description of a fundamental domain. Ihara proved
that, as an abstract curve, is isomorphic to the conic X2 + y2 +
3Z2 = 0, as reported in Kurihara [9]. Elkies [4] determines equations for
the quotient curve associated to the normalizer, and also treats several
examples of the subgroups N(rô(e)) for small primes l.
We apply Lemma 4.5 to compute the the elliptic invariants for each of

the extensions groups G with image W in (*2, ~3), and
present this information with the genus and volume data in the follow-
ing table. The elliptic points will be explicitly determined as part of the

FIGURE 1. Genus and invariant data for extensions of 

fundamental domain computation.
We define a presentation of the quaternion algebra A = Q(x, y) of dis-

criminant 6 by the relations x2 = 2, y2 = -3, and ~y = -yx, and let 0
be the Z-module with basis {1, (x + z)/2, (1 + y)/2, zl. The module O is
immediately verified to be closed under multiplication and forms a maximal
order of A since the discriminant of its norm form is 62 (see Lemme 1.4.7
and Corollaire 1.4.8 of Vigneras [13] for the computational construction and
Corollaire III.5.3 for its value). We introduce a representation A -~ M2(R)
given by

under which Fg ( 1) acts on H.
Without further ado, we begin by writing down a system of units in

.... ,,-’" "

and note that they satisfy the elementary relations:
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We moreover define the elements 1r2, and 1r6 of the normaùzer N(FÉ (1))
by:

Together with the identity, these elements form a set of coset representa-
tives for the quotient and satisfy the additional projective
relations:

Here by projective relation we mean that the relation holds up to some
element of Q*. We note that all of the above relations are verified by
elementary means and are independent of any matrix representation or
embedding in PSL2 (R,~ .
With respect to the chosen representation we define the points a, b, and

c to be the fixed points of the elements 4, and 2? respectively
specifically these are the points:

From these points we define b’ _ -b and d = -c to be the reflections
around the imaginary axis, and define elements d, d’, and e by d’ = 1T6b,
d = ~sb’, and e = 

Theorem 5.1. The hyperbolic with vertices (a, b, c, d, e, d’,
c’, b’, a) is a f’Undamental domain for rg (1) . The polygon Fo with vertices
(a, b, c, t), where t = a fixed point of the elliptic element
7r6 , is a f’Undamental 

Proof. The edge gluing relations for the domains JF and Fo are determined
by the equations (1) and (3), as can be directly verified. A volume computa-
tion shows that the volumes - 0.3333 and ~ 0.08333 agree with the known
values of 1/3 and 1/12 for and in Figure 1, from which it
follows that the polygons are not the union of multiple domains. D

From the gluing relations on the edges of the fundamental domains we
obtain the following corollary. We note that essentially the same presen-
tation for describing as a triangle group, appears in
Elkies ~4~ .

Corollary 5.2. The generators (1) with relations (2) give a finite presen-
tation for the group The generators ~r3 and 7r6 with redations

give a finite presentation for the group 
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The content of the previous theorem is summarized graphically in Fig-
ure 2, which shows a fundamental domain F for The subdivisions
define four constituent fundamental domains 7r2Fo, and 7r6FO for
the normalizer with boundary geodesics formed by the imaginary
axis and a bisecting arc stabilized by The edge gluing relations are in-
dicated by the arrows, and the actions of the 1rm are determined by their
relations (4) and the indicated mapping on the constituent subdomains of
.F.

FIGURE 2. Fundamental domain for Iro 1

5.2. Fundamental demain for rÕ5(1). A fundamental domain for rô5(1)
and N(rÕ5(1)), due to Michon, appears Vignéras [13], IV.3.C. The domain
given below is normalized to be defined over the splitting field Q ( v’3), to
be computationally more effective than the biquadratic field Q(~/3, yS) of
Michon, and corrects errors in the book of Vignéras. A similar corrected
example also appears in the thesis of Alsina (1~, also over the splitting field
Q
We take the quaternion algebra of discriminant 15 presented by A =

Q(x, y) with the relations x2 = 3, y2 = 5, and xy = -yx, and choose
the maximal order 0 having basis {1~,(1 + y) /2, (x + z) /21. As with
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the previous example the maximality of 0 is verified by showing that the
discriminant of the associated norm form is 152. We embed A in M2(R)
by taking

The elliptic invariants and genus are given by Lemmas 4.2 and 4.5 for each
of the extensions groups G with image W in N(rÕ5(l))/rÕ5(1) = (*3, *5),
and present this information with the genus and volume data in Figure 3.
With resepct to this embedding, we obtain a fundamental domain F for

FIGURE 3. Genus and invariant data for extensions of rà5(1).

rÕ5(1), pictured in Figure 4.
In the figure, points a, b, c are given by

All the other vertices of the domain can be given in terms of these points,
and in clockwise order around the domain, the vertices of F are given by

Theorem 5.3. The region F is a fundarrzental domain for rà5(1) associ-
ated to the generators

which provides rij5(1) with the presentation

Proof. The relations can be verified directly. The points b and c are taken to
be the fixed points of q4qi and q3qi respectively, and with this choice it can
then be seen that all the edge identifications of ~’ are given by -~1, ~y2, T3? q4 ,
as indicated in the figure. We compute the volume of the region to be
N 1.3333, which agrees with the expected value of 2/3. The verification of
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the relations, together with the computation of the volume shows that the
region given is indeed a fundamental domain for rô5(1). D

A set of coset representatives for is given by 1 and

which satisfy the projective relations:

Theorem 5.4. A fundamental domaine for N(rÕ5(1) can be given by a
region ,~p having vertices

Moreover N(rà5(1)) is generated by the 1’1, ir3, and lrl5, and has a presen-
tation

Proof. To verify that .~o is a fundamental domain for the normaliser we

simply note that the edges are identified by elements in the normaliser, and
that precicely four copies of this domain give the domain for r~5(1), which
means this is a domain for a subgroup of the normalizer containing 
with index 4, but we know that 4 is the index of rÕ5(1) in N(rÕ5(1)). Here
we are using the fact that a is the fixed point of 1r31r151’111r31, in adition
to the choices of b and c as being elliptic points for r~5 (1). D

Figure 4 shows the domain .~’ for r~5(1) divided by the dashed lines into
four fundamental domains for N(rÕ5(1)). These dividing lines are lines
from vertices b to -ylb, and from c to which are lines stabilied by 7ra
and -y2ir3 respectively, and the imaginary axis.

6. The fundamental domain for r~5(1).
For the case of D = 35, we take the quaternion algebra of discriminant 35

presented by A = ~), with the relations x 2 = 5, y2 = 7, and = -y~,
and choose the maximal order C7 having basis {1, (1 + x)/2, (y + ~)/2,~}.
As in the previous examples, the maximality of this order is proved by
verifying that the discriminant is 352. We embed A in M2(R) by taking

The elliptic invariants and genus are given by Lemmas 4.2 and 4.5 for each
of the extensions groups G with image W in N(r55(1))/r55(1) = (iF5, ir7),
and present the genus and volume data in Figure 5. Figure 6 shows a
fundamental domain for r~5 (1) with respect to this embedding. In much
the same way as in the previous examples, we have the following theorem:
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FIGURE 4. Fundamental domain for rÕ5(1) and its normalizer.

FIGURE 5. Genus and invariant data for extensions of r~5(1).

Theorem 6.1. The groups generated by elements

and has a presentation

This presentation corresponds to a fundamental domain JF for rô5(1) given
by a region in 1-£ with vertices
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where

and a is the unique point in the upper half plane fixed by Jr35q7qiq6q2, where
~35 = z, and b = 7r357r7a, were lr7 = (y + z)/2.

Proof. The proof of this theorem is similar to the other examples. The
relations can easily be verified, and one can check that the -yZ identify the
edges of the domain. Then we compute the volume and show that up to a
very small error we obtain the expected value of 4. 0

The elements

together with 1, give the equivalence classes of N(rg5(1))/r35(1). Projec-
tively, these elements satisfy the relations:

Note that these relationships only hold up to multiplication by some scalar.
The dashed lines in the diagram divide the fundamental domain into four

regions, each of which is a fundamental domain for the normalizer. Four
copies of the domain form a fundamental domain for r~5(1) as shown.
The vertices of ,~o are given by

where c is the fixed point of 1r35. ·
In the diagram the edge identifications obtained from these elements are

indicated.

’T. Algorithmie considerations

In the construction of fundamental domains, it has proved possible to
find units by ad hoc search, which can be structured by first searching for
real quadratic suborders of small discriminant, followed by a fundamental
unit computation in that order. To find a provably deterministic algorithm,
one needs to design a search algorithm which guarantees that a system of
generators will be found. For this purpose we invert the following stan-
dard lemma (see Vignéras [13], p. 116) to compute units in hyperbolic
neighborhoods.

Lemma 7.1. Let r be a discrete subgroup of PSL2(R) and let z be a point
in 1-£ which is not an elliptic point of r. Then the set

is a convex fundamental domaine for r.
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FIGURE 6. Fundamental domain for and its normalizer.

We invert this construction by letting = ’YZ, for fixed z, define a

map 1-£, and searching for elements of the finite sets 
where B (z, r) is the hyperbolic disc of radius r about z. A complete set of
group generators is provided by the elements mapping Fz to an adjacent
domain, so the search region is sufficient as soon as the search radius r
is sufficiently large so that B (z, r) includes the midpoints of all adjacent
domains.
We illustrate this argument for D = 6 in Figure (7) . The dashed circles

are discs of various radii, centered at z = (.J2 -1)-N/3, the fixed point of
1r6. The circle of radius 3, for which the lower boundary is drawn, contains
the domain 7 = 7z and all of its neighbors. In particular, it contains

points 7~ for -y any of the generators 71, -y2, 73? or ’y4 for 
As a final computational note we sketch the following reduction algorithm

used to reduce of a new generator with respect to a current system of
generators for a group h. Let z be a fixed point, which is not elliptic point
for the group F and fix a radius r &#x3E; 0. Suppose we have found units
7l? " ’ ’Ym such that  r for each i. Then if we can find another
element er with zi  r, we then apply the ’Yi to minimize 1-yuz - zi,
where q is a product of the ,i and their inverses. To do this, construct

a, aI, ... , = fa as follows. Given let ai+i = such that

z i is minimal among all generators 7~ and e = ~ 1. This process
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FIGURE 7. Fundamental domains for and hyperbolic
neighborhoods.

either terminates with = 0, in which case a is not a new generator,
or else at some other minimum value, in which case we set 
The computations involved in this work were carried out with algorithme

developed in the Magma language [2]. The authors’ packages for actions of
congruence subgroups on the upper half hyperbolic plane [12] and quater-
nion algebras [8] were modified for this study.

8. Future work

The authors envisage this study as part of a program to compute invari-
ants of Shimura curves, extending approaches through quaternion ideals
and supersingular constructions (see Kohel [6] and [7]) and analogous to
the undertakings of Cremona [3]. A complementary project to that dis-
cussed here is the development of algorithms for computing modular forms,
by means of their Fourier expansions along the minimal geodesic of a hy-
perbolic element. Such a study should allow the effective determination of
models for XD (N). Further, by integration along paths (z, ~yz), one could
determine the period lattice of a curve as a step towards experimentally
testing and verifying analogues of the Birch and Swinnerton-Dyer conjec-
tures for Shimura curves.
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