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Abstract

We consider the three-dimensional Ginzburg—Landau model for a solid spherical superconductor in a uniform magnetic field, in
the limit as the Ginzburg—Landau parametet 1/¢ — oo. By studying a limiting functional we identify a candidate for the lower
critical field H.,, the value of the applied field strength at which minimizers first exhibit vortices. For applied fields of this strength
we show the existence of locally minimizing solutions with vortices located along a diameter of the sphere parallel to the applied
field direction. To analyze these problems we use a combination of techniques, involving least perimeter problems, weak Jacobian
and rectifiable currents, and special Hodge decompositions.
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Résumé

Nous étudions la limite quand le parametre de Ginzburg-Lardau /¢ — oo pour le modéle de Ginzburg—Landau en trois
dimension dans le cas d’'une boule placée dans un champ magnétique uniforme. Nous identifions une fonctionnelle limite qui nou:
permet de trouver le premier champ critigdg, , c’est a dire le champ au dessus duquel les minimiseurs commencent & presenter
des vortex. Nous montrons gu'il existe des solutions localement minimisantes ayant des vortex le long du diamétre de la boule qu
est paralléle au champ appliqué quand sa norme est de I'orddg,d&lous nous servons de techniques provenant de la théorie de
la mesure géométrique, incluant les jacobiens faibles et les courants rectifiables, ainsi que de techniques provenant de problem
de minimisation de périmétre.
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1. Introduction

In 1933 Meissner and Ochsenfeld performed an experiment which exposed a solid spherical superconductor to :
external magnetic field, and described the well-known Meissner effect whereby the superconductor expels the fiel
(and levitates in its presence). Some years later, Abrikosov studied the behavior of the type-Il superconductors ar
predicted the nucleation of vortices (where superconductivity is lost) in sufficiently strong external fields. (See [25].) In
this paper we revisit this setting in the mathematical context of the Ginzburg—Landau model. We consider a spheric:
superconductor in a uniform external field, and study vortices which appear near the lower critical field, the smalles
value of the external field strength at which minimizers exhibit vortices, in the extreme type-II limit as the Ginzburg—
Landau parametar — oo.

We start with the Ginzburg—Landau model. L@t= B (0) the solid spherical ball of radiuR centered at the
origin. The external magnetic fielthp = He3 is assumed to be of constant strengthand directed (without loss
of generality) in the direction of thes-axis. Superconductivity is described by a complex valued order parameter
u € H(£2; C). The square moduluis|?2 measures the density of superconducting electrons. The magnetic field is
determined by the external field and by the supercurrents and its interaction with the superconductor is mediated t
the vector potentiald : R — R3, so thath = V x A is the local field at any point iiR3. The Ginzburg—Landau model
then takes the form of an energy that a superconducting configuration must minimize (at least locally) in order to be
stable. This energy is given by

Gg(u,A):/{%|(V—iA)u|2+K12(l— |u|2)2}dx+/|V X A — hapl?dx. (1.1)
2

R3

The parametet > 0 is related to the Ginzburg—Landau parametéryy ¢ = 1/«, and for strongly type-Il supercon-
ductors (such as most higfi- materials) will be very small.

Some care must be taken to define an appropriate space:fdr), since the functional is gauge invariant
(Ge(u, A) = G.(€%u, A 4+ Vo) for any ¢ sufficiently smooth and integrable) and we require a space in which the
energy will be coercive in the norm. (See [9].) This choice will be made precise in Section 5.

In this paper we look for stable critical points 6f; that develop line vortices in the singular linsit—> 0. Since
vortices are regions where the material is no longer superconducting, it is natural to think them as the regions whel
lu|2 = 0. A vortex solution for us will be a critical pointu,, A;) of G, for which u, vanishes somewhere 2.
Physically, one expects that for an applied fiejg = O(|In¢]), the Meissner effect should cease and vortices should
begin to appear in the domain. With a constant applied field alongstlirection, a natural candidate for the line
vortex is the vertical diameter of the ball. We will confirm this physical principle in that we will show thaifp«
Allneles and A > O large enough, there exist stable vortex solutions (indeed local minimizeé) (it A) for all
¢ > 0 small enough; these solutions will have vortices converging in a weak sense to the vertical diametefas
Moreover, since our superconductor is spherical we can find an explicit estimate for haws-tigshould be. This
raises a natural conjecture in the form of an explicit asymptotic form for the critical Hglct which the transition
from the Meissner phase to the mixed phase occurs.

In order to motivate and explain more precisely our results, we present a formal derivation of the limiting energy
based on the useful identity introduced by Bethuel and Riviére [5],

Getu. M) = o)~ [ A jarde+ By () + [ (ul? - DiaPas, (1.2)
2 2
with
() = Im{avu),

1 1
E:(u) :=§/{|Vu|2+@(|u|2—1)2}, (1.3)
2
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Fig,(A) :=%[/|A|2dx+/|VxA—hgp|2dx]. (1.4)
2 2

In the regimes we consider the applied field is weak,| < 1/¢2, and it will follow that the last term in (1.2) will be

very small and can be neglected.

The first termE, in (1.2) measures the energy of the vortices, and has been extensively studied for general smooth
domainss2 ¢ R, for all dimensions: > 2. Much previous work has concentrated on a Dirichlet problem (see for
instance [3,4,17,20,21]), in which the presence of vorticeg iis assured by imposing a singular Dirichlet boundary
condition. In these papers it is shown thatas- 0 singularities form which are objects of codimension-2, and these
vortices tend to minimize the total length functional. This connection to the total length functional was cemented by
the subsequent work of [14] and [2] in the context of Gamma-convergence EoR? the results of these two papers
yield that

E;
[Ing|

— L

in the I"-sense, wherd. denotes the total length of the singularities (defined appropriately in terms of rectifiable
currents.)

Both [14] and [2] show that in the study of tHélimit of E. the correct tool to identify the limiting vortices is not
the “momentum”j («) but its distributional curl, th&Veak Jacobiaiof u,

Ju:= %V X j(u).
Indeed, for2 ¢ R® an important result of Jerrard and Soner [14] implies that wiaeh is a family of functions
with E. (1) bounded byIine| then the Jacobiansu, converge in a weak sense to an integer multiplicity rectifiable
1-current.

Returning to the decomposition (1.2) and our derivation of a limiting energy, if we hope to find solutigvith
individual vortices, the above discussion suggest that we consider a regime Egigre = O(|In¢|). Then by the
result of [14] the associated Jacobiah®.) will converge to a rectifiable limit. In this situation the interaction term
fQ A - j(u) should also be of order@n ¢|), to balance the cost of vortices frof; . This suggests that the appropriate
applied field|hgp| = O(|In¢g]), since the form oithp suggests that the magnetic figlgd= V x A, will be of the same

order of magnitude al&ap|. Note that in this case we expel@tgp(Ag) = 0O(|Ine|?) is of higher order in the expansion.
Minimizing this term independently (see Theorem 3.1) gives a solutipto London’s equation, which approximates
the actual minimizer, to highest order. We then eliminate this term and consider letirg0 in the expression
1 1 .
M(Ge(’/l& Ag) — thp(AO)) = m (Es(us) - / Ao Jj(ue) d—x> (1.5)
2

To pass to the limit in (1.5) we need to rewrite the interaction term in terms of the Jacohianwé decompose
Ao =V x Bg+ V¢ for a suitable vector fieldy with Bg x v =0 0nd$2, and scalar functiogg. The existence and
properties of various versions of this decomposition have been studied at least since 1940 (see for instance [26,1¢
and [11]). In Section 2 we recall a specific version of it that best suits our purposes, taken from [4]. Borrowing a nifty

trick from [13] we eliminate thev¢g, and essentially integrate by parts to obtain an equivalent form in terms of the
Jacobian,

/Ao-j(ug)dx = —Z/BO-J(ug)dx.
2 2
Assuming for instance that we have a famfly.., A.)} with E.(u.) < ClIng|, by [14] the Jacobians converge
J(ue) — nT,with T an integer multiplicity rectifiable 1-current, and hence both terms on the right-hand side of (1.5)
converge. Assuming the applied field is of the folgp = A|In ¢|e3, this formal procedure suggests a candidate for a
limiting energy of vortex lines:

Gu(T) = M(T) — 2T (BY),
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whereB* = Bo/|hapl, M(T) is the mass of the currefft (roughly speaking, the total length of the vortex curves) and
T () gives the action of the 1-currefiton vector fields irnf2.

We study the line energy in two different ways in Section 4. In both of them the conditien B (0) will be
crucial, since it will provide means to explicitly find the fieB* present in the energy. For our first analysis we
choose a setting which allows us to consider global minimizers,oih a particular class of curves. To describe
briefly how this is done, note that the symmetry of the sphere ensures that planar curves will have lower energy tha
space curves. This allows us to think of the vortex curve optimally partitioning a two-dimensional cross-section

B% = {x = (x1, X2, X3): x% +x32, < R?, X = 0}

of 2. This partitioning problem may then be set in B82: {0, 1}), as the vortex defines the boundary of a Baif
finite perimeter inB,%. A similar reduction has been used to study vortices in Bose—Einstein condensates in [1].
We show that the global minimizer in this BV sense undergoes a transition at a critical value of the pakameter

. sinhR
 3/F(coshr — (sinhr)/r)dr

Whenx < A* the global minimizer of the line energy, is the vortexless Meissner state, while whes A* the
minimizer has a single vortex along the vertical diameter of the®@alProposition 4.2 gives a precise formulation of
this result. Thus we predict that the leading term in the expansion of the lower criticaHfigid the sphere is

He, ~ A*[Inel.

We note that in two dimensions a much more detailed description of the lower critical field and the number and
locations of vortices has been obtained in a series of papers by Sandier and Serfaty (see [24,23].)

Unfortunately, the formal limiting procedure outlined above does not allow us to conclude that the Jadghbjans
of a family {(u., A¢)} of global minimizers oG, converge to an integer multiplicity rectifiable 1-current, as we lack
the control of(E.(u.))/|In¢| required by [14]. Nevertheless, in Section 6 we present a partial result concerning the
transition of global minimizers from the Meissner to the mixed state. In Theorem 6.1 we show the existence of ar
explicit valuer), < A* so that when. < A} the global minimizers of;, have no vortices as — 0. Thusi}, [In¢|
defines a lower bound for the critical fielfl,, . As functions of the radius of the ball, these values accord for very
large radii: asR — oo, A} /A* — 1 and bothy,,, * — % For this result, we use the weak Jacobians method of [14]
and we extend a compactness result for Jacobians due to Sandier and Serfaty [22] (see Theorem 6.4).

To complement these results we construct stable solutions with vortidesasminimizers of G, for A > 1*,
using the methods of Montero, Sternberg, and Ziemer [19] and of Jerrard, Montero, and Sternberg [13] based on tf
I'-convergence scheme of Kohn and Sternberg [15]. For this procedure we first show thatfox* the diameter
(taken with any arbitrary multiplicityz) is an isolated local minimizer of the line ener@y in a suitable topology on
the space of integer multiplicity rectifiable 1-currents. This will also depend on the explicit expression avail@le for
in the case&? = Bg(0) and comprises the second part of Section 4. In Section 5 we show that there are indeed local
minimizers of G, with Jacobians converging to the vertical diameter with appropriate multiplicity. We recall that,
givenan isolated local minimizer of the limit energj,, the Kohn—Sternberg approach produces local minimizers to
G, (ande > 0 small enough) for any smooth simply connected= R3. The problem in a general domain would
be first find the fieldB* involved in the expression we have for the limiting energy, and then seek a candidate for an
isolated local minimizer of this energy.

To describe our result precisely we need to introduce some notatiofi; ldeinote the vertical diameter of the ball
£2 thought of as a 1-current, that§s acting on a vector fiel® in £2 via

R

S1(B) = / B(0,0,z) - e3dz,
—R

and set

S, =nS1, (1.6)
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the same diameter but with multiplicitye Z. We denote b)W%”’(Q; RR3) the Sobolev space of vector fiel#swhich
satisfy the boundary conditioB x v =0 onds2. We then define a family of open neighborhoodSpf

*
<S},
1,4

where|| - ||>{’4 is the norm in(W%"l(Q; R3))*, ands > 0. We prove:

Os = {(u,A) eWwW: S, — %J(u)

Theorem 1.1.Lethgp = AlIngles with A > A*. Then for every sufficiently smadl > 0 there existgg > 0 and a family
of local minimizer(ue, Ag)o<e<e, Of G¢ in Os,. The distributional Jacobiang (u.) associated to these minimizers

satisfy%](ug) — S, in (W%A(Q; R3))*. Moreover, for any; > 0 there isep > 0 such that, for any < ¢ < g9 one
has

suppS1) C {x € 2: dist(x, N 5) < n},
where

Nijp= {x €2 |u.(x)| <1/2}.
In other words, we find solutions of the Ginzburg—Landau system with vortices which are close (in the given sense of
currents) to the diameter. Since multiple degree vortices are considered to be unstable, we expect that the multiplicit)
n > 2 solutions will have: distinct vortex lines, but these will approach the diameter of the ball im theO limit. In

the two-dimensional setting Serfaty [24] has shown that this is indeed the case, with a distance between the differen
vortices on the order dfne|~1/2,

2. Some facts about vector fields
We introduce in this section the main Sobolev space of vector fields we use in this paper. We also record some fact:
about Hodge decomposition for vector fieldsiA for future reference. In this sectiad c R? can be any bounded,
smooth simply-connected domain. We first recall the following lemma from [16].
Lemma 2.1.For A € C§°(R3; R3) the following identity holds
/|DA|2dx=/{|V><A|2+(divA)2}dx. (2.1)
R3 R3

We point out on the other hand that the classical Sobolev embedding gives a cdastadtso that, forA e
C(R3; R3), it holds

1/6 1/2
{/|A|6dx} <K{/|DA|2dx} . 2.2)
R3 R3

This in particular implies that either side of the identity (2.1) defines a norﬁgﬂﬁR3; RR3). Denote then byH the
completion ofC3°(R3; R3) with respect to the norm

1/2
IAlL = {/{W x Alz—l—(divA)z}dx} .

R3
This makesH a Hilbert space and
Ho={A e H: divA =0} (2.3)

a (strongly) closed subspace#f It follows that Hy is also weakly closed, since it is obviously convex. Furthermore,
the norm thatty inherits fromH is equivalent inHy to the norm

1/2
||A||o={/|V><A|2dx} .
R3
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A similar construction could be carried out for instead ofR3 by means of the following lemma taken from [11]:

Lemma 2.2[11]. Let p € 11, oo[. There is a constan€ = C(£2, p) such that for everyB € W17 (£2; R3) with
B xv=00n4d£2 we have

1/p
||B||W1,pgC{/(leBV’—i—(divB)p)dx} , (2.4)

where|| - ||y, denotes the usual norm L7 (2; R3).
Remark 2.3.We denote
WP (2:R%) = {B e WP (2;R%): Bxv=00nae). (2.5)

Note that in this space
1/p
IBll 10 = {/(IV x B|P + (divB)”)dx} (2.6)
T
2

is equivalent to the standard Sobolev norm. This is the classical Poincaré inequality for this space. We also defin
analogous Holder spaces,

CYP(2;R®%) = [BeC®¥(2;R%): Bxv=00nd2}, 0<p<L
In several instances we will make use of the Hodge decomposition for vector fields:

Lemma 2.4. There are constant§'y, Co = C1(£2), C2(£2) such that for anyA € L2(£2; R%) one can find a pair

(b4, Ba) € WH2(2) x W2(2; R3) satisfying

A=V xBs+Vés ing, @.7)
lpallwrz + ||BA||W%,2 <Ci1llAll 2y and (2.8)
div(B4) = 0. (2.9)

The choice ofB,4 is uniqgue among divergence free vector fields and the choigg @ unique among functions in
W12(£2) with zero average. Moreover, whene H one also has

I Ballw2z + ll¢allwe2 < C2llAll - (2.10)
Proof. This lemma is a special case of Lemma A.4 from [4], although similar forms of decomposition of vector fields

have been derived much earlier (see Ladyzhenskaya [16] for one such version and some historical notes). We inclu
in Section 7 a direct proof of this result in the ca8e= B (0) c R for the reader’s convenience

3. A solution to London’s equation

Next we minimize the magnetic energy using the tools derived in the previous section. The solution that we find
can be thought of as an approximation to the magnetic field of the “Meissner state”, since the magnetic energy, ¢
defined in the introduction, i8},,,(A) = G¢(1, A).

First, consider the case of a general givigp, such that we can findzp € Wlf;é’o (R3; R3) with V x Aap=hapand
div(Aap) =0, in all of R3. By Lemma 2.4 there exisBap € W;-%(£2; R3), with Bap x v =0 0nd <2 and

Aap:V X Bap+ V¢ap |n Q.
We then seek minimizers of the magnetic energy in the fotg= Aap+ A1 with A3 € Hp minimizing

1
F(Al)zéf‘vX(BA1+Bap)‘2dx+f|VxA1|2dx.
2

R3
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Here By, is determined byi1 as in Lemma 2.4. We have the following existence theorem:
Theorem 3.1.The functional

1 2
F(Ay) = E/W x (B, + Bap)| dx +/ [V x A1)%dx
2 R3
has a unique minimizeA; € Hyp. Calling Ag = A3 4 Aap, One hasAg € C,l(;g‘(R3; R3). Moreoverig=V x Agis a
weak solution of the system

Vxho=V x hgp inR3\ 2,
ho+V xVxho=VxVxhgp and divhg=0 in$2, (3.1)

ho — hape L2(R%R%), and hoe C2%(R3 R3).

Proof. First of all note that the functional is well defined, due to the uniqueness and continuity a$ a function
of A € Hyp given by Lemma 2.2. Clearly the functional is continuous, coercive and strictly convéxeiitlp. The
existence and uniqueness of a minimize#@fA) in Hg then follow immediately. Call the minimizet1. The critical
point condition reads in this case

/Vx(BA1+Bap)~VxBAdx+/VxAl-VxAdxzo

2 R3

for all A € Hy. The boundary conditions d, imply that for any functionp € W2(£2)

/V X (BA1+Bap)V¢dX:0
2
so the critical point condition can be rewritten as

/Vx(BA1+Bap)-(V¢A+VxBA)dx+/V><A1-VxAdx
2 R3
=/Vx(BA1+Bap)~Adx+foA1~VxAdx=O. (3.2)
2 R3
Integrating the last integral in this expression by parts one obtains

/A-(VXV><A1+XQVX(BA1+Bap))dx+/([VxA1]xv)~AdS=0.
R3 Y,

Herey represents the characteristic functiomafand[V x A1] represents the jump &f x A1 across the bordexs2.
We conclude that

VXV xA1+ xeV x (B1+ Bap) =0
a.e.inR3, and[V x A1] x v=00n3$2. ReplacingV x B1 = A1 — V¢ in this last expression we obtain
VXV xA1+ xoA1=xe(=V X Bap+ Vé1).
The fact that divA; = 0 yields now
—AA1+ xeA1=xo (—=V x Bap+ Vé1). (3.3)

SinceA € Hy, (2.10) yields immediately ¢1 € W12(£2; R3), and the same holds f&F x Bap. The classical Sobolev
embedding gives that the right-hand side of (3.3) i #(s2; R3) for 1 < p < 6. We fix 3< p < 6 and appeal to [8],
Corollary 8.36 and the remark right after to claita € Cj (R3, R3) for O<a <1 —n/p .

Finally, Ao = A1 + Agp and g =V x Ag, so the conclusions of the theorem regarding the equations and the

regularity ofig hold. O
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Now we specialize to the case which we require for our analysis of vortices. We assumigg (0), and
hap = é3.

We then choose (for exampledap = A3, = (=%, %.0), and obtain by Theorem 3.1 a minimizai € Ho, A* =
AZpt AL h* =V x A% and from Lemma 2.4 a correspondifig, ¢*. These may be calculated explicitly in spherical

coordinates; see [18]. Let=,/x? + x3 + x3, 6 € [0, 7] measure the angle down from the north pole of the unit
sphere, ang € [0, 27) the equatorial angle measured from #ieaxis. We obtain:

h* = rzji% <cosw - sw;hr) cosor + bzsﬁ <cosr‘r _1 t rt sinhr) singé. (3.4)
Finally, writing

A* =V x B* + V¢*, (3.5)
as in Lemma 2.4B* can be expressed as

B* = —h* —c*é3, withc* = ﬁ (coshR - 1_;R2 sinhR). (3.6)

In casehap= Aé3 for constantA, we note that by homogeneity the corresponding minimizer of the magnetic energy
is given simply byAg = AA*, hg = Ah*, Bo = AB*, ¢g = A¢™.

4. The limiting energy

In this section we study the limiting energy of vortices, sometimes called the “line energy”, obtained formally in
the limit ¢ — 0 as in the introduction. Let us recall here that the energy of a vortexflif@n integer multiplicity
rectifiable 1-current wit® 7T = 0), may be written as

G.(T)=M(T) — 20T (B"), (4.1)

whereM (T') is the mass of the currefdt, T (B*) gives its action on the vector fielB*, and B* comes from (3.6). If
we knew that the vortex lin& were actually amriented curvdying in a two-dimensional cross-section

B% = {x = (x1, x2, x3): xf+x5 < R? xp= 0},

of the sphere, then we may express the limiting line energy in more classical terms as

gA(T)zfds—zxfB*.fds,
T T

where is the unit tangent to the curvE. SincedT =@, T partitionsB,% into two domains, each with boundary
consisting of7T together perhaps with some pieced®2, properly oriented. We choose the domdi to be the
one for which the positively oriented normal vectoriis, = é>. (For example, ifT is the vertical diameter oriented
upwards,Dr lies to the right ofT’.) SinceB* - t =0 on BBI%, we may interpret the second line integral as being over
the closed curvé Dr, and applying Green’s Theorem, we obtain an equivalent form of the line energy,

QA(T):/dS—Zk/VXB*~é2dX1dX3. 4.2)
T Dy

We point out that spherical coordinatesRs restricted to the cross-sectidi'ﬁ gives a system of polar coordinates
(r, 0), if we now permit the anglé € [—n, 7], where we recall tha? = 0 corresponds to the positivg-axis. With
this understanding, the integrand in the second terg), dfas the form:

sinhr) sing B sing

~ 2sinhR (COSW B

Unfortunately we cannot show that the limiting current associated to global minimizers of the Ginzburg—Landau
energy is indeed a single curve, or even that it is rectifiable (and thus morally equivalent to a union of Lipschitz
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curves.) In fact, looking at the 2-d situation as described by Sandier and Serfaty in [24,23] it is reasonable to expec
for |hgp| > H., = O(|Ing]) and global minimizersu,, A;) of (1.1) thatE, (u.) = O(lln¢|?) and it is known that in
this case the Jacobiadsu.)/|In | converge but not necessarily to a rectifiable limit.

Another source of difficulties is the fact that even among integer multiplicity rectifiable 1-currents, the limiting
energy we consider either has a trivial ‘vortexless’ global minimiZze&(0) or is unbounded from below. Indeed, if
we had an oriented curve with G, (T) < 0, then by superimposing copies ofT (perhaps with rotations to make
them distinct) we obtain a new current with energiimesg, (T). This clearly implies thag, is unbounded below.

To circumvent these difficulties we employ two different approaches. First, we can still find a “global minimizer”
of the line energy if we restrict our attention to single multiplicity vortex lines. This approach will enable us to
identify a candidate for the “lower critical field”, the value/afp at which vortices first become energetically feasible.
Second, with an eye in building local minimizers to the Ginzburg—Landau er@sgyiven by (1.1), we show that
the diameter is an isolated local minimizer of the line energy in an appropriate topology among integer multiplicity
rectifiable 1-currents wheinp is large enough. This result will follow from a construction similar to that of [19,13].

4.1. Global minimizers of the line energy

We follow [1] and pose the line energy problem in the context of Cacciopoli sets. The limiting problem being
posed in the two-dimensional cross-sectﬁﬁ] we may identify the curv& with its associated domaib7, and use
X = xpr. the characteristic function dbr, as the variable. In this contex; (T') = G, (xp,), with

G.(x) =1VxI(B3) —fZ/\f(r)sinOX dr do, (4.4)
B
defined fory € B:=BV(B2; {0, 1}). (We recall the definition of’ (+) from (4.3).)

Lemma 4.1.For anyA > O:

(i) there exists a minimizey, of G, in Bwhich is symmetric with respect to reflection in theaxis
(i) suppyx C ij is supported in the right half-disk
(iif) a(suppys) consists of a single analytic curve meeting the boun@aﬂ% at right angles.

We remark that by Theorem 1.3 of [1], the minimizgris unique for almost every > 0.

Proof. The existence of a minimizey, = xg, follows from general properties of BV functions. To prove symmetry
in the x1-axis, if
/ (|VX*| —2Af(r)sin9)rdrd9 < / (|VX*| —2Af(r)sin9))rdrd6,
B2N{x3>0} B2N{x3<0}
define

X*(-xlv -x3)3 If X3 2 07

X (X1, X3) = { X«(x1, —x3), if x3<0.

Then by the symmetry of the integrands we would hgyex**) < @(X*), and thus we may assume that is
symmetric.
To obtain regularity, we also argue as in [1]. For gng B let

F(ﬂ::/f(r)sin@xdrd@,
B}

and definel, = F(x«) wherey, is a minimizer ofg’]. Theny, also attains the absolute minimum of the perimeter
functional P(x) = fBz |V x| under the (weighted) area constrality ) = £... The regularity ob E, then follows from
R
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the regularity of minimal surfaces in low dimensions [10]. It implies that= suppy. consists of countably many
relatively closed components, each bounded either by a closed analytic curve or by a countable nhumber of analyt
arcs meeting the boundary at right angles. Call these compoftents suppyx}, so thaty.. = >, x.

First we show that there are only finitely many such componentss ke be fixed, to be chosen later. Since

o0
/|VX| =Zf|vm < o0,
B2 k=1p>

for all k > K sufficiently IargefB% |V xx| < 8. From the relative isoperimetric inequality (see Theorem 5.4.3 of [27])
we conclude

/ IO Gingyerdrdo < C / i dr < C'82,
.

2 2
BR BR

with constantC’ independent ok, 5. Now fix § small enough (depending or) so thats — 2AC’s82 > 0. Then,
Gy(xx) > O0forallk > K, and hence

K K
gx(ZXk) =Y G0w) < G,
k=1 k=1

a contradiction unlesg, only had finitely many connected components.

Now we will show thatE, = suppy. C B,%*. Let E* = {(x1, x3) | (—x1, x3) € E,} be its reflection with respect
to thexz-axis. First we claim that ifV x.|({x1 = 0}) > 0, thenE, = B,zf, the entire right half-disk. Indeed, assume
there exists a poinP € {x1 = 0} in the support of V xg, |. By regularity, near this poimE, consists of a smooth
curve, and the measuf¥® xg, | coincides locally with arclength measure on that curve. In particular, the curve must
lie along some interval of the diametiar, = 0}, and can be represented as a grapk v (x3) in some larger interval
on thexz-axis. This curve then satisfies the Euler—Lagrange equations for the limit eiiergy

" 3RA sinh
4 = — coshr, — ——

L+ WwH?¥2  2sinf(R)r2 ry

)yocs), (4.5)

wherer, = (y (x3)% + x%)l/z. By ODE unigueness (note that the right-hand side is smooth-at0) the curve must
coincide with the diameter (x3) = 0. We conclude thak, = B,%*, the entire half-disk, since it gives the largest value
of F(x) and the smallest possible total perimeter given &gt contains the diamete; .
Next assume that, is notthe entire half-disk (and S& x.|({x1 = 0}) = 0,) and consider the symmetric difference
E.AE,. Since
XE, AE,(X) = Xg,uE, () — Xg,nE, (%),

we apply Lemma 2.2 of [1] to conclude that
IVXeaB =V (XE,0E, — XE,ne ) S IVXEUE T IVXEAE] < IVXE ]+ IVXEI=2IVXE, (4.6)

by symmetry. NOWE,AE, is a disjoint union of two componentE,*AE* = Ft U F~, with F* supported in the
right half-disk, andr"~ supported in the left half-disk, and one is the reflection of the other ingteis, F~ = FT.

Note that|V xr+| defines a measure supported in the closed half-ﬂ%k, and similarly for|V xg-|, supported in
B,Z(. By the preceding paragraplV xe, |(S1) = |V xg,1(S1) =0, so by (4.6)]Vxx A7 1(S1) =0 as well. Hence we

conclude that the measurBéxr+|, |Vxr-| are mutually singular, supported in the open haIf—diBI%, B,Z(. By
symmetry of the reflection, the total mass satisfies:

VX, aE | (BRO) = Vxp+(BRO) + |V xr-I(BR () = 2|V xr+|(BZ(0).
If we then choose... = xr+, theny,, has support irB,ZJ and by (4.6),

IV x| (B2(0)) < |V x| (BZ(0)).
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We now claim thatF (x.«) = F(x+), and hence the total ener@(x**) < gﬂ(x*). Indeed, the original sef, =
FTU[E.N F?*]. The sett, N E* being symmetric with respect to thg-axis and the integrand @f being odd, this
part integrates to zero and we obtain the desired identity. This completes the proof of part (ii) of Lemma 4.1.

We now claim that each componeBt = suppy of E, must either be bounded by a single, closed curve inside
B,%* or be as in (iii). Indeed, if supp: has interior boundaries, we obtain a set whose characteristic function has
smaller energy by eliminating the interior boundaries, since the arclength is reduced and the integrapaxitive
in Blzj. The same remark applies if supp contacts the boundary and has several boundary arcs contaﬂﬁ’fg
Since the minimizer is contained in the half-disk each connected compgpevttich contact@B,% must be enclosed
by a single curveC; from 3 E; connecting the boundary at two extreme angles & < 6> < &, together with
the corresponding ar€, along the haIf—circIe‘iBi*. Denote the simple region enclosed @y, C» in BIZJ by E;.

Since the integrand af is positive andC; C 3 E, QNA(XEi) < gx(Xk), which proves the claim.

Next we observe that the energy behaves in a simple, monotone way if we translate the connected components
or rotate them along the boundary of the half-disk. Namely, the perimeter is unchanged by each of these displacement
and the magnetic term increases as we increaser sind. Suppose that one of the: is supported entirely in the
interior of Bf?*. By translation to the right we decrease the engfgyThis may be done until either the component
meets the boundau@/B,zjr or until the first contact of the support gf with some other component of supp. This
second possibility is impossible, since the analyticity of the boundary arcs precludes their intersectiomfpside
Hence each component of suppmust contact the boundary of the half-disk. By rotating each component along
the boundary in the direction of increasing= r sin we again decreasg,, and hence these components may be
assumed to be pairwise in contact with one another aﬂicf_rﬁ We now show that this situation cannot occur either.
Indeed, suppose that andjy» are boundary arcs corresponding to two components of gupghich meet at the
same boundary poirt € anf. By the above arguments, these curves do not touch ilﬁt‘jeand each mee&Bl,zjr
normally. Therefore, there must exist poifise y;, and P> € y» so that the line segme® P, joining them intersects
no other component of,.. Clearly, P P, is shorter than the arcs connectifigto P» via the boundary poinP. Thus,
if we replace the portion of the argg, y» betweenpP;, P, and 8312;r by this segment, we obtain a Cacciopoli set
whose characteristic function would have smaller ené;gy O

We remark here that the conclusions of Lemma 4.1 hold for problems {@B{@, 1}) for general symmetric two-
dimensional domaing other than the disk, provided that the integrgfd) siné is replaced by a function having the
appropriate symmetry and monotonicity properties used in proving the lemma.

The following result completely classifies the global minimizers of the functigpnah terms of the field strength
parametei. The result is strongly dependent on the superconducting domain being a ball.

Proposition 4.2.Let f(r) be defined as i(4.3), and set
. R sinhR

N 28 frydr - 3 /X (coshr — (sinhr)/r)dr

e If 0< A <A™ then the global minimizer @, is the vortex free configuratiory, = 0.
e If 2 > A* theng, is minimized byx = x g2+, corresponding to the vortex along the vertical diamesgr
R

Proof. The key observation is that, (0) = 0, and so the global minimizer is a vortex configuration if and only if
ming G, < 0. We begin by noting that the energy of the diameter vortex is

R
Gtz = 2R — 4 / £ dr,
0

and henc@x(xgy) <0=0G, (0) exactly whem < 1*.
R

Next, assume that, # 0 is a symmetric global minimizer with support Bﬁ*. We claim that there is an angle
0o € [0, /2) such that

E, =suppxs C Xg, :={(r,0): bo <6 < — 6o, 0<r <R}, 4.7)
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and such thad E, meetsaBl,zeJr at anglefy (and atr — 6p.) Indeed, defingg to be the infimum of all angleg for
which the ray intersectg,. Then by the symmetry of the minimizer (4.7) is satisfied. Sifigés closed, the infimum
is attained, the optimum ray intersectif either onaB,§+ (in which case the claim is proven) or at some interior

point P lying on a boundary arc dfE,.. Since the ray is a radius of the circle, the segment attachitap B,%* along
that radius has shorter length than the piece of arc forming part of the boundary ofisipreplacing that arc
(connectingP to 3312;) with the radial segment we would therefore create a new Cacciopoli set with smaller energy
than ., and hence this case is impossible and the claim must hold.

We are now ready to prove the first assertion of the proposition. Assu@e Q A*. Since the boundary of supp
originates aﬁBl,zjr at angle®o, © — 6, the total perimeter is at least

/ |V x«| = 2R cOShp.
8
On the other hand we estimate the magnetic energy from above by comparing with the&gctor
R m—6g R

ff(r,@)x*drde < / f(r,0)drde :f / sinéf (r)do dr =ZCOS90ff(r)dr.
B2 Zoo 0 6p 0
Together, we have the lower bound on the energy,

R
Go(xe) > 2<R - ZA/ fr) dr) costp >0
0

when 0< A < A*. Therefore, in this range df the global minimizer must be the vortexless configuration.

Now consider the cask > A*. We already know from the first paragraph of the proof that in this regime the
diameter has negative energy, and hence the global minimizer is a vortex solution. Sypmaesymmetric global
minimizer. By Lemma 4.1 its interior boundary is a single analytic cupvd,et D,, be the region inBIZQL bounded
by y and the diamete$1, and the circular arc61 = {(R,0): 0< 0 <6y} andC2={(R,0): m —6p <0 < m}. We
use the following simple estimation:

6o T
9 _ .
ozfolz f %ds:—/ds+/v1ds+/Rsm9d9+ / R sin6 do
V
D, oD, S1 Y 0 w—6p
< —2R + £(y) + 2R(1 — cosdp), (4.8)

where{(y) denotes the arclength pfandvy = v - é1.
Recall from the previous part that suppC Xy, for some sector of anglé, > 0. Note that in caséy = 0 from
the previous paragraph we must ha\(@) > 2R. Since F(x.) < F(XB,%+) is optimized by the entire half-disk, we

conclude tha@(x*) > QNA(XBH) in this case, and s = 0 can only occur when the vortex lies along the diamg&ter
R
For a global minimizely. # S1 then we assumé > 0. In this situation, since supp C Xy,, we must have

Dy D Agy:={(r,0): 0<r <R, 0<6<borm —fo<<n}
In this way we obtain the following lower bound on the magnetic term,
R 6o R
/ f(r)sing y, drdo > / f(r)ysingdrdd = 2// f(r)sing dr dd = 2(1 — cosbp) f f(r)dr.
B2 o 00 0

44

In particular, the above inequality together with (4.8) yields

R
Go(¥) — Ga(S1) = £(y) — 2R + ZA/ F(r)sing dr dd > 2(1 — cosbo) (2A/ frydr — R) >0,
0

Dy
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whena > A* (recall6p > 0) contradicting thaj, is a global minimizer. In other words, the unique global minimizer
is the diametes;. O

4.2. The diameter as a local minimizer

In this part we adopt a different point of view and treat the vortices as they more naturally occureirstie
limit process, that is as integer multiplicity rectifiable 1-currents. This approach has two advantages: we can use it to
construct local minimizers of the-problem by employing thé -convergence trick of Kohn and Sternberg [15] as in
[19,13], and we can consider arbitrary degeefer S,,, the limiting vorticity.

We seek local minimizers of the line energy, “local” being measured by the norm dual to the standard Holder norm
for vector fields, this is, fof" € R1(§2) we define

IT1If,, = sup T(B). “9)
{BeCH(2:R3): || B 0.1<1)

Here|| - || o1 represents the usual Hélder norm, and
Cp(2;R%) = B e C®}(2; R%): B xv=00n3)}.

We will make use of the fact that € R1(£2) can always be represented as

T(B) = / n(x)B -t dHq). (4.10)
r

Here I' C 2 is a 1-rectifiable set, that ig; = I'o,>1 Ik where HD (I5) = 0 and for eactk > 1 there is a set
Iy C R and a Lipschitz functiony; : R — R3 with Iy = fi (). Also, the functions:: I" — Z andz:I" — RS are
assumed to bé/ D measurable, antt| = 1HD a.e. By the support of we always refer to the sdt. Note that
this setl” is only defined up to a set df ‘V-measure 0. Finally, we will denote bs',% a ball around 0 irR? rather
thanR3, for which we reserve the notatidby (0). We will also write B3 " = {(x1, x3) € B2: x1 > 0}.

The main result of this section is

Theorem 4.3.LetA* > 0 be the number given in Propositign2 For eachi > A* andn € Z, one can find a positive
81 > 0 such that for any" € R1(£2) withdT =0in £2

0<|IT = Sullg1 < 31= Ga(T) > Ga(Sn)-

Proof. As pointed out just before this last theorem, the actio" &f R1(£2) (that also satisfie8T = O relative to

£2) on a vector field is really oriented integration over a countable family of Lipschitz curves (each of them having
endpoints ord 2 or being a closed loop withig2). We consider first the simplest possible case: that in wiiich)

can be expressed as

T(B):/B~t

Y

for a singley :10, M[ — Blzﬁ c R? that does not self intersect, with either both endpoints equal or boéligmand
n = 1. It follows easily in this case from Proposition 4.2 tga{(7) > G, (S1) for A > A*, unlessT = S1. This more
or less implies thaf; is an isolated local minimizer df,. To show thatS,, for any integem > 1, actually has this
property with respect t¢ - ”3,1 we first reduce the problem to the half plajfie;, x2, x3): x1 > 0, x2 =0}, and then
use the condition & ||T — S, ||§;’1 < 81 to decompos& = Ty + T»> whereT; is made up of exactly Lipschitz curves
like the ones considered above aGid(7>) > 0 with strict inequality if 7> # 0. This will give G, (T) > Gy.(S,) for
generall € R1(£2) withdaT =0and O< || T — S,1||§§11 < 81.
Step 1 Case of single curve. We assume here thatin be represented as

T(B):TV(B)=/B-1

Y
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for a single curve
y 10, M[ — B%JF = {(xl,xg) eR% x%—i—x% < R?, X1 = 0}

that does not self intersect and has either both endpoinﬂa?@rQO) or is a closed loop. In this case we may easily

associateg” with a Cacciopoli sefAr C B,%’L, as in Section 4.1, whose boundary witlii‘rffr coincides withy, and
so that also

Gu(T) = G (xar)-
In this case Proposition 4.2 immediately gives

G,.(T) > Gy (S1)

unlessT = S (recallx > 1*).

Step 2 In this step we show that the energ@y of any current decreases if we project it along the azimuthal angle
onto B,%”L C R2. This reduces the problem to a 2 dimensional situation.

This projection, that can also be found for instance in [12], can be described as follows: consider a Cartesian syste
with é3 in the direction ofiiap SO thathap = Aape3. With this, set up a spherical system so that its polar axis coincides
with the positivexs axis. We denote these coordinates and unit veciogs ¢) ande,, ég andé, respectively. In this
cased € [0, ] is the polar angle. Consider now the map

q:Br(0) C R® — B2 = {(x1,x3): x7 +x2 < R?} C R?
defined forx = (,0,¢) € Br(0) as q(r,0,¢) = (rsind, rcosd). Looking at the domain ob we see that
q(Br(0) C BF ™.

Note now that any vector fiel@ C%l(B,%; R?) can be readily made into a vector fielddl?’l(BR(O); RR3) (here
Br(0) c R3) independent of the azimuthal coordinateand this is obviously a subset GT‘T)’l(BR(O); R3). This
yields

1Ty — S1llg.1 < 1Ty — S1llg,1 < 61,

where the firsf| - | ; is understood ifC%*(B%; R?))* and the second icC%(B(0); R®))*. Itis also an easy matter
to checkG, (T) > Gy (g#(T)) andagy(T) = q4(dT) = O relative toB,ZQ. All this shows that, to establish the theorem, it
suffices to consideF € R1(B2) with suppT) c B2*,0< T, — S1ll 1 < 81anddT = 0 all relative toB2, which
we do from now on (see (4.10) and the comment preceding it for the definition of the sup@9rt of

Step 3 In the next step we decompofe= Ty + T», whereT; is made up of Lipschitz curves as those considered
in Step 1, and» € R1(£2) is supported, roughly speaking, on closed loops. To obtain this decomposition we require a
lower bound on the mass @f, which is what we pursue in this step. More specifically, we seek here the lower bound

M(T) > M(T | Nsuppy))) = 2nR — C87/%. (4.11)

for the massM(T') of any currentl” that satisfies)7 = 0in 2, 0 < |7 — S, ||§ ; < 81, and an additional condition
that will be clear in a few lines. HeréL B refers to the action of restricted to the seB, the setI"* represents a
place whereél' has an orientation close &, andy is a particular test vector field. Both will be defined in the course
of this step.

Note first that for7T" satisfying O< ||T — S, ||E;’1 < 81 we have

|(Sn = TYB")| < IIT = Sullg 1l B*ll cor < 81[|B*|| cou.
M(T) > M(S,) + 81/4 implies then that

Gy (T)=M(T) — 20T (B*) = M(T) + 2x(S, — T)(B*) — 215, (B*)
> M(Sy) — 21.8,(B*) +87/* — 2181(1 B* || cox > G (i)
for 81 = 81(B*, A) > 0 small enough. We therefore assume, in additiodftc= 0 in 2 and O< | T — S,,||al < 81, the
upper bound

M(T) < M(S,) + 87 (4.12)
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throughout the rest of the proof.

To obtain a lower bound oM (T) we build a test vector field with some ideas borrowed from [19].d.et 0 and
consider the functions
R+z forzel]-R,—R+ 5[,
f@)=148¢ forze]—-R+ 6y, R —65[.
R—z forze]lR -6, R[,
85 forr €10, R — &65[,

a

R—r forre]R—47,R[
8% —|x| for|x| [0, 8]
0 otherwise
Herer = (x2 + x3)/2. Define with thesey (x1, x3) = h(x1)p(r) f (x3)é3. We compute

pr) =

h(x)=

2n8d 4
Sy(¥) =n&3 (2R — 25%) + 31 =ns <2R - :—353{).

Itis also clear thafjy || o1 < 1. Since|(S, — T)(¥)| < 81/l |l co1, this implies that

4
T() > Su() — 81 =n8 (ZR - §5g> — 81
Let us introduce the following notation.
1"+={x€1": ég-fx>0}.
The definitions ofy andI"* lead to
T(y) <8FM (T {I* Nsuppy)})

and from here we obtain that

min{o,1—3a}

4
—”55‘) — 1% 5 onR — 6"

M(T{Tr* nsuppy)}) = <2nR -3

for 1 = 81(R, n) > 0 small enough. Choosing naw= %1, we obtain

M(T | nsuppy)}) = 2nR — €574,

which is (4.11).

Step 4 As mentioned before, here we use Step 3 to decomposedy + T2, whereT; is a current supported on
finitely many single Lipschitz curves, affd € R1(£2) is basically supported on closed loops. To do this we first recall
from 4.2.25 in [7] thatl’ € R1(£2) with 97 = 0 can be decomposed as

T=>) T (4.13)

=1

Furthermore, eacl is a single Lipschitz curve with both endpoints @2 or else is a closed curve withi2 (either
way a7, = 0 for all k), and one also ha¥/ (T") = Zk>1 M (Ty). We also recall from [7] that fof : 2 — R Lipschitz,

the sliceqT, f, t) are well defined for a.ec R. Loosely speaking, fof € R1(£2), (T, f, t) represents the restriction
of T to the surfacef ~1(r) C £2. SinceT € R1(£2) is made up of a countable collection of Lipschitz curves, for a.e.
t e R, (T, f,t) is a countable collection of point masses and

o0

/ M((T, f, 1)) dt < sup| V" f(x)|M(T). (4.14)
xel’

—00

Here we recall that the sét = support7) andV’ f(x) represents the componentwff tangent tol".
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Now we try to compare the support @ with that of S,,. Setg(x1, x3) = |x1| and letC’ > C whereC > 0
comes from (4.11) (and depends only on the multiplieitef S,). Let us first rule out the possibility that for a.e.
r e[8,2C'5] it holds

M((T,g.r))>1 (4.15)

Indeed, since sugg) Ng~1([8%, 2C'8¢1) =¥ (recalla = 1/4), we find, in light of (4.11) and (4.14), that (4.15) leads
to

M(T) > M(T {I" nsuppy) }) + M (Teg 2 ([67,2C'88]) > 2nR — C8§ + (2C" — 1)&5.

For C’ > 0 large enough (again depending only:9rthis contradictsf (T) < 2nR + (Si/“ for §1 > 0 small enough.
It follows that

HP ({r e [81.Co]: M((T.g.r) =0}) >0, (4.16)

where we relabel @ to C. Define the set = {k € N: Ty () # 0}. (4.16) ensures that fdr € o, T} is a curve
contained in the interior of the infinite cylindgr([0, Cs7D. We subdivider further by considering

o2 = {k € o : T; has both ends on the same connected componeri o g_l(]O, Cs¢[) or
Tyis a closed loop

andoy = o \ 02. Note that fork € o1, T is a curve with one endpoint on each connected componedBafin
¢~ 1(10, €5¢1), and hence

M(Ty) > 2R — C5% (4.17)

for eachk € o1. The assumption tha/ (T) < 2nR + 81/4 guarantees then that there are at moisitegers ino1. We

distinguish two cases: caigh) = n and cardoy) < n.

Step 5 Impossibility ofm = cardo1) < n. We follow the proof of Theorem 4.5 from [19]. In this case one can
conclude thatinfacM (T) > 2nR+ (n —m)R — Cs)l’ for somey > 0. This clearly contradictd?(T) < 2nR + C(Si/4
for 81 = 81(n, m, R) > 0 small enough. The details of the proof are as Theorem 4.5 from [19] so we omit them here.
Roughly speaking though, the main idea can be expressed as follows: because there rare: anigtegers ino1,
(4.11) implies that there must b&®2— m)R units of mass inT" that come from the portion of either closed loops
or curves that have both end-points on the same connected comporent o —1(]0, 251’3[) that lies inI"*. These
curves however will have at least as much mass in the portion of them that lies#a{x € supaT): —17, - e3> 0},
this is at least @& — m) R units of mass in"~. These are unaccounted for in (4.11). Careful book-keeping then leads
toM(T)>2nR+ (n —m)R — C(S{ for somey > 0 which, as mentioned earlier, is impossible.

Step 6 Conclusion. In light of Step 5 we assume darnd = n. Note also that fokk € o1 Step 1 implies that
G (T}) — G (S1) > O unlessTy = S;.

To estimates, (T — T,,) we note that

M(Tp) = M(Ty) > 2nR — C&.
k€0'1

This implies that/ (T — T,,) = ZNW M(Ty) < C8Y,inlight of M(T) < 2nR + cai/“. We can find then an integer
multiplicity 2-currentS with 8S = T — Ty,. The relative isoperimetric inequality gives in this case th&(tS) <
K(M(T — T,,))?. But then

G(T —T5) =M(T — Ty)) — 2A/ng(x)(v x B*)-vdS > M(T — T,,) — KA||V x B*||OO(M(T — T(,l))2
S
and sinceM (T — T,,) = ZN\Ul M(Ty) < C8%, this clearly implies tha@, (T — Ty,) > 0, unless" — T, = 0. We can
conclude now since (recall cakd) = n)

Gu(T) — Ga(Sn) = Z (9.(T) = Gu(S1) + Gi(T — Tyy),

keoy
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and eitherT — T,,, =0, in which casel’ # S, implies by step 1 thag, (Tx,) — G(S1) > 0 for somekg € o1 (recall
G.(Tx) — Ga(S1) > 0 for all k € o7 with strict inequality if 7 # Sy by Step 1), orT — Ty, # 0O, in which case
G, (T — T,,) > 0. In both instances we obtadh (') — G,.(S,) > 0, which is the claim of the theorem.O

5. Local minimizers to the Ginzburg—Landau energy

In this section we prove Theorem 1.1, by building local minimizers to (1.1). We note as in [13] that a sort of singular
change of gauge o6, (u, A) leads to an expression for it that can be handled using weak Jacobians. We recall here
that the gauge invariance 6f; is a property that reads

G:(%u, A+ V) =G, (u, A)
whenever € WH2(R?). Instead of computing the left-hand side of this last identity we compute

Gelu, A) = G, (€%4u, A), (5.1)
for ¢4 coming from

A=V x By + Veu

(cf. Lemma 2.4). Note that this still makes sense, althapiglis not defined in all ofR3. An easy computation yields

gg(u,A)zEg(u)—Z/BA-J(u)dx+%/|u|2|v x B|?dx + %/W X A—hgp|2dx, (5.2)
Q Q2 R3
where
Eg(u>=3/|Vu|2dx+if(l—|u|2)2dx~
2 42
2 2

This G, (u, A) of course is not the Ginzburg—Landau energy. However the transformation

T:WL2(2;C) x Hy— WY%(2;C) x Ho,
(u, A) — T (u, A) = (€%4u, A)

is a diffeomorphism (cf. [13]). This means that local minimizer&tqu, A) defined by (1.1) produce local minimizers
to G.(u, A) and vice versa. This allows us to stu@y, which is what the next theorem talks about.

In the following, we takehg, = 1lIneles, and defineAz, with V x A5, = hg, and B3, as in Lemma 2.4. We
decompose our magnetic potentidls= A7, + A1 with A1 € Ho. Denote byR1(£2) the class of integer multiplicity
rectifiable one currentss,, € R1(Bg(0)) denotes the current defined as the vertical diamglen, x3): —R < x3 <
R} of the ball$2 = B (0), with integer multiplicityn.

We recall from the Introduction the following notation: for- 0 define,

1 *

F=Fs= {(u, A1) e WH2(2;C) x Hy: ||Sh — =Jw)| < 3}, (5.3)
/g 1p

O=0;5= {(u, A1) e Wh2(2:C) x Ho: || S, — 1J(u) < 5}. (5.4)
T 1p

We claim thatF is weakly closed and is open inW2(2; C) x Hg. The proof of these two facts follows that of
Theorem 4.2 from [19], with the only caveat that the proofs in [19] ar€) fqrs,l. The difference is minor so we do
not include the proof here.

Note first that, forB € C*°(£2; R3) andp > 3 one has

| Bllcoe < KillBllwrr < K2l Bl coa
wherea =1 — % We set herg) = 4 anda = 1. This implies forT e (C2* (22; R3))* that

ITN3 1 < K2 T3, < KiKallT 5. (5.5)
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Here||T||aa and|| T3 , represent the norms ¢h dual to the usual Holder norih- || 0. and dual to the Sobolev
norm|l - ||y, respectively.

Next we apply the direct method of the calculus of variations to the problem of firjdinat1 ) € F satisfying

Ge (Mav Al,s + Agp) = (u,/i{rHGF Ge (u, A1+ Agp).

SinceF is weakly closed, it is a simple matter to obtain the existence of a solution to this last problem. The remainder
of the proof consists in showing that in fa@t., A1) € O for ¢ > 0 small enough. We proceed by contradiction and
assume that there is a sequenge> 0 with || S, — %J(ugn) ||’i4 = 8p. From now on we drop the subscripind write
(ug, A1) for (ug,, A1¢,). We will take several steps.

Step 1 From [2] and [13], one can always find a sequepgg ¢ W2(2; C) with E,.(v;) < K In % and

Iimo E.(ve) =M(S,), (5.6)
lim 27(0,) = 5, (5.7)
e—0T

and the last convergence is strongtﬁ’?’ﬂ(ﬂ; RR3))*, for anyg € 10, 1]. In particular, from (5.5), this convergence also
is strong in(W%"‘(Q; R3))*. Clearly then(v,, 0) € F for ¢ > 0 small enough. This implies thét (., A1e+ A%y <
Ge(ve, 04 A5 < K(In2)2, and this in turn yields

1 2

/|V><A1,8|2dx<1(<|n—> , (5.8)
&

RS

and
1 2
Es(uy) < K(In —) ) (5.9)
&
Now writing By . = By, ,, we obtain from Lemma 2.4 that

1 2
1B1elly22 < K (In g) . (5.10)

Step 2 Clearly (v, A1¢) € F also, soG, (us, A1 + Agp) < Ge(ve, A1 + Agp). After some cancellation one
concludes from here

Ee(ue) < Ee(ve) — 2(J (ve) — J (ue)) (Bre + Bp) + /(1 — |us|?)|V x (Bys + B;p)|2 dx

2
_ f(l— e 2)|V x (Bue + BL) [ dr (5.11)
2
< B + 2000 = S [Bre + Bl + [ DT x (B + B e
2
_/(1— 10:12) |V x (Bue + Bp) | dx. (5.12)
2

Here we point out that

1/2
[ @219 (B i e < ([ @ [ (19 % (B + 52| )
2 2 2

3

1
< Ce(Ee(us)"?|| Bre + Bip| 502 < Ce (In g) : (5.13)
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where we used (5.10), (5.9) adif, = [In¢| Bap. Similarly we obtain

3
/(1— vel?)|V x (Bre + ng)|2dx < Ce(ln }> .
2

&

Also note that sincep = 4, we have
[ Brellwir < CllBrellyz2 < Clinel,
and
*k * *
e = J@e) 1, < |V @e) = Sully, + S0 = Jwe)||y, < C.
All of this in (5.12) yields

1
E.(us) < KIn=. (5.14)
&

We appeal now to [14] and [13] to claim the existence of a subsequen¢é(@f)} strongly convergent in
(C?’ﬂ(Q; R3))* for all 8 € 10,1]. (5.5) implies then that this convergence is also stronng"‘(Q; R3))*. Call
the limit 7 7. From [14] we also conclude thdtis an integer multiplicity, rectifiable 1-current. Furthermore, the fact
that the convergence is strong GW%"‘)* implies that||S,, — T||1 4= do, SO in particularT # S,,. Finally, [14] also
provides the inequality
I 1
M@ T) <liminf — E.(u,). (5.15)
e=0 [Ing|
Step 3 By Step 1:||Bl,s||€vz,2 < K(n %)2' As mentioned earlier, the Sobolev embeddings then imply that
IB1ellwre < KIn % Moreover, for the exponents we are using the embedding is compact. It followlﬁ%sl‘qm,g is

pre-compact irW%"‘(.Q; RR3). We work now towards identifying the limit %Bl,s. To this end recall from [13] the

Proposition 5.1.Let 2 c R3 be a smooth domain, and lete (0, 1]. Then there are constangs> 0 andC («, £2) > 0
such that for any € W1-2(£2; C) and anye € (0, 1) one has

E¢(v)
HJ(u)HCg,a(g)* < C(a, .Q)(e” +inel ) (5.16)

We next show thaﬁﬁ(Bl,e + Bip) — AB*, where B* is given by (3.6), corresponding to minimization of the
functional F (A) in Theorem 3.1, wheh,p = é3. To do this note that

1
g(ua’ Al,s + A;p) < g(”s» |n(g)A1 -+ Agp)

for any A1 € Hp. In fact, (u., A1) € F implies
k
< 61.
1p
This clearly implieS(u,, [Ing|A1) € F for any A1 € Hp, SO we obtain

g(ué‘v A1,8 + Agp) < g(u&‘s |In€|A1 + Agp)
Expanding this last inequality we obtain

'1
—J(ug) — Sy
T

Eg(ug)—Zf(Bl,ﬁBép)'J(ug)+%/|us|2|v X (Bl,s+ng)|2+%/|VXAl,e|2

2 2 R3

Ine|?
2

< E(ug) — 2/(|Ine|Bl + Bgp) - J (ue) +

2
/mﬂv X (B1+ Bap)|
2 2
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Ine|?
4! 28| /|VxA1|2. (5.17)
R3

Note that—- A1 . is weakly compact irHo by (5.8). Note also that Proposition 5.1 and (5.14) imply

[Ingl

1
W /(Bl,g + B;p) - J(ug) = 0.
(7}

We divide now (5.17) byine|? and lets — 0. Call

_ _ 1 _
Ar=w-lim — A, By :=By,,
e—0 |Ine|
and denote
& &
Bap— Bap o= Aapp
P7 Ing|’ P7 ling|

The above discussion reduces then (5.17) to

5 [1VxBrtBap|"+ 5 [ IV x Al <5 [V X (Bit Bap)|"+ 5 | [V x Adl
2 R3 Q R3

for all Ay € Ho, SOA; is the unique minimizer of

1 1
F(A1)=§/|VX(31+Bap)|2dx+§/|VXA1|2dx~
2 R3

Set nowBg = B; + Bgap and recall from the remark below (3.6) thag = A B*. We rearrange (5.11) as

Ee(ue) — 2[(81‘8 + ng) “J(ug) dx < Eg(ve) — 2/ J(ve) - (Bl,e + ng) + /(1_ |’/‘s|2)|V X Bl,£|2d-x
2 2 2
— /(1— [el?)IV x By |*dx. (5.18)
2

We now use the known compactnessBaf;, the conclusions fov (u,) mentioned at the end of Step 2, (5.18), (5.6)
and (5.7) to conclude

L E¢(ug) 2
M(T) — 20T (B,) < liminf % [ (Bre+B5) - J(ue)dx
1) (B < limin {n|lna| ey ] (Bre t Bap) I we) }
2
L E¢(ve) 2
< liminf - Bi.+ BS)-
"mis {nllnel ||ne|/( e+ Bay) J(ve)dx}
2

S M(Sy) — 218,(By).

However, from Step 25, # T. Also from Step 2,||S, — TIII4 = 80, SO (5.5) implies thaf| S, — T||(*5’1 < K28p.
Theorem 4.3 then yields a contradiction gr> 0 small enough, because||S,, — T||3,1 < K280 implies that

M(T) — 20T (By) = Go(T) > Gp(Sn) = M(Sy) — 2A5n(By).

Step 4 The only details that still needs a proof éﬁd(us) — S, and the fact that for every > 0 there issg > 0
such that, for every & ¢ < ¢,

SUPHST) C {x € 2: dist(x, N{ ) <n}.
Here
Nip={x €R® |uc(x)| < 1/2}.
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For the first one note that the same contradiction we reached in the course of steps 1 through 3 would have bee
reached if we had a sequenge— 0 with

3

6 < < dp.

1
Sn - _J(uan)
T 1,4

This implies thatl J (uz) — S,. As for
supp(S1) C {x € 2: dist(x, Nf/z) <nh
this is a direct consequence of Proposition 4.6 from [13]. This concludes the proof of Theorem 1.1.

6. Lower bound for H,,

In this section we seek a lower bound 8y, by directly analyzing the global minimizers f6f.. As in the previous
sections we assume

We_ again (_:onsidelrgpz lIng|hap, andhap=Aréz =V X Aap, Aap=V X Bap+ Véap, ngz [In | Bap, Agpz lIne|Aap,
as in Section 5.

Theorem 6.1.Let (B*, h*) be the solution to London’s equation given by Theo& Assume thak || B*| oo < %

Then for a family of global minimizers 6§, denoted byu,, A;), we have
E
im e (Ug) —o.
e—0 In(l/e)

(6.2)
In particular, the associated Jacobiads. — 0 in the strong topology o(C?""(Q))*, for all @ € (0, 1].

Remark 6.2. Note that the last statementy, — 0, follows from (6.2) and the estimate of Proposition 5.1. In this
sense we say that for applied fieldlg, of the form (6.1) withi || B* o < % minimizers for smalk have no vortices.

It has been proven that minimizess of the energyE. with prescribed Dirichlet condition havie.| > % in any
neighborhood away from support of the limiting Jacobian (see [17,4].) For our problem this “Clearing Out” lemma
remains an open question, although there has been recent progress on some related problems by Chiron [6].

Remark 6.3.From the above remarks we may therefore interpret Theorem 6.1 as giving a bound from below for the
lower critical field H, in the form (6.1) with

Y. 1 B sinh(R)
" 2Bl 3(W(R) — ¥ (0)

where

1/1+4r2
w(r)z_z( tr sinhr—coskv).
r r

We compare this with the estimate fH, from Section 4, which is given by
. sinhR
3f0R(cosW — (sinhr)/r)dr
A direct computation shows that
. sinhR sinhR .
)‘m = < =A%,
32 412k +2) /(2 + 3)R%*+1/(2k + 1)! 3D k>1(2k/(2k + 1) R%+1/(2k + 1)!

and from here it is not hard to conclude that

1
lim A*= lim A* ==
R—o00 R—o00 mn 3
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1
- =o(2)

asRkR — oo.

and

Proof. Let (u,, A;) be a family of absolute minimizers &, with u, € W12(£2; C) and A, = Agp+ A1 with
A1, € Hp. We use Lemma 2.4 as usual to write

A1,=V x B1.+ V¢, in$2,
B: xv=0 o0nas2.
Step 1A first upper estimate foE, (u.) is given by

E¢(ug) < /j(ug) -V x (B¢ + Bgp) dx +f(1— |us %) |V x (Bus +ng)|2.
2 2

This is an easy consequence of the fact that A,) are global minimizers and hence
Ge (“37 Are+ Agp) <G (l, A1+ Asa ),

where 1 represents the trivial constant functionfan
Step 2Lethg = Ah™, Ag = LA™, Bo = AB*, with 1*, B* as in (3.4)—(3.6), the minimizers of the magnetic energy.
Write A, = A1 + A= Ing|Ag+ Ay, Ay =V x By, + V¢, as usual, and

Be = By + Biy=|Ine| Bo + By = Aapline| B* + By.

From (5.2) we have

gS(”SﬂAS):ES(MS)_ZfBS'J(u8)+%/|v X (||n8|BO+Bm)|2

Q 2
1 2 2 1 . 2
+5 (Jul® = 1)|V x By| +5 |V x [lIne](Ag — Aé3) + Ay ]|
2 R3
= Ec(ue) — [Inel [ jue) -V x BO+MBm dx—é (1_|”5| )|VXBs| dx
Q Q
lIng|? 2 .2
+ > |V x Bp|“dx + | |V x Ag— res|“dx
2 R3
+5 [ 1V x Bl o|x+E IV x Ap|?dx, (6.3)
2 R3

since two cross-terms in the expansion of the squares cancel using the critical point condition satiBgied by

/VxBO~VxBmdx+/(VxAo—ké3)~VxAmdx=0.
2 R3

Step 3 At this point we require the following extension of Theorem 2 from [22]:

Theorem 6.4.Letu, € WH2(£2; C) satisfyE, (u:) < N¢|Ine|, wheres < N, < |Ing| for somes > 0 and ||u; [« < C.
Then up to a subsequence
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1 -
Vj(ug) — J inthe norm of(C?""(_Q; R3))* for any« €10, 1]; (6.4)
£

L o (6.5)
———j(uy) — j; .
SN’ T
L E¢(ue) = 1 T2
| f———>M - dx. 6.6
S Noine| (J)+2/|J| * (6.6)

2

The conclusions of Theorem 6.4 are identical to those of [22], except there the result is proven for currents acting
on compactly supported vector field? C?""(Q; RR3). The modifications required are non-trivial, and we include a
proof of Theorem 6.4 in Section 7. .

Using the trivial estimateg; (u,, A;) < Ge(1, Aap) < ClIng|? and the definitio, (u,, A.) = G, (u €% A,), we
conclude thag[Rg [V x A, — hap|2 = O(|Ine|?). Decomposing the vector potential as usual = A1+ Asp, we then
have| A1l m, = O(lInel). By Theorem 2.4, there exisl, ¢ With [|¢ || 1.2y < ClIng|. The cross-termin (5.2) is
then estimated by Cauchy—Schwartz,

‘/BE'J(MS)
2

. 2 1
=‘ / (Ae = V0) )| < (1Aell 2 + 19 lwrzey) + 5 / Vi, 2
2 2

1
< 5 Ee(ue) +O(lInel?).

The desired bound, (1;) < C|In¢|? then follows from the definition (5.2) and the above estimates.
Recall now that critical points of the Ginzburg Landau energy satisfy< 1 in £2. Applying Theorem 6.4 with
N, = |Ing|, we obtain a subsequence (which we continue to denot@ sych that

1 -0 1, .
g )= n (%), Ty ) = J in L2(2; R3).
In addition, (6.6) implies:
liminf Ze®e)

>M(J_)+1/|T|2d
>0 |Ing2 = 2 JIE
2

Step 4 Note thatG, (1., A) < G (1, |Ing|Ag). Applying the decomposition (6.3),

1 1
Ee(ug)—/j(ug)-VxBmdx+§/|VXBm|2dx+§/|VXAm|2dx
2 2 R3
1
<I|n8I/j(ug)'VxBo+§/(1—|ug|2)IV><lezdx
2 2

< ||n8|/j(u8)~V x Bo+ Cellne)?, (6.7)
2

by (5.13). Dividing the above inequality bin ¢|2, and using the boundednessjafi,)/|In ¢| we conclude that (along
a subsequence)

! A* in H
[ —_N O’
Ing|™™ m

1 22
—_— —~ B* inwWr“,
lIne| ™™ " r

and divB;;) = 0. Moreover, by the Sobolev embedding,

———B,, — B}, stronginC%# for g = 3. (6.8)

[Ingl m
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Dividing again (6.7) bylin¢|2 and lettinge — 0 one obtains

_ i} 1 [ - 1
M(J)—21(30)+§f|j—vXB;;|2dx+§f|vXA;;|2dx<o.
2 R3
Now we use our hypothesis

N 1
[ Bollo = Al B*[lo < >
which in particular implies that.2(Bg) < M (J) for J # 0, and then from the above we obtain

M(j)=f|j|2dx=/|V><A;;|2dx=o.
2 R3

In particularA}, = 0 implies in addition thaB = 0.
Step 5Set

1

"~ Ing|

We claim thatV, — 0 ase — 0. To see this assume thét, > « > 0 for somes, — 0.
Applying (6.8) and (6.4) we have

Iim/M.B—mdxz/J_-B;;dxzo,

e—0 Ne  |Ing|

Ec(ue).

&

sincex < A}, implies B} = 0 by Step 4. Dividing (6.7) by,|In¢|, we then have:

E¢(ug) /J(ue) By, /J(Mg) C8||I’]8|2 -
1=——-<2 —dx+2] —=.B - J(Bg) =0,
NJine] N, e — Bot —— > J(Bo)

a contradiction. Therefore we must haVe — 0 and the theorem is proveno
7. Proofs of some technical results
We include here a direct proof, f&2 = Bz (0), of the

Lemma 7.1. There are constant§';, Co = C1(82), C2(£2) such that for anyA € L2(£2; R3) one can find a pair
(b4, Ba) € WH2(2) x WH2(2; R3) satisfying
A=V xBg+V¢s in2 and (7.1)
ldallwsz + [1Ba ||W%.2 < CillAll L2 (7.2)

The choice ofB,4 is uniqgue among divergence free vector fields and the choigg @ unique among functions in
WL2(£2) with zero average. Moreover, whene H one also has

1BallZ22 + pall%22 < CallAllh. (7.3)
Proof. We first minimize the functional

F(B)=/|V>< B—A|2dx+/(divB)2dx
2 2

for B € W%’Z(Q; R3). By Remark 2.3, a minimizing sequence for this functionawgrz(.(z; RR3) will be bounded

in the norm of this space. We can always then extract a convergent subsequence. The lower semi-continuity of tf

norm in this space, and the strict convexity of the functional, guarantee that a minimizer exists and that it is unique ir
1,2 3

Wy o(2; R3).
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The critical point condition in this case reads
/{(VxBA—A)-V><B+diVBA~diVB}dx=0 (7.4)
2
forall B € W%’Z(Q; R3). We claim that divB4 = 0. To see this solve Poisson’s equation
—A¢p=divBs ing2,
=0 o0onois.

Since By € Wr2(2; R3), theng € W22(2) so Vo € WL2(2; R3). On the other hang is constant orf 2. In
particularVe¢ x v =0 0nds2. This allows us to seB = V¢ in (7.4) to easily conclude that d& = 0 a.e in$2. This
reduces the critical point condition to

/{VXBA—A}~VXB:/B-VX(VXBA—A)deO

Q Q

foreveryB e W%’Z(.Q; RR3). This implies that as distributiong x (V x B4 — A) = 0, and since? is simply-connected
there is a functiop 4 satisfyingA =V x By + V4.
Note now thatF(B4) < F(0) so that

/|VxBA—A|2dx=/(|V><BA|2—2A.V><BA+|A|2)dx</|A|2dx.
2 2 2

This implies through Hélder’s inequality th&V x Ba|l;2 < C||A]| ;2. Since di B4) = 0, we obtain from here
||BA||W%-2 < CllAll 2. (7.5)
Now add a constant t¢4 so that/,, ¢4 dx = 0. SinceVg, = A — V x By, this and Poincaré inequality applied
to ¢4, give
lpallwiz S CIIA =V x Ball2 < CllAll 2,
where the last inequality is due to (7.5). It follows that
||BA||W%-2 + llpallwre < CallAll 2.
The uniqueness a4 can be seen as follows. If there were
A=V xB1+V¢1=V x By + Vo
with div B; =0 andB; x v =00ndBr(0), theny = ¢1 — ¢» will satisfy
AV =div(Vg1 — Vo) =div(V x By — V x By) =0.

Moreover, a direct computation shows that, in spherical coordinates, one has

1 0, . 1 90
VxB)-v=——— B-¢ey)) — — (B -¢y). 7.
(VX B) v =g 5 (SMOB - &0)) = 5 55 (B 20) (7.6)
Again, direct computation reveals thBtx v =0 ondBg(0) impliesB - ¢y = B - ¢, = 0 on 3 Bg(0). We conclude
through (7.6) that

Bxv=00n0Bg(0)=v-V x B=00ndBx(0). (7.7)

SinceVy =V x Bo —V x ByandB; x v=00n9dBR(0) for j =1, 2, we conclude tha¥y - v =0 ond Bz (0). This
andAv =0 imply ¢ = const, soV x (B1 — B2) =0.

We appeal now to the fact th&t; (0) is simply-connected to find a functiafy with B1 — B2 = V. This imposes
Vo x v =0. HenceVig is normal tod Bz (0), and s® Br (0) is in fact a level set ofyo. Also recall that diyB;) =0
for j =1,2. ThenAvyp = div(B1 — B2) = 0 and this implies that/g is constant inBg(0) as well. It follows that
B1 = B»>.
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That ¢4 is determined up to a constant follows becad&gys = A — V x By, and the right-hand side of this
equation is completely determined as a functiomof

In caseA € H, the estimate ofl B4||y22 in terms of||V x A||; 2 comes from standard elliptic theory. To see this
note first that

VXV XxBs=—ABy,

since diWB,) = 0, so the interior estimate follows. Moreover, the usual spherical coordinat®s fomke the bound-
ary of Bg(0) look flat. We use this fact to find equations IBf = B4 - é,, By = B - ég and By = By - é4 near the
boundary, along with boundary conditions for these three quantitidBgIi0). Indeed, a tedious but straightforward
computation shows that

2 90
—6, - VXV X Bys=AB, + ——(rB),
re or
S0 B, satisfies
29 .
—AB, — =—(@B,)=¢,-V x A.
r2 or

Note that the right-hand side of this equation igif($2). Moreover, sinceBy = By = 0 on the boundary 0B (0),
the condition di¥B4) = 0 reduces ol §2 to

19 ,, d 2
V.By=-——(r°B,)= —(B,)+ =B, =0.
4 rzar(r ) Br( r)+r "
This mixed boundary value problem f&y. gives
[ Brllw2z < C2llV x Al 2 < CllAllg-

For By and By one obtains similar equations, but homogeneous Dirichlet boundary conditions instead.

To estimate finallyi|pa [|22 we note first that (2.2) along with € H imply A € W2(£2; R%). SinceVe, =
A —V x By andB, € W22(22; R®), we conclude thaV¢p, € W22(32; R3). This plus the fachg4 = div(A) in
£2 together allow us to concludgba || y22 < C2l|All w12 <K CllAllg. O

Finally we give here a proof of Theorem 6.4. We need to consider vector fields that do not necessarily vanish or
the boundary of2, but rather satisfyB x v =0 0n0d42.

Proof. The only facts that need proof are that the convergence in (6.4) is in the nc(ﬂj:?’&tfz; R3))* rather than
(Cg""(.Q; R3))*, and that the inequality in (6.6) holds here if we consider

Mr(J) = sup J(B). (78
{BeCP(2:R3): | Blloo<1)

In order to prove these statements we first introduce some notation and recall some known results. First let us rec:
from Lemma 7 of [12] that for any. > 1 there are constants,, o > 0 such that for any open sét c R? and
ue HYU; 0),

‘ /quu dx‘ < x/ o] Tlgn(g) dx + Cee” (1 + Vo lloo) (1 + Meagsupp)))) (7.9)
U U

for all functions¢ € C?’l(U). Let us recall from [14] and [13] that fa2 c R3 there isC(£2) > 0 such that, for any
01,H.m3
B e Cp (2;RY),

/B/\J(u)
Q

In both these last inequalities
E¢(u)
[Ing|

u
<C(Q)mllBHoo-f—CeEaHVBHoo (7.10)

E¢(u)
I

Co=¢V +
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for somey > 0. How biga > 0 andy > 0 for us will be irrelevant, so long as they are fixed and strictly positive.
Finally let us recall from [13] that for ang2 ¢ R® anda € 10, 1] there are constar (2, «) > 0 andy > 0 with

Ec(u)
|76 cou .3y < C(2.20) (sV + el ) (7.12)

We will first prove that the inequality in Theorem 6.4 is still valid if we use the nddgs$7) defined by (7.8). To this
end assume we have a family. }.cj0.1) € W12(£2; C) with

Eq(ue) < Nellneg]

wheres < N < ClIng]. It follows from (7.11) that there is a subsequesge> 0 for whichJ (u,, )/ N, is convergent

in the weaks topology of (C2*(£2; R3)*. Let us call this limit.Jo. Take now anyB € C3°(£2; R3). From (7.10) we
obtain that

Jo(B) < C||Bllco-

In particular, we can find a radon measurewith 11(£2) < oo, and au-measurable function: 2 — RS satisfying
|t| = 1 ui-almost everywhere with

Jo(B)Z/B-Tdm
2

forall B € C3°(£2; R3). We can assume here that(92) = 0.
We take nowB e C7°(£2; R3) and note that the functional

Ja.Q(B)=Jo(B)—/B~fdM1
2

depends only on the values Bfon d£2. In fact if B =0 ono$2 we can always finds, € C3°(2; R3) with B, — B
uniformly. Note that then/o(B,,) — Jo(B). But then

Jm(B)zJo(B)—/B.zdmz lim Jo(Bn)—/B~th1= lim /(Bn—B)-td/M:O.
n—0o0 n—0o0
2 2 2

Take now any functiory € Co(352), and letB ¢ be any vector field wittB x v =0 andB - v = f, both ond$2. The
fact that/y (By) depends only on the values Bf ond£2 means that it really defines a (continuous) linear functional
on Cp(3£2), and hence there is a radon measusen 452 such that

Jy2(By) = / By - vduo.
992

Follows then that we can always represés(tB) as

JO(B):/B-tdul—}—/B-vduz
Q aQ

for any B € C7(£2; R®). It follows from here that

Mr (Jo) = sup Jo(B) = n1(82) + p2(082).
(BeCT(2:R3): || Blloo<l)

On the other hand, if we consider the measures

. es(ug)
Ms(A)—f AT dx,

A
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for A C 2, the conditionE, (u,) < N.|Ine| ensures that there is a subsequence> 0 and a radon measugeon £2
with u, — u as measures, that is,

im [ due, = [ £
e, —0
Q 7]

for any continuous functiorf : 2 — R. We callp; = uL$2, so thatu;(8£2) =0, andu g = uLd$2. Finally note that
for

: 1 _ .

ju) = E(uVu —uViu)
we have

. 2

|j@e) |52 < Nellnel.

There is then a subsequenge— 0 andjg € L2($2; R3) with

j(usn) L
(Ne, lIne, 2~ 7%

Theorem 2 from [22] can be easily recast as saying

n1(£2) + > [jol“dx < wy(£2).
2

What we need to prove then is that

n2(982) < p(9£2),

and that the convergenddu,,)/N,, — Jo takes place in the norm @T%‘"(Q; R3).

In order to do this we first takeé > 1 and consider an open cover &f, which we denote b){U,-};’ill, with
U,+1 CC £2, and diffeomorphismg; : U; — B1(0) with (2 N U;) = Bf(O) fori =1,...,n. We assume that
IDVilloos I (Wi lloo € [1/X, A], WhereJ (v/;) denotes the classical Jacobianygf Finally we consideg; : U; —
[0, 1] smooth compactly supported i}, with

n+1

Z¢i =1
i—1

ong.
Consider now a smooth functigh: 32 — R and define
[O=6i(WO) F(WHO).

Clearly f; is smooth and compactly supported anﬂf(O) N{x € R3 x3=0}. Let x5:[0, 5] — [0, 1] with x5(0) =1
and xs(8) = 0. We choosé > 0 small enough so that the fields

Bj(x1, x2, x3) = fi(x1, x2, 0) x5 (x3)é3
are all compactly supported iJsﬁIr (0). Next we extend these vector fields symmetrically to alBef0) and consider

zi(x) = u(wi‘l(x)), which we also extend to all @1(0) by z; (x1, x2, —x3) = z; (x1, x2, x3). Following [13] we note
that

1
/wz-)#Bz--J(u)dx / Bi+J(zi)dr =2 / Bi - J(zi).
Ui B0 B1(0)

For the last term in this identity we note first that

5
/ B; - J(Zi)dx=fX5(Z)/fi(X1,xz)11,2(Zi)(X1,x2,Z) dx; dxodz,
s

B1(0) Co
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where J1 2(z;) (x1, x2, z) denotes the Jacobian of the restrictionzpfio the plane{(x1, x2, x3) € R3: x3 =z}, and
Co = {(x1, x2,x3) € R x3=0,x2 +x2 < 1}. We can apply then (7.10) to the inner integral in the last term to obtain

| B [ |B,-|e|jrgzg"|) + Ce*((1+ VB 1) (1+ Meagsupr5,)) )
B1(0) B1(0)

— 2 / |B,-|TT$|) +Ce%(1+ |V Billo) (1+ MeagsupB)))).
Bf (0)

Let us now the diffeomorphismg; to rewrite the integral over (0) in this inequality as being ovdr; instead,

/ |Bi|€s(Zi) dx <)\4/"(1ﬁi)#(3i)’ge(u)
Ui

[Ine| Ing|”
B (0)

We now add =1, ..., n to obtain

n

> / W) B - Ty <Aty / B 2 1 e > (14 1IVB;lle) (1+ Meagsup By))).

; ; lIne| ;
l=lUl_ 1=1U'_ i=1

We now do several things: First divide B and lete — 0. This yields
Jo<2(wi>#(3f)> <t / > w8y du.
i=1 L =1
2

Next we consides — 0 in the definition ofys. Since all the measures involved are finite we can use dominated
convergence to claim that both terms in this last inequality will converge to the corresponding boundary integrals.
Moreover, the definition of thé; and the fact that

Y di=1
i=1

on 452 means the result of letting— 0 is

/ £ duz @4/ £l dup.
082 082

Taking now supremum over glf | < 1 onds2 and lettingh — 1 we conclude

wn2(982) < up(952)
which implies

1 _
M(Jo) + 5 / jol2dx < (£2).
22

To show now that the convergence

1 _
VJ(L@)—) J

is in the norm of(C?""(Q; R3))* for any « € 10, 1] we again appeal to a covering §f denoted by{Ui}g’;rll with
U,+1 € £2 and smooth diffeomorphismg; : U; — B1(0) with 4, (U; N 2) = Bf (0). We again consider a partition
of unity {¢; }:.’;rll of smooth functions that satisfy

n+1

D ¢i=1
i=1
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on 2. Next we compute for ang e C(82; R3),

n+1

/B Jyde=>"
i=1

2

/¢iB : J(M)dx=z / (l/ffl)#(%B)J(Zi)dJC-lr / $n+1B - J (u) dx.

' ilef(O) Unt1

Again we follow [13] to rewrite the first integrals above as integrals over the whole unit spt#r®) as follows:
Let B; = (¥, )*(¢; B) and definet = (x1, x2, x3) and B; by

Bi(x) for x € B4 (0, 1),

—(B; - 61)(®) dx1 — (B; - 82)(F) dxa + (B; - 63)(F)dxz  otherwise (7.12)

E,(x):{

As noted in [13] this reflection produces Lipschitz vector fieisn B1(0) because of the conditiaB x v = 0 onds2.
Definingz; (x) = z; (x) for x € BI“(O), it follows directly from these definitions that

1 -
/(Wi_l)#(qbiB)J(Zi)dx:E / Bi - J(zi),

B (0 B1(0)

so we obtain then

n+1 n
1 -
/B-J(u)dx:Z/qbiB~J(u)dx=§Z / B;J(Z)dx + / Gui1B - J(u)dx.
2 =1y, =1p0) Uni1

We note now that all the energy bounds fofu.) are still true forE,(z;) and hence we can apply the convergence
part of Theorem 6.4 to each one of the previous terms to conclude that each/gttheill converge to aJ in the

norm of(Cg""(Bl(O); R3))*, and hencd (u;) — Jo in the norm of(C%“(.Q; R3)*. O

Remark 7.2.From the proof, we see that the effect of considering vector fields with non-vanishing boundary values
is that the limiting Radon measure representing the cutkgaplits into two componentsg1, 2. The component

acts in the interior of2, while 2 acts at the boundary, along the normal direction. There are two cases where one
can show thap, = 0. One is the cas&é < N, < C as pointed out in [13]. The secondig = O(|In¢|?). To see this
consider2 = B; (0) and letf € C§°(Co). Here

Co = {(x1,x2,x3) e R%: xZ + x5 < 1}

as before. Again, legs : [0, 8] — [0, 1] be such thajs(0) = 1, xs(8) = 0, and consider the vector fielgl= x5 fé3.
In this case we have
s
‘ / B-J(u)dX'Z‘/X(s/fll,z(u)dxmxzdz
Co

B (0) 0

S
= ‘ f X5 / Jjr2(u) - V* f dxy dxpdz
0

Co

p 1/2
AVl s [ vieR) icoa:

0 supf)
)

12
cervil [ [ marel .13

0 Bf (0)

HereV< f = (fr,, —fx,) and

. 1 _ _
J12= E(le,ZM —uViu)
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with V12 f = (fy,, fx,). From (7.13) we obtain, after dividing by, = |In¢| and lettinge — O,
8 1/2
|JoB)| <C|Vf /Xadz
0
From here now letting — O we obtain

/ fduz=0.
02

The case of a general boundary can then be treated using the flattening of the boundary argument used before.
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