
Open Research Online
The Open University’s repository of research publications
and other research outputs

Towards a generation-based semantic web authoring
tool
Conference or Workshop Item
How to cite:

Power, Richard (2009). Towards a generation-based semantic web authoring tool. In: Proceedings of the
12th European Workshop on Natural Language Generation, 30-31 Mar 2009, Athens, Greece.

For guidance on citations see FAQs.

c© 2009 The Author

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://portal.acm.org/citation.cfm?id=1610195.1610197

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Research Online

https://core.ac.uk/display/41265?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://portal.acm.org/citation.cfm?id=1610195.1610197
http://oro.open.ac.uk/policies.html


Towards a Generation-Based Semantic Web Authoring Tool

Richard Power
Department of Computing

Open University
Milton Keynes, UK

r.power@open.ac.uk

Abstract

Widespread use of Semantic Web tech-
nologies requires interfaces through which
knowledge can be viewed and edited with-
out deep understanding of Description
Logic and formalisms like OWL and RDF.
Several groups are pursuing approaches
based on Controlled Natural Languages
(CNLs), so that editing can be performed
by typing in sentences which are automat-
ically interpreted as statements in OWL.
We suggest here a variant of this approach
which relies entirely on Natural Language
Generation (NLG), and propose require-
ments for a system that can reliably gen-
erate transparent realisations of statements
in Description Logic.

1 Introduction

We describe here a simple prototype of an edit-
ing tool that allows a user to create an ontology
through an open-ended Natural Language inter-
face. By ‘open-ended’ we mean that when intro-
ducing class or property names into the ontology,
the user also decides how they should be expressed
linguistically: thus the lexicon of the Natural Lan-
guage interface is not predetermined. The purpose
of such a tool is to support knowledge editing on
the Semantic Web, which at present requires train-
ing in graphical user interfaces like Protégé (Rec-
tor et al., 2004), or direct coding in OWL and RDF.
Linking OWL to Controlled Natural Language is
currently the topic of an OWL1-1 task force, and
several groups are already working in this area
(Schwitter and Tilbrook, 2004; Thompson et al.,
2005; Bernstein and Kaufmann, 2006; Pool, 2006;
Dongilli, 2007); the novelty in our approach is that
we rely entirely on Natural Language Generation
(NLG), extending the WYSIWYM (or Conceptual
Authoring) method (Power and Scott, 1998; Hal-

lett et al., 2007) so that it supports knowledge edit-
ing for ontologies as well as for assertions about
individuals.

The idea of linking formal and natural lan-
guages can be traced back to Frege (1879), who
observed that mathematical proofs were made up
of formulae interspersed with passages in natu-
ral language, and invented formal logic as a way
of rendering these passages in a precise notation.
With the arrival of Artificial Intelligence in the
1950s, formal logic became the foundation for
knowledge representation and automatic reason-
ing — a trend leading to the recent concept of a
‘semantic web’ that would open up knowledge en-
coding and utilisation to a world-wide community
(Berners-Lee et al., 2001). However, accessible
knowledge management requires accessible pre-
sentation: hence the current interest in methods of
‘sugaring’ formal logic into natural language text
(Ranta, 1994; Horacek, 1999), thus in a sense turn-
ing Frege upside-down.

1.1 Description Logic
The theoretical underpinning of OWL (and hence
of the semantic web) is a discipline that evolved
under various names in the 1980s and 1990s and
is now called Description Logic (Baader et al.,
2003). This refers not to a single logical language,
but to a family of languages. All of these lan-
guages allow statements to be built from individu-
als, classes and properties, but they differ in the re-
sources provided in order to construct classes and
properties, thus allowing different balances to be
drawn between the conflicting demands of expres-
siveness and tractability (i.e., decidability and ef-
ficiency of reasoning).

Figure 1 shows some common class construc-
tors, using mathematical notation rather than
OWL syntax (which is equivalent, but much
lengthier). There are in fact three versions of
OWL (Lite, DL and Full) which provide pro-



Description Syntax
atomic class A (etc.)
universal class !
negation ¬C
intersection C "D
union C #D
value restriction ∀R.C
exists restriction ∃R.C
enumeration {a}

Table 1: Class constructors

gressively more constructors, not only for classes
but also for properties and axioms. Having cho-
sen the desired logic, the ontology builder is
free to introduce new atomic classes (and also
properties and individuals), which can be given
any name consistent with the RDF naming con-
ventions (i.e., names must be Unique Resource
Identifiers). Thus a new class might be named
http://myontology.net/parent and a new
property http://myontology.net/hasChild, al-
though for brevity we will henceforth omit names-
paces (i.e., parent, hasChild). Statements about
classes can then be expressed by axioms, the most
important of which are C & D (C is subsumed by
D) and C ≡ D (C is equivalent to D). For instance:

(1) parent ≡ person " ∃hasChild.!
(2) person & ∀hasChild.person

The meanings are probably obvious: (1) a parent is
defined as a person with one or more children; (2)
every person only has persons as children. Note
that expressing these axioms in clear English is not
trivial — for instance, in (2) we must take care not
to imply that every person has children.

A collection of such axioms is called a TBox:
intuitively, a TBox expresses concept defini-
tions and generalisations. Description Logics
also contain names for individual instances (e.g.,
Abraham, Isaac) and formulas expressing facts
about individuals: thus father(Abraham) would
express class membership (‘Abraham is a father’),
and hasChild(Abraham, Isaac) a relationship
between individuals (‘Isaac is Abraham’s child’).
A collection of such assertions is called an ABox,
and TBox and ABox together make up a Knowl-
edge Base (KB).

1.2 Reasoning services
The reason for proposing Description Logic as the
foundation for the Semantic Web is that it allows

for efficient reasoning services. Much effort is still
going into the mathematical task of proving decid-
ability and efficiency results for increasingly ex-
pressive dialects. Informally, the standard reason-
ing services are as follows:

1. Class Satisfiability: Checking whether in a
given KB it is possible for a class to have at
least one member.

2. Subsumption: Checking whether a given
KB implies a specified subsumption relation-
ship between two classes.

3. Consistency: Checking whether a given KB
is consistent.

4. Instance Checking: Checking whether a
given KB implies a specified ABox assertion
that an individual a belongs to a class C.

Consider for instance the following miniature KB:

man # woman ≡ person
man & ¬woman
man(Abraham)

In respect to this KB, a reasoning engine should be
able to show (1) that the class man " woman is
unsatisfiable, (2) that man is subsumed by person
(man & person), (3) that the KB is consis-
tent, and (4) that the assertion person(Abraham)
holds.

The ability to perform these reasoning tasks ef-
ficiently can be exploited not only in applications
that utilize knowledge in problem-solving, but in
knowledge editing and natural language genera-
tion. For instance, when an ontology builder adds
a new axiom to a KB, the editor can run the sub-
sumption and consistency checks and give feed-
back on whether the axiom is informative, redun-
dant, or inconsistent. Or when producing a natural
language gloss for the class ∃hasChild.female,
the generator could choose between ‘something
with at least one female child’ and ‘someone
with at least one female child’ by checking the
subsumption relationship ∃hasChild.female &
person.

2 Aligning DL to CNL

We have explained informally the technical fea-
tures of description logics. Briefly, they include
rules for constructing classes, axioms, and asser-
tions about individuals; the resulting expressions



are interpreted through a relatively simple model-
theoretic semantics (Baader et al., 2005). They
also include efficient algorithms for performing
reasoning tasks. We now turn to issues in the
design of Controlled Natural Languages (CNLs)
which can be aligned with specific DLs, and thus
serve as useful interfaces for working with com-
plex formalisms like OWL and RDF.

As a provisional list of requirements, we would
suggest the following:

1. Completeness: A sentence (or text) can be
generated for any axiom permitted by the DL.

2. Uniqueness: Different sentences are gener-
ated for different axioms.

3. Transparency: Sentences in the CNL are ac-
curately interpreted by human readers.

4. Fluency: Sentences in the CNL are inter-
preted easily by human readers and judged
natural.

5. Interpretability: Sentences conforming to
the CNL can be automatically interpreted to
recover the corresponding DL axiom.

6. Editability: Interactive texts in the CNL can
be manipulated by domain experts in order to
extend and revise the KB.

7. Extensibility: Domain experts can extend
the CNL by linking lexical entries to new in-
dividuals, classes or properties in the KB.

Note that these are essentially practical require-
ments, which concern the CNL’s role as an inter-
face for a particular DL. We see no reason to insist
that the alignment between DL and CNL should
conform to general theories of natural language se-
mantics.

2.1 Completeness
If we propose to use generated CNL as an inter-
face to a knowledge base, it is important that gen-
eration should be reliable. A minimal test of re-
liability is that the grammar and lexicon are com-
plete, in the sense that they produce a text for any
well-formed semantic input. Elsewhere, we have
described a generation method that allows com-
pleteness to be checked by a computer program
(Hardcastle and Power, 2008). For any non-trivial
DL the set of classes is infinite (e.g., through recur-
sion on C "D or ∃R.C); however, completeness

can be proved through an enumeration of all local
contexts for which a linguistic realisation rule is
needed. As well as guaranteeing reliability, com-
pleteness checking is obviously useful as an aid to
grammar development.

2.2 Uniqueness
Although necessary, completeness is not a suffi-
cient condition on the grammar of a CNL, since
it could be trivially met by generating the same
string (perhaps ‘Hallo World’) for any semantic in-
put. It would also be useful to have an automatic
check that the same sentence is not generated for
two different semantic inputs — i.e., that every
sentence in the CNL has a unique meaning. This
seems a harder problem than completeness, and
we have not seen any proposals on how it could be
done.

To pose this problem precisely we would need
to define what is meant by ‘different’ semantic in-
puts. Complex class descriptions can be manipu-
lated by well-known logical equivalences like De
Morgan’s laws: for instance, ¬(C " D) is equiv-
alent to (¬C) # (¬D). Should these be treated as
different inputs or the same input? We think users
would probably prefer them to be treated as differ-
ent, but the issue needs to be investigated further.

2.3 Transparency
Transparency is obviously at the heart of the en-
terprise: completeness and uniqueness proofs are
no help if the generated texts are unclear to human
readers. Unlike the preceding requirements, trans-
parency is a matter of degree: we cannot expect,
far less prove, that every sentence in the CNL will
be accurately understood by all target users on all
occasions. Transparency can only be assessed, and
gradually improved, through experiments and user
feedback.

2.4 Fluency
Fluency is another aspect of readability: whereas
transparency concerns accuracy of interpretation,
fluency concerns ease. These requirements poten-
tially conflict. For instance, to express the axiom
parent & ∃hasChild.! fluently we could say
‘every parent has a child’, while for transparency
we might prefer the pedantic ‘every parent has one
or more children’. In a CNL designed for editing
a KB, transparency will have priority, but one can
imagine other purposes (e.g., an informal report)
for which fluency would matter more.



2.5 Interpretability

This is an essential requirement for knowledge ed-
itors that rely on automatic parsing and interpreta-
tion of texts typed in by human authors (Schwit-
ter and Tilbrook, 2004; Bernstein and Kaufmann,
2006). A recent innovation has been to pursue the
goal of ‘roundtripping’ (Davis et al., 2008), so that
a CNL text can be generated from an existing on-
tology, revised in a text editor, and then interpreted
automatically to obtain an updated ontology in the
original format. For our approach, which relies en-
tirely on generation, automatic interpretability is
not essential (although one can imagine contexts
in which it would be useful, for instance to allow
knowledge encoding outside the NLG-based edit-
ing environment).

2.6 Editability

The key feature of Conceptual Authoring (WYSI-
WYM) is that editing operations are defined on the
semantic input, not the text. This means that au-
thors cannot produce a text in the normal way by
typing in words from left to right. Some kind of
non-specific initial configuration has to be grad-
ually refined through semantic distinctions made
by choices from menus (an example will be given
later). To validate the approach, it has to be
shown that this editing process is efficient and eas-
ily learned. Usability results from ABox editing
applications have been encouraging (Hallett et al.,
2007), but whether similar results can be achieved
for KB editing (TBox as well as ABox) remains
unproven.

2.7 Extensibility

Ontology development requires that authors
should be able to introduce new terms for indi-
viduals, classes and properties. The designer of a
CNL-based editor cannot foresee what these terms
will be, and therefore cannot provide a mapping to
suitable lexical entries. This must be done by the
ontology developer, and take-up accordingly de-
pends on making this task not only feasible but
easy (Hielkema et al., 2007). We will explore two
ideas on how this might be done: (a) providing a
wide-coverage lexicon from which users can se-
lect words to extend the CNL, and (b) using con-
ventions for controlling the naming of classes and
properties, so that the two decisions (term name,
CNL lexical entry) become essentially a single de-
cision.

3 Editing process

As a first experiment we have written a Prolog
program which allows a KB to be built up from
scratch for a very simple DL with only one kind
of statement (C & D), four class constructors
(A, !, ∃R.C, {a}), and one property construc-
tor (property inversion, which will be explained
shortly). Using just these resources we can formu-
late ABox assertions as well as TBox axioms by
the trick of representing individuals through enu-
merated classes. For instance, man(Abraham)
can be asserted through the axiom {Abraham} &
man (the class containing only Abraham is a sub-
class of the class of men).

A generic grammar is provided for realising
axioms and complex class descriptions (a hand-
ful of rules suffices); the grammar assumes that
the words for realising individuals, atomic classes
and properties will conform to the following (very
strict) regulations:

1. Individuals are realised by proper names

2. Atomic classes are realised by count nouns

3. Properties are realised either by transitive
verbs or by count nouns

We also simplify by assuming that the name of ev-
ery atomic term in the DL is identical to the root
form of the word realising the term — for instance,
the count noun realising the class person will be
‘person’.

When the editor is launched there are no indi-
viduals, atomic classes or properties, and the only
word in the lexicon is ‘thing’, which denotes the
class ! (i.e., the class containing all individuals).
The KB is construed as a sequence of axioms, and
to start the ball rolling it is seeded with a single
vacuous axiom ! & !. The program generates a
sentence expressing this axiom and adds a list of
editing options as follows:
1: Every thing/1 is a thing/2.

t Add a new term
a Add a new axiom
A/C Edit class C in axiom A
A/d Delete axiom A

Note that in every sentence expressing an axiom,
the head word of every span denoting a class is
given a numerical label; in a simple Prolog inter-
face this allows the class to be selected for edit-
ing. There is no point in attempting any edit-
ing yet, since no terms have been introduced.



Word Syntax Type
Mary name individual
pet noun class
animal noun class
own verb property

Table 2: Lexical entries for terms

The user should therefore choose option t to add
a new term. This is done by specifying three
things: a word (any string), a syntactic category
(either name, noun, or verb), and a logical type
(individual, class, or property). In this way
the user might define the set of terms in figure 2
from the people+pets domain, which will be fa-
miliar to students of Description Logic.

Editing of the axiom ! & ! can now begin.
Assuming that the target is pet & animal, the
user first selects the first class in the first axiom
by typing 1/1 (in a GUI this would be done sim-
ply by clicking on the word). The program re-
turns a menu of substitutions computed from the
current ontology and expressed in English phrases
adapted to the context of the selected class:
1 Mary
2 Every pet
3 Every animal
4 Everything that owns one or more things
5 Everything owned by one or more things

These phrases express respectively the classes
{Mary}, pet, animal, ∃own.! and ∃own−1.!
which can be formed from the terms in figure 2.
Note that the last class results from the inversion of
the property own: if own(a, b) means that a owns
b, the inverse own−1(a, b) means that b owns a —
a relationship that can conveniently be expressed
by passivisation (a is owned by b).

When the user chooses option 2 (in a GUI this
would of course be done by clicking on the menu
item), the program updates the knowledge base
and regenerates:
1: Every pet/1 is a thing/2

Selecting the second class by typing 1/2 now
yields the same menu of options, differently
phrased to suit the different context of the class
in the axiom:
1 Mary
2 a pet
3 an animal
4 owns one or more things
5 is owned by one or more things

Choosing option 3 completes the first axiom, after

which the user can use the option a (see above) to
obtain a second default axiom for editing:
1: Every pet/1 is an animal/2
2: Every thing/1 is a thing/2

A similar series of operations on the second ax-
iom (starting by selecting 2/1) might then yield
the following:
1: Every pet/1 is an animal/2
2: Mary/1 owns/2 one or more pets/3

Even in such a simple example, we can see how
editing could be supported by the reasoning ser-
vices. For instance, if the user added a third ax-
iom ‘Mary owns one or more animals’, the pro-
gram could point out that this is redundant, since
{Mary} & ∃own.animal can be deduced from
pet & animal and {Mary} &∃ own.pet.

4 Discussion

We have shown through a small prototype how a
KB could be built up from scratch using an NLG-
based authoring tool, with the lexicon almost en-
tirely specified by the ontology developer. Al-
though modest in scope, the prototype extends
previous work on Conceptual Authoring (WYSI-
WYM) in several ways:

• It allows editing of the TBox as well as
the ABox, by defining editing operations on
classes rather than individuals (with individ-
uals treated as singleton enumerated classes).

• It allows users to extend the CNL through the
constrained choice of words/phrases to ex-
press new individuals, classes and properties.

• It allows feedback based on reasoning ser-
vices (e.g, on whether a new axiom is incon-
sistent, informative or redundant).

An obvious objection to our approach is that
we are increasing the load on users by requiring
them to build not only a KB but also a CNL lexi-
con. Much will therefore depend on the tools that
support users in the latter task. Ideally, the con-
struction of a lexical entry would depend on mak-
ing a single selection from a wide-coverage lexi-
con that has already been built by computational
linguists. However, although this ideal is feasible
for classes and properties like pet and own which
can be mapped to single words, any encounter
with real ontologies is likely to reveal terms like
hasDietaryPreference that would have to be



expressed by a phrase. Probably there are solu-
tions to this problem — one could imagine for
instance an algorithm that builds new entries in a
phrasal lexicon from examples — but they remain
to be demonstrated and tested.

More generally, an important question is
whether such a method will scale up. It seems to
work reasonably well in the above example with
a handful of class constructors, terms and axioms,
but what happens when we tackle an expressive
DL like OWL Full, and support the editing of a
KB with thousands of terms and axioms?

As regards more expressive DLs, we have al-
ready cited promising work on developing CNLs
for OWL. As one might expect, the Boolean class
constructors (C"D, C#D, ¬C) can lead to prob-
lems of structural ambiguity, e.g. in a description
like old " (man # woman). Here an NLG-based
editor should have the advantage over one that re-
quires human authoring of texts, since it can apply
the best available aids of punctuation and format-
ting (Hallett et al., 2007), a task that would require
great care and skill from human authors.

Increasing the number of terms would mean that
during editing, classes had to be selected from
thousands of alternatives; some kind of search
mechanism would therefore be needed. A simple
solution already used in WYSIWYM applications
(Bouayad-Agha et al., 2002; Hallett et al., 2007;
Evans et al., 2008) is a menu equipped with a text
field allowing users to narrow the focus by typ-
ing in some characters from the desired word or
phrase. In an ontology editor this search mech-
anism could be enhanced by using the ontology
itself in order to pick options that are concep-
tual rather than orthographic neighbours — for in-
stance on typing in ‘dog’ the user would obtain a
focussed list containing ‘poodle’ and ‘pekingese’
as well as ‘doggerel’.

Increasing the number of axioms has no ef-
fect on the editing process, since we are assum-
ing that axioms will be realised by separate sen-
tences, each generated without regard to context.
However, a text comprising a long list of unor-
ganised axioms hardly makes for easy reading or
navigation. There is therefore potential here for
a more interesting application of NLG technology
that would draw on topics like generation of refer-
ring expressions, pronominalisation, aggregation,
discourse planning, and summarisation. Present-
ing a KB through a fluent and well-organised re-

port would give users a valuable return on their ef-
forts in linking terms to lexical entries, and would
address a pressing problem in ontology building
— how to maintain trasparency in an ontology
as it expands, possibly through contributions from
multiple users.

In a word, the advantage of applying NLG in
this area is flexibility. Once we have a mapping
from logical terms to lexical entries in English
or another natural language, we can tailor gener-
ated texts to different tasks in knowledge manage-
ment, using fluent organised reports for purposes
of overview and navigation, and short pedantically
precise sentences for editing — backed up if nec-
essary with footnotes explaining unintuitive log-
ical implications in detail, or painstakingly for-
matted Boolean constructions that avoid potential
structural ambiguities.

References
Franz Baader, Diego Calvanese, Deborah L. McGuin-

ness, Daniele Nardi, and Peter F. Patel-Schneider,
editors. 2003. The Description Logic Handbook:
Theory, Implementation, and Applications. Cam-
bridge University Press.

F. Baader, I. R. Horrocks, and U. Sattler. 2005. De-
scription logics as ontology languages for the se-
mantic web. Lecture Notes in Artificial Intelligence,
2605:228–248.

T. Berners-Lee, J. Hendler, and O. Lassila. 2001. The
semantic web. Scientific American, 284(5):34–43.

A. Bernstein and E. Kaufmann. 2006. GINO – a
guided input natural language ontology editor. In
Proceedings of the 5th International Semantic Web
Conference, Athens, Georgia.

Nadjet Bouayad-Agha, Richard Power, Donia Scott,
and Anja Belz. 2002. PILLS: Multilingual gener-
ation of medical information documents with over-
lapping content. In Proceedings of the Third In-
ternational Conference on Language Resoures and
Evaluation (LREC 2002), pages 2111–2114, Las
Palmas.

Brian Davis, Ahmad Ali Iqbal, Adam Funk, Valentin
Tablan, Kalina Bontcheva, Hamish Cunningham,
and Siegfried Handschuh. 2008. Roundtrip ontol-
ogy authoring. In International Semantic Web Con-
ference, volume 5318 of Lecture Notes in Computer
Science, pages 50–65. Springer.

Paolo Dongilli. 2007. Discourse Planning Strategies
for Complex Concept Descriptions. In Proceedings
of the 7th International Symposium on Natural Lan-
guage Processing, Pattaya, Chonburi, Thailand.



R. Evans, P. Piwek, L. Cahill, and N. Tipper. 2008.
Natural Language Processing in CLIME, a Multi-
lingual Legal Advisory System. Journal of Natural
Language Engineering, 14(1):101–132.

Gottlob Frege. 1879. Begriffsschrift. Halle.

Catalina Hallett, Donia Scott, and Richard Power.
2007. Composing queries through conceptual au-
thoring. Computational Linguistics, 33(1):105–133.

D. Hardcastle and R. Power. 2008. Fast, Scalable
and Reliable Generation of Controlled Natural Lan-
guage. In Proceedings of SETQA-NLP Workshop at
the 46th Annual Meeting of the Association for Com-
putational Linguistics, Ohio, US.

F. Hielkema, C. Mellish, and P. Edwards. 2007. Using
WYSIWYM to create an open-ended interface for
the semantic grid. In Proceedings of the 11th Eu-
ropean Workshop on Natural Language Generation,
Schloss Dagstuhl.

Helmut Horacek. 1999. Presenting Proofs in a
Human-Oriented Way. In Proceedings of the 16th
International Conference on Automated Deduction,
pages 142–156, London, UK. Springer-Verlag.

J. Pool. 2006. Can controlled languages scale to the
web? In 5th International Workshop on Controlled
Language Applications (CLAW’06), Boston, USA.

R. Power and D. Scott. 1998. Multilingual authoring
using feedback texts. In Proceedings of the 17th In-
ternational Conference on Computational Linguis-
tics and 36th Annual Meeting of the Association for
Computational Linguistics, pages 1053–1059, Mon-
treal, Canada.

Aarne Ranta. 1994. Type theory and the informal lan-
guage of mathematics. In Proceedings of the 1993
Types Worshop, Nijmegen, LNCS 806, pages 352–
365. Spinger Verlag.

Alan Rector, Nick Drummond, Matthew Horridge,
Jeremy Rogers, Holger Knublauch, Robert Stevens,
Hai Wang, and Chris Wroe. 2004. OWL Pizzas:
Practical Experience of Teaching OWL-DL: Com-
mon Errors and Common Patterns. In 14th Interna-
tional Conference on Knowledge Engineering and
Knowledge Management, pages 63–81.

R. Schwitter and M. Tilbrook. 2004. Controlled nat-
ural language meets the semantic web. In Pro-
ceedings of the Australasian Language Technology
Workshop, pages 55–62, Macquarie University.

C. Thompson, P. Pazandak, and H. Tennant. 2005.
Talk to your semantic web. IEEE Internet Comput-
ing, 9(6):75–78.


