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Halfway to a Solution of X2 - DY2 = -3

by R. A. MOLLIN1, A. J. VAN DER POORTEN2 AND H. C. WILLIAMS3

ABSTRACT. - It is well known that the continued fraction expansion of
~D readily displays the midpoint of the principal cycle of ideals, that is,
the point halfway to a solution of x2 - Dy2 = ±1. Here we notice that,
analogously, the point halfway to a solution of x2 - Dy2 = -3 can be
recognised. We explain what is going on.

RÉSUMÉ - Il est bien connu que le développement en fraction continue de
~D donne facilement le milieu du cycle principal des idéaux, c’est à dire le
point à mi-parcourt d’une solution de x2 - Dy2 = ±1. Nous montrons ici
que de façon analogue le point à mi-parcourt d’une solution de x2 - Dy2 =
-3 peut-être reconnu. Nous expliquons ce qu’il en est.

1. Introduction

Let D be a positive integer, not a square. It is quite well known that
if (X, Y) is a solution to Pell’s equation X 2 - Dy2 = 1 then there are
integers x , y so that

with x/y a convergent of JD occurring half as far along the continued
fraction expansion of JD as does the convergent X/Y . Here x2 -Dy2 = Q
with Q a divisor of 4D - there is an ambiguous ideal halfway along the
period of reduced ideals.

Similarly, if X2 - Dy2 = -1 then there are consecutive convergents
x’/y’ and of JD, once again occurring half as far along the continued
fraction expansion of JD as does the convergent X/Y, so that
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Here we have x’2 - Dy’2 = ±Q and x2 - Dy2 = reporting that D
is a sum of squares D = Q2 + P2 .

There is a little more to it than just that. Of course if D is not a

square there is always a solution for X2 - Dy2 = 1, but whilst it is

additionally necessary that D - 1 (mod 4), or D - 2 (mod 8), for there
to be a solution to = -1, there is no simple sufficient congruence
condition on D or on its factors.

It is also well understood that if d I 4D with ]d[  VD and d squarefree
then a solution to X2-DY2 = d occurs halfway along the complete period.
In particular a solution to X2 - Dy2 = +2 always has the convergent X/Y
occurring halfway along the complete period. If X 2 - Dy2 = ±4 then that
solution occurs a third of the way along the complete period. These matters
are discussed in some detail in [4] and [5].

As regards 

PROPOSITION 1. If X 2 - Dy2 = k then X/Y is a convergent of B/D if
Ikl I  VD.

Proof. If k  0 then X  Y v0 so X = + X)  1 /2Y,
whilst if k &#x3E; 0 then  1/2X . Hence in the first case X/Y is a
convergent of VD and in the second case Y/X is a convergent of 
and again X/Y is a convergent of v0.

For large K the literature is fairly silent, beyond explaining a method
- seemingly reduction of a quadratic form - which relates, for arbitrary
integers K, solutions of X 2 - Dy2 = K to convergents of B/D.

Our finding halfway to a solution of X2 - Dy2 = -3 will include our
giving a necessary and sufficient condition for that equation to be solvable
at all, and then our explaining how to find the solutions doing only half the
expected amount of work. It will become clear that our ideas should enable
one to make useful remarks about the equation with general k, including
the somewhat mysterious K larger than VD.
We have already alluded to the fact that if X2-DY2 = -1 then halfway

to its solution we find consecutive complete quotients (~+ and

(VD + with the fact Qh = signalling halfway. More-
over, the well known symmetry of the cycle of course says that the second
half of the expansion is exactly the reverse of the first half. Similarly,
halfway to a solution of X 2 - Dy2 = 1 is signalled by successive complete
quotients with P~, = 
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We find analogous signals halfway to a solution of X 2 - DY’ = -3
and prove that the expansion up to that solution has twisted symmetry.
Namely, its second half is essentially the reverse of its first half heavily
disguised by having been multiplied by 3. In any case, we generalise the
well known cases of halfway to a solution, and will allow them to be seen
from new standpoints.

2. Notation and Principles

Throughout we take D a positive integer, not a square. We denote the
conjugate of an element -y by %y . The following remarks are of
course just rappels, and detailing or repeating them is is done in an attempt
to assist the reader.

We write elements
so that

with integers P and Q

.. I ’ , , ,

That loses no generality to speak of because = (ac-vD+ be) Ic2 ,
and of course c2 divides so we need only replace VD by

and that is tantamount to dealing with an element of the order
Z[ac@] rather than an element of the order 

Ideals. The point is that once Q + P) , we may remark that

PROPOSITION 2. The Z -module (Q, vlD + P), which corresponds to the
element in fact an ideal, that is, it is a -module in

the order of the quadratic field 

Proof. We need only check that v 1--(VD- D + P) is in the ideal. But

whence Q I + P) completes the verification.

Similarly, by constructing

we associate with (v75 + P) I Q a quadratic form defined over Z. We note
that the discriminant of this form is:
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Working with ideals of the canonical shape (Q, VD-+ P) , or, all the more
with elements or with forms QX2-2P XY +( (P2-D)IQ)y2,
is much the same thing. But it is rather more sparing notationally to
deal with elements rather than forms, and when we work with elements
(VD- + P)/Q, the role we give to the continued fraction algorithm is very
natural. Given that, we need not have mentioned ideals at all. We do, but in
so far as we mostly mention ideals only in their canonical form (Q, J5+ P)
our doing so is mostly an endeavour to make composition within a cycle
of forms seem the more natural. Below we abuse language by speaking of
composing elements or ideals when of course we mean composition of the
corresponding forms.

Periodic Continued Fractions. We may have to be reminded that a
continued fraction is an expression of the shape

which one denotes in a space-saving flat notation by

Here the ai (except perhaps ao which may be any element of Z) should
be positive integers. Nonetheless, the formulas are formal and do not carry
any expectation of the nature of the we use that in what follows. We
will repeatedly apply the fundamental correspondence, easily proved by
induction, whereby:

PROPOSITION 3. For n = 0, 1, 2, ...

if and only if

Of course, the ’if’ part of this claim is to be read as ’for some choice of pn
and qn so that = 

... one has ... ’.

In the sequel this correspondence will be denoted by ~--~ .

Returning to real quadratic irrationals, we should now remark that
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PROPOSITION 4. The general step n = 0, 1, 2, ... in the continued

traction expansion of 1’0 = (JD + I’o)/Qo = [ao , a, , ... an, 

Proof. The relevant formulaire is easily seen to be

one verifies by induction that the Pn and Qn all are rational integers.
Do recall that throughout we have the convention whereby, whenever we
refer to an element (d5 + P)/Q, always Q I (D - P2). So, above, of
course D - 0 = aoqo for some integer ao .

It is a basic fact:

PROPOSITION 5. ’Pell’s equation’

has solutions in integers x and y, with y 0 0.

The argument, see [5], relies on several applications of the box principle,
working with elements of (1/Q)Z.

PROPOSITION 6. Given a solution (x, y) , with y 0 0 to Pell’s equation
(2), each decomposition

with integers aZ , entails the pure-periodic continued fraction expansion

.Remark. Here we observe that a unimodular matrix has a decomposition
of the cited form, with integers ai , and then that the allegation is formally
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true. Naturally, it cannot distinguish between -y and its conjugate 77. We
see below that our preference is always for that conjugate which satisfies
7&#x3E;0.

The argument, detailed in [2] and [5], is a straightforward application of
the correspondence of Proposition 3, once one recalls that

We should understand that the continued fraction expansion so obtained
may not be admissible: in that the ai might not be positive integers. Indeed
in the most generally known case, if q = VD then ar = 0 and

However, there is a unique admissible decomposition of the unimodular
matrix, thus with positive integers ai (obtained by applying the Euclidean
algorithm to the rows of the matrix), exactly when the first row, respectively
the first column, dominates the second: that is, precisely if x &#x3E; y &#x3E; 0

and y &#x3E; x - (~y + ~y)y &#x3E; 0. These inequalities entail that x and y be
positive and that y is reduced: namely that 7 &#x3E; 1, whilst 0 &#x3E; ~y &#x3E; -1.
Those inequalities are precisely the well known Galois conditions for pure-
periodicity.

There is an opportunity for mild confusion engendered by the frequently
seen suggestion that vID is reduced. Indeed the ideal (1, is reduced,
but that is because it equals (1, B/D + ao) , and the element vID + ao is
reduced. Idealists may well see this as a justification for their position;
those not troubled by an occasional need for translation will take it in their
stride.

Equivalence. Two ideals I and J in the order are said to be

equivalent if there exist nonzero elements Q and q in such that
= (7)~. It is easily checked that equivalence is an equivalence relation

on the ideals compatible with multiplication of ideals. So the equivalence
classes yield an abelian group called the class group of Z [@] . We will be
reminded below that such class groups are of finite order.

Two numbers Q and 7 are said to be equivalent if there is a unimodular

integer matrix so that (3 = (py + p’)/(q7 + q’) . By decomposingq q )
the matrix as a product of elementary row transformations it follows that
Q and q are equivalent if and only if their continued fraction expansions
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have ’the same tail’: that is, the expansions differ in at most finitely many
initial partial quotients.

It is a simple exercise to confirm that the correspondence, whereby an
element ( ~ + P) /Q yields an ideal (Q, ~lD + P) , entails that equivalent
numbers yield equivalent ideals.

The import of our discussion on periodicity is that we see that each
7 E K is equivalent to just finitely many reduced elements, to wit the
complete quotients appearing in its periodic continued fraction expansion.
But, we recall, (~ + P)/Q is reduced if and only if ~ + P &#x3E; Q and
-Q  Thus 0  Q  2V"D and -B/D  P  B/D shows
that there are just finitely many reduced elements and a fortiori just finitely
many equivalence classes of ideals.

A reduced element (VT5 + P)/Q yields a reduced ideal (Q, v75 + P).
One verifies that an ideal is indeed reduced if it contains no nonzero (3
so that both 101  Q and 1(3’ 1  Q . In this language the period of a
continued fraction corresponds to a period of equivalent reduced ideals. Of
course a period yields a complete equivalence class of reduced ideals. For
if an ideal is reduced it occurs in the cycle of reduced ideals to which it
is equivalent, and if it is equivalent to some ideal then it corresponds to
a complete quotient occurring in the continued fraction expansion of the
element corresponding to that ideal.

One says that two quadratic forms

are equivalent if there is a unimodular matrix so that(q q )

transforms the first form into the second. The forms are Properly equiv-
alent if the matrix has determinant +1; otherwise they are improperly
equivalent. It is straightforward to verify that the numbers + P)/Q
and are equivalent only if the corresponding forms, as cited
above, are equivalent. Of course if, with GauB, we restrict ourselves to
proper equivalence then we may have more proper equivalence classes of
forms than we have equivalence classes of ideals.

Forms and Ideals. The product of the two ideals (Q, JD + P) and
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is evidently generated over Z by the quantities

Set G = gcd(Q, Q’, P + P’) . One may verify, by studying the classical
formulas or from first principles, that the product is a rational integer
multiple, namely G, of (q, VD-+p) where q = QQ’/G2 and p satisfies the
three congruence conditions p - P (mod Q/G) , p = P’ (mod Q’/G) and
(P - p) ~P~ - p) = 0 (mod 

The first pair of congruences determines p modulo QQ’IG(Q, Q’) . The
last congruence decides which of the remaining (Q, Q’)/G possibilities for
p mod q is to be taken.

Correspondingly, the product of the quadratic forms

together with a substitution

with integer coefficient A, ... and A’, ... , not all sharing a common factor,
yields a form qX2 - 2pXY + ~(~2 - known as a compound of the
given forms. In fact the Grassmann co-ordinates of the substitution matrix

C A are determined (they are essentially the six coefficients of( A B C D
the given forms), so the substitution is fixed up to multiplication by a 2 x 2
unimodular integer matrix. Note remarks on this matter by Shanks at
p.182 of [7]. Thus the compound form is defined up to equivalence and
we see that compounding is well defined on equivalence classes of forms of
the same discriminant. We will refer to the particular case, where the two
stated forms yield the form as composition.

In particular, one sees that the composite of a form Q~2 - 2Pxy + Q’y2
and its opposite Qx2 + 2Pxy + Q’y2 is equivalent to the form

correspondingly the product of an ideal (Q, B/D + P) and its conjugate

is a principal ideal. Thus, it turns out that Q I 2P is the condition for
a form Qx2 - 2Pxy + Q’y2 to be properly equivalent to its opposite; the
transformation is effected by y--~ y, x ~--&#x3E; x + (2P/Q)y . In this case the
ideal (Q, vrD- -~ P) is its own conjugate, so its square is principal.
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Ambiguity. A quadratic form Qx2 - 2Pxy + ((P2 - is said to

be ambiguous if it is both properly and improperly equivalent to itself. The
surprising equivalence must interchange the numbers (JD + P) I Q and its
conjugate (- vlD- + P)/Q. Thus the form is ambiguous if and only if the
element (~17 + P)/Q is equivalent to its conjugate.

In an alternative interpretation one says that an ideal (Q, JD + P) is

ambiguous if it is equal to its conjugate. Of course an ideal equals its
conjugate only if it contains the conjugate of each of its elements. Hence
(Q, is ambiguous if and only if it contains both and

+ P)/Q and that is so if and only if

We should recall that the basic condition

Hence 2P/Q E Z entails A/Q E Z. Thus the ambiguity of an ideal entails
that its norm Q divides the discriminant 0. Conversely, if an ideal has a
squarefree norm dividing the discriminant then that ideal is ambiguous.
An ideal (Q, is ambiguous if and only if the continued fraction

expansion ( has ala2 ... ar-, a
palindrome and ar = 2ao - 2P/Q . In that sense ambiguity is symmetry;
see [2].

One says that an equivalence class of ideals is ambiguous if it contains
both an ideal and its conjugate; hence, it contains the conjugate of each
ideal in the class.

Infrastructure. The literature appears to speak interchangeably of com-
posing or compounding forms. It is not a bad idea to reserve one of these
terms for the original operation on the equivalence classes, and the other
for the specific manner of composition - corresponding neatly to multi-
plication of ideals in canonical form - which we mention above. Thus we
may say that compounding is an operation on the ideal or form classes but
that our formulas describe composition of forms as such and therefore of
the corresponding elements. Thanks to Shanks [6] and thence to Lenstra
[1] we now understand that in that way composition operates meaningfully
within an ideal cycle. That is an operative principle in the sequel.
We barely need to emphasise it here, because almost throughout we

work in the order but our notation indicates the order in which
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we are active. Thus, for example, were we to work in the order Z[8], with
6 = (B/D+ 1)/2, as we might if D were 1 (mod 4), our elements would
appear as (8 + P)/Q - with Q I (b + P) (6 + P) - and the corresponding
ideals as (Q, 6 + P) . That, incidentally, forces a change of notation from
that of Perron [3], as is alluded to at Proposition 9 below.

3. Pairs of Ideals near Halfway

Suppose that there is a solution to X2 - Dy2 = -3. We shall show
the existence of pairs of ideals (Qh, ý’D + Ph~ and (3Qh, B/D 2013 P) which
compose to yield an ideal (3, + p) ; it’s because P - Ph (mod Qh)
that this works. However, the point is that the element (v’D + Ph)IQh is 

reduced and that in an easy to understand sense the ideal (3Qh, VD- - P)
is ’near’ it. Then, given that (3, v’D + p) need not be a square, the ideals
(Qh, v’D + Ph) are pretty well as close as we can get to its square root and
in that sense lie halfway to it. Indeed, as one may verify experimentally, the
ideals (Qh, B/D + Ph) we find below - if they lie in the principal cycle -
do lie roughly halfway along the cycle to an ideal (3, D- p) .

Of course the fact of a solution to X2 - Dy2 = -3 entails the existence
of an ideal (3, d5 + p) in the principal cycle. More than that, because of
the minus sign its immediate ’neighbours’ - in the sense of the continued
fraction expansion or equivalently the ideal cycle, lie in the principal genus
and thus have square roots lying in ambiguous cycles. It will become clear
that the ideal (3, B/D + p) has appropriate neighbours with norm Q~ .
We lose no generality in supposing that D is squarefree, and suppose

that from hereon. We may then remark that if Dy2 = -3 has a
solution then certainly each prime factor of D splits in ~(~) . Thus,
as is easily checked by quadratic reciprocity, the only possible factors of
D are 3 and primes congruent to 1 modulo 3. Hence, recalling that the
maximal order of ~(~) has basis generated by 1 and (1 + H)/2 it
follows that D has representations

To be precise, if D has v different prime factors congruent to 1 modulo 3
then there are 2v-1 essentially different such representations - disregard-
ing interchange of M and N , changes of sign, and - in this special case
- other actions by roots of unity.
We can guarantee the parity of N ; that is, we may arrange N to be odd

or even according to our preference. For if M is even and N is odd then



431

we may interchange M and N. If both are odd, then M + N is even in
D = (-M)2 - M(M + N) + (M + N)2. Here too we may interchange M
and N if we wish. Nonetheless, the cases N odd and N even are rather
different and need separate treatment.

Below we will prefer N odd. Suppose, however that N = 2Q is even -
of course then M is odd. Then we have an equivalent representation

Conversely D = A2 + 3B2 entails D = (A - B)2 + (A - B) ~ 2B + (2B)2 .
Again disregarding signs, there are 2’-’ distinct such representations.

Out of contrariness we start with the even case. Suppose then that
D has a representation D = L2 + 3Q2 with L and Qh positive. Then

it is easy to check that either the element + L)/Qh or the element
(VD- + L + Qh)lQh is reduced. We set Ph = L + gQh with g = 0 or 1 so
that is reduced. Because Ph-L - 0 (mod Qh) the product
of the ideals (3Qh, ~-L) and (Qh,.JÐ+Ph) is with

some P - -L (mod 3Q~ ) . Now, consider the product of (Qh, B/D+ Ph)
and + P) . It is Qh (3, JD + p) with some p - P (mod 3)
because Ph + P = 0 (mod Qh) . Hence, indeed, we have found a pair of
ideals and (3Qh, @ + P) which compose to yield an ideal
(3,~D+p).

Since the reciprocal of (J5 - L)/3Qh is .JÐ + L which is a neutral
element for composition, and since we obtained the ideal + P)
from (Qh, by composing with (3Q2, the sense in which

the ideals (3Q~,, ~ + P) and (Q~,, ~ + Ph) are ’near’ to one another is
manifest. Moreover, for later use we remark that plainly, being equivalent
to a principal ideal, the ideal (3Q2, JD - L) is principal.

Finally, we remark that on the one hand Ph) = 
and on the other hand Ph - D = Ph2 - ((Ph - + 3Q~). Hence

We will refer to an event 3Qh = Qh-1 or 4Qh = Qh- 1 +2Ph as a signals -

namely a signal that we may be halfway to a solution of X2 - Dy2 = -3.

Before summarising we had best deal with the cases L or Qh negative.
In so far as we are dealing with ideals a change in sign of Qh is irrelevant -
so we assume throughout that yh &#x3E; 0 . On the other hand (Qh, 
(Qh, -.JÏ5+L) is the ideal conjugate to (Qh, vID+L). A brief glance at the
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continued fraction formulas reminds us that the reduced element conjugate
to is Our argument above should change
to start with the ideal (3Qh, Vi5 + L) . It is multiplied by (3Qh, v75 - L)
as above, we might just as well say ’composed with’, yielding an ideal
(Qn,, ~ + P~,+1 ) . That product is then composed with (3Qh, v75 + L) to
yield an ideal (3, ~D + ~~ . We will have set Ph+, = L + gQ with g = 0 or
1. Now we conclude with the remarks that 

once again with 9 = 0 or 1. These then are the conjugate signals.

PROPOSITION 7. Each representation D = L2 + 3Q2h with Qh &#x3E; 0 yields
a pair of reduced elements and, in
some ambiguous cycle, one or other of a conjugate pair of signals

Remark. We say only that, given the representation, we find one or other
of the pairs of conjugate signals in some ambiguous cycle of the order

Of course we can find them in the continued fraction expansion of
@ itself, thus in the principal cycle, only if = -3 has a solution
in integers (X, Y) . Our ultimate purpose, hence the Theorems below, is
inter alia to show that the appearance of such a signal is necessary as well
as sufficient. Thus we hasten to emphasise that the Proposition does not
rely on there being a solution to X2 - Dy2 = -3. We use only the fact
of the representation of D and deduce from it that there then is an ideal
(3, B/D+p) 2013 namely that there is a rational integer p so that 3 I D - p2 .
We now turn to the representations D = M2+MQh+Qh still supposing

that Q~, &#x3E; 0. Moreover we shall also suppose that Qh is odd, as we may
without loss of generality. If M &#x3E; 0 it is easy to verify that the element
(B/D + M)/Qh is reduced. In analogy with the foregoing case we propose
to compose the ideal (Qh, v’Ï5 + M) with an appropriate ideal of norm
3Q~, indeed with the ideal (3Q2, v’Ï5 - M + 2 (3Qh - 1)Qh) .
By the way, we have not pulled this ideal quite out of thin air. We noted

that 4D - (2M + Qh)2 = 3Q2 and then with some mild effort rewrote the
principal ideal generated by 2~D-(2M-~Qh) in the canonical form we use
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throughout. In any case, as before we obtain an ideal (3Qh, P) . We
could have deduced that with less turgid detail since the only point is that
M - 2 (3Qh - 1)Qh - M (mod Qh) . Hence P == -M (mod 3Qh) . Now
composing the ideals (Qh, JD + M) and (3Qh, JD + P) yields an ideal
(3, J5 + p) just as above. We set M = Ph . Of course D - Ph = 
and D - Ph = Phoh + Q~ so we obtain Qh- i = Qh + Ph, an attractive
signal indeed.

In the conjugate case we start with the ideal (3Qh, M - Qh) . The
first composition as above yields an ideal (Qh, Ph+i) corresponding
to a reduced element ( ~ + and when it is composed with
(3Qh, VD + M - Qh ) we once again obtain an ideal (3, JD + p) . All this
is tantamount to our setting M = and yields the signal Qh+l =

~’ 

PROPOSITION 8. Each representation D = M2 + MQh + Q~ with Qh &#x3E; 0

and odd yields reduced elements and and
a conjugate pair of signals

Once again, this means that given the representation we find, in some
ambiguous cycle of the order the pair of conjugate signals - to
wit, neighbouring P’s and Q’s satisfying the cited relations.
We will notice below that when = Qh + Ph then = Qh and

Qh-2 = Ph . Hence, automatically, Qh-1 = Ph-1 + Qh-2 , which is the
conjugate signal slightly displaced. Thus it actually suffices to emphasise
only one of the present pair of signals. We reiterate that the Proposition
does not rely on there being a solution to = -3. We use only the
fact of the representation of D . Our purpose in alluding to a solution at all
was to be able to say that a solution is equivalent to the presence of an ideal
(3, JI5 + p) in the principal cycle. However we have the representations
as soon as 3 I D - p2 and that last is silent as to the class of the ideal
(3,~ + ~).

4. Halfway Along the Continued Fraction Expansion

In this section we suppose that the halfway ideal (Qh, JI5 + Ph) , and
therefore also its conjugate, lies in the principal cycle. We set
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and denote the convergents variously by or We write

It will be useful to set

So Mn J is symmetric, and since

we have

-

with the eccentric notation Nn for the transpose of Nn congenially remin-
ding us that it is

Here we have said nothing startling other than perhaps for our allegation
that

PROPOSITION 9.

This remark is central and warrants an extended explanation.

Explanation. We commence by observing that ’multiplication by x - .JÏ5y’
is a Q-linear map of the Q-vector space into itself. With respect
to the basis {2013B/D, 11 its matrix is
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Thus M has determinant = x2-Dy2 and in particular Mn
has determinant = compatible with our allegation.
More to the point, we apply the correspondence of Proposition 3 between
matrices and continued fractions after first noticing that

Then

explaining that the constants and do indeed define the next

complete quotient exactly as our notation had suggested.

It therefore seems appropriate to consider the Mn to define the sequences
and (Q~,) , via the statement of the proposition. Were we working in

an order different from Z[B/D] this would force a change of notation from
that of Perron [3].

In any case, with that cleared up, we next remark that the product of
any two matrices of the shape M is again of that shape. That is

That’s plain without computation on remarking that

We shall interpret our idea for finding the halfway point to a solution of
X2 - Dy2 = -3 in terms of the observation that multiplication of matrices
M corresponds to composing the corresponding forms, as is clear, of course,
in the light of the remark just made. Accordingly we are now in a position
to compose, so to speak, the corresponding continued fraction expansions.
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Representations D = M2+MN+N 2with N odd. It seems convenient
to suppress subscripts as long as practicable. Our argument runs as follows.
Suppose Q odd. The representation D = p2 + PQ + Q2 yields the ideal
(Q, B/D -f- P) and it corresponds to, say,

Expanding V75 we mayl write

corresponds explicitly to the
matrix

The conjugate of the ideal corresponds to the adjoint of the matrix2. Hence
the first composition yields the matrix product

the last line after a little work. We recognise the intermediate matrices
as reciprocals and may therefore interpret the product as telling us of the
following configuration in the expansion:

1 "No, you may not", we hear you say. "P+ ~(Q -1) is not the integer part of VT3".
To that one of us replies "Up a gumtree" (an Antipodean response to nonsense). Our
assertion is an identity showing that a certain ideal is principal. The fact that it is not
the usual continued fraction expansion of VD is quite irrelevant.

2 Strictly speaking, it corresponds to the inverse, but since the correspondence with
continued fractions disregards multiplication by nonzero constants we effectively obtain
the adjoint.
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More compactly

Of course we have recalled that .

Whatever, we may now compose the ideal (3Q, vT5 + Q - P) with
(Q, VD + P) . Here one might notice, the absurd way is by the use of
false transposition3, that also

We obtain

corresponding to some ideal (3, VD + p) . The first matrix corresponds to
the continued fraction

and since it is well known, and easily seen by the matrix correspondence,
that

the second matrix corresponds to that expansion ’multiplied symmetrically’
by 3, to wit to the continued fraction of

3That is, transposition in the wrong diagonal. This should not be confused with
"students’ transposition" where one over-enthusiastically transposes in both diagonals.
Mind you, the students have a point. The "double transpose" of a product of 2 x 2
matrices is the product of the double transposes. There is none of this nonsense of

having to remember to reverse the order of multiplication.
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Of course the matrix

I 
- _ 

,

expands as a product of matrices of the shape
I -B I 

’ 

-’- , -’- , -

The decomposition is tantamount to performing the euclidean algorithm
on the rows of the 2 x 2 matrix. That is plain given that the continued
fraction expansion of a rational is effectively the euclidean algorithm on its
numerator and denominator. We give numerical details in our examples
below. In particular, above,

- y

To ensure that we have expressed matters correctly we had better confirm
that all the entries 2y’ - y , 2x - x’ , ... , are positive. We note that is so if
and only if the partial quotient = 1. Fortunately, always Qh = 
and so ah-1 = 1, because the element (VT)+ Qh)/(Qh + Ph) is reduced
when D = Ph + + Qh .
THEOREM I. Let x2 - Dy2 = and suppose that Qh-1 = Qh + Ph
in the principale cycle. Then X2 - Dy2 = -3, where

Moreover the continued fraction expansion of XIY is twisted symmetric.
Its first half is the expansion of xly, say [ao, w~ , and its second part is
the expansion of (2(u ~ - 1)/(2 - ~w~) - thus the reverse of that first
half , omitting the zero-th partial quotient, twisted by multiplication by a
transformation of determinant 3.

Proof. Having been signalled by Qh-1 = Qh +- Ph we have

and thus the representation D = Ph + PhQh + Q2. But then we have seen
explicitly that

yielding the claims.

We will not need the conjugate case; see however the discussion below
of the conjugate case when N is even.
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An example. One can see that 1228312 - 1729 . 29542 = -3 after a brief
computation. In detail,

Here Q7 = 48 = 23 + 25 = Q8 + P8. Incidentally, a7 = 1 whence P7 = Q8
as in the continued fraction configuration we mentioned above. That’s

clear of course because an element (JD + Q)/(Q + P) is reduced if D =

p2 + PQ + Q . We read off that

We purport that the continued fraction expansion [41 , 1 , 1 , 2 , 1 , 1 , 2 , 1~
continues with the expansion corresponding to

Note that all entries in the product are positive exactly because a7 = 1.
Indeed, the product expands to yield

that is 55/19 = [2,1,8,1,1] and 2287/790 = (2 , 1 , 8 , 1 , 1 , 40/3~ ,
precisely as predicted4.

40ur joy was great and not a little tinged with surprise at this vindication.
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We should also confirm that

and

Representations D = M2+MN+ N2 with N even. We now return
to representations D = M2 + MN + N2 with N even. Appropriately
expanding VD we obtain

immediately yielding the ideal ( 4 N2, ~lD + M + 2 N) . Accordingly we
set N = 2Q and L = M + Q and note that one or other of the elements

or ( fD+L+Q)/Q is reduced. As before we write P = L+gQ
with g = 0 or 1. The first composition corresponds to

telling us of the following configuration in an expansion:



441

If g = 0 this just reports that Qh-1 = 3Qh, in the proper continued
fraction expansion. Of course we have recalled that D = (Ph - gQh) 2+ 3Q2
and (3 + g2)Qh = Qh-1 + 2gPh .

Now, the second composition with the ideal (Q, v75 + P) corresponds
to

Firstly suppose that g = 1. Then the first two matrices correspond to the
continued fraction

whence the last two matrices correspond to the expansion

Thus the continued fraction expansion of X/Y, where X2 - Dy2 = -3,
is twisted symmetric with the symmetry twisted in that the second half
of the expansion is the reverse of the first half - omitting the zero-th
partial quotient, and is divided by 3. If g = 0 we again have twisted
symmetry. The first half of the expansion is ~ao , w] and the second half
is the continued fraction expansion of the rational [+W- ] multiplied by 3.

THEOREM II. Suppose that either g = 0 or g = 1 and (3 + 
Qh-1 + 2gPh in the principale cycle, and x2 - Dy2 = Then

X2 - DY2 = -3, where

Moreover the continued fraction expansion of XIY is twisted symmetric.
Its first half is the expansion of x/y with g appended and its second half
is the reverse of that first half - omitting the zero-th partial quotient, and
is twisted by division by 3. [That entails that when 9 = 0 its first half is
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the expansion of xly and its second half is the reverse of that first half -
omitting the zero-th partial quotient, and is twisted by multiplication by 3.]

Proof. Having been signalled by (3 + g2)Qh = Qh-1 + 2gPh we have

and thus the representation But then we have
seen explicitly that

yielding the claims.

Another example. It is easy to see that 34798636~ -1891’ 800233~ = -3
and also 35308981699~ - 1891’ 811968962~ = -3 . With vø = 1891,
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where 4Q6 = 4 . 25 = 58+2.21 = Q5 + 2P6, and also Q12 = 49 =
15 + 34 = Q13 + P13. We should also notice that it happens to happen that
4Q6=4~25=42+2~29=Q7+2P7. We have that

Our arguments pretend to show that the expansion [43 , 2 , 16 , 1 , 8 , 1]
continues with the partial quotient 1 and then with the partial quotients
corresponding to

According to our description we should have

This is indeed the case. The displayed detail of this decomposition is

We also note that, as alleged,
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and

The continued fraction expansion following the signal Q12 = 49 = 15+34 =

Q13 + P13 should correspond to

Indeed,

in accordance with prediction and showing that the present identity signals
the other solution to X2 _ 189ly2 - -3. Indeed our first signal arose
from the representation 1891 = 4 2+3.25 2 = 212 - 21.50 + 502 whilst this
second signal arises from the representation 1891 = 342 + 34 . 15 + 152. It
is not unamusing to compound these two representations obtaining both
D2 = 2792 - 279 ~ 2015 + 20152 and D 2 = 14642 - 1464 . 2135 + 21352 .
It follows that 1891 = 31 .61. That’s clear because the greatest common
divisor of 279 and 2015 is 31, y and the greatest common divisor of 1464
and 2135 is 61.

The signal 4Q6 = Q7 + 2P7 is in fact conjugate to a signal happening
to coincide in position with the signal conjugate to 4Q6 = Q5 + 2P6 . We
shall see in the next section that it of course leads naturally to the first
solution, by exactly computations already provided.

The conjugate cases. We now deal with the formulas appropriate to the
conjugate cases. To obtain these cases we consider the ideal (3Qh, v75+L)
composed sequentially with (3Qh, ~ - L) and then with (3Qh, L) .
The compositions correspond sequentially to a matrix product
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The last pair of matrices may be ’simplified’ to yield

Setting L = gQh, these matrices detail respectively the following
equivalent configurations in a notional continued fraction expansion:

, ,,--- L n v · . , --,-" ---.. , -

expansion just reports that Qh+l = 3Qh . Of course we have recalled that
- - - .. 1""1. - --1’"B - n.....- -- _ -.

The second composition now yields

corresponding to some ideal (3, B/D + p) .

THEOREM III. Suppose that (3 + g2)Qh = 2gPh+1 in the principal
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Moreover, the continued fraction expansion of XIY is twisted symmetric.
Its first half is the expansion of xly and its second half is the reverse of that
first half - omitting the zero-th partial quotient, and is twisted by division
by 3.

Proof. We have seen explicitly that

yielding the claims.

This is all very well if x/y is a convergent, but it is not if 9 = 1. However,
above, we saw the continued fraction configuration

so

Hence we have the alternative

Moreover, the continued fraction expansion of XIY is twisted symmetric.
Its first half is the expansion of followed by the partial quotient

g and its second half is the reverse of that first half - omitting the
zero-th partial quotient, and is twisted by division by 3.

If this seems too contorted one could replace the last paragraph by
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Moreover, the continued fraction expansion of XIY is twisted symmetric.
Its first half is the expansion of xhlYh and its second half is the reverse of
that first half - omitting the zero-th partial quotient, and is twisted by the
linear fractional transformation (3:2 7 ) .( -g 1

Yet a further example. It’s clear that 13522342 - 5719 178812 = -3
and 5453976942 - 5719 . 72119592 = -3. Here

where Q7 = 27 = 3 - 9 = 3Q6 and Q9 = 75 = 3 . 25 = 3Qio . These

signals belong respectively to the representations 5719 = 74 2+3 _ 92 =
652 + 65 .18 + 18~ and 5719 = 622 + 3.252 = 372 + 37.50 + 502 . One notes
that Q13 = Q17 = 3.

This and the next example have been ’concised’ on the advice of the
referee. The reader can readily compute the relevant table [a spreadsheet
program is optimal].

The first signal is a conjugate case. We have that

Our arguments suggest that the expansion [75 , 1 , 1 , 1 , 1 , 1 , 16] contin-

ues with the partial quotients corresponding to

This is indeed the case. We also note that, again as suggested,

and
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In respect of the second signal we have that

Our claim is that the expansion ~75 , 1 , 1 , 1 , 1 , 1 , 16 , 5 , 1 , 1] continues
with the partial quotients corresponding to

We also note that just as suggested,

And yet another example. It takes one only a few moments to confirm
that 1699118998912 - 9139 17773561342 = -3 and that similarly we have
541447255636762 - 9139 - 5663785771692 = -3. Here

One may see the signal 4Q16 = 4.49 = 10 + 2 - 93 = Q17 + 2Pl7 arising
from the representation D = 442 + 3 . 492 = 52 - 5 ~ 98 + 982 . There is
also Q13 = 107 = 30 + 77 = Q14 + P14 arising from the representation
D = 302 + 30 . 77 + 772 .

According to our arguments the continued fraction expansion
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will have the partial quotient 2 = 3 - 1 appended. In matrix terms that
yields

Now dividing the reversed continued fraction by 3 supplies the matrix

It will be more instructive to display the sequence of calculations providing
the decomposition of this matrix, rather than to allege the result. One has
in detail

Recall that the first two columns are the sequence of 2 x 2 matrices obtained
as we split off each partial quotient matrix by employing the euclidean
algorithm on the rows of the matrices. now properly seen to be
the quotients of that euclidean algorithm, are displayed in the third column.
The last 2 x 2 matrix displays P25 = p = 95 and, of course, Q25 = 3.

Evidently all is well, with truth prevailing. We were halfway to the
second solution. Indeed
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verifying our formulas.

According to the signal ( the continued
fraction expansion

continues with the expansion corresponding to

I I I

The decomposition details are

U is

precisely as predicted. The last 2 x 2 matrix displays P23 = p = 94 and,
of course, Q23 = 3.

We also confirm that

and
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5. Signals in Arbitrary Cycles

Our preceding discussion shows that if there is a solution to = -3
then D has representations D = M2 +MN+N 2 and there are signals

That is, there are reduced elements (~lD + Ph)lQh, or + 

yielding the signal, with Qh = N or 2Qh = N according as N is odd or
even, occurring in some continued fraction cycle.
A priori, signals may occur in any cycle whatsoever. Our arguments only

entail that if a signal occurs in some ideal class, or cycle - thus if there is a
reduced element corresponding to an ideal (Q h , in

that cycle, respectively a reduced element corresponding
to an ideal (Qh, B/D + Ph+1) in that cycle if we are referring to a conju-
gate signal from the second line in the list above - then there is an ideal
(3, B/D + p) in the ideal class that is the square of the signalling class.

However, if there is a solution to X 2 - Dy2 = -3 then, in particular,
the ideal (3, B/D + p) must lie in the principal class. Hence, if there is a
solution, the signals must occur in ambiguous classes, for those are precisely
the classes whose square is principal. Conversely, if there is a signal in some
ambiguous class then there is a principal ideal (3, thence a solution
to X2 - Dy2 = -3, and all signals must occur in ambiguous classes.
We shall address the question whether there are signals in the principal

class, given that there is a solution to X2 - Dy2 = -3. We also briefly
explain how a signal in an arbitrary cycle containing an ambiguous ideal
permits one to construct a solution to Dy2 - -3.

Counting ambiguous classes and representations. We will be dealing
with squarefree D divisible by primes congruent to 1 (mod 3), and possibly
by 3. If D is divisible by exactly v different primes congruent to 1 (mod 3)
then there are exactly 2" ambiguous ideals, respectively 2"+1 ambiguous
ideals, in the order Z[~/D] 2013 according as 3~ D or 3 I D. Half of these
ambiguous ideals have odd norm S dividing D and half have even norm
2S dividing 2D. These matters are well known; there is a fresh discussion
in [2].
We have to distinguish the cases D - 1 (mod 4) and D - -1 (mod 4).

In the latter case we have nothing to add at this point. In the former case
we note that the maximal order of is in fact 7G~(~ + 1)/2]. We
now remark that
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PROPOSITION 10. Suppose D = 1 (mod 4) . Then if an ideal ~2S, 
is an ambiguous ideal, then it is an ideal of the order + 1)/2~ .
So any ideal (Q, B/D + P) of equivalent to it must have Q even.
Conversely, if an ideal (Q, P + @) has even norm Q but is not an ideal
of 7G((~+ 1)/2~, then 4 Q and 4 11 (D - p2) .

Proof. Set 6 = ( J5 + 1) /2 . Our first claim is that the ideal (2S, @ + R)
is an ideal (S, 6 + (R-1)/2) of the order Z[5]. Now, since D - 1 (mod 4)
and 2S I (R 2 - D) , certainly R is odd and 4 I (R2 - D) , and since the
ideal is ambiguous, 2S I 2R so S I D . Thus S is odd. Our first claim

reduces to 8 I ((~(1 - D) + -1 (R - 1) + -1 (R - 1)2) = !(R 2- D), which is
the case.

Conversely, (Q, P + B/D) is not an ideal of if 4 (P2 - D)
notwithstanding that Q I (P2 - D) . It is easy to see that this is so only if
4 1 Q whilst 4 11 (p2 - D) , as alleged.

In the case of the signal Qh-1 = Qh + Ph , or Qh+l = Qh + we

have Qh odd. For the remaining signals we have D = L2 + 3Q~. A simple
check modulo 4 confirms that Qh is even exactly when D - 1 (mod 4).

Suppose that 3Qh = Qh-1 or 3Qh = Qh-1. Since (P~ - D) =
respectively (Ph+i - 17) - plainly 4 1 Qh cannot

be accompanied by 4 )) I (Ph - D) , nor respectively 4 I I (Ph+ - D) . Quite
similarly, neither 4Qh + 2Ph nor 4Qh = + 2Ph+1 allow both
4 I Qh and 4 II (Ph - D), respectively 4 II (Ph+ - D) _ Thus if Qh is

even our signals must occur in cycles of the order + 1)/2]. Hence,
if D - 1 (mod 4) at most the signal Qh-1 = Qh + Ph, as always closely
accompanied by Qh+l = Qh + can occur in the principal cycle of the
order Z[B/D].

Relating signals to a solution. We will generalise the remarks of the
previous section, for the case when a signal occurs in an arbitrary am-
biguous cycle. The central remark there was that the presence of a com-
plete quotient + Ph)lQh in the principal cycle entails an equation
(x - VDy)(x+ @y) = x2 - Dy2 = (-l)h Qh and corresponds to a matrix
decomposition
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Suppose now that (~ + Ph)lQh is a complete quotient of an arbitrary
element 7 = That is,

In effect, we have set Po = R and Qo = S . For use below, we recall that
the element y is ambiguous if and only if S I 2R.
We need little more than to observe that

It is then plain that our earlier remark becomes that the presence of a
complete quotient + Ph)lQh in the continued fraction expansion of
y = + R)/S entails an equation

and corresponds to a matrix decomposition

PROPOSITION 11. Suppose that and (v’D + P’) I Q’ are com-
plete quotients of -y = (~-I- R) IS yielding the norms (x - ;yy) =
±Q and (x’ - -yy’) (x’ - 7yy’) = ±Q. If ’Y is ambiguous then composition
of the ideals (Q, + P) and (Q’, v’D + P’) corresponds to the matrix
product

and yields a matrix corresponding to an ideal in the principal cycle.

Proof. The product of the inner pair of matrices is again a matrix of their
shape. The outer matrices conjugate that product to yield a matrix
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with

Suppose that G is the greatest common divisor of Q , Q’ and (P + P’) ,
and is therefore the greatest common divisor of X and Y . Then, according
to our remarks in §4 above, the product corresponds to an ideal of norm

in the principal cycle.

It is rather interesting to notice the role played by the integrality of
that is, the ambiguity of ~y , in ensuring that X and Y be integers.

Of course this is only a mechanical restatement of the fact that we are
going to arrive in the principal cycle only if we started from a cycle with
ambiguous forms.

In summary: Each pair of signal and ambiguous ideal in the same cycle
yields a solution to X 2 - Dy2 = -3 by the formulas and arguments of
§4. We suffer only the additional complication of having to conjugate by
appropriate matrices depending on the given ambiguous ideal.

Relating signals and ambiguous ideals. It is plain that the equation
X 2 - Dy2 - -3 has either no, one or two solutions. Of course in saying
that we refer to primitive non-associated solutions; we identify solutions
differing only by multiplication by a unit of We now remark that
if the equation has s solutions then there are at most s distinct pairs
of conjugate signals in each ambiguous cycle. Our remarks immediately
above showed that events in an arbitrary ambiguous cycle are mapped to
the principal cycle by matrix conjugation. Thus it is sufhcient to consider
just the principal cycle. Then our remark is clear from infrastructural
considerations. Were we to have more than s signals in the first half of
the principal cycle, we would obtain more than s primitive solutions to
X 2 - Dy2 - -3 . We should add that signals are to be considered distinct
if they arise from different representations or are of different kind - the
two ’kinds’ being those signals arising from a representation D = L 2+ 3Q2
and those arising from a representation D = M2 + MQ + Q2 with Q odd.
That means that ’happens to happenings’, such as we saw in the example
D = 1891, or such as we always see for signals of the second kind, do not
constitute distinct signals.

It remains to count solutions, representations and signals, and ambiguous
ideals.
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THEOREM IV. Suppose X2 - Dy2 = -3 has s &#x3E; 0 primitive solutions
and that D is squarefree and is divisible by v distinct primes congruent to
1 modulo 3.

If 3 I D then s = 1. The solution belongs to the ambiguous ideal
halfway along the principal cycle. There are indeed two ambiguous ideals per
cycle that contains an ambiguous ideal, but, nonetheless, just one conjugate
pair of signals in each such cycle. In all there are 211+1 arrabiguous ideals,
and hence 2" cycles containing an ambiguous ideal. There are just 211-1
essentially distinct representations of D with discriminant -3 but each

gives rise to signals of the two kinds. Thus there are 2" conjugate pairs of
distinct signals, one conjugate pair for each cycle containing an ambiguous
ideal.

Henceforth, 3 ae D . If D - -1 (mod 4) then s = 2 . The two solutions
are conjugate so there is just one belonging to an ideal in the first half of
the principal cycle. There are two ambiguous ideals per cycle containing
an ambiguous ideal, and two conjugate pairs of signals are permitted in
each such cycle. Indeed, there are 2" ambiguous ideals in all, and hence
2v-l cycles containing an ambiguous ideal. There are just 211-1 essentially
distinct representations of D with discriminant -3 but each gives rise to
signals of the two kinds. Thus there are 2" conjugate pairs of distinct
signals, two conjugates pairs for each cycle containing an ambiguous ideal.

If D - 1 (mod 4) then s = 1 or 2 according as the fundamental unit of
has norm -1 or +1. In either case there are just 2"-1 ambiguous

ideals of odd norm and as many as 211-1 essentially distinct representations
of D with discrirrainant -3. Thus there is a signal of the second kind, to
wit a signal arising from a representation D = M2 + MQ + Q2 with Q
odd, for each ambiguous ideal of odd norm. Hence in either case there are
exactly s conjugate pairs of signals of the second kind in each ideal cycle
containing ambiguous ideals of odd norm. Similarly, there are exactly s
conjugate pairs of signals of the first kind in each ideal cycle containing
ambiguous ideals of even norm.

COROLLARY. If X2 - Dy2 = -3 has a solution then that solution is sig-
nalled, halfway to the solution, in the principal cycle. Specifically, there is at
least one signal of the second kind in the principal cycle if D - 1 (mod 4) .
Moreover, in that case the continued fraction expansion of (~/D + 1)/2
displays at least one signal of the first kind.

Proof. Other than to mention that our appeals were to Proposition 10 in
the case D - 1 (mod 4) , we only need to justify our allegations concerning
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the number of solutions s . The point 0 is that it expects to be

2, in that the principal cycle, being ambiguous, contains the conjugate of
each of its ideals. If 3 ~ i D, however, an ideal ~3, ~ -~ p~ is conjugate to
itself, whilst if the fundamental unit has norm -1 then conjugation also
reverses sign, and the conjugate equation shows a norm 3, rather than -3.

6. Concluding Remarks and Acknowledgements

We will always know whether X 2 - Dy2 = -3 has solutions, and will be
able to compute the solutions if there are any, twice as fast as is naively
practicable. We have detected new symmetry, albeit twisted, in the contin-
ued fraction expansions of certain quadratic irrationals. On the other hand
our ideas are plainly too close to the surface to enable us to give sufhcient
criteria for the existence of solutions in terms of D alone. Of course the

presence of signals in all cycles containing ambiguous ideals is both suffi-
cient and necessary, but knowing about halfway signals is only twice as good
as knowing in the first place that the continued fraction expansion of v75
explicitly reveals the solutions, if there are any. We should also confess to
glossing over various questions when D - 1 (mod 4). Our arguments show
signals of the first kind, which by Proposition 10 cannot appear in the cycle
containing ( 1, ~~ , signalling solutions to X2 - Dy2 - -3 . But there

are also signals, this time properly in the order Z[( v75 + 1 ) /2~ signalling
solutions to (2X - 1)2 - Dy2 = -12, rather than to the equation under
consideration here. In any case, there will be more about such matters in
various sequels.
We have gone to some pains to stay with the equation X 2 - Dy2 = -3 ,

yet to lay out our arguments as to readily allow generalisation. Some ge-
neralisations, such as that halfway to a solution of X 2 - Dy2 = -q is

signalled at least in some cycles with ambiguous ideals if D has a repre-
sentation D = L 2 + qQ2 , or if q = F-I ± 1 and D has a representation
D = are fairly evident. We have looked at a variety
of such examples. We are conscious that much of what we explain is well
known, but not widely known, and that it remains necessary to provide dic-
tionaries translating between the languages of forms, ideals and continued
fractions.

The visits - during which many of the present ideas were developed -
by the Canadian co-authors to the for Number Theory Research
at Macquarie University, Sydney were made possible by a grant from the
Australian Research Council. We are indebted to Thomas A. Schmidt, then
a Macquarie University Research Fellow, for useful discussions during the
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critical early stages of the present work.

We are grateful to the referee for his helpful advice.
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