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Abstract

We apply the variational method and the blow-up analysis to the self-dual Chern—Simons—Higgs vortex equation on a flat torus to
obtain two solutions for certain values of the Chern—Simons constant. As the corresponding Chern—Simons constant tends to zero,
one of corresponding solutions converges to zero and the other blows up at only one point in the sense of Brezis—Merle provided
that the total number of vortex is greater than 2. Further, the below-up solution is of spike type and becomes a critical point of J
when the total number of vortex is greater than 3. As a consequence, we show the existence of the third solution for some periodic
configuration of vortices and some Chern—Simons constant.
© 2007 Elsevier Masson SAS. All rights reserved.

Résumé

Nous nous appliquons la méthode variationnelle et 1’analyse d’explosion a I’équation auto-duale de vortex de Chern—Simons—
Higgs sur un tore plat pour obtenir deux solutions pour certaines valeurs de la constante de Chern—Simons. Lorsque la constante
correspondante de Chern—Simons tend vers zéro, une des solutions correspondantes converge vers zéro et I’autre solution explose
en seulement un point dans le sens de Brezis—Merle a condition que le nombre de vortex total soit plus grand que 2. De plus,
I’explosion est de type “pic” et, quand le nombre de vortex total est plus grand que 3, la solution est un point critique de J:‘ . Nous
en déduisons 1’existence d’une troisiéme solution pour une certaine configuration périodique des vortex et une certaine constante
de Chern—Simons.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The Chern—Simons—Higgs model is a (2 4+ 1) dimensional gauge model and it was proposed in [19,20] in an
attempt to explain the superconductivity of type II. Unlike the Abelian—Higgs (or Ginzburg—Landau) model, the
Chern—Simons—Higgs model admits vortices which is charged both electrically and magnetically and is known to
have two different type of solutions (see, for instance, [6,14,28] and references therein). Hence it has been studied
actively in the mathematical literature(see [5,29,32] and references therein).

The self-dual Chern—Simons—Higgs vortex equation on a flat 2-torus §2 can be written as follows;

k
1 .
Au:e—ze”(e“—l)+z4nmj8pj in 2. (L.1)
j=1
Here, 2¢ > 0 is the Chern—Simons constant, m; € N, p; € £2,and j =1, ..., k. The solution u of (1.1) is often called
a vortex solution and each p; (j =1,...,k) is called a vortex point and m ; the multiplicity of p;. The vortex points

are related to the (local) maximum point of the magnetic flux in the Chern—Simons—Higgs model.
Meanwhile, (1.1) can be thought as a formal perturbation of the mean field equation. Indeed, if we let w = u —21ne
then (1.1) can be rewritten as

k
Aw=—e"(1 _Ezew)+24nmjapj in Q2. (1.2)
j=1
If € =0, (1.2) becomes the mean field equation. Indeed, when k = m| = 1, it was proved by Tarantello [28] that (1.2)
admits a family of solutions converging to a solution of the mean field equation as € tends to zero.
Denoting N = Zl;=1 m j and introducing v =u — uy,

d 4 N
AL¢0=Z4mnj3pj—ﬁ in 2, /uodsz,
Jj=1 o
we can equivalently write (1.1) in a more favorable form as follows;
1 uo+v ( ,up+v 4n N :
Av:€_2€ 0 (e 0 —1)+W 1mn Q (13)

A solution v of (1.3) is called of finite energy if v belongs to H'. Indeed, it is well known that the corresponding
physical energy of the solution v is finite if v € H' [5,29,32]. Thus, solutions of finite energy are indeed physically
meaningful in (1.3) and has been sought in the literature. It was first proved in [5] that there is a critical number
€0 = €o(mj, p;) > 0 such that if € < ¢ then (1.3) admits a H' solution, and if € > € then (1.3) admits no H'
solution. This phenomenon is called a vortex confinement and it also appears in the Abelian—Higgs model [30]. Later,
in [28], Tarantello showed that when € < ¢, there exist at least two H! solutions to (1.3). This multiplicity result
was physically unexpected since the possible H'! solutions of (1.3) have the same physical energy as well as the same
distribution of vortex provided that the configurations of m j and p; (j =1, ..., k) are the same. We remind that such
multiplicity does not happen in the Abelian—Higgs model by the uniqueness [30]. After that, naturally, the asymptotic
behavior of the multiple solutions has been studied on a torus as € tends to 0 [24,25,28].

There are now many existence results for H'-solutions of (1.3). By using the super-subsolution method, Caffarelli
and Yang [5] constructed a maximal solution v in the sense that if v is another solution then v < v. Asymptotics for
maximal solutions was obtained in [16—18]. It was also pointed out in [5,14,15,24,25,28] that (1.3) admits a variational
structure: every solution of (1.3) is a critical point of the associated functional

1 1 ) 47N
F.(v) = §||Vv||iz(9) + 2—62/(e“0+“ —1)7dx + W/vdx, ve H(2).
2

Moreover, if we decompose in (1.3)

1
v=w+ec, c:—/vdx,
[$2]
Q
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we get the following quadratic equation

e / Q2H0T2W gy o€ / Mt gy + Ar Ne? =0,
Q Q
which implies that

2
wGASE{wGHl(.Q) ‘ /wdx:O, (/e“0+wdx> —16nN62/e2“0+2wc1x>0}.
2 2 2

Thus we may have two different variational formulations:
For w € A, define a constant c1 (w) by

S et dx £\ [([o e dx)2 — 167 Ne2 [ et dx

cx(w) — 1.4
e zfg e2uo+2w gy ’ ( )
so that
+ 42| 2
Fe(w ~|—ci(w)) =J7(w)+ 52~ 2mr N ~|—47TN11’1(87TN6 ),
€
where
1 4 N
Jf(w)=—IIVw||§—4nN1nfe"°+“’dx— il —4nNIn(1F V1 - e2Bw)),
2 J 1E/1—€e2B(w)

2
B(w) = 1671N/62“°+2w dx/(fe”°+w dx) .
2 2

Once we find a critical point w4 € A¢ of Jei then w4 + ¢4 (w4) is a solution of (1.3). In particular, if w€ is an interior
infimum of J; then w€ + ¢ (w€) is a local minimum of F,. If w€ is an interior infimum of J_~, then w€ + c_(w¢)
is a saddle point of F¢. See [5,15,24,25,28] for details. The merit of this variational formulation is in analyzing the
asymptotic behavior of solutions. In fact, in the case of N =1, the Moser—Trudinger inequality enables us to find
two interior infimum w§ € A, for € > 0 sufficiently small [5,28]. Moreover, in this case, w¢ is uniformly bounded
in H' [28], and consequently, along a subsequence, 1o + w converges to a solution of the mean field equation as
€ — +0. It is also proved in [15,24,25] that if N = 2, both Jj and J_ attain global minimizers in the interior of Ae.
For this case, convergence to the solution of the mean field equation is not known [24,25].

For the case N > 3, it was proved in [14] by the heat flow method that for € > O sufficiently small, (1.3) admits
at least two solutions v; ¢ and vy ¢ such that v; ¢ — —up and up + v — —o0 pointwisely almost everywhere as
€ — 0. However, asymptotics for solutions of (1.3) are not completely known for N > 2. We refer to [9,25] for this
topic.

In this paper, we consider asymptotics of solutions of (1.1) when N > 3. We construct two kinds of solutions for
(1.1) by the variational method for some values of Chern—Simons constant. One kind of solutions converges to 0 as €
tends to zero. This solutions become the maximal solutions when ¢ is small enough. The other kind of solutions blows
up at a single point in the sense of Brezis—Merle as € tends to zero. In particular, the blow-up solution we find is of
spike type, that is, the maximum values of the exponential of the solutions remain bounded and the solutions converge
to zero except the maximum point as the Chern—Simons constant tends to zero. Similar kind of spike solutions has
been dealt with in the different area (see, for example [3,23,31] and references therein). Furthermore, when N > 3,
it turns out that the blow-up solution is a critical point of the functional J:. It is well known [28] that, for € > 0
sufficiently small, the maximal solution is a critical point of J;. Therefore, it indicates that when N > 3, J.© may
have more than one critical point and the structure of the solution space of (1.3) might be complicated. As a corollary
of our main theorem, in the case that the distribution of the vortex points are periodic in a torus, we can show that
there are solutions blowing up at several points in the sense of Brezis—Merle. Moreover, if the vortex points are
distributed periodically with multiplicity 1 or 2, we show that there are at least three solutions for certain values of the
Chern—Simons constant. In this respect, under the periodic distribution of single vortex, (1.1) shows all possibilities
of Brezis—Merle type alternatives.
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This paper is organized as follows. In Section 2, we find solutions for (1.3) for certain values of € by variational
method. In Section 3, we present our main result, the asymptotics as € — O of the solutions we find using the results
in Section 4. In Section 4, we develop typical blow-up alternatives for (1.2) following [1,2,4,24,25], which is used in
Section 3.

2. Existence

Throughout this paper, we fix some notations and definitions. We let Z = {p1, ..., px} C §2 the set of vortex
points, m ; the multiplicities of the vortex points p;, N = jmj = 1 as before. We also let G the Green function for
£2 satisfying

—AyG(x,y) =6y — x,y€e 2, and /G(x,y)dx:O
Q

1
121"

and y(x,y) = G(x,y) + %ln|x — y| be the regular part of the Green function. It is obvious that ug(x) =
— Zl;zl 4wm jG(x, p;). Finally, we denote

Hl = {veHl(Q)‘fvdxzo},
2

1
J(v) = E||Vv||§ —4nN1n/e“0+” dx forve Hy,
2

2up+2v
Joe dx

1
W forve H (£2).

B(v) =161 N
We also present the Green representation formula for a solution v of (1.3)

v |;2—| [ vy + [ e26em(enr - )5 ay. @.1)
2 2

We note that for every v € H# , B(v) > 16z N/|§2]| by the Holder inequality. In fact, it is easy to show that, for any
t > 16w N/|$2], the set

St)={veHy | Bv) =t}

is nonempty and thus weakly closed in H,i by the Trudinger embedding theorem. Now, we borrow the following
lemma from [24,25] to proceed.

Lemma 2.1. For every v € H#1 and 0 <1 <1,

1-17 1
B = T
/ MY gy < <167(:])v) ( / To+) dx> . 2.2)
2 2

This lemma could be shown by the Holder inequality. For the sake of convenience, we denote J (¢) = infyes() J (v)
from now on.

Lemma 2.2. For any t > 16wt N /|82|, J(v) attains the infimum on S(t) and J(t) is continuous with respect to t >
167 N/|82|.
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Proof. Let v e S(¢). Taking T = 1/N in (2.2) and using the Moser—Trudinger inequality, we have

N
/eu()+v dx < CtN_l </e%(u0+v) dx)
2 2

1
<ctV! ——Ivull? ).
eXp(manl vll3

This implies that
1
J(v)>Z||Vv||%—4nN(N—l)lnt—C. (2.3)

Thus, J is coercive on S(¢) and attains the infimum on S(¢). Now let v; be a minimizer of J on S(¢). By direct
calculation,

2u0+2

[o e pdx B Jo et pdx
2up+2v +v

[ €uot2udx [ etotvdx

B'(v)p = 2B(vt)< ) forpe H'. (2.4)
Hence, B’ (v;) # 0. Choose ¢ € H'! such that B’ (v;)¢ = 1. Then, applying the implicit function theorem to the function
a+ B(v; +ag¢), we get g > 0 and

da

1 (—e&p, R, —
a:(—eo, 80) — Te

=1 (2.5)
e=0

such that B(v; + a(e)g) =t + ¢ for € € (—e&gp, £9). Thus,

J(t+e) < J(v +a(e)p) - J(v)

as ¢ — 0 by the continuity of J(v). That is, limsup,_,o J (¢t + &) < J(¢). Similar argument replacing v; with v,y
gives J(t) < liminf,_o J(t + €), which shows the continuity. O

Lemma 2.3. J(t) = —2aN(N —2)Int + O(1) for N > 2 as t — oo.

Proof. Let v e S(¢). Asin Lemma 2.2, we plug t =2/N < 1 into (2.2) to have

N
feuo—H) dx < CtNT’Z </e%(uo+v) dx) 2
2 2

<Cr'T exp Luwn% . (2.6)
8T N

Then, (2.6) implies that
JW) = -2aN(N —-2)Int —C.

We show that the growth rate —2x N(N — 2) is sharp in the above inequality. Without loss of generality, we may
assume that u( attains a maximum at the origin. Fix a constant r > 0 such that the ball B,,(0) C £2. Let x € Cgo(Rz)
be a cut-off function such that x =1 on B, (0), and x = 0 on [B3,(0)]¢. Consider the test function

0e(0) = —x @ In(lx2 + %)™, e>o0. 2.7)
It is easily checked that as ¢ — 0,

) AN?|x|?
IVeel3 = | —5——
o2 (Ix|2 + £2)2

lx|<r

1
dx +0(1) =87 N%In - + O(1),
£
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/ "0+ gy = / e o)
(x> + )N
2 |x|<r

2—-2N Lup(ey)
= / 4y +0()=Ce2 2N Lo,

(Iy?+ DV
[yl<r/e
2uq(x)
2u0+2¢¢ = 67
fe u0t2¢e gy — / (X2 +&2)2N dx +0(1)
J xi<r
/ 224N L2u(ey) dy +0(1) = Ce2~*N 4 0(1)
_ g2 4N o) =Ce ’
B+ nv @
lyl<r/e

and f_Q wedx =0(1).Let 9. = ¢, — WI‘ fg Yedx € H# . Since 0 is a maximum point of ug, we have |e”°(€y) —e”0(0)| <

Ce?|y|? for |y| < r/e and hence

Ce*N 1 0(1) 5
= Coe ™2+ 0(1).
© 2 om0 HOW

Thus, for ¢ sufficiently large, we can choose ¢ ~ /Co/t > 0 such that r = B(g,). Then

B(¢¢) = B(ps) = 167N

1

B(in)f JW) < J(@s)) L 4NN —=2)In—-+C < —2rN(N —2)Int + C
v)=t &

ast — o0. O

For a constant & > 0, we define a functional I, : H; — R by

o B()
w()=Jw)+ T (2.8)

Lemma 2.4. For each > 0, 1, is coercive in H# and there exists a global minimizer of 1,,.

Proof. Asin Lemma 2.2, we set T = 1/N in (2.2) and repeat the calculation. Then, for all v € H. 1

1 2 B(v)
[u(v)>Z||Vv||2—47rN(N—1)1nB(v)+ -C
1
>~ Vo3 inf —47N(N — D)Int] -
4|| v”2+t>16:rnN/\.Q|[(t/M) 7NN = Dnt] - C
1
>ZIIVUII%—4nN(N—1)lnu—C,

where C depends only on £ and Z. Thus /,, is bounded from below and coercive in H, . Since I,, is lower semi-
continuous, there exists a minimizer for each u > 0. O

For each u >0, letv , € H# be a minimizer of /,. By the Lagrange multiplier theorem, the variational equation
for 1, is given by

2u0+2yu g“0+yu A7 N

e 2
— {47 N+ —B(v + on £2. 29
( % (_M)> [oe" ot udx |82 29)

2uo+2v
Joe wdx

2
Ayu=;B(2M)

Lemma 2.5. B(v ) is strictly increasing with respect to |i. Furthermore, when N > 3, there exist two constants
C1, Cy > 0 depending only on 2 and Z such that C1pu < B(v,) < Cou for sufficiently large.
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Proof. First, given u| > up >0,

1 1
Ly (0,,) < Ly (0,) = Ly (0,) + (M - E)B(yﬂz)
1 1
<Ly (v, )+ (E - E)B(vM)

by the minimizing property of v ,. However,

1 1
Iy, (v Ml) IM(EMI):(E MZ)B(U ).

From this, we deduce that B(v ) is monotonically increasing with respect to . Since the equality holds only when
1, (ym) =1 (gm), the equality implies that Yy, is a minimizer of both 7, and I,,,. But then, for any ¢ € H},

/( v “2)¢
,U/2

(IMI B Iltz)(vliz)d) =0,

which is a contradiction by (2.4). Therefore, B(v,,) is strictly increasing and v, # v ,, if u1 # po.
Next, when N > 3,

Iu(v,) < inf I,(v)= inf J)+1<-27NN -2)Inpu+C
B)=p B(v)=pn

for u sufficiently large by Lemma 2.3. On the other hand, (2.6) implies that

B B B
Li(v,)=J(v,)+ (y“)>—2nN(N—2)ln< (QM))-‘F (2“)—2nN(N—2)1nu—c.
2 2 2

Consequently, it follows that

B B
B N -2 1n<ﬂ> <cC
1 1

for u sufficiently large. Then, we have C; < B(v u) /< Co for some Cq, Co > 0 from the asymptotics of the function
t—>t—2rN(N —2)Int. O

Theorem 2.1. Let N > 3, v " be a minimizer of 1, as before, and

871N( B(Q,L))_l
e=¢,= [—|2nN+ (2.10)
V' owu 0

for some u > 0. Then, there exist a solution u, € H' for (1.3) with € = €u. Furthermore, B(u ) — 00 as p — 00
and

lime¢, = lim ¢, =0.
n—0 w= H—>00 "

Proof. By Lemma 2.4 and 2.5, for any u > 0, there exists Yy satisfying (2.9). Let us define ¢, € R and u, € H'(2)

by
guo—i_y#dx B(U )
cy=1In Jo s +1n( —K ) (2.11)
[oe 0T ud 2rNpu+ B(v,)
u,=v,+cu. (2.12)

Then, by direct calculation, u, is a solution of (1.3) with € = €,. Since Cipu < B(v,,) < Cou for large enough 1 and
B(u,)=B(v,). it follows from (2.10) that

lim ¢, = lim ¢, =0, lim B(gﬂ)=oo. O
n—0 JL—> 00 JL—> 00
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It is easily checked that u , € H' is a critical point of F, with € = €y, and ¢, = (1/|.Q|)fQ u,dx. Then ¢, =
c+(yﬂ) orcy, = c,(yﬂ), where c is defined in (1.4). We will prove in Section 3 that ¢;, = c+(y“) for u sufficiently
large and N > 3, and consequently, v , is a critical point of J with e = ¢.

3. Asymptotics of the solutions

In this section, we study the asymptotic behavior of u , =v , + ¢, as u — 0 and u — oo. We first present some
preliminary facts.

Lemma 3.1. Let u € H! be a solution of (1.1). Then, u = v+ uo < 0 and

/ eize”(l — e”) =47 N.
2

The lemma is well known (see, for example, [5,29]) and can be shown simply by the maximum principle. Now, we
consider (1.1) on the whole of R? when the distribution of vortex points, Z = {0}.

Lemma 3.2. Let m be a nonnegative integer, and u be a (smooth) solution of the following equation
Au=e"(e" —1) +damdp—y in R 3.1)
If e (e" — 1) € LY(R?), either

(1) u(x) > 0as |x| — oo, or
(i) u(x) =—pPBIn|x| 4+ O(1) near oo, where

1
ﬁ:—Zm—}—E/e”(l —e“)dx.
R2

Assume that u satisfies the boundary condition (ii). Then we have

fez“ dx = (B* — 4B — 4m* —8m) and /e” dx = (B* — 2B — 4m* — 4m). 3.2)
R2 R2

In particular, fRz (1l —e")ydx > 8m (1 +m).

Proof. This lemma might be well-known. But since we cannot find its’ proof in the literature, we present the sketch
of the proof here following the argument in [12]. Since e*(e* — 1) € L'(R?), the argument of [4] implies that u is
bounded from above and u € Cjoc(R%\{0}). Moreover, by [12], u(x) = —BIn|x| + O(1) near oo for some constant
B € Rand u =2mIn|x|+ O(1) near the origin. Then it follows from the L I_condition and elliptic estimates that either
B =0 or B> 2.In the case that 8 =0, we arrive at (i) by the L'-condition. In the case that 8 > 2, we further have
Vu(x) = —,Bﬁ + 0(|x|_1) near oo by [12]. Multiplying (3.1) by x - Vu and integrating on the domain ¥ = {x | r <
|x| < R}, we obtain

1 1
/[E(x W|Vul> = (x - Vu)(v - Vi) + (x - v)(iez” - e“)} do = /(ez” —2¢")dx.
EP) z

Letting r — 0 and R — oo, we obtain fRz (2t — ey dx = n(ﬁ2 — 4m?). Meanwhile, integrating (3.1) on X' and

letting r — 0 and R — oo, we have fRZ (e" — e*)dx = (4m + 2B). Thus, (3.2) immediately follows. Then the first
identity in (3.2) implies that 8 > 2m + 4, which in turn implies that ||e“ (¢" — D)|| 1g2) > 87 (1 +m). O

If u is a solution of (3.1) with m = 0 and e*(e* — 1) € L'(R?), we further have the following lemma due to
[7,10,27].
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Lemma 3.3. Let u be a solution of (3.1) with m =0 and e"(e" — 1) € LY(R?). Then, u is radially symmetric and
smooth. Let u(r;s) be the radial solution of (3.1) such that lim,_,ou(r;s) = s and lim,_ou,(r;s) = 0. Then we
further obtain

@ u(-;0)=0,
®) Ifs <0, u(r;s) > —ooasr — oo,
(©) If s >0, u(r; s) blows up at some r =r(s) > 0.

Moreover, if we define a function &y : (—oo, 0) - Ry = (0, 00) by
oo
£o(s) = / (1 — ") dr (3.3)
0

then limg_, o- &0 (s) = oo, limg—, _oo §0(s) = 4, and &g is continuously differentiable and strictly increasing on the
interval (—o0, 0).

The following is an analogy of the Brezis—Merle type alternatives [1,2,4,24,25] for (1.3). It is not only interesting
in itself but also will be used frequently in this section.

Theorem 3.1. Let ve, € — 0 be a sequence of solutions of (1.3). Then, up to subsequences, one of the following holds
true:

(1) ve = —ug in Cioc(2\2), or
(ii) ve — 21Ine is bounded uniformly in C°(82), or
(iii) limsup, supg (uo+ve) < 0 and there exist a nonempty finite set S =1{q, ..., qi} C §2 and | number of sequences
of points xj ¢ — qj, j=1,...,1 such that
(Ve —2In€)(xje) = 00
forany j=1,...,1 and ve — 21Ine€ — —oo uniformly on any compact subset of 2\S. Moreover,

1
u0+v M()+U . .
—eze €(l—e €)—> E oz]qu, oz]>871

in the sense of measure.

The proof of the above theorem is a bit technical, so we postpone it to Section 4.
In view of the above theorem, we define the blow-up solutions for (1.2) as follows.
For a sequence of solutions {w,} of (1.2), if there exist ¢ € £2 and x, € £2 satisfying

We(Xe) = 00,  Xe —> ¢

as € — 0, we call {w,} blow-up solutions of (1.2) following Brezis—Merle [4]. Also, we call g a blow-up point and
call the collection of all blow-up points of {w,} the blow-up set for {w}.
Now, we consider the asymptotics when p — 0.

Lemma 3.4. Let v, be as in Section 2. B(v,,) converges to 16n N/|$2| as u — 0.
Proof. Given any § > 0, let ¢ be a smooth function such that B(¢) < 167 N/|§2| 4 §. Then (2.3) implies that

B
(v A4TN(N = 1)InB(v,) = C < I(v,) < Lu(p) = T (p) + Bw)
w

which in turn implies that

B(v,) —4nN(N — DulnB(v,) < B(p) + Cu.
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Since B(v,,) is monotone by Lemma 2.5, letting 1+ — 0 in the above inequality, we get

11msupB(v )< B(p) <16 N/|$2| + 6.
u—0

However, B(v M) > 16w N/|$2| and § > 0 is arbitrary, Lemma 3.4 immediately follows. O
The following theorem tells that {ug + u M} satisfies the first alternative in Theorem 3.1 as u — 0.
Theorem 3.2. |luo +u || >(x) — 0 as u — 0 for any compact subset K of $2\Z.

Proof. We argue by contradiction, and suppose that there exists a sequence of u’s (still denoted by w) such that
u— 0and {ug + gﬂ} does not satisfy the alternative (i) in Theorem 3.1. Let €, as in (2.10). Then u, — 2lne;, is a
solution of the following equation.
4 N

122
If (ii) of Theorem 3.1 is the case, RHS of the above equation is uniformly bounded. Thus, by the elliptic theory, we

arrive that u , — 2Ine, converges uniformly to a smooth function ¢ up to subsequences. Then, B(v,) = B(u, —
2Ine,) — B(¢). However, B(¢) > 167w N/|§2| for any smooth ¢, which contradicts Lemma 3.4.

If (iii) of Theorem 3.1 is the case, there exists a blow-up set S = {q1, ..., ¢q;} and etn 2 5 0in CI%C(.Q\S) up
to subsequences. Thus, denoting w;, =uo +u , — 21Ine€,, for any r > 0 small enough,

1/2 1/2
/ewu = / et +0(1) gCr< / esz> +o0(1) <Cr(fe2w~) +o(1).
2

2 U Br(a) U Br(a1)

But then, since ||e"# || 1 (o) = 47 N by Lemma 3.1,

Jo 2
<C
ey SC7

as u — 0. Taking r small enough, we are led to a contradiction. Theorem 3.2 is proved. O

Av = _euo-i-v(l 626u0+v) +

B(v,)=16rN————F

The following theorem follows from the uniqueness of the solution of (1.1) near the maximal solutions in [13].

Theorem 3.3. For > 0 sufficiently small, the function u — B(v ) is continuous and {u ,, } becomes the continuous
Jamily of maximal solutions. Thus, there exists a constant po > 0 such that if € = €, for some u > o, we have two
solutions for (1.1).

Proof. By Lemma 3.2 and [13], when p© > 0 is small enough, u ,, must be the maximal solution of (1.3) for € =¢,.
Therefore, there exists a constant ;1 such that the mappings u — B(v M) and p > €, are (single-valued) continuous
for ;< 1. Then, by Theorem 2.1, there always exists u < (1 for any € < €,, such that €, = €. Meanwhile, there
exists fo > u1 such that €, < €,, by Theorem 2.1. Consequently, if € =€, with u > 1o, we have two solutions
for (1.1), one with p < w1 and the other with & > pg. O

We now concentrate on the other situation, u — +o00. In this case, Lemma 2.5 imply that either (ii) or (iii) of
Theorem 3.1 is the case and thus there is a constant v = v(£2, Z) > 0 such that

sup sup(uo +u ;) < (3.4)
n>1 £
It will turn out that (iii) of Theorem 3.1 holds in this case. Moreover, the blow-up set consists of a single point g,
which should be a maximum point of ug. To prove it, we need the following lemma dealing with a special case of (iii)
of Theorem 3.1, blow-up away from the vortex points.
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Lemma 3.5. Let we = ve — 21In€ be the blow-up sequence in (iii) of Theorem 3.1 and g, oj as in (iii) of Theorem 3.1.
Assume that q; ¢ Z. Then, given r > 0 small enough, there exist a constant C > 0 and a sequence of points {x¢} C
B, (q) with the property that

We(xe) = max we(x) > 00 ase—0 3.5)
lx—gjl<r
and
max_ (we(x) +2In|x —xc]) < C. (3.6)
lx—gjl<r

Moreover, for any sequence {R.} such that R — oo,

linb / ewf(l —ezewf)(y)dy:ozj (3.7)
€—
|)’—Xg|<R€S€

where s¢ = exp[— % we (xe)].
Proof. See Section4. O
Now, we are ready to show our main result.

Theorem 3.4. Assume that N > 3 and u ,, v, as before.

%
(i) As u — o0, along a subsequence, u, —2Ine, — —oo uniformly on any compact set K C §2\{q} for some
q € 2, and

1
—2e”°+£ﬂi (1 —¢"*u) — 47 NS, in the sense of measure.
i
Furthermore, ug(q) = maxg ug.

(i) Timy— o0 B(ﬁﬂ) —27N(N —2).

(iii) v, is a critical point of the functional J" with € = €,, provided that N > 3 and . is sufficiently large.

Proof. We first show (i). We break it into several steps.

Step 1. maxQ(gM —2Ine,) — 00, and hence ||VEM||2 — 00.

If not, there would be a sequence(still denoted by w) such that © — oo and maxgo (u v 2lne,) < C for some
constant C > 0. Then case (ii) of Theorem 3.1 must hold true. That is, along a subsequence, {u W 21Ine,} is bounded
in CY(£2). It follows that B(yﬂ) = B(gu —2lne,) < C, which contradicts Lemma 2.5 and shows Step 1. Step 1
implies that case (iii) of Theorem 3.1 holds true for u - In particular, we obtain that | Vu 2 — oo

Step 2. |S|=1.

We argue by contradiction, and suppose that, there is a sequence still denoted by u , which blows up at more
than two points. Let S ={q1, ..., q;} be the blow-up set for u " with [ > 2. We take a small constant » > 0 such that
B>, (gi)’s are mutually disjoint. It follows from Theorem 3.1 and Green’s representation formula (2.1) that

1
v, = / =0, y) (0 — 20T (y) dy
2 1%
and

1
v,— Y aiGx.q). o >87 (3.8)
i=1
in Clloc(.Q\S). In particular, v , is bounded in C L\ Ui:l B, (g;)). Moreover, Theorem 3.1 imply that there is a
positive constant ¢y independent of w such that

1 1
€ < / —2€u0+£“ dx < —.
€z co
By (qi)
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Slncegﬂzyu+cﬂ,

1
cg / el gy < f e gy < - el gx (3.9)
C
B/ () B (q)) 95,

forall 1 <i < j <. Note also that ||"02u llL1(@) — oo by (3.8). Thus, together with (3.8) and (3.9), we have

In f e i dx =1n f 0Tl dx 4+ 0O(1) (3.10)
B (qi) 2

forall 1 <i <.
Fori =1,...,1, welet x; be a smooth function such that x; = 1 on B,(g;), 0 < x; < 1, and x; = 0 outside B2,(g;).
Setj = xjv, for j=1,..., 1. It follows from (3.9) that

B(o: C e210+29j. C 62M0+2£/‘ dx +1 C
((Pj,e)<_ f.Q — 2\_f9 — g—(B(yu)—i—l)éC.
P P e R AR TS

Then (3.10) implies that

l
1
Li(v,) =) §”V2u”iz(3,(q,.)) —4nN1n/e”0+9u dx +0(1)
i=1 2

1
1
=2 31Vul2s, ) — 47N In f et dx +0(1)
i=1 By (q1)

I I
=Y Lu(gi)+47ND I / "l dx +0(1)
=1 =2 B
1
21, 4N Yl [ e+ o). G.11)
i=2 B (qi)

Subsequently,

47 N
Iu(v,) < —T[—Zln / "0t u dx +0(1) < —47rN1n/e“°+yﬂ dx +0(1),
=2 B 2

which means that | Vv " ||% is uniformly bounded for o > 1. This contradicts Step 1.

Step 3. The blow-up set is disjoint with Z.

We argue by contradiction, and suppose that a subsequence of u , (still denoted by u ) which blows up at p € Z.
Given any § > 0, fix a constant r > 0 small enough such that ¢“°(x) < § for x € B,(p). For 0 < t < 1 and pu suffi-
ciently large, (iii) of Theorem 3.1 and the Moser-Trudinger inequality imply that

/ef<"0+9u>dx=(1+o(1)) f ef("0+£u>dx<5f(1+o(1)) / e™Vu dx

2 Br(p) B (p)
<5f(1+o(1))/e% dx < C8" exp inw 131
167 —H#
2

Set t =2/N. Then (2.2) and Lemma 2.5 imply that
I,L(yﬂ) > 27 N(N —2)lnB(yﬂ) —4xNInd —C,

which contradicts Lemma 2.3 if § > 0 is sufficiently small.
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Step 4. The blow-up point is a maximal point of uy.

We argue by contradiction again. Suppose that g is the blow-up point for a sequence of solutions u , and uo(g) <
maxg ug. Let ¢* be a maximum point of ug, x, — ¢ be a maximum point of v, and v;‘; () =v,(x+x,— q*). Let
8 > 0 be a small constant. Since ¢ ¢ Z and x,, — ¢,

/euﬁv/*‘ dx = / MO XL, ) gy — / HOUFaT =X mU0) oty gy 4 O(1)
2 2 Bs(q)
= (e"0@)=m0@) 1 O(8)) / "0t dx 4+ O(1)
Bs(q)
_ (euo(q*)fuo(q) + 0(5)) / 0Ty gy 1+ o(l)
2
as i — +o0. Similarly, we obtain

/ PO x = (£210W@)200(@) | O(5)) / T2 dx 4 o(1)
2 2
as i — +oo. Then it follows that
By 16xN [, ™idx  B(v,)
oo (e tidx)?

and consequently, as u — +o00,

(14+0(8) +o(1),

1 \ B(vy)
I(vy) = 2 IVoy;lI5 - 47rN1n/ "0t gy 4 M#
2
1 " B(v,)
=5 IVv,,1I3 — 47 N In[(e*0@) 7@ 1 0(8)) Cpy + o(D)] + (14 O(8)) —= + (1)

=1 (v,,) — 47N (uo(q*) — uo(q) +0(8)) +o(1) < I (v,) =infl,

if we choose § small enough. This yields a contradiction and (ii) is proved.
We now prove (ii). Let x;, be a maximum point of v ,, ¢ be the only blow-up point of u , —21In€, and

1
Sy = exp[—g <yﬂ(xﬂ) - ln/ HotL, dx):|.
2

It is obvious that x,, — ¢. Recall thatu , =v , + ¢, where c,, is defined in (2.11).
For simplicity, we let 7, = B(v )/ . Then it follows from (2.10) that

i _ 87N _ etnu) 3.12)
52 usiQuN +1,)2 4N +21,° ‘

In particular,
—2Ins, +In(4n N +2¢t,) = u, () — 2Ine, — oo.

Lemma 2.5 implies that In(47r N + 2¢,,) is bounded. Consequently, s, — 0 as u — oo.
We let

(pu(x) :Eu,(sux +xu) - Eu(xu)
for x € 2, = {x | sux + x,, € 2}. Then ¢, satisfies
4nNsi

—A@y = (4T N 4 21,,)"0n T+ eu _ —32”2N e T L 2
s 2]
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Since gﬂ(xu) < —v for some constant v =v(Z, £2) > 0, (3.12) implies that

327N

32nNeL10(s#x+x,L)+gau(x) =

2 < e VTR — oV (U N +2t,).
s S

In particular, 327 N /(us?,) < e 0@~V (4 N + 21,,).

Since ¢, < ¢, (0) =0, it follows from Harnack’s inequality that ¢, is bounded in CloC (R?). Passing to subse-
quences, we may assume that ¢, — ¢ for some constant ¢ > 0, 327 N/ (;,Lsﬁ) — Co for some constant co > 0, and ¢,
converges in C]ZOC(RZ) to a function ¢, satisfying

—A@, = — 0@+ ((47‘L’N +2t) — C2eu0(t])+<ﬂ*) in R2,
cte 0 DT LoV (AN 4 21).
By making use of the diagonal process, we can choose a sequence R, — oo such that [[¢,, — ¢l 2 Br,) ™ 0. Then
it follows from (3.7) in Lemma 3.5 that
/ “@F (4 N +21) — c§e"0 DT dx = 4n N. (3.13)
R2
If co = 0, ¢, satisfies the Liouville equation. But then
/ DT (4 N +21) =87
RZ

by [11], which is a contradiction to (3.13) since N > 3. Therefore, ¢y > 0. Then (3.12) implies that u u is bounded
from below. This together with (i) implies that u , is of spike type up to subsequences. Next, we let

o u
) —</)H< Su >+21n(5u>'

Then &, is bounded in ClOC (R?), and we may assume that £, — & in Cfoc(Rz), where

cox co
= —% ) pom(—2 ).
() (p*(4nN+2t>+ n(4nN+2t>

It is easy to check that & + uo(g) + In(4x N + 2¢) satisfies (3.1) with m = 0 and then Lemma 3.2 and (3.13) imply
that £(x) = —2N In|x| + O(1) near oo, and consequently,

(47 N + 21)? / 20 DH2E gy — Ax N(N — 2).
RZ

Let £2,, = {x | €,x + x,, € £2}. Then it follows that

B(v,) = 16an62uo+22M—21nf9 S dx g 167Ne;? / 200(eu ) 4260 g
2,
= ﬁ(47'[N +21)% / 20X )+ 280 gy 4 o(p).
2 S
However, by (3.6) and the fact §, < ¢(0) + 21n ; 2 < ¢, we have e%+ < min{C, C|x|~%} uniformly on By /e, (0) for
any small enough r > 0. Then, applying the Lebesgue dominated convergence theorem and (ii) above, we have

/e2uo(eux+xu)+2$u dx = / 2 DF28 gy 4 o(1) = / eZODTE gy 4 o(1).

(}M Br/eu (O] R2
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Hence, we have

B(v,) = %(471N + 2t)2</e2"0<!’)+2¥ dx + 0(1)) =n(2rN(N —2) +o(1)).
R2
Consequently, B(v,,)/n — 27 N(N — 2) up to subsequences. Since it holds for any subsequences, it holds for the
original sequence.

Finally, we prove (iii). To see this, we show that ¢, = c4 (v ) Where ¢, and ¢4 (v ) are defined in (2.11) and (1.4),
respectively. We argue by contradiction, and suppose that there is a sequence j — oo such that ¢, =c—(v ). Then,

2 172
Zecl‘/ez(”“yu) :/e“‘”'yﬂ — |:(/e“°+yu> - 167tN6i/e2”0+zyﬂi| . (3.14)
19 17 2 2

Meanwhile, since B(v )/ — 27 N(N — 2) by (i), (2.10) implies that
- 2
W INN =12
Thus, from (3.14),
1 0 lu dx
e(,‘ﬂ — + 0(1) f.Q
N -1 fg e2u0+22H dx

However, (2.11) implies that

) Jo e u gy

2u0+2v ’
Joe wdx

which yields a contradiction if N > 3. Our claim is proved. O

. N-=-2
Cu — 1
e (N_1+o<>

As a corollary of the above theorem, we now consider the case that the distribution of vortex, Z is further periodic
in 2. Let 2 =[0,a] x [0, b] and let a, b > 1 be positive integers. We denote a torus of unit side lengths by £2¢ =
[0, 1] x [0, 1], e1, €2 be the basis of the torus §2p, and Zy = {p1, ..., px € §20}. We call Z is periodic when Z =
Ui,j(ZO +ie1+jer),i=0,...,a—1,j=0,...,b— 1 with the multiplicities satisfying m(p;) = m(p; +ie1 + je2).

Corollary 3.1. Let Z be periodic in 2 = [0, a] x [0, b] and the total vortex number of the corresponding 2 is greater
than 2. Then, as € — 0, there exist at least Q number of different blow-up sequences for (1.3). Here, Q is the number
of divisors of ab.

Proof. Let a’ and &’ be divisors of a and b respectively. Consider the torus §2,/ ,y = [0, a’] x [0, '] with the vortex
distribution
i=aj/a'—1, j=b/b -1
Zyp = U Zytier + jea, m(pr) =m(p;+iel + je2).
i=0, j=0

Theorem 3.4 tells us that there exist blow-up solutions as € — 0 for (1.3) in £2,/ ;y with the vortex distribution Z,/ ;.
Further, this solution blows up at only one point in §2,/ ;7. We can extend this solution periodically on the whole of £2.
However, on £2, this solution blows up exactly at ab/a’b’ number of points. Thus, there exist at least one distinct
family of blow-up solutions for each different a’’, which finishes the proof. O

Corollary 3.2. Let N > 3, Z be periodic in §2 and the total vortex number of the corresponding Zg is 1 or 2. Then, for
some small enough € > 0, there exist at least three solutions for (1.3), two corresponding to J;~ and one corresponding
to J .

Proof. By [15,28], there exists a solution corresponding to J.~ for Zy on §2¢ for any small enough € > 0. Extending
this solution periodically to the whole of §2, we have a solution corresponding to J_.~ for Z on §2. Meanwhile, there
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exists a maximal solution corresponding to J.* for any small enough € > 0 for Z on £2. And by Theorem 3.4, there
exists a blow-up solution which corresponds to J.* for Z on £2 if € = ¢,, for some p large enough. Thus, there are at
least three different solutions if € = €, for some large enough p for Z on 2. O

4. Blow-up analysis

In this section, we develop the blow-up analysis for (1.2) following [1,2,4,8,21,22,24] to prove Theorem 3.1 and
Lemma 3.5.

Lemma 4.1. Suppose that there is a sequence of solutions {uc}, € — 0 of (1.1) such that supg uc — 0 as € — 0. Then
we have

||u5||L00(K) —0 ase—0 (4.1)

for any compact set K C 2\ Z.

Proof. Since u. <0, e“<(e" — 1) is bounded in L' (R?). Choose a sequence of points {x.} C £2 such that u, (x¢) =
supp ue — 0. Passing to a subsequence (still denoted by u.), we may assume that x. — xo € §£2. We consider two
cases separately: either xo ¢ Z or xg € Z.

Case 1: x0 ¢ Z.

Fix a positive constant d < (1/3) dist(xp, Z). Since we can cover K by finite open balls, we have only to prove that

inf u,—>0 ase— oo.
B (x0)

We argue by contradiction. Suppose that there exist a positive constant ¢y and a sequence {z.} C §2 such that
|ze — x0l <d and u(ze) =infp,(xy) e < —co.
Consider the function &y defined in (3.3). Fix two constants sg, s; < 0 such that £y(sg) > 4 N and max{—cy, 5o} <
s1 < 0. For € sufficiently small, we can choose y. € B;(xp) such that u.(y.) = 51 by the intermediate value theorem.
Let tie(x) = ue(ex + ye) for x € 2. :={x € 2 | ex + ye € Brg(xo)}. We note that U, 2, = R2. For € sufficiently
small, by Lemma 3.1, i1, satisfies

Al = e (e — 1) in £2,
/eﬁ€ (1 — eﬁ€) dx <4mN.
Q¢
Since i1 (0) = 51 and i < 0 in 2, it follows from Harnack’s inequality (see e.g. [4]) that i, is bounded in Cl%c (£2¢).
Passing to a subsequence, we may assume that i converges in C120C (R?) to a function i, which is a solution of
Au=e"(e" —1) inR?
/e”(l —e“)dx <4nrN and u(0)=s;. 4.2)
R2

Then it follows that 7, is negative and radially symmetric with respect to some point in R? by [27]. Since i (0) = s,
Lemma 3.3 implies that
o
2 / e’;*(l — eﬁ*)r dr > &y(s1) > &y(sg) >4 N,
0
which leads to a contradiction. Thus, for any sequence satisfying Case 1, there exists a subsequence for which (4.1)

holds true.
Case 2: xp € Z.
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For the sake of simplicity, we assume that xo = 0 € Z. Fix a small positive constant ¢ such that {x € R? | [x| < ¢} N
= {0}. In view of case 1, it suffices to prove that

sup us(x) >0 ase—0. 4.3)

lx|=c

We argue by contradiction again. Suppose that, passing to a subsequence,

sup sup Ue(x) < —y
e>0|x|=c

for some constant y; > 0. We first show that
|xe|/€ > 400 ase — 0. (4.4)

If not, we have liminf,_, ¢ |x¢|/€ < 400. Passing to a subsequence, we may assume that |x.|/e < c¢; for some constant
c1 > 0. Note that uc(x) =2mIn|x| 4+ ve(x) near x = 0 for some smooth function ve and 1 < j < k. Let 0¢(x) =
Ve (|xe|x) + 2m j In|xc| for |x| < ¢/|xe|. Then ¥ satisfies

A |xe|2 2m; D 2mj 0
AUE = €—2|x| Mj Ve (|X| iegle — 1) on Bc/|x6\(0)v
|x€|2 2m; Ve 2m; Ve
=S |x[e" (1 — [x|*"ie" ) dx <4 N.
|x]<c/lxel

We note that U (xe/|xe|) = ue(xe) — 0 as € — 0. Since |x|2"’f'ef’6 < 1 by Lemma 3.1 and |x¢|/€ < ¢y, it follows from
Harnack’s inequality that 0, is bounded in ClOC(BC /| x.|(0)). Passing to a subsequence, we may assume that x. /|x¢| —
Jo € S, |xe|/e = co > 0 and 9. converges in Cl (R?) to a function d. Then the function 7, = 2mjIn|x| + D4
satisfies

Ally = c(z)eﬁ* (6’2* — 1) +4mwmiép—0 in RZ.

Since i1, < 0, we have ¢p > 0 and since 4 (¥g) = lime_ g ue(xe) = 0, we have i, = 0 by the strong maximum
principle. Thus we arrive at a contradiction and (4.4) is proved.

We continue to prove Case 2. Consider the function &y defined in (3.3). Fix a constant s, < 0 such that &y(sp) >
4 N and —y;1 < 52 < 0. For € sufficiently small, we can choose y. on a line segment joining x¢ to cxc/|x¢| such that
ue(ye) =57 and |ye| = |x¢| by the 1ntermed1ate value theorem.

Let it (x) = uc(ex + ye) for x G.Q ={x eR?|ex+y. € By |/2(ye)}. We note that O ¢ By, |2(ye) and UG =
R? by (4.4). Then i satisfies

e =e" (e“e—l) in 2.,

/ l—e x <4nN.

¢

Since i < 0 and u#.(0) = s, it follows that i, is bounded in Cloc(.QE). Then the argument in case 1 leads to a
contraction again. Therefore, for any sequence satisfying Case 2, there exists a subsequence satisfying (4.1). Thus,
(4.1) holds true for the original sequence. O

Lemma 4.1 is an investigation of the case (i) of Theorem 3.1 and, as a corollary, Lemma 4.1 gives the following
proposition.

Proposition 4.1. Let u. be a sequence of solution of (1.1) with € — 0. Then, up to subsequences, one of the following
alternatives holds:

(1) SUpP..(SUP e Ue(X) < —V for some constant v =v (82, Z) > 0, or
(i) lluellLoo(xy — O for any compact set K C 2\ Z.



330 K. Choe, N. Kim /Ann. 1. H. Poincaré — AN 25 (2008) 313-338

Remark. Recently, it is shown that {u.} satisfying (ii) are maximal solutions constructed by Caffarelli—-Yang [5] if €
is sufficiently small, and that the second solution constructed by Tarantello [28] satisfies (i) [13].
In what follows, we study the asymptotic behavior of u. satisfying (i) of Proposition 4.1. So, let us denote
We(x) =ue(x) —2Ine  forx € £2. 4.5)
we satisfies (1.2) and by Lemma 3.1 and Proposition 4.1
€ 2 €
”ew (1 —ee” )”Ll(m
Then it is easily checked that
47N < ||e” <4nN/(1—e7"). (4.6)

=4n N, we +2Ine < —v < 0.

‘ ||L1(.Q)

Thus, if we < C then it follows that we — ug is bounded in L°°(£2) by the Harnack inequality and (4.6). Therefore,
from now on, we concentrate on the case

lim sup we — oo.

e—0 o
In this case since £2 is compact, at least certain subsequence of we must have one blow-up point. Further, defining
Ve = (1 — €2e™)e"0 < C, we — ug satisfies the following Liouville equation

47 N
A — =—Vee"e "0 4 ——.
(we — uo) e + 2]

Applying a smallness condition theorem like Corollary 3 of [4] to the above equation, we can conclude that we — ug
(hence w,) is bounded locally uniformly except for some finite set. The following lemma further tells the local mass
of such blow-up points.

Lemma 4.2. Let g € §2 be a blow-up point for {w¢}. Then we have

liminf / e’ (1— ezewf)dx > 8
e—0
Bu(q)

forany d > 0.

Proof. Fix d > 0 and choose a sequence of points {x.} C Bs(q) such that we (x¢) = max|xg|<q e (x), |xe —q| < d /2
for € small enough. Such x, exists due to the local uniform boundedness of w, except for some finite set. We let

1
Se = eXP|:_ Ewe (xe)i|
and

o . 2 € e
oy =h£n_)1(r)1f / (1 —€%e™)e™ dy.
Ba(q)

Note that €2 /sE2 = exp[we(x¢) + 2Ine] < e for some constant v > (. Passing to a subsequence, we may consider
the following three cases separately.

Casel:q ¢ Z.

We may assume that By(g) N Z = . Let

We(xX) = we(sex + xe) +2Inse  for [x] < d/(2s¢).

For € sufficiently small, w, satisfies

2

— AW, = "¢ (1 — 6—26’”6) for [x| < d/(2s¢),
sE

1AWl L1 (x<d/@so) S %a- 4.7
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Since we (x) < we(0) =0 for |x| < d/(2sc), Harnack’s inequality implies that w, is bounded in CI%C (R?), Passing

to a subsequence, we may assume that €2 /se2 — cg for some constant cq € [0, 1), and we — W in ClzOC (R2) such that
—Aw, =" (1 —cje™) inR?,
/ew* (1 — c%ew*) dx <oy <4mN. (4.8)
R2

If co =0, then by [11], fRZ eV+dx = 8. If ¢y > 0 then we can apply Lemma 3.2 to the function ¢ (x) = wx(cox) +
21Inco, and conclude that o, > 8.

Case2:q = pj € Z for some 1 < j <k and lime_,¢ |X<XZQ| = 00.

For the sake of simplicity, we assume that ¢ = p; = 0. Note that w(x) = 2m In|x| + ve(x) near x =0 for a
smooth function v.. Let

Ve (X) = Ve (Sex +xe) +2Inse +2mjIn|x.| for |x| < |xel/(25e).

Then v, satisfies

2m; 2 2m;
_ S X s €| s X L
—Abe=|mx ksl e (o) < el /250,
| xe| |xe| Se¢ | xe| | xel
2 ij
_ €l s X - _
(—Av)dx <og and — 2+ =L e Le V< 1.
S¢ |xe | |xe]
[x|<l|xel/(2se)
Since v (0) = we (x¢) +21ogse =0 and
_ Se Xe
Ve (X) = We(Sex + x¢) +2Inse —2mjln| —x + —
|xe |xe |

<2m;In2  for |x| < |xel/(25¢),

it follows from Harnack’s inequality that v, is bounded in CI%C(Ix| < |x¢|/(2s¢)). Passing to subsequences, we may
assume that 62/562 = ezexp[we(xe)] — c% for some constant cj € [0, 1), x¢/|xc| = y; for some y; € S!and 7, — v,

in C120c (R2), which satisfies
—Ab =" (1 —cfe™) inR?,
f e (1 —cle™)dx <oy and sup e’ < 1. (4.9)
R2 R

Then we can repeat the argument in Case 1 to conclude that «t; > 87 in Case 2 as well.

Case3:q=pj € Z and Ixes_—ql < C for some constant C > 0.

As in case 2, we assume that g =0 and we(x) =2m;In|x| + ve(x) near x = 0. Fix a constant d > 0 such that
Bys(0)N Z ={0}. Let

Ve (¥) = ve (Sex +x¢) +2(1 +m;) Inse  for |x| < d/2se.
Then it is easily checked that

2mj 5 62
ele 1__
s

/ (—AV)dx < ay.
[x|<d/2se

Xe 2m
X+ —
Se

Xe
X+ —
Se

—ADe =

eﬁf) for |x| < d/2se,

We note that
X 2m
x+ =

i, d
V) = gZeWebex i) < | for |x| < —
Se

Se
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and that
2 2m;
€ JooA
sup  —|x+ Te| et o, (4.10)
|x|<d/2s¢ Se Se
Note that 0 (0) = —2m jln |f—“| is bounded from below by the assumption and D¢ (—x¢/se — Xe/|Xe|) = We(—Sexe/

[xe]) + 21Inse < 0 since we (;6) is the maximum of w, in By(0). Hence, it follows from Harnack’s inequality that
V¢ is bounded in cO (|x] € d/2s¢). Passing to a subsequence, we may assume that x./sc — y» for some y, € RZ,

loc
€/se — ¢ for some ¢, € [0, 1), and U, converges in C120C(|x| < d/2s¢) to a function 0, € C12OC (Rz) satisfying

— Ay =[x+ e’ (1 — c3lx + 72| e™)  inR?,
/ b + 722 e (1 — Blx + 72 ™) dx < oy, 4.11)
R2
and supp:2 c%lx + Po|Mie% < 1. Letting i1+ (x) = 04 (x) + 2m j In|x + j2|, we have
Adl, = ' (c%eﬁ* — 1) +4mwm;s_3,.

If ¢; = 0 then all the solutions of (4.11) are completely known, and «; > 87 (1 + m ;). (See [26] for the details.) If
¢» > 0 then we can apply Lemma 3.2 to the function ¢ (x) = #i4(c2x) + 21Inc;, and conclude that ag > 8w (1 +mj).
Thus, Lemma 4.2 is proved. O

Since w, is bounded locally uniformly except for some finite set, taking subsequences repeatedly if necessary, we
can assume {w¢} is bounded locally uniformly except for some blow-up set S. Then, we can prove the following
lemma following the argument in [2] (Theorem 4) and [4].

Lemma 4.3. Let {w.} be a blow-up sequence of solutions of (1.2) with € — 0 and S ={q1,...,q} C §2 be the
blow-up set for {we}. Then sup,.c g (we(x) — ug(x)) = —oo for any compact subset K of 2\S.
Moreover, eV« (1 — €2ee) — le=1 @8y, in the sense of measure with oj > 8.

Proof. Let d > 0 be a small constant and {x; .} be / number of sequences of points such that x; ¢ — g, B2q(gq;) N
Boy(gi) =W for j#i,and we(xje) = MaX|x—y; |<d we(x) —» oo for j =1,...,1. We shall prove that
max  (we —ug)(x) > —o0
r<lx—q;l<d

for any r € (0,d] and g; € S. We argue by contradiction. The detailed proof can be found in [2], and we sketch the
proof here. For simplicity, we assume that g; = 0. Suppose that sup, ¢|,|<s(we — #0)(x) is bounded from below for
some r € (0, d]. Then it follows from Harnack’s inequality that there is an rg € (0, d) such that inf|,|—,, (we —ug) (x) >
C for some constant C > 0. Elliptic estimates imply that, along a subsequence, we — up — £ in Cﬁ,c(Bd\{O})- Then
e%e(1 — ezewf) — etoté 4 aj8p—o in the sense of measure for some constant o; > 87 by Lemma 4.2. Moreover,
Green’s representation formula implies that £(x) = —% In|x| + ¢ + n with n € C!(|x| < rp) and

S = / In— 0t gy
2m ly — x|
lyI<ro
Letm=m;if0=p; e Zandm =0if 0 ¢ Z. Then, |ug(x) — 2mIn|x|| < C for |x| < ro.
Since e*0t¢ e L1(|x| < ro), it follows that ¢ € LP (|x| < r) for any p € (1, 00) and
! uo+§
P(x) > —Ene 21 (1y|<rey In2ro)  for |x| < ro.
Using et e Ll(|x| < rp) again, we have 2m — ;_7/1 > —2.
We let e (x) = we(x) — 2mIn |x|. Then ¢, satisfies

—A@e = |x|PMe? — 2x[*m e for |x| < ro. (4.12)
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Multiplying (4.12) by (x - V¢, ) and integrating over {|x| < r} with 0 < r < rg, we obtain

1 2
O< / €2|x|4me2(ﬁe(x)dx: f |:_(x.v(pe)2_%|V(p€|2+r1+2me¢’e _%r1+4m62(p6:|d0,
r
x| <r Jx|=r
—(242m) / x| #m e (1 — €2[x*™e%) (x) dx.

lx|<r

Letting € — 0, we have

1
Q2+ 2m)a; + (2 + 2m) / M0t dx < f |:—(x-Vg0)2—%|V(p|2+rl+zme‘p:|dc7,
r
lx[<r lxj=r

where ¢(x) = &(x) + up(x) — 2mlIn|x|. Since ¢ € L?(|x| < rp) for any p € (1, 00), Holder inequality implies that
¢ € L®(|x| < rp). Then it follows that ¢#0t() = O(|x|~%/27+2m) a5 |x| — 0, and |x|!T2"e?@®) < C|x|*~! for
some constant T > 0. Moreover, it follows from the argument in [2] that [V¢ (x)| < C (|x|*=" + 1) for some 7 > 0.
Then we conclude that

(xjx
2m|x|?

Vo =-— + Vh,

with |VAa(x)| < C(|x|f_l +1) for some t > 0. Letting » — 0 in the above inequality, we then obtain that (2+2m)a; <
ozjz. /4m, which contradicts the inequality 2m — g—;z > —2.

Therefore, it follows from Harnack’s inequality that we — ug — —oo uniformly on any compact subset of £2\S.
Since e®¢(1 — €%e¢) is nonnegative and bounded in L'(£2), along a subsequence, e (1 — e2¢™<) converges to a
nonnegative measure. However, this measure must be supported on S since we — —oo uniformly in Cl%c (£2\S).
Then the measure should be a sum of Dirac measures and Lemma 4.2 implies that each Dirac mass should be greater

than orequal to 87. O
Together with Proposition 4.1 and the above lemma, we now prove Theorem 3.1.

Proof of Theorem 3.1. If either case (i) or (ii) of Theorem 3.1 is not the case, by Proposition 4.1, we have
sup,_, o supg, (ve + ug) < —v for some constant v > 0 and limsup,_, ,|ve — 2In€| = +00. Now, we show that
limsup,_,¢(ve — 21In€) = +oo. If not, the RHS of (1.3) is uniformly bounded. Then, Harnack’s inequality imply
that, along a subsequence, supg, (ve — 2Ine) — —oo. But then le2evetuo(] — e”€+”0)||L1(9) — 0, which leads to
a contradiction. Thus, limsup,_, ((ve —21ne) = oo.

Now, let we = up + ve — 2Ine. Since §2 is compact, a sequence of maximum points x. of w, converges up to
subsequences. Thus, for this subsequence, the limit of x, is a blow-up point and this subsequence becomes a blow-up
sequence. Consequently, by Lemma 4.3 we arrive at case (iii). O

Remark. When N = 1, by the above theorem, case (iii) above cannot be realized. When N = 2, if the case (iii) above
is realized, the blow-up happens at only one point and, in view of Lemma 4.2, the suitable scaled subsequence of
solutions (w, in Lemma 4.2) converges to the solution of the Liouville equation in RZ.

Next, by making use of the Pohozaev identity as well as the argument in [22], we deliver the proof of Lemma 3.5.

Proof of Lemma 3.5. We take x. to be a maximum point of we in B,(g;), namely, we(xe) = max|y—q;|<r We (X).
By (iii) of Theorem 3.1, we have x¢ — ¢;. Hence we can assume |x. — ¢ ;| < r/2 without loss of generality. Under
this situation, we need to show (3.6) and (3.7). We break it into two parts.

Part 1. Proof of (3.6).

We argue by contradiction. Suppose that there is a sequence {y¢} such that |y, — g;| < r and

We(ye) +2Inye — xe| = max  (we(x) +2In|x — xc|) > 00
lx—q;I<r
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as € — 0. It is easy to check that y. # x. and we(ye) — oo. Thus y. — g; by Lemma 4.3. Let de = |xe — ye| — 0
and

We(X) = we(dex +x¢) +2Inde, x| <r/(2de).

Then w, satisfies

= € - r
—Awe=ew‘<l —d—zew‘> for |x| <E,
max we(x)+2In(e/de) <0, (4.13)

[x|<r/(2de)
and || AWell11(jx|<r/(24.y) < € by Proposition 4.1. We note that

¢ _1 ., (&) < ,—We(¥e)=21n|ye—xc|

— K e Wl LT Wele YemXel 50

dz = dz
and (ez/dez)e@f <e V<1 for |x| < r/2d.. We also note that We ((ye — Xe)/de) = we (Ye) + 2In|ye — x| = 00. By
passing to a subsequence, we may assume that (ye — x¢)/de — z1 € R? with |z;| = 1. Then the proof of Lemma 4.3
implies that, along a subsequence, there is a finite blow-up set S* = {z1, ..., z;} for w, such that w, — —oo uniformly

on any compact subset of R?\S*, and moreover

in the sense of measure on any K CC R*\S*. Since W (0) = we (xe) + 21Ind, > we(ye) + 2Ind,, we have w, (0) —
oo. It follows that 0 € S* and |S*| > 2.
Fix a point pg € R? \S*. Then, Green’s representation formula (2.1) of the equation (4.13) becomes

_ _ 1 lpo — vl e,
We (x) — We(po) = uo(dex + xe) — uo(de po + xe) + —fln— ele — _28 dy
2 x — y| d?

+ / [y (dex + xe, y) — y(depo + xe, y)] (¥ — €2e*™) dy

Br(q;)
+ / [G(dex + xe,y) — G(de po + xe, y)] (e — ezezwf) dy,

[Br(g )1

where Be ={y | dey + xc € Br(g)}-
Now, fix a compact subset K of R?\S*. Since x — gj ¢ Zandd. — 0ase — 0,

max|uo(dex + xe) — uo(de po + xe)| + max|y (dex + xe, ) — ¥ (de po + xe,
xeK xekK

max |G(d€x+x€,y)—G(d€p0+xe,y)|—>O.
xeK,y¢Br(q;)

We also note that max,cg | Injpo—y|—In|x — y|| — 0 uniformly as |y| — oo. Therefore, it follows that
_ Ipo —zjl
—w —
«(po) Z |x ey |

m*. 7j—X
=1 o =P uniformly on K.

Now, we determine the location of {z1, ..., z;} as follows. Fix a unit vector & € R2 and choose a small number
8 > 0 such that Bos(z;) N S* = {z;} for 1 < j < t. Multiplying by & - Vw, both sides of (4.13) and integrating on
{x | |x —z;] < &}, we obtain

2
/ B(avwweﬁ—(s-vwexv-vwe)}da: / (& v)el“e(l—gz )da

[x—z;]=4 [x—z;]=4

uniformly in C -(K). Similarly, we obtain that Vi, converges to S
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for any 1 < j <. Letting € — 0 in the above equation, we obtain
*

1 m*
LHS = / [E(g.v)|VHj|2+ﬁg.VHj—(g:-VHj)(u.VHj)}dazRﬂszo,
lx—z;|=5

where H;." is defined by

|po — zil .
Hf(x) = miln———, 1<j<¢t.
7o) Z L lx =z /
i#]
Letting § — 0, we obtain £ - VH;(zj) =0 for 1 < j <t. Since & € R? is arbitrary, VHJ’.“(zj) =0forall 1 <j <t.
On the other hand, by direct calculation

VHI ()=
i#]j
Hence, considering the element of S* whose first component is the largest one in S* (denoted by z1), Vi H (z1) <0
since |S*| > 2, which yields a contradiction.
Part 2. Proof of (3.7).
Let R. — oo be given. Fix a constant § > 0 such that Bs(g;)’s are mutually disjoint and

*

i
———(zi — zj)-
lzi —z;j? !

We(X) = We(Sex + xe) +21Inse  for x| < §/sc.

Then w, satisfies

2
6 —_
— AW, = e"* <1 - —e“’f) for [x| < &/se.,

52
— 62 —
/ e'e (l — s—zew‘> dx <4n N,
Ix|<8/s5c ¢

and €2 /se2 < e’ < 1. Since we < we(0) =0, it follows from Harnack’s inequality that w, is bounded in CI%C (R?).
Passing to subsequences, we may assume that €2 /se2 — c(z) for some constant c¢g € [0, 1), and that w, converges in
C120<: (R?) to w which is a solution of

—Av = e”(l — C(Z)e”) in R2,

0. 4.14)

/e“(l —cfe’)dx <4xN and v < v(0)
R2

by Lemma 3.1. Now, since w, — w in C? (Rz), we can choose {r.} such that r. < R, re — 00, and

loc

we — L_U||c2(B,E oy — 0. (4.15)

Without loss of generality, we may assume that rcse — 0. If 0 < ¢g < 1, it follows from Lemma 3.2 that w — —o0
near co. Then Lemma 3.3 imply that w is radially symmetric, and w is the unique solution of (4.14). if ¢co = 1 then
the argument in [11] implies that w is radially symmetric and it is the unique solution of (4.14).
Let
& = liminf / ewf(l—ezewg)(y)dy.
e—0
|y—xe|<rese

It suffices to prove that &; = «j. By (4.14) and (4.15),

/ew(l — c(z)ew) dx = lim ew(l — c%ew) dx

e—0
R2 x|<re
= lim Ve (] —€e2e¥ ) (y)dy = @;.
lim / e (1 —ee™)(y)dy =a;

[x—xe|<rese
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Recall that w, satisfies that
—Awe = ewf(l - 626“") for |x — x| < 6. (4.16)

Let Ac = {x | rese < |x — x| < 8}. Multiplying (4.16) by (x — x¢) - Vw, and integrating on A, we obtain

1 2 1 2 w, 62 2w,
—reSe|Vwe|” — ((x — Xe) - Vwe) —rese| e’ — —e e ) |do
2 TeSe 2

|x —X¢|=resSe
_ % v |2—1((x—x)-Vw ) —s ew‘—iezw‘ do
20 ¢ ) € € 2
lx—xe|=3

+ /(2ewf —e2e?e) dx. 4.17)
Ae

We first estimate the second integral in (4.17). Lemma 4.3 implies that we — —oo uniformly on any compact subset
of Bys(q;)\{g;}. Moreover, there is a harmonic function H; € C*(B5(g;)) such that Vwe(x) — s

27 |x—gq;I?
VH;(x)in C _(Bas(g;)\g;})- Indeed, H; is given by

loc

I
o
Hj(X)=M0(X)—E ﬁIHIX—qu—l—E a;y(x,qi), x € Bas(g;).
oy i=1

Therefore, it follows that

. 8 1 2 €2
GIER) |:§|Vw€|2 - 5((x — Xe) - Vwe) - a(ewg - 362w6>i| do
[x—xe|=4
2 2
o; s 1 2 o o
J 2 J J
=—— —|\VH; | — = —qi)-VH; —Ww-VH;) |do =——.
4 + / [2' Jl 5((x CI]) J) +27‘L’ (v ])i| o -
[x—qj|=3

Next, we estimate the first integral in (4.17). Let
8

TeSe

We (X) = We (FeSex + x¢) +21In(rese)  for |x| <

Note that we (0) = we (xe) + 21In(rese) = 2Inr. — 00, and that w, satisfies

2

— AW, = eUbE — ee in BB/(rese)(O)-

242
TesSe

Recall that we (x) = we(sex + x¢) + 21In s, and that w is the unique solution of (4.14). Thus, w(x) < —4In|x|+ C
near oo. It follows from (4.15) that

We(x) =w(rex) +2Inre +0(1) < —2Inre —4In|x| + Cy — —00
uniformly on {x | d < |x| < 1} for any constant 0 < d < 1. Moreover, (3.6) implies that
We(X) = We (FeSex + x¢) +2In|resex| —2In|x| < —2In|x|+ C

for 0 < |x| < 8/(2rese). Note that €2/(r2s2) — 0. Then the proof of Lemma 4.3 implies that

2

~ 6 ~ N N

eV — o] 262“}6 — aj8,—0, ;=87
rES€

in the sense of measure on any compact subset of R
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Fix any point pg € R? such that | po| = 1. Then (2.1) implies that

. . 1 y=pol( o € o
We (x) — We(po) = /ln e’ — e )dy
271A ly — x| rEsg
B

* / [y (resex + xe, y) = v (rese po + xe, )] (e — €2 dy

Bs(qj)

+ / [Gresex +xe, y) — G(resepo+ xe., y)] (e — €2e*") dy
[Bs(g;)I¢
+uo(resex + xe) — uo(reSe po + xe),
where gg ={x|resex +xc € Bs(qj)}.

Then it follows that e — We (po) —> — g—j; In x| uniformly in C! (EE\{O}). Therefore we conclude that

loc
/ ﬁ|Vw IZ—L((X—X)-Vw )2—rs ewf—éezwe do
2 € rese € € €eve 2
[x—xe|=rese
~2
Lo 2 . 2 ; € %
= / |:§|Vwe(x)| =[x Vde()] - (ewE - 2r€2s€262w6 do — —ﬁ,

lx|=1

where we used the fact that € /(rese) — O.
Finally, we estimate the last integral in (4.17). Since we(x) < —21In|x — x| + C on A, it follows that

/(26”" —e%e™e ) dx = zf(ewe — e2e™) dx + €* f e dx =2(etj — &) +o(1).
Ac Ae Ae

Letting € — 0, we obtain from (4.17) that

(ef —@7) — 8 (aj —&;) =0.

A

Since aj > & > 8m, it follows that; = &;. O
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