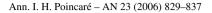


Available online at www.sciencedirect.com



www.elsevier.com/locate/anihpc

Ground states of nonlinear Schrödinger equations with potentials

Solutions d'énergie minimale des équations de Schrödinger non-linéaires avec potentiel

Yongqing Li^{a,1}, Zhi-Qiang Wang^{a,b,*}, Jing Zeng^a

^a School of Mathematics and Computer Sciences, Fujian Normal University, Fuzhou, 350007, PR China
 ^b Department of Mathematics and Statistics, Utah State University, Logan, UT 84322, USA

Received 1 September 2005; accepted 31 January 2006

Available online 7 July 2006

Abstract

In this paper we study the nonlinear Schrödinger equation:

$$\begin{cases} -\Delta u + V(x)u = f(x, u), \\ u \in H^1(\mathbb{R}^N). \end{cases}$$

We give general conditions which assure the existence of *ground state solutions*. Under a Nehari type condition, we show that the standard Ambrosetti–Rabinowitz super-linear condition can be replaced by a more natural super-quadratic condition. © 2006 Elsevier Masson SAS. All rights reserved.

Résumé

Dans cet article nous étudions l'équation non-linéaire de Schrödinger :

$$\begin{cases} -\Delta u + V(x)u = f(x, u), \\ u \in H^1(\mathbb{R}^N). \end{cases}$$

Nous donnons les conditions générales qui garantissent l'existence de solutions d'énergie minimale. Sous une condition de type Nehari, nous démontrons que la condition super-linéaire d'Ambrosetti–Rabinowitz peut être remplacée par une condition superquadratique plus naturelle.

© 2006 Elsevier Masson SAS. All rights reserved.

MSC: 35B05; 35J60

Keywords: Nonlinear Schrödinger equations; Ground state solutions; The Ambrosetti-Rabinowitz condition

^{*} Corresponding author.

E-mail addresses: zhi-qiang.wang@math.usu.edu, wang@math.usu.edu (Z.-Q. Wang).

¹ Supported in part by NNSF of China (10161010), Fujian Provincial Natural Science Foundation of China (A0410015), and the Ky and Yu-Fen Fan Fund from AMS.

1. Introduction

We study the nonlinear Schrödinger equation with potentials:

$$\begin{cases} -\Delta u + V(x)u = f(x, u), \\ u \in H^1(\mathbb{R}^N). \end{cases}$$
(1.1)

We are concerned with the existence of *ground state solutions*, i.e., solutions corresponding to the least positive critical value of the variational functional:

$$\Phi(u) = \frac{1}{2} \int_{\mathbb{R}^N} \left(|\nabla u|^2 + V(x)u^2 \right) \mathrm{d}x - \int_{\mathbb{R}^N} F(x, u) \,\mathrm{d}x,$$

where $F(x, u) = \int_0^u f(x, t) dt$.

To establish the existence of ground states, usually besides the growth condition on the nonlinearity and a Nehari type condition, the following superlinear condition due to Ambrosetti–Rabinowitz (e.g., [2,12]) is assumed:

(AR) There is $\mu > 2$ such that for $u \neq 0$ and $x \in \mathbb{R}^N$,

$$0 < \mu F(x, u) \leq u f(x, u),$$

where $F(x, u) = \int_0^u f(x, t) dt$.

This condition implies that for some C > 0, $F(x, u) \ge C|u|^{\mu}$.

In this paper we show that a weaker and more natural version suffices to assure the existence of a *ground state solution*. Instead of (AR) we assume the following super-quadratic condition

(SQ) $\lim_{|u|\to\infty} \frac{F(x,u)}{u^2} = \infty$, uniformly in *x*.

We always assume $V(x) \in C(\mathbb{R}^N, \mathbb{R})$, $\inf_{\mathbb{R}^N} V(x) > 0$. We consider two cases of the potentials, one is periodic, i.e., the *x*-dependence is periodic; the other is when *V* has a bounded potential well in the sense that $\lim_{|x|\to\infty} V(x)$ exists and is equal to $\sup_{\mathbb{R}^N} V$. The results will be stated and proved in Sections 2 and 3.

We would like to mention earlier results on existence of entire solutions of Schrödinger type equations with or without potentials which was studied in [3,4,9,10] (see references therein). In recent years there have been intensive studies on semiclassical states for nonlinear Schrödinger equations for which in Eq. (1.1) there is a small parameter corresponding to the Plank constant. We refer [1] for references in this direction. Our results do not require smallness of such a parameter. A recent result in [5] is in similar spirit of our Theorem 3.1; but the conditions in [5] and ours are mutually non-inclusive and the methods are different.

For (1.1) in bounded domains or if the potential function V(x) possesses certain compactness condition, one can prove (1.1) have certain solutions. In [8] Liu and Wang first used (SQ) to get the bounds of minimizing sequences on the Nehari manifold, and under coercive condition of V(x) they proved the existence of three solutions: one positive, one negative, and one sign-changing. The results in this current paper are natural generalizations of that in [8] to noncompact cases. In the two cases we do not have compact embedding, which is the main difficulty in this paper. We shall make use of a combination of the techniques in [8,7] with applications of the concentration-compactness principle of Lions [6,11,12].

2. The periodic case

We consider weak solutions of

$$\begin{cases} -\Delta u + V(x)u = f(x, u), \\ u \in H^1(\mathbb{R}^N). \end{cases}$$

We need the following assumptions:

 (V_1) $V(x) \in C(\mathbb{R}^N, \mathbb{R})$, $\inf_{\mathbb{R}^N} V(x) \ge V_0 > 0$. V(x) is 1-periodic in each of x_1, x_2, \dots, x_N .

(f_1) $f(x,t) \in C^1$ is 1-periodic in each of $x_1, x_2, ..., x_N$, f_t is a Caratheodory function and there exists C > 0, such that

$$|f_t(x,t)| \leq C(1+|t|^{2^*-2}), \quad \lim_{|t|\to\infty} \frac{|f(x,t)|}{|t|^{2^*-1}} = 0, \quad \text{uniformly in } x \in \mathbb{R}^N.$$

- (f₂) f(x,t) = o(|t|), as $|t| \to 0$, uniformly in x.
- (f₃) $\lim_{|t|\to\infty} \frac{F(x,t)}{t^2} = \infty$, uniformly in *x*.
- (f₄) $\frac{f(x,t)}{|t|}$ is strictly increasing in t.

Here $2^* = \frac{2N}{N-2}$ for $N \ge 3$. For N = 1, 2 we assume there is q > 2 in the place of 2^* in (f_1) . We work in Hilbert space $X = \{u \in H^1(\mathbb{R}^N); \int_{\mathbb{R}^N} V(x)u^2 dx < \infty\}$, with norm $||u||^2 = \int_{\mathbb{R}^N} (|\nabla u|^2 + V(x)u^2) dx$. The functional associated with Eq. (1.1) is

$$\Phi(u) = \frac{1}{2} \int_{\mathbb{R}^N} \left(|\nabla u|^2 + V(x)u^2 \right) \mathrm{d}x - \int_{\mathbb{R}^N} F(x, u) \,\mathrm{d}x, \quad u \in X.$$

Define

$$\gamma(u) = \int_{\mathbb{R}^N} \left(|\nabla u|^2 + V(x)u^2 \right) \mathrm{d}x - \int_{\mathbb{R}^N} f(x, u)u \,\mathrm{d}x.$$

Theorem 2.1. Under assumptions (V_1) , $(f_1)-(f_4)$ Eq. (1.1) has a weak solution $u \in X$, such that $\Phi(u) = c > 0$, c is defined as

$$c = \inf_{\mathcal{N}} \Phi(u),$$

where $\mathcal{N} = \{ u \in X : u \neq 0, \gamma(u) = 0 \}.$

First we need a few lemmas.

Lemma 2.2. Let (u_n) be a minimizing sequence for c. Then

- (i) There is $\beta > 0$ such that $\liminf_{n \to \infty} ||u_n|| \ge \beta$.
- (ii) (u_n) is bounded in X.
- (iii) For a subsequence, up to translations, u_n converges weakly to $u \neq 0$.

Proof. (i) The proof is similar to the case with (AR) satisfied. We omit its proofs (see [12]).

(ii) Let (u_n) be a minimizing sequence of c. If (u_n) is not bounded, we define $v_n = u_n/||u_n||$, so $||v_n|| = 1$. Passing to a subsequence, we may assume, $v_n \rightarrow v$ in X, $v_n \rightarrow v$ in $L^p_{loc}(\mathbb{R}^N)$, $2 \leq p < 2^*$, $v_n \rightarrow v$ a.e. on \mathbb{R}^N .

If $v \neq 0$, we have

$$\frac{1}{2} - \int_{\mathbb{R}^N} \frac{F(x, u_n)}{u_n^2} v_n^2 \, \mathrm{d}x = \frac{c + o(1)}{\|u_n\|^2} > 0.$$

By Fadou's lemma and (f_3) we have a contradiction as follows,

$$\frac{1}{2} \ge \liminf_{n \to \infty} \int_{\mathbb{R}^N} \frac{F(x, u_n)}{u_n^2} v_n^2 \, \mathrm{d}x \ge \int_{\mathbb{R}^N} \liminf_{n \to \infty} \frac{F(x, u_n)}{u_n^2} v_n^2 \, \mathrm{d}x = \infty.$$

If v = 0, we take $y_n = (y_n^1, y_n^2, \dots, y_n^N) \in \mathbb{N}^N$ with all y_n^i $(1 \le i \le N)$ being integers. Define translations of v_n by $w_n(x) = v_n(x + y_n)$. Since V(x) and f(x, u) are periodic, we have $||w_n|| = ||v_n|| = 1$, $|w_n|_p = |v_n|_p$, and $\Phi(w_n) = \Phi(v_n)$. Passing to a subsequence, we have $w_n \rightharpoonup w$ in $H^1(\mathbb{R}^N)$, $w_n \rightarrow w$ in $L^p_{loc}(\mathbb{R}^N)$, $2 \le p < 2^*$, $w_n \rightarrow w$ a.e.

on \mathbb{R}^N . If there exist y_n , such that $w_n \rightharpoonup w \neq 0$, we will get a contradiction as the case of $v \neq 0$. If for any $y_n, w_n \rightharpoonup 0$, we will get a contradiction by proving $v_n \rightarrow 0$ in $L^p(\mathbb{R}^N)$. In this case, we claim for all $p \in (2, 2^*)$,

$$\limsup_{n\to\infty}\int\limits_{y\in\mathbb{R}^N}\int\limits_{B_2(y)}|v_n|^p\,\mathrm{d}x=0.$$

If this is not true, there exists $p \in (2, 2^*), \delta > 0$,

$$\limsup_{n \to \infty} \int_{y \in \mathbb{R}^N} \int_{B_2(y)} |v_n|^p \, \mathrm{d}x \ge \delta > 0,$$

then there exists $z_n \in \mathbb{R}^N$ such that, $\lim_{n\to\infty} \int_{B_2(z_n)} |v_n|^p dx \ge \delta/2 > 0$. We can choose $y_n \in \mathbb{N}^N \in B_2(z_n)$ such that $B_1(y_n) \subset B_2(z_n)$ and

$$\lim_{n\to\infty}\int\limits_{B_1(y_n)}|v_n|^p\,\mathrm{d}x\geq\frac{\delta}{2}>0,$$

we have $\lim_{n\to\infty} \int_{B_1(0)} |w_n|^p dx \ge \delta/2 > 0$, that is $w_n \rightharpoonup w \ne 0$, a contradiction.

By Lions Lemma (cf. [12, Lemma 1.21]), we get $v_n \to 0$ in $L^p(\mathbb{R}^N)$, $p \in (2, 2^*)$. Fix $p \in (2, 2^*)$. By (f_1) and (f_2) , for any $\varepsilon > 0$ there is $C_{\varepsilon} > 0$ such that $|f(x, u)| \leq \varepsilon (|u| + |u|^{2^*-1}) + C_{\varepsilon}|u|^{p-1}$. Then $|F(x, u)| \leq \varepsilon (|u|^2 + |u|^{2^*}) + C_{\varepsilon}|u|^p$. Then fixing an $R > \sqrt{2c}$, using Lebesgue Dominated Convergence theorem, we have

$$\lim_{n \to \infty} \int_{\mathbb{R}^N} F(x, Rv_n) \, \mathrm{d}x = \int_{\mathbb{R}^N} \lim_{n \to \infty} F(x, Rv_n) \, \mathrm{d}x = 0$$

Since by (f_4) , $\Phi(tu_n) \leq \Phi(u_n)$ for $t \geq 0$ we thus have

$$c + o(1) = \Phi(u_n) \ge \Phi(Rv_n) = \frac{1}{2}R^2 - \int_{\mathbb{R}^N} F(x, Rv_n) \,\mathrm{d}x,$$

which is a contradiction. Thus (u_n) is bounded.

(iii) We can assume u_n weakly converges to u. To show $u \neq 0$, again we define translations of u_n as above, assume $y_n = (y_n^1, y_n^2, \dots, y_n^N) \in \mathbb{N}^N$, with all y_n^i $(1 \le i \le N)$ being integers. $u_n^{y_n} = u_n(x + y_n)$ are all possible translation of u_n . If for some $y_n \subset \mathbb{N}^N$, $u_n^{y_n} \rightarrow u \neq 0$ we are done. If for any $y_n \subset \mathbb{N}^N$, $u_n^{y_n} \rightarrow 0$, by similar argument as above we can prove $u_n \rightarrow 0$ in $L^p(\mathbb{R}^N)$, $p \in (2, 2^*)$. Then as $n \rightarrow \infty$, $\int_{\mathbb{R}^N} u_n f(x, u_n) dx \rightarrow 0$. Thus by (i) we have a contradiction:

$$0 < \beta \le ||u_n||^2 = \int_{\mathbb{R}^N} u_n f(x, u_n) \, \mathrm{d}x \to 0, \quad \text{as } n \to \infty. \qquad \Box$$

Lemma 2.3. For each $u \in X \setminus \{0\}$, there exists unique t = t(u) > 0, such that $tu \in \mathcal{N}$.

This is similar to the case of assuming (AR), we omit it.

Lemma 2.4. Let $(u_n) \subset X$ be a sequence such that $\gamma(u_n) \to 0$ and $\int_{\mathbb{R}^N} f(x, u_n)u_n \to a > 0$ as $n \to \infty$. Then exist $t_n > 0$ such that $t_n u_n \in \mathcal{N}$, $t_n \to 1$, as $n \to \infty$.

Proof. Since $u_n \neq 0$, by Lemma 2.3, there exists only one $t_n > 0$, such that $t_n u_n \in \mathcal{N}$, i.e.

$$t_n^2 \int_{\mathbb{R}^N} \left(|\nabla u_n|^2 + V(x)|u_n|^2 \right) \mathrm{d}x - \int_{\mathbb{R}^N} f(x, t_n u_n) t_n u_n \, \mathrm{d}x = 0$$

By (f_1) and (f_2) , $|f(x, u)u| \leq \varepsilon (|u|^2 + |u|^{2^*}) + C_{\varepsilon}|u|^p$, we see t_n cannot go zero, that is $t_n \geq t_0 > 0$. By (f_4) , $f(x, u)u \geq 2F(x, u)$. If $t_n \to \infty$, we get

$$a + o(1) = \int_{\mathbb{R}^N} \left(|\nabla u_n|^2 + V(x)|u_n|^2 \right) dx = \int_{\mathbb{R}^N} \frac{f(x, t_n u_n) t_n u_n}{t_n^2} dx \ge 2 \int_{\mathbb{R}^N} \frac{F(x, t_n u_n)}{t_n^2 u_n^2} u_n^2 dx.$$

By the condition, up to translations, $u_n \to u \neq 0$ a.e. in \mathbb{R}^N . We have

$$\int_{\mathbb{R}^N} \frac{F(x, t_n u_n)}{t_n^2 u_n^2} u_n^2 \, \mathrm{d}x \to +\infty, \quad \text{as } n \to \infty$$

a contradiction. Thus $0 < t_0 \leq t_n \leq C$. Assume $t_n \to T$, now we claim T = 1. Since $t_n u_n \in \mathcal{N}$, by $\gamma(u_n) \to 0$ we have

$$\int_{\mathbb{R}^N} \left(|\nabla u_n|^2 + V(x)|u_n|^2 \right) \mathrm{d}x = \int_{\mathbb{R}^N} f(x, u_n) u_n \,\mathrm{d}x + \mathrm{o}(1)$$

Since $t_n \to T$, by (f_1) and (f_3)

$$T^{2} \int_{\mathbb{R}^{N}} \left(|\nabla u_{n}|^{2} + V(x)|u_{n}|^{2} \right) \mathrm{d}x - \int_{\mathbb{R}^{N}} f(x, Tu_{n}) Tu_{n} \, \mathrm{d}x = \mathrm{o}(1),$$

that is

$$o(1) = \int_{\mathbb{R}^N} \frac{f(x, Tu_n)}{Tu_n} u_n^2 - \frac{f(x, u_n)}{u_n} u_n^2 \, dx = \int_{\mathbb{R}^N} \left(\frac{f(x, Tu_n)}{Tu_n} - \frac{f(x, u_n)}{u_n} \right) u_n^2 \, dx$$

For a subsequence $u_n \to u$ in $L^p_{loc}(\mathbb{R}^N)$ $2 \leq p < 2^*$. Up to translations, we may assume $u \neq 0$. Then by (f_4) and Fatou's lemma

$$\int_{\mathbb{R}^N} \left(\frac{f(x, Tu)}{Tu} - \frac{f(x, u)}{u} \right) u^2 \, \mathrm{d}x = 0,$$

by (f_4) we have T = 1. \Box

Next we construct a special minimizing sequence along which $\int_{\mathbb{R}^N} F(x, u)$ is weakly continuous. Consider Eq. (1.1) on $B_R(0)$,

$$\begin{cases} -\Delta u + V(x)u = f(x, u), & \text{in } B_R(0), \\ u = 0, & \text{on } \partial B_R(0). \end{cases}$$
(2.1)

We can similarly define \mathcal{N}_R , c_R . By the result of [8], c_R is achieved by a positive solution of (2.1) called u_R . It is easy to check that $c_R > c$ and $c_R \to c$ as $R \to \infty$. This implies (u_R) as $R \to \infty$ minimizes c. Let $R_n \to \infty$, $u_n := u_{R_n}$. Fix $p \in (2, 2^*)$.

Lemma 2.5.

(i) $\int_{\mathbb{R}^N} |u_n|^p \to A > 0.$ (ii) There exist $x_n \in \mathbb{R}^N$ such that $\forall \varepsilon > 0$, $\exists R > 0$, $\liminf \int_{B_R(x_n)} |u_n|^p \ge A - \varepsilon.$

Proof. (i) follows from $\gamma(u_n) = 0$ and the fact that for any $\varepsilon > 0$ there is $C_{\varepsilon} > 0$, $|f(x, u)| \leq \varepsilon(|u| + |u|^{2^*-1}) + C_{\varepsilon}|u|^{p-1}$.

For (ii) we apply the concentration compactness principle to $\int_{\mathbb{R}^N} |u_n|^p$. Then there exist $\alpha \in (0, 1]$, $(x_n) \subset \mathbb{R}^N$, $\forall \varepsilon > 0, \exists R > 0, \forall r > R, r' > R$, have

$$\liminf_{B_r(x_n)} \int_{B_r(x_n)} |u_n|^p \ge \alpha A - \varepsilon, \qquad \liminf_{B_{r'}(x_n)} \int_{B_{r'}(x_n)} |u_n|^p \ge (1 - \alpha) A - \varepsilon$$

Next we claim $\alpha = 1$. Choose $\varepsilon_n \to 0$, $r_n \to \infty$, $r'_n = 4r_n$. Let ξ be a cut-off function such that $\xi(s) = 0$, for $s \leq 1$ or $s \geq 4$, $\xi(s) = 1$, for $2 \leq s \leq 3$, and $|\xi'(s)| \leq 2$. Take $\phi(x) = \xi(|x - x_n|/r_n)u_n$. Using equation

$$\int_{B_{R_n}} \left(\nabla u_n \nabla \phi + V(x) u_n \phi - f(x, u_n) \phi \right) \mathrm{d}x = 0,$$

we have,

$$\int_{B_{3r_n}(x_n)\setminus B_{2r_n}(x_n)} \left(|\nabla u_n|^2 + V(x)|u_n|^2 \right) \mathrm{d}x + \int_{B_{3r_n}(x_n)\setminus B_{2r_n}(x_n)} f(x, u_n)u_n \,\mathrm{d}x = \mathrm{o}(1).$$

Take another cut-off function η such that $\eta(s) = 1$, for $s \leq 2$, $\eta(s) = 0$, for $s \geq 3$, and $|\eta'(s)| \leq 2$, for $2 \leq s \leq 3$. Set

$$w_n(x) = \eta\left(\frac{|x-x_n|}{r_n}\right)u_n, \qquad v_n(x) = \left(1 - \eta\left(\frac{|x-x_n|}{r_n}\right)\right)u_n(x).$$

Using equation as above we have

$$\Phi(u_n) = \Phi(w_n) + \Phi(v_n) + o(1),$$

and

$$\int_{\mathbb{R}^n} |w_n|^p \ge \alpha A - \varepsilon_n, \qquad \int_{\mathbb{R}^n} |v_n|^p \ge (1-\alpha)A - \varepsilon_n.$$

Finally using w_n to test the equation for (u_n) we get

 $\gamma(w_n) = \langle \Phi'(u_n), w_n \rangle + o(1) = o(1).$

Similarly $\gamma(v_n) = o(1)$, by Lemma 2.4, $\exists t_n \to 1, s_n \to 1$, such that $t_n w_n \in \mathcal{N}, s_n v_n \in \mathcal{N}$. Then

$$c + o(1) = \Phi(u_n) = \Phi(w_n) + \Phi(v_n) + o(1) = \Phi(t_n w_n) + \Phi(s_n v_n) + o(1) \ge 2c + o(1),$$

which is a contradiction. Thus $\alpha = 1$. \Box

Proof of Theorem 2.1. Let $(u_n) \subset \mathcal{N}$ be the minimizing sequence for *c* given above. By Lemma 2.2 (u_n) is bounded in *X* and weak convergent to $u \neq 0$. By Lemma 2.5, $-\int_{\mathbb{R}^N} F(x, u_n)$ is weakly continuous. Using the weakly lower semi-continuity we have $\Phi(u) \leq c$. If $u \in \mathcal{N}$ we have $\Phi(u) = c$. If $u \notin \mathcal{N}$, by Lemma 2.5, there is t > 0 such that $tu_n \in \mathcal{N}$. Then

$$c \leq \Phi(tu) \leq \liminf_{n \to \infty} \Phi(tu_n) \leq \liminf_{n \to \infty} \Phi(u_n) = c.$$

Since \mathcal{N} is smooth, the minimizer is a critical point of $\boldsymbol{\Phi}$. \Box

3. The potential well case

We consider weak solutions of

$$\begin{cases} -\Delta u + V(x)u = f(u), \\ u \in H^1(\mathbb{R}^N) \end{cases}$$
(3.1)

for the case where potential function V(x) has a bounded potential well. Since the nonlinearity is autonomous, the conditions on f needs modified slightly. More precisely, we make the following assumptions.

(V₂) $0 < \inf_{\mathbb{R}^N} V(x) \leq \lim_{|x| \to \infty} V(x) = \sup_{\mathbb{R}^N} V(x) < \infty.$ (f₁) $f(t) \in C^1$. f_t is a Caratheodory function and there exists C > 0, s. t.

$$|f_t(t)| \leq C(1+|t|^{2^*-2}), \qquad \lim_{|t|\to\infty} \frac{|f(t)|}{|t|^{2^*-1}} = 0.$$

 $(f_2) \ f(t) = o(|t|), \text{ as } |t| \to 0.$

$$(f_3) \lim_{|t|\to\infty} \frac{F(t)}{t^2} = \infty$$

 $(f_4) \quad \frac{f(t)}{|t|}$ is strictly increasing in t.

Theorem 3.1. Under assumptions (V_2) , $(f_1)-(f_4)$ Eq. (3.1) has a weak solution $u \in X$, such that $\Phi(u) = c > 0$, c is defined as

$$c = \inf_{\mathcal{N}} \Phi(u),$$

where $\mathcal{N} = \{ u \in X : u \neq 0, \gamma(u) = 0 \}.$

In this section we denote $V_{\infty} = \lim_{|x| \to \infty} V(x)$. There is an associated problem

$$\begin{cases} -\Delta u + V_{\infty} u = f(u) \\ u \in H^1(\mathbb{R}^N). \end{cases}$$

We define the energy functional Φ_{∞} by replacing V with V_{∞} , $c_{\infty} = \inf_{\mathcal{N}_{\infty}} \Phi_{\infty}(u)$, here $\mathcal{N}_{\infty} = \{u \in X/\{0\}: \langle \Phi'_{\infty}(u), u \rangle = 0\}$. Since V_{∞} is a constant, by Theorem 2.1, $c_{\infty} > 0$ is achieved at some $u_{\infty} \in \mathcal{N}_{\infty}$.

Lemma 3.2. $0 < c < c_{\infty}$.

Proof. It is easy to see c > 0. Let u_{∞} be the minimizer of c_{∞} . Then $\gamma(u_{\infty}) < 0$, and there is t > 0 such that $tu_{\infty} \in \mathcal{N}$. We have

$$c \leqslant \Phi(tu_{\infty}) < \Phi_{\infty}(tu_{\infty}) \leqslant \Phi_{\infty}(u_{\infty}) = c_{\infty}. \qquad \Box$$

We note that with minor changes Lemma 2.3 and 2.4 still hold.

Lemma 3.3. Let (u_n) be a minimizing sequence for c. Then

- (i) There is $\beta > 0$ such that $\liminf_{n \to \infty} ||u_n|| \ge \beta$.
- (ii) (u_n) is bounded in X.
- (iii) For a subsequence, u_n converges weakly to $u \neq 0$.

Proof. (i) The same as Lemma 2.2.

(ii) If not, define $v_n = u_n/||u_n||$. Passing to a subsequence, we may assume, $v_n \rightarrow v$ in X. If $v_n \rightarrow 0$ in $L^q(\mathbb{R}^N)$ for $2 \leq q < 2^*$, we use the Lebesgue Dominated Convergence theorem to get for any R > 0 fixed, $\lim_{n\to\infty} \int_{\mathbb{R}^N} F(Rv_n) dx = 0$. Therefore a contradiction by choosing a large R > 0 in $\Phi(u_n) \geq \Phi(Rv_n) = \frac{1}{2}R^2 - \int_{\mathbb{R}^N} F(Rv_n) dx$. Thus by the concentration compactness principle there are $y_n \in \mathbb{R}^N$ such that $w_n(x) = v_n(y_n + x) \rightarrow w \neq 0$. Then the proof follows from the arguments in Lemma 2.2(ii). Thus (u_n) is bounded.

(iii) We can assume $u_n \to u$ in X, $u_n \to u$ in $L^p_{loc}(\mathbb{R}^N)$. If u = 0, we have $\int_{\mathbb{R}^N} (V(x) - V_\infty) |u_n|^2 dx \to 0$, as $n \to \infty$. Thus we have $c + o(1) = \Phi_\infty(u_n) + o(1)$. Similarly we have $\gamma(u_n) = 0$, $\gamma_\infty(u_n) = o(1)$. By Lemma 2.4 there exist $t_n \to 1$ such that $t_n u_n \in \mathcal{N}_\infty$. Then we have $c + o(1) = \Phi_\infty(u_n) + o(1) = \Phi_\infty(t_n u_n) + o(1) \ge c_\infty + o(1)$, a contradiction with Lemma 3.2. \Box

Next consider Eq. (3.1) on $B_R(0)$,

$$\begin{cases} -\Delta u + V(x)u = f(u), & \text{in } B_R(0), \\ u = 0, & \text{on } \partial B_R(0) \end{cases}$$
(3.2)

we can similarly define $\mathcal{N}_R = \mathcal{N} \cap H_0^1(B_R)$, c_R . By the result of [8], c_R is achieved by a positive solution called u_R . It is easy to check that $c_R > c$ and $c_R \to c$ as $R \to \infty$.

Lemma 3.4. Let $u_R \in \mathcal{N}_R$ be a minimizer of c_R . Assume for a subsequence $R_n \to \infty$, $\int_{B_{R_n}} |u_n|^p \to A \in (0, \infty)$, where $u_n = u_{R_n}$. Then there exists $(y_n) \subset \mathbb{R}^N$ s.t. for any $\varepsilon > 0$, exists $r_{\varepsilon} > 0$, for all $r \ge r_{\varepsilon}$,

$$\liminf_{n\to\infty}\int_{B_r(y_n)}|u_n|^p \ge A-\varepsilon.$$

Proof. Note that u_R satisfies (3.3) for all $\varphi \in H_0^1(B_R)$,

$$\int_{B_{R_n}} \left(\nabla u_R \nabla \varphi + V(x) u_R \varphi \right) dx - \int_{\mathbb{R}^N} f(u_R) \varphi \, dx = 0.$$
(3.3)

Since (u_n) is bounded in $H^1(\mathbb{R}^N)$, by using the concentration compactness principle, exists $\alpha \in (0, 1]$ and $(y_n) \subset \mathbb{R}^N$ s.t. for any $\varepsilon > 0$, there exists $r_{\varepsilon} > 0$, for all $r' \ge r \ge r_{\varepsilon}$,

$$\liminf_{n \to \infty} \int_{B_r(y_n)} |u_n|^p \ge \alpha A - \varepsilon,$$

$$\liminf_{n \to \infty} \int_{\mathbb{R}^N \setminus B_{r'}(y_n)} |u_n|^p \ge (1 - \alpha) A - \varepsilon.$$
(3.4)
(3.5)

Now suppose $\alpha < 1$, then following exactly the same construction as in Lemma 2.5 we have two sequences w_n and v_n satisfying

$$\liminf_{n \to \infty} \int_{\mathbb{R}^N} |w_n|^p \ge \alpha A, \qquad \liminf_{n \to \infty} \int_{\mathbb{R}^N} |v_n|^p \ge (1 - \alpha) A, \qquad \Phi(u_n) = \Phi(w_n) + \Phi(v_n) + o(1).$$

Moreover, if we take $\varphi = w_n$, by (3.3)

$$\gamma(w_n) = \langle \Phi'(u_n), w_n \rangle + o(1) = o(1)$$

Similarly, $\gamma(v_n) = o(1)$. By Lemma 2.4, there exist $t_n \to 1$, $s_n \to 1$, s.t.

$$\widetilde{w}_n = t_n w_n \in \mathcal{N}, \qquad \widetilde{v}_n = s_n v_n \in \mathcal{N}$$

If (y_n) is bounded, then $\liminf_{n\to\infty} \Phi(\widetilde{w}_n) \ge c$ and $\liminf_{n\to\infty} \Phi(\widetilde{v}_n) \ge c_{\infty}$. If (y_n) is unbounded, then

 $\liminf_{n\to\infty} \Phi(\widetilde{w}_n) \ge c_{\infty} \quad \text{and} \quad \liminf_{n\to\infty} \Phi(\widetilde{v}_n) \ge c.$

Altogether, we have

$$\Phi(u_n) = \Phi(w_n) + \Phi(v_n) + o(1) = \Phi(t_n w_n) + \Phi(s_n v_n) + o(1)$$

and

 $\liminf \Phi(u_n) \ge \liminf \Phi(t_n w_n) + \liminf \Phi(s_n v_n) \ge c + c_{\infty}.$

A contradiction, so we have $\alpha = 1$. \Box

Proof of Theorem 3.1. Let $(u_n) \subset \mathcal{N}$ be the minimizing sequence for c given in Lemma 3.4. Let $A = \lim_{n\to\infty} \int_{\mathbb{R}^N} |u_n|^p \, dx$. By Lemma 3.3, (u_n) is bounded in X and weakly converges to $u \neq 0$. By Lemma 3.4, there exists $(y_n) \subset \mathbb{R}^N$ s.t. $\forall \varepsilon > 0, \exists r > 0$,

$$\liminf_{n\to\infty}\int_{B_r(y_n)}|u_n|^p \ge A-\varepsilon.$$

Then (y_n) must be bounded. Otherwise, $\gamma_{\infty}(u_n) = \gamma(u_n) + o(1)$. We find $t_n \to 1$, s.t. $\gamma(t_n u_n) = 0$. Then we have

$$c_{\infty} \leq \liminf \Phi_{\infty}(t_n u_n) = \liminf \Phi_{\infty}(u_n) = \liminf \Phi(u_n) = c$$

a contraction with $c < c_{\infty}$. Now, when (y_n) is bounded, we have $u_n \to u$ in $L^p(\mathbb{R}^N)$. This gives that along this sequence $\Phi(u_n)$ is weakly lower semi-continuous, we have

$$c = \inf_{\mathcal{N}} \Phi(u) \leqslant \Phi(u) \leqslant \liminf \Phi(u_n) = c. \quad \Box$$

Remark 3.5. Though we assume in this section f depends only on t, looking at the proofs we see the arguments can be used with little changes to deal with the following case: f = b(x)f(t) with b satisfying $b \in C^1(\mathbb{R}^N, \mathbb{R})$, $b_1 \leq b(x) \leq b_2$ for some $b_1, b_2 > 0$, and $b(x) \geq \inf_{\mathbb{R}^N} b(x) = \lim_{|x| \to \infty} b(x)$. The precisely statement is the same.

References

- [1] A. Ambrosetti, A. Malchiodi, Perturbation Methods and Semilinear Elliptic Problems on \mathbb{R}^n , Progr. Math., Birkhäuser, in press.
- [2] A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973) 349–381.
- [3] H. Berestycki, P.L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal. 82 (1983) 313–345.
- [4] W.-Y. Ding, W.-M. Ni, On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Rational Mech. Anal. 91 (1986) 283–308.
- [5] L. Jeanjean, K. Tanaka, A positive solution for a nonlinear Schrödinger equation on \mathbb{R}^N , Indiana Univ. Math. J. 54 (2005) 443–464.
- [6] P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I & II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984) 109–145, 223–283.
- [7] J. Liu, Y. Wang, Z.-Q. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method, Comm. Partial Differential Equations 29 (2004) 879–901.
- [8] Z. Liu, Z.-Q. Wang, On the Ambrosetti–Rabinowitz superlinear condition, Adv. Nonlinear Stud. 4 (2004) 561–572.
- [9] P.H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43 (1992) 270–291.
- [10] W.A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977) 149-162.
- [11] M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin, 2000.
- [12] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.