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Abstract

We consider a U(1)-invariant nonlinear Klein–Gordon equation in dimension n � 1, self-interacting via the mean field mech-
anism. We analyze the long-time asymptotics of finite energy solutions and prove that, under certain generic assumptions, each
solution converges as t → ±∞ to the two-dimensional set of all “nonlinear eigenfunctions” of the form φ(x)e−iωt . This global
attraction is caused by the nonlinear energy transfer from lower harmonics to the continuous spectrum and subsequent dispersive
radiation.
© 2008 Elsevier Masson SAS. All rights reserved.
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1. Introduction and main results

In this paper, we establish the global attraction to the variety of all solitary waves for the complex Klein–Gordon
field ψ(x, t) with the mean field self-interaction:{

ψ̈(x, t) = �ψ(x, t) − m2ψ(x, t) + ρ(x)F (〈ρ,ψ(·, t)〉), x ∈ R
n, n � 1, t ∈ R,

ψ |t=0 = ψ0(x), ψ̇ |t=0 = π0(x),
(1.1)

where〈
ρ,ψ(·, t)〉 =

∫
Rn

ρ̄(x)ψ(x, t) dnx.
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We assume that ρ is a smooth real-valued function from the Schwartz class: ρ ∈ S(Rn), ρ �≡ 0.
The long time asymptotics for nonlinear wave equations have been the subject of intensive research, starting with

the pioneering papers by Segal [17,18], Strauss [22], and Morawetz and Strauss [15], where the nonlinear scattering
and the local attraction to zero solution were proved. Local attraction to solitary waves, or asymptotic stability, in U(1)-
invariant dispersive systems was addressed in [19,1,20,2] and then developed in [16,21,4,5,3,6]. Global attraction to
static, stationary solutions in dispersive systems without U(1) symmetry was first established in [8,10,14,13,7,12].

The present paper is our third result on the global attraction to solitary waves in U(1)-invariant dispersive systems.
In [11], we proved such an attraction for the Klein–Gordon field coupled to one nonlinear oscillator. In [9], we
generalized this result for the Klein–Gordon field coupled to several oscillators. Now we are going to extend our
theory to a higher dimensional setting, for the Klein–Gordon equation with the mean field interaction. This model
could be viewed as a generalization of the δ-function coupling [11,9] to higher dimensions. We follow the cairns of
the approach we developed in [11,9]: the proof of the absolute continuity of the spectral density for large frequencies,
the compactness argument to extract the omega-limit trajectories, and then the usage of the Titchmarsh Convolution
Theorem to pinpoint the spectrum to just one frequency. The substantial modification is due to apparent impossibility
to split off a dispersive component and to get the convergence to the attractor in the local energy norm, as in [11,9];
the convergence which we prove is ε-weaker. On the other hand, the proof of this slightly weaker convergence allows
us to avoid the technique of quasimeasures, considerably shortening the argument.

We are aware of only one other recent advance [23] in the field of nonzero global attractors for Hamiltonian
PDEs. In that paper, the global attraction for the nonlinear Schrödinger equation in dimensions n � 5 was considered.
The dispersive wave was explicitly specified using the rapid decay of local energy in higher dimensions. The global
attractor was proved to be compact, but it was neither identified with the set of solitary waves nor was proved to be of
finite dimension [23, Remark 1.18].

Let us give the plan of the paper. In the remainder of this section, we formulate the assumptions and the results.
The proof of the Main Theorem takes up Section 2 (where we analyze the absolute continuity of the spectrum for
large frequencies) and Section 3 (where we select omega-limit trajectories and analyze their spectrum with the aid
of the Titchmarsh Convolution Theorem). The example of a multifrequency solitary waves in the situation when ρ

is orthogonal to some of the solitary waves is constructed in Section 4. In Appendix A we give a brief sketch of the
proof of the global well-posedness for Eq. (1.1).

1.1. Hamiltonian structure

We set Ψ (t) = (ψ(x, t),π(x, t)) and rewrite the Cauchy problem (1.1) in the vector form:

Ψ̇ (t) =
[

0 1
� − m2 0

]
Ψ (t) + ρ(x)

[
0

F(〈ρ,ψ(·, t)〉)
]

, Ψ |t=0 = Ψ0, x ∈ R
n, n � 1, t ∈ R, (1.2)

where Ψ0 = (ψ0,π0). We assume that the nonlinearity F admits a real-valued potential:

F(z) = −∇U(z), z ∈ C, U ∈ C2(C), (1.3)

where the gradient is taken with respect to Re z and Im z. Then Eq. (1.2) formally can be written as a Hamiltonian
system,

Ψ̇ (t) = JDH(Ψ ),

where J is skew-symmetric and DH is the variational derivative of the Hamilton functional

H(Ψ ) = 1

2

∫
Rn

(|π |2 + |∇ψ |2 + m2|ψ |2)dnx + U
(〈ρ,ψ〉), Ψ =

[
ψ(x)

π(x)

]
. (1.4)

We assume that the potential U(z) is U(1)-invariant, where U(1) stands for the unitary group eiθ , θ ∈ R mod 2π .
Namely, we assume that there exists u ∈ C2(R) such that

U(z) = u
(|z|2), z ∈ C. (1.5)

Relations (1.3) and (1.5) imply that

F(z) = α
(|z|2)z, z ∈ C, (1.6)
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where α(·) = −2u′(·) ∈ C1(R) is real-valued. Therefore,

F
(
eiθ z

) = eiθF (z), θ ∈ R, z ∈ C. (1.7)

Due to the U(1)-invariance, the Nöther theorem formally implies that the functional

Q(Ψ ) = i

2

∫
Rn

(ψ̄π − π̄ψ)dnx, Ψ =
[

ψ(x)

π(x)

]
, (1.8)

is conserved for solutions Ψ (t) to (1.2).
We introduce the phase space of finite energy states for Eq. (1.2). Denote by ‖·‖L2 the norm in L2(Rn). Let

Hs(Rn), s ∈ R, be the Sobolev space with the norm

‖ψ‖Hs = ∥∥(
m2 − �

)s/2
ψ

∥∥
L2 . (1.9)

For s ∈ R and R > 0, denote by Hs
0 (Bn

R) the space of distributions from Hs(Rn) supported in B
n
R (the ball of radius

R in R
n). We denote by ‖ · ‖Hs,R the norm in the space Hs(Bn

R) which is defined as the dual to H−s
0 (Bn

R).

Definition 1.1.

(i) E = H 1(Rn) ⊕ L2(Rn) is the Hilbert space of states Ψ = [ ψ(x)

π(x)

]
, with the norm

‖Ψ ‖2
E = ‖π‖2

L2 + ‖∇ψ‖2
L2 + m2‖ψ‖2

L2 = ‖π‖2
L2 + ‖ψ‖2

H 1 . (1.10)

(ii) For ε � 0, introduce the Banach spaces E−ε = H 1−ε(Rn) ⊕ H−ε(Rn) with the norm defined by

‖Ψ ‖2
E−ε = ∥∥(

m2 − �
)−ε/2

Ψ
∥∥2

E
= ‖π‖2

H−ε + ‖ψ‖2
H 1−ε . (1.11)

(iii) Define the seminorms

‖Ψ ‖2
E−ε,R

= ‖π‖2
H−ε,R

+ ‖ψ‖2
H 1−ε,R

, R > 0, (1.12)

and denote by E−ε
loc the space of states Ψ ∈ E−ε with finite norm

‖Ψ ‖E−ε
loc

=
∞∑

R=1

2−R‖Ψ ‖E−ε,R < ∞. (1.13)

We will denote Eloc = E0
loc.

Remark 1.2. The Sobolev embedding theorem implies that the embedding E ⊂ E−ε
loc is compact for any ε > 0.

Eq. (1.2) is formally the Hamiltonian system with the phase space E and the Hamilton functional H. Both H and Q
are continuous functionals on E . We introduced into (1.9) the factor m2 > 0, so that H(Ψ ) = 1

2‖Ψ ‖2
E + U(〈ρ,ψ〉).

1.2. Global well-posedness

To have a priori estimates available for the proof of the global well-posedness, we assume that

U(z) � A − B|z|2 for z ∈ C, where A ∈ R and 0 � B <
m2

2‖ρ‖2
L2

. (1.14)

Theorem 1.3. Let ρ ∈ S(Rn), and let F(z) satisfy conditions (1.3), (1.5), and (1.14). Then:

(i) For every Ψ0 ∈ E the Cauchy problem (1.2) has a unique solution Ψ ∈ C(R,E).
(ii) The map W(t) : Ψ0 �→ Ψ (t) is continuous in E and Eloc for each t ∈ R.

(iii) The values of the energy and charge functionals are conserved:

H
(
Ψ (t)

) = H(Ψ0), Q
(
Ψ (t)

) = Q(Ψ0), t ∈ R. (1.15)
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(iv) The following a priori bound holds:∥∥Ψ (t)
∥∥

E � C(Ψ0) < ∞, t ∈ R. (1.16)

(v) For any ε � 0, the map W(t) : Ψ0 �→ Ψ (t) is continuous in E−ε and E−ε
loc uniformly in t ∈ [−T ,T ], for any

T > 0.

We sketch the proof of this theorem in Appendix A.

1.3. Solitary waves

Definition 1.4.

(i) The solitary waves of Eq. (1.1) are solutions of the form

ψ(x, t) = φω(x)e−iωt , where ω ∈ R, φω(x) ∈ H 1(
R

n
)
. (1.17)

(ii) The solitary manifold is the set S = {(φω,−iωφω): ω ∈ R}, where φω are the amplitudes of solitary waves.

Identity (1.7) implies that the set S is invariant under multiplication by eiθ , θ ∈ R. Let us note that since F(0) = 0
by (1.6), for any ω ∈ R there is a zero solitary wave, φω(x) ≡ 0.

Define

Σ(x,ω) = Fξ→x

[
ρ̂(ξ)

ξ2 + m2 − ω2

]
, ω ∈ C

+ ∪ (−m,m), (1.18)

where C
+ = {ω ∈ C: Imω > 0}. Note that Σ(·,ω) is an analytic function of ω ∈ C

+ with the values in S(Rn). Since
|Σ(x,ω)| � const | Imω|−1 for ω ∈ C

+, we can extend for any x ∈ R
n the function Σ(x,ω) to the entire real line

ω ∈ R as a boundary trace:

Σ(x,ω) = lim
ε→0+Σ(x,ω + iε), ω ∈ R, (1.19)

where the limit holds in the sense of tempered distributions.

Proposition 1.5 (Existence of solitary waves). Assume that F(z) satisfies (1.7), and that ρ ∈ S(Rn), ρ �≡ 0. There
may only be nonzero solitary wave solutions to (1.2) for ω ∈ [−m,m] ∪ Zρ , where

Zρ = {
ω ∈ R\[−m,m]: ρ̂(ξ) = 0 for all ξ ∈ R

n such that m2 + ξ2 = ω2}. (1.20)

The profiles of solitary waves are given by

φ̂ω(ξ) = cρ̂(ξ)

ξ2 + m2 − ω2
,

where c ∈ C, c �= 0 is a root of the equation

σ(ω)α
(|c|2∣∣σ(ω)

∣∣2) = 1, (1.21)

where α is defined in (1.6) and

σ(ω) = 〈
ρ,Σ(·,ω)

〉 = 1

(2π)n

∫
Rn

|ρ̂(ξ)|2
ξ2 + m2 − (ω + i0)2

dnξ. (1.22)

The existence of such a root is a necessary condition for the existence of nonzero solitary waves (1.17).
The condition (1.21) is also sufficient for n � 5 and for |ω| �= m, n � 1.
For |ω| = m, n � 4, the following additional condition is needed for sufficiency:∫

Rn

|ρ̂(ξ)|2
ξ4

dnξ < ∞. (1.23)
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Remark 1.6. As follows from (1.21) and (1.22), σ(ω) is strictly positive for |ω| < m (since ρ �≡ 0) and takes finite
nonzero values for all ω that correspond to solitary waves (for n � 4, the finiteness of σ(ω) at ω = ±m follows if
(1.23) is satisfied).

Remark 1.7. One can see that generically the solitary wave manifold is two-dimensional.

Proof. Substituting the ansatz φω(x)e−iωt into (1.1) and using (1.6), we get the following equation on φω:

−ω2φω(x) = �φω(x) − m2φω(x) + ρ(x)F
(〈ρ,φω〉), x ∈ R

n. (1.24)

Therefore, all solitary waves satisfy the relation(
ξ2 + m2 − ω2)φ̂ω(ξ) = ρ̂(ξ)F

(〈ρ,φω〉). (1.25)

For ω /∈ [−m,m] ∪ Zρ the relation (1.25) leads to φω /∈ L2(Rn) (unless φω ≡ 0). We conclude that there are no
nonzero solitary waves for ω /∈ [−m,m] ∪ Zρ .

Let us consider the case ω ∈ [−m,m] ∪ Zρ . From (1.25), we see that

φ̂ω(ξ) = ρ̂(ξ)

ξ2 + m2 − ω2
F

(〈ρ,φω〉). (1.26)

Using the function Σ(x,ω) defined in (1.18), we may express φω(x) = cΣ(x,ω), with c ∈ C. Substituting this ansatz
into (1.26) and using (1.6), we can write the condition on c in the form (1.21).

For n � 4, the finiteness of the energy of solitons corresponding to ω = ±m is equivalent to the condition (1.23).
This finishes the proof of the proposition. �

1.4. The main result

Assumption A. We assume that ρ ∈ S(Rn), the set Zρ defined in (1.20) is finite, and that

σ(ω) �= 0 for ω ∈ Zρ. (1.27)

Above, σ(ω) is defined in (1.22).

Remark 1.8. Note that σ(ω) is well-defined at the points of Zρ since ρ̂||ξ |=
√

ω2−m2 ≡ 0 for ω ∈ Zρ .

As we mentioned before, we need to assume that the nonlinearity is polynomial. This assumption is crucial in
our argument: It will allow us to apply the Titchmarsh Convolution Theorem. Now all our assumptions on F can be
summarized as follows.

Assumption B. F(z) satisfies (1.3) with the polynomial potential U(z), and also satisfies (1.5) and (1.14). This can
be summarized as the following assumption on U(z):

U(z) =
p∑

n=1

un|z|2n, un ∈ R, p � 2, up > 0. (1.28)

Our main result is the following theorem.

Theorem 1.9 (Main Theorem). Assume that the coupling function ρ(x) satisfies Assumption A and that the nonlin-
earity F(z) satisfies Assumption B. Then for any Ψ0 ∈ E the solution Ψ (t) ∈ C(R,E) to the Cauchy problem (1.2)

converges to S in the space E−ε
loc , for any ε > 0:

lim
t→±∞ distE−ε

loc

(
Ψ (t),S

) = 0, (1.29)

where distE−ε
loc

(Ψ,S) := inf
s∈S

‖Ψ − s‖E−ε
loc

.
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Remark 1.10. The E−ε
loc -convergence to the attractor stated in this theorem is weaker than the Eloc-convergence proved

in [11] and [9], where we considered the Klein–Gordon field in dimension n = 1, coupled to nonlinear oscillators.

Obviously, it suffices to prove Theorem 1.9 for t → +∞.

2. Absolute continuity for large frequencies

2.1. Splitting off a dispersive component

First we split the solution ψ(x, t) into ψ(x, t) = χ(x, t) + ϕ(x, t), where χ and ϕ are defined as solutions to the
following Cauchy problems:

χ̈ (x, t) = �χ(x, t) − m2χ(x, t), (χ, χ̇)|
t=0 = Ψ0, (2.1)

ϕ̈(x, t) = �ϕ(x, t) − m2ϕ(x, t) + ρ(x)f (t), (ϕ, ϕ̇)|t=0 = (0,0), (2.2)

where Ψ0 is the initial data from (1.2), and

f (t) := F
(〈
ρ,ψ(·, t)〉). (2.3)

Note that 〈ρ,ψ(·, t)〉 belongs to Cb(R) since (ψ, ψ̇) ∈ Cb(R,E) by Theorem 1.3(iv). Hence,

f (·) ∈ Cb(R). (2.4)

On the other hand, since χ(t) is a finite energy solution to the free Klein–Gordon equation, we also have

(χ, χ̇) ∈ Cb(R,E). (2.5)

Hence, the function ϕ(t) = ψ(t) − χ(t) also satisfies

(ϕ, ϕ̇) ∈ Cb(R,E). (2.6)

The following lemma reflects the well-known energy decay for the linear Klein–Gordon equation.

Lemma 2.1. There is a local decay of χ in the Eloc seminorms. That is, ∀R > 0,∥∥(
χ(t), χ̇(t)

)∥∥
E ,R

→ 0, t → ∞. (2.7)

2.2. Complex Fourier–Laplace transform

Let us analyze the complex Fourier–Laplace transform of ϕ(x, t):

ϕ̃(x,ω) = Ft→ω

[
Θ(t)ϕ(x, t)

] :=
∞∫

0

eiωtϕ(x, t) dt, ω ∈ C
+, x ∈ R

n, (2.8)

where C
+ := {z ∈ C: Im z > 0}. Due to (2.6), ϕ̃(·,ω) is an H 1-valued analytic function of ω ∈ C

+. Eq. (2.2) for ϕ

implies that

−ω2ϕ̃(x,ω) = �ϕ̃(x,ω) − m2ϕ̃(x,ω) + ρ(x)f̃ (ω), ω ∈ C
+, x ∈ R

n,

where f̃ (ω) is the Fourier–Laplace transform of f (t):

f̃ (ω) = Ft→ω

[
Θ(t)f (t)

] =
∞∫

0

eiωtf (t) dt, ω ∈ C
+.

The solution ϕ̃(x,ω) is analytic for ω ∈ C
+ and can be represented by

ϕ̃(x,ω) = Σ(x,ω)f̃ (ω), ω ∈ C
+. (2.9)
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2.3. Traces of distributions for ω ∈ R

First we remark that

Θ(t)ϕ(x, t) ∈ Cb

(
R,H 1(

R
n
))

(2.10)

by (2.6) since ϕ(x,0+) = 0 by initial conditions in (2.2). The Fourier–Laplace transform of ϕ in time,
Ft→ω[Θ(t)ϕ(·, t)], is a tempered H 1-valued distribution of ω ∈ R by (2.6). Abusing the notations, we will denote
this Fourier–Laplace transform by ϕ̃(·,ω), ω ∈ R; it is the boundary value of the analytic function ϕ̃(·,ω), ω ∈ C+,
defined in (2.8):

ϕ̃(·,ω) = lim
ε→0+ ϕ̃(·,ω + iε), ω ∈ R, (2.11)

where the convergence is in the space of H 1-valued tempered distributions of ω, S′(R,H 1(Rn)). Indeed,

ϕ̃(·,ω + iε) = Ft→ω

[
Θ(t)ϕ(·, t)e−εt

]
,

while Θ(t)ϕ(·, t)e−εt −→
ε→0+Θ(t)ϕ(·, t), with the convergence taking place in S′(R,H 1(Rn)) which is the space of

H 1-valued tempered distributions of t ∈ R. Therefore, (2.11) holds by the continuity of the Fourier transform Ft→ω

in S′(R). Similarly to (2.11), the distribution f̃ (ω) for ω ∈ R is the boundary value of the analytic in C
+ function

f̃ (ω), ω ∈ C
+:

f̃ (ω) = lim
ε→0+ f̃ (ω + iε), ω ∈ R, (2.12)

since the function Θ(t)f (t) is bounded. The convergence holds in the space of tempered distributions S′(R).
Let us justify that the representation (2.9) for ϕ̃(x,ω) is also valid when ω ∈ R, ω �= ±m, if the multiplication in

(2.9) is understood in the sense of distributions.

Proposition 2.2. For any fixed x ∈ R
n, Σ(x,ω), ω ∈ R\{±m}, is a smooth function, and the relation

ϕ̃(x,ω) = Σ(x,ω)f̃ (ω), x ∈ R
n, ω ∈ R\{±m}, (2.13)

holds in the sense of distributions.

Proof. Due to ρ(x) being from Schwartz class, the function Σ(x,ω) defined in (1.18), (1.19) is smooth away from
ω = ±m, and hence is a multiplicator in the space of distributions of ω, ω �= ±m. Now the relation (2.13) follows
from (2.9) and the limits (2.11) and (2.12). �
2.4. Absolutely continuous spectrum

Let k(ω) denote the branch of
√

ω2 − m2 such that Im
√

ω2 − m2 � 0 for ω ∈ C
+:

k(ω) =
√

ω2 − m2, Im k(ω) > 0, ω ∈ C
+. (2.14)

Then k(ω) is analytic for ω ∈ C
+. We extend it to ω ∈ C+ by continuity.

Proposition 2.3. The distribution f̃ (ω + i0), ω ∈ R, is absolutely continuous for |ω| > m and satisfies∫
|ω|>m

∣∣f̃ (ω)
∣∣2

M(ω)dω < ∞, (2.15)

where M(ω) = 1
ω2 R(|k(ω)|), R(η) = 1

(2π)n

∫
|ξ |=η

|ρ̂(ξ)|2 dn−1Sξ , η > 0.

Remark 2.4. The function M(ω), |ω| > m, is nonnegative, and its set of zeros coincides with Zρ defined in (1.20).

Remark 2.5. Recall that f̃ (ω), ω ∈ R, is defined by (2.12) as the trace distribution: f̃ (ω) = f̃ (ω + i0).
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Proof. We will prove that for any compact interval I such that I ∩ ([−m,m] ∪ Zρ) = ∅ the following inequality
holds:∫

I

∣∣f̃ (ω)
∣∣2

M(ω)dω � C, (2.16)

for some constant C > 0 which does not depend on I . Since there is a finite number of connected components of
R\([−m,m] ∪ Zρ), this will finish the proof of the proposition. Let us prove (2.16). The Parseval identity applied to

ϕ̃(x,ω + iε) =
∞∫

0

ϕ(x, t)eiωt−εt dt, ω ∈ R, ε > 0,

leads to

∫
R

∥∥ϕ̃(·,ω + iε)
∥∥2

L2 dω = 2π

∞∫
0

∥∥ϕ(·, t)∥∥2
L2e

−2εt dt.

Since supt�0 ‖ϕ(·, t)‖L2 < ∞ by (2.6), we may bound the right-hand side by C1/ε, with some C1 > 0. Taking into
account (2.9), we arrive at the key inequality∫

R

∣∣f̃ (ω + iε)
∣∣2∥∥Σ(·,ω + iε)

∥∥2
L2 dω � C1

ε
. (2.17)

Lemma 2.6. Assume that I is a compact interval such that I ∩ ([−m,m] ∪ Zρ) = ∅. Then there exists εI > 0 such
that ∥∥Σ(·,ω + iε)

∥∥2
L2 � M(ω)

40ε
, ω ∈ I, 0 < ε � εI . (2.18)

Proof. Let us compute the L2-norm using the Fourier space representation. Since Σ̂(ξ,ω + iε) = ρ̂(ξ)

ξ2+m2−(ω+iε)2 , we
have:

∥∥Σ(·,ω + iε)
∥∥2

L2 = 1

(2π)n

∫
Rn

|ρ̂(ξ)2|dnξ

|ξ2 + m2 − (ω + iε)2|2 =
∞∫

0

R(η) dη

|η2 + m2 − (ω + iε)2|2 . (2.19)

Let KI be given by

KI = {
η > 0: η2 = ω2 − m2, ω ∈ I

}
. (2.20)

We denote

ηω = ∣∣k(ω)
∣∣ ∈ KI . (2.21)

Since the function R(η) is smooth and strictly positive on KI , there exists εI > 0, satisfying

εI < min

(
m,

1

2
|KI |

)
, (2.22)

so that R(η2) � 1
2R(η1), for all η1, η2 ∈ KI such that |η2 − η1| < εI . Hence, (2.19) yields

∥∥Σ(·,ω + iε)
∥∥2

L2 � R(ηω)

2

∫
KI ∩[ηω−ε,ηω+ε]

dη

|η2 + m2 − (ω + iε)2|2 , 0 < ε � εI . (2.23)

Estimating the integral in the right-hand side of (2.23) via the inequality

inf
1

2 2 2 2
= 1

2 2 2 2
� 1

2 2
,
|η−ηω|�ε |η + m − (ω + iε) | (2ηωε + 2ε ) + 4ω ε 20ε ω
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where we took into account that η2
ω = ω2 − m2 and ε � εI < m < |ω|, we arrive at

∥∥Σ(·,ω + iε)
∥∥2

L2 � R(ηω)

40ε2ω2

∣∣KI ∩ [ηω − ε, ηω + ε]∣∣ � R(ηω)

40εω2
, ω ∈ I, 0 < ε � εI . (2.24)

The last inequality follows since by (2.21) and (2.22) either [ηω − ε, ηω] ⊂ KI or [ηω,ηω + ε] ⊂ KI or both. �
Substituting (2.18) into (2.17), we obtain the bound∫

I

∣∣f̃ (ω + iε)
∣∣2

M(ω)dω � 40C1, 0 < ε � εI . (2.25)

We conclude that the set of functions gI,ε(ω) = f̃ (ω + iε)
√

M(ω), 0 < ε � εI , defined for ω ∈ I , is bounded in the
Hilbert space L2(I ), and, by the Banach Theorem, is weakly compact. The convergence of the distributions (2.12)

implies the weak convergence gI,ε −−⇁
ε→0+

gI in the Hilbert space L2(I ). The limit function gI (ω) coincides with the

distribution f̃ (ω)
√

M(ω) restricted onto I . This proves the bound (2.16) and finishes the proof of the proposition. �
3. Nonlinear spectral analysis of omega-limit trajectories

3.1. Compactness argument and omega-limit trajectories

Fix Ψ0 = (ψ0,π0) ∈ E , and let ψ ∈ C(R,H 1(Rn)) be the solution to the Cauchy problem (1.1) with the initial data
(ψ, ψ̇)|t=0 = Ψ0. Let tj > 0, j ∈ N be a sequence such that tj → ∞.

Since (ψ, ψ̇)|tj are bounded in E , we can pick a subsequence of {tj }, also denoted {tj }, such that

(ψ, ψ̇)|tj −−−→
j→∞ B0 in E−ε

loc , for any ε > 0, (3.1)

where B0 is some vector from E (see Remark 1.2). By Theorem 1.3, there is a solution β(x, t) ∈ C(R,H 1(Rn)) to
(1.1) with the initial data (β, β̇)|t=0 = B0 ∈ E :

β̈(x, t) = �β(x, t) − m2β(x, t) + ρ(x)F
(〈ρ,β〉), x ∈ R

n, t ∈ R; (β, β̇)|t=0 = B0 ∈ E; (3.2)

this solution satisfies the bound

sup
t∈R

∥∥(
β(·, t), β̇(·, t))∥∥

E
< ∞. (3.3)

Let Sτ be the time shift operators, Sτf (t) = f (t + τ). By (3.1) and Theorem 1.3(v), for any T > 0 and ε > 0, there
is the convergence

Stj (ψ, ψ̇) −−−→
j→∞ (β, β̇) in Cb

([−T ,T ],E−ε
loc

)
. (3.4)

If a function β(x, t) appears as the limit in (3.4) for some sequence tj → ∞, we will call it omega-limit trajectory.
To conclude the proof of Theorem 1.9, it suffices to check that every omega-limit trajectory belongs to the set of

solitary waves; that is,

β(x, t) = φω+(x)e−iω+t , x ∈ R
n, t ∈ R, (3.5)

with some ω+ ∈ R.

3.2. Compactness of the spectrum

We denote g(t) = F(〈ρ,β(·, t)〉).

Proposition 3.1. supp g̃ ⊂ [−m,m] ∪ Zρ , where Zρ is defined in (1.20).
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Proof. By Lemma 2.1,∥∥(χ, χ̇)|t
∥∥

Eloc
−−−−→
t→∞ 0, (3.6)

hence the long-time asymptotics of the solution ψ(x, t) in Eloc depends only on the singular component ϕ(x, t). The
convergence (3.4), together with (3.6), prove that for any T > 0 and ε > 0,

Stj (ϕ, ϕ̇) −−−→
j→∞ (β, β̇), in Cb

([−T ,T ],E−ε
loc

)
. (3.7)

The convergence (3.7) implies that, for any smooth compactly supported function α(x), there is a convergence

〈
α,ϕ(·, t + tj )

〉 S′−−−→
j→∞

〈
α,β(·, t)〉.

Due to the continuity of the Fourier transform from S′(R) into itself, we also have

ζ(ω)
〈
α, ϕ̃(·,ω)

〉
e−iωtj S′−−−−→

j→∞ ζ(ω)
〈
α, β̃(·,ω)

〉
, (3.8)

where ζ(ω) is a smooth compactly supported function. Assume that supp ζ ∩ ([−m,m] ∪ Zρ) = ∅. Then, by Proposi-
tion 2.2, we may substitute ζ(ω)ϕ̃(x,ω) by ζ(ω)Σ(x,ω)f̃ (ω), getting

ζ(ω)
〈
α,Σ(·,ω)

〉
f̃ (ω)e−iωtj S′−−−→

j→∞ ζ(ω)
〈
α, β̃(·,ω)

〉
. (3.9)

Since f̃ is locally L2 on R\([−m,m] ∪ Zρ) by Proposition 2.3, while Σ(x,ω) is smooth in ω ∈ R\{±m} for any
x ∈ R

n, the product ζ(ω)〈α,Σ(·,ω)〉f̃ (ω) is in L1(R). Therefore the left-hand side of (3.9) converges to zero. It
follows that β̃(x,ω) ≡ 0 for ω /∈ [−m,m] ∪ Zρ . �
3.3. Spectral inclusion

Proposition 3.2. supp g̃ ⊂ supp〈ρ, β̃(·,ω)〉.

This proposition states that the time spectrum of g(t) = F(〈ρ,β(·, t)〉) is included in the time spectrum of
〈ρ,β(·, t)〉. This spectral inclusion plays the key role in the proof of our main result (Theorem 1.9).

Proof. By (3.7),

f (t + tj ) = F
(〈

ρ,ϕ(·, t + tj )
〉)Cb

([−T ,T ])−−−−−→
j→∞ F

(〈
ρ,β(·, t)〉) = g(t),

for any T > 0. Using (2.13) and taking into account that Σ(x,ω) is smooth for ω �= ±m, we obtain the following
relation which holds in the sense of distributions:

β̃(x,ω) = Σ(x,ω)g̃(ω), x ∈ R
n, ω ∈ R\{±m}. (3.10)

Taking the pairing of (3.10) with ρ and using definition of σ(ω) (see (1.22)), we get:〈
ρ, β̃(·,ω)

〉 = σ(ω)g̃(ω), ω ∈ R\{±m}. (3.11)

First we prove Proposition 3.2 modulo the set ω = {±m}.

Lemma 3.3. supp g̃\{±m} ⊂ supp〈ρ, β̃(·,ω)〉.

Proof. By Proposition 3.1, supp g̃ ⊂ [−m,m] ∪ Zρ . Thus, the statement of the lemma follows from (3.11) and from
noticing that σ(ω) is smooth and positive for ω ∈ (−m,m) and moreover, by Assumption A, it is nonzero on Zρ . �

To finish the proof of Proposition 3.2, it remains to consider the contribution of ω = ±m.

Lemma 3.4. If ω0 = ±m belongs to supp g̃, then ω0 ∈ supp〈ρ, β̃〉.
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Proof. In the case when ω0 = ±m is not an isolated point in [−m,m] ∩ supp g̃, we use (3.11) to conclude that
ω0 ∈ supp〈ρ, β̃〉 due to positivity of σ(ω) for |ω| < m (which is apparent from (1.22)).

We are left to consider the case when ω0 = m or −m is an isolated point in [−m,m] ∩ supp g̃. We can pick an open
neighbourhood U of ω0 such that U ∩ supp g̃ = {ω0} since supp g̃ ∈ [−m,m] ∪Zρ and Zρ is a discrete finite set. Pick
ζ ∈ C∞

0 (R), supp ζ ⊂ U , such that ζ(ω0) = 1. First we note that

ζ(ω)g̃(ω) = Mδ(ω − ω0), M ∈ C\{0}, (3.12)

where the derivatives of the δ(ω −ω0) are prohibited because ζ̌ ∗ g(t) is bounded. By (3.10), we have U ∩ suppω β̃ ⊂
{ω0}, hence

ζ(ω)β̃(x,ω) = δ(ω − ω0)b(x), b ∈ H 1(
R

n
)
. (3.13)

Again, the terms with the derivatives of δ(ω − ω0) are prohibited because 〈α, ζ̌ ∗ β(·, t)〉 are bounded for any
α ∈ C∞

0 (Rn), while the inclusion b(x) ∈ H 1(Rn) is due to β̃ ∈ S′(R,H 1(Rn)).
Multiplying the Fourier transform of (3.2) by ζ(ω) and taking into account (3.12), (3.13), and the relation ω2

0 = m2,
we see that the distribution b(x) satisfies the equation

0 = �b(x) + Mρ(x). (3.14)

Therefore, b(x) �≡ 0 due to M �= 0 and ρ(x) �≡ 0. Coupling (3.13) with ρ and using (3.14), we get:

ζ(ω)
〈
ρ, β̃(·,ω)

〉 = δ(ω − ω0)〈ρ,b〉 = −δ(ω − ω0)
〈�b,b〉

M
�= 0, (3.15)

since b ∈ H 1(Rn) is nonzero. This finishes the proof of Lemma 3.4. �
Lemmas 3.3 and 3.4 allow us to conclude that supp g̃(ω) ⊂ supp〈ρ, β̃(·,ω)〉, finishing the proof of Proposi-

tion 3.2. �
3.4. The Titchmarsh argument

Finally, we reduce the spectrum of γ (t) to one point using the spectral inclusion from Proposition 3.2 and the
Titchmarsh Convolution Theorem.

Lemma 3.5. 〈ρ,β(·, t)〉 = 0 or supp〈ρ, β̃(·,ω)〉 = {ω+}, for some ω+ ∈ [−m,m] ∪ Zρ .

Proof. Denote

γ (t) = 〈
ρ,β(·, t)〉. (3.16)

By (1.28), g(t) := F(γ (t)) = −∑p

n=1 2nun|γ (t)|2n−2γ (t). Then, by the Titchmarsh Convolution Theorem,

sup supp g̃ = max
n∈{n�p,un �=0}

sup supp ( ˜̄γ ∗ γ̃ ) ∗ . . . ∗ ( ˜̄γ ∗ γ̃ )︸ ︷︷ ︸
n−1

∗γ̃ = p sup supp γ̃ + (p − 1) sup supp ˜̄γ . (3.17)

Remark 3.6. The Titchmarsh Convolution Theorem applies because supp γ̃ ⊂ [−m,m] ∪ Zρ , and hence is compact.

Noting that sup supp ˜̄γ = − inf supp γ̃ , we rewrite (3.17) as

sup supp g̃ = sup γ̃ + (p − 1)(sup supp γ̃ − inf supp γ̃ ). (3.18)

Taking into account Proposition 3.2 and (3.18), we get the following relation:

sup supp γ̃ � sup supp g̃ = sup supp γ̃ + (p − 1)(sup supp γ̃ − inf supp γ̃ ). (3.19)

This is only possible if supp γ̃ ⊂ {ω+}, for some ω+ ∈ [−m,m] ∪ Zρ . �
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3.5. Conclusion of the proof of Theorem 1.9

We need to prove (3.5). As follows from Lemma 3.5, γ̃ (ω) is a finite linear combination of δ(ω − ω+) and
its derivatives. As the matter of fact, the derivatives could not be present because of the boundedness of γ (t) :=
〈ρ,β(·, t)〉 that follows from (3.3). Therefore, γ̃ = 2πCδ(ω − ω+), with some C ∈ C. This implies the following
identity:

γ (t) = Ce−iω+t , C ∈ C, t ∈ R. (3.20)

It follows that g̃(ω) = 2πCδ(ω − ω+), C ∈ C, and the representation (3.10) implies that β(x, t) = β(x,0)e−iω+t .
Due to Eq. (3.2) and the bound (3.3), β(x, t) is a solitary wave solution. This completes the proof of Theorem 1.9.

4. Multifrequency solutions

Now we consider the situation when Assumption A is violated. In this case, we show that there could exist multi-
frequency solutions, indicating that the set of all (one-frequency) solitary waves is only a proper subset of the global
attractor.

Fix ω1 ∈ (m,3m). Set ω0 = ω1/3 and pick ρ ∈ S(Rn) such that the following conditions are satisfied:

ρ̂|
|ξ |=

√
ω2

1−m2
= 0, (4.1)

σ(ω1) := 1

(2π)n

∫
Rn

|ρ̂(ξ)|2 dnξ

ξ2 + m2 − ω2
1

= 0. (4.2)

These two equalities imply that σ(ω) vanishes at a certain point of Zρ , violating Assumption A.

Lemma 4.1. There exist a ∈ R, b < 0 so that Eq. (1.1) with the nonlinearity

F(z) = az + b|z|2z, z ∈ C,

admits multifrequency solutions ψ ∈ C(R,H 1) of the form

ψ(x, t) = φ0(x) sinω0t + φ1(x) sinω1t, ω0 = ω1

3
, φ0, φ1 ∈ H 1(

R
n
)
,

with both φ0 and φ1 nonzero.

Proof. To make sure that the nonlinearity does not produce higher frequencies, we assume that

〈ρ,φ1〉 = 0. (4.3)

Due to this assumption,

F
(〈ρ,ψ〉) = F

(〈ρ,φ0〉 sinω0t
) = a〈ρ,φ0〉 sinω0t + b〈ρ,φ0〉3 3 sinω0t − sin 3ω0t

4
.

Collecting the terms with the factors of sinω0t and sinω1t = sin 3ω0t , we rewrite the equation ψ̈ = �ψ − m2ψ +
ρF(〈ρ,ψ〉) as two following equalities:

−ω2
0φ0 = �φ0 − m2φ0 + ρ(x)

(
a〈ρ,φ0〉 + 3b〈ρ,φ0〉3

4

)
, (4.4)

−ω2
1φ1 = �φ1 − m2φ1 − ρ(x)

b〈ρ,φ0〉3

4
. (4.5)

We define φ0(x) by φ̂0(ξ) = ρ̂(ξ)/(ξ2 + m2 − ω2
0). Since m2 −ω2

0 > 0, there is the inclusion φ1 ∈ H 1(Rn). Moreover,

〈ρ,φ0〉 = 1

(2π)n

∫
n

|ρ(ξ)|2 dnξ

ξ2 + m2 − ω2
0

= σ(ω0) > 0,
R
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due to strict positivity of σ(ω) for |ω| < m (see (1.22)). Hence, for any b (we take b < 0 to comply with Assump-
tion B), we may pick a such that (4.4) is satisfied. We then use (4.5) to define the function φ1(x) by

φ̂1(ξ) = −b〈ρ,φ0〉3

4

ρ̂(ξ)

ξ2 + m2 − ω2
1

= −bσ(ω0)
3

4

ρ̂(ξ)

ξ2 + m2 − ω2
1

.

Due to (4.1), φ1 ∈ H 1(Rn). We are left to check that φ0 satisfies the assumption (4.3). Indeed, due to (4.2),

〈ρ,φ1〉 = −bσ(ω0)
3

4

1

(2π)n

∫
Rn

|ρ̂(ξ)|2 dnξ

ξ2 + m2 − ω2
1

= 0. �

Appendix A. Global well-posedness

The global existence stated in Theorem 1.3 is obtained by standard arguments from the contraction mapping prin-
ciple. To achieve this, we use the integral representation for the solutions to the Cauchy problem (1.2):

Ψ (t) = W0(t)Ψ0 + Z[Ψ ](t),

Z[Ψ ](t) :=
t∫

0

W0(t − s)

[
0

ρF(〈ρ,ψ(·, s)〉)
]

ds, Ψ =
[

ψ

π

]
, t � 0. (A.1)

Here W0(t) is the dynamical group for the linear Klein–Gordon equation which is a unitary operator in the space E−ε

for any ε � 0. The bound∥∥Z[Ψ1](t) − Z[Ψ2](t)
∥∥

E−ε � C|t | sup
s∈[0,t]

∥∥Ψ1(s) − Ψ2(s)
∥∥

E−ε , C > 0, |t | � 1, ε � 0, (A.2)

which holds for any two functions Ψ1, Ψ2 ∈ C(R,E), shows that Z[ψ] is a contraction operator in C([0, t],E−ε),
ε � 0, if t > 0 is sufficiently small.

The contraction mapping theorem based on the bound (A.2) on the nonlinear term allows us to prove the existence
and uniqueness of a local solution in E , as well as the continuity of the map W(t) (continuity with respect to the initial
data). The continuity of W(t) in Eloc follows from its continuity in E and the finite speed of propagation.

The conservation of the values of the energy and charge functionals, H and Q, is obtained by approximating
the initial data in E with smooth initial data and using the continuity of W(t) in E . For the proof of the a priori
bound (1.16), we use (1.14) to bound ‖Ψ ‖E in terms of the value of the Hamiltonian:

‖Ψ ‖2
E � 2m2

m2 − 2B‖ρ‖2
L2

(
H(Ψ ) − A

)
, Ψ ∈ E . (A.3)

This bound allows us to extend the existence results for all times, proving the global well-posedness of (1.2) in the
energy space.

Finally, the continuity of W(t) in E−ε and E−ε
loc , ε � 0, follows from the contraction mapping theorem (based

on (A.2)) and the finite speed of propagation.
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