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Abstract

In this paper we obtain a generalised maximum principle of Alexandrov–Bakelman–Pucci type for viscosity solu
fully nonlinear cooperative elliptic systems. We also establish a Harnack estimate for such systems and give some application
In particular, a Harnack type estimate for solutions of higher order equations is given.
 2003 Elsevier SAS. All rights reserved.

Résumé

Dans cet article nous obtenons un principe de maximum généralisé de type Alexandrov–Bakelman–Pucci pour les
de viscosité de systèmes elliptiques coopératifs complètement non-linéaires. Nous établissons une inégalité de Harnack
ce type de systèmes et présentons quelques applications. En particulier, nous obtenons uneinégalité de type Harnack pour le
solutions d’équations polyharmoniques.
 2003 Elsevier SAS. All rights reserved.

Part I. The basic estimates

1. Introduction

During the last twenty years there have been many attempts to extend to weakly coupled coo
elliptic systems of second order the theory of scalar elliptic equations in non-divergence form. This work
a contribution to this study. We establish counterparts, for cooperative fully nonlinear elliptic systems, of th
fundamental Alexandrov–Bakelman–Pucci and Harnack–Krylov–Safonov estimates for scalar linear eq
(see, for example, [22]).
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We study the system
F1
(
D2u1,Du1, u1, . . . , un, x

)= f1(x),

F2
(
D2u2,Du2, u1, . . . , un, x

)= f2(x),

...

Fn

(
D2un,Dun,u1, . . . , un, x

)= fn(x)

(1)

in a bounded domainΩ ⊂ RN ; n,N � 1. HereFi are uniformly elliptic fully nonlinear operators.
We obtain the following two results (see Section 3 for precise statements). First, we prove an Alexandr

Bakelman–Pucci (ABP) type inequality, which has the form

sup
x∈Ω

max
1�i�n

ui(x) � sup
x∈∂Ω

max
1�i�n

ui(x) + C

∥∥∥ max
1�i�n

fi(x)

∥∥∥
LN(Ω)

,

provided(u1, . . . , un) is a subsolution of (1) and (1) is coercive in an appropriate sense. Second, we o
Harnack inequality which states that any nonnegative solution of (1) satisfies

sup
x∈B

max
1�i�n

ui(x) � Φ
(

inf
x∈B

min
1�i�n

ui(x),

∥∥∥ max
1�i�n

fi(x)

∥∥∥
LN(Ω)

)
,

whereB is a ball included inΩ andΦ(· , ·) is a continuous function such thatΦ(0,0) = 0.
For such a general system to satisfy ABP and Harnackestimates there are twounavoidable structura

assumptions one is obliged to make. First, the coupling in the system appears only in the zero order te
is, thei-th equation in (1) involves only derivatives ofui . This property is usually referred to as weak coupli
Second, the system is cooperative (quasi-monotone) in the sense thatFi is non-decreasing inuj , for i �= j . In
general, if any of these properties is not satisfied then the system does not satisfy even the maximum prin
the counterexamples at the end of Section 3).

Harnack estimates have been essential in many areas ofPDE’s, such as existence and regularity of soluti
of nonlinear elliptic equations, Liouville type theorems, qualitative properties of solutions. In particular, they
been the core of the theory of strong (i.e.,W

2,N
loc ) solutions of scalar equations in non-divergence form, develo

by Krylov and Safonov in the late 70’s (see [30]). This theory is the counterpart of the classical De-Giorgi–
Moser regularity theory for divergence form equations (see, for instance, [22]). A general regularity res
nonlinear equations in divergence form was obtained by Serrin in [38].

Ever since DeGiorgi’s counterexample (see [17,21]) it has been known that general systems in diverge
do not enjoy the same regularity properties as scalar equations. Consequently, a great amount of work
devoted to determining under what restrictions systems in divergence form do behave like scalar equatio
as regularity is concerned. A basically optimal regularity result for diagonal type systems in divergence fo
obtained by Hildebrandt and Widman in [26]. For a thoroughaccount on the regularity theory for elliptic system
in divergence form we refer to Giaquinta’s book [21].

On the other hand, relatively little is known about ellipticestimates for systems in non-divergence form (th
have been only partial results for linear systems with regular coefficients, see the discussion after Coroll
We give here an appropriate framework in which such estimates can be obtained. Our results are compl
sense that they reduce to those of Krylov and Safonov whenn = 1 (scalar case). This paper is the first in a progr
aimed at establishing a satisfactory elliptic theory for systems of type (1).

The leading idea of our work is to use the properties of viscosity solutions of partial differential equations. T
viscosity solutions theory developed very rapidly during the last twenty years (we quote some of the fund
works on the subject in Section 4). Viscosity solutions offer a number of advantages and provide a con
framework for studying fully nonlinear equations. In addition, recent developments – the so-calledLN -viscosity
solutions – permit to treat equations with discontinuous coefficients; in thissetting strong solutions are a subcla
of the class ofLN -viscosity solutions.
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In recent years elliptic estimates were obtained for viscosity solutions of fully nonlinear scalar equations
turns out that viscosity solutions are an appropriate framework for studying systems too. The first to use v
solutions in the general setting of systems that we consider were Ishii and Koike [27], who obtained existe
uniqueness results for viscosity solutions of cooperativeelliptic systems through a Perron-type argument. Our
proach contains a new idea, which consists in relating system (1) to a set of scalar fully nonlinear elliptic eq
and then using the Alexandrov–Bakelman–Pucci and Harnack estimates for viscosity solutions of such eq

Although cooperative elliptic systems share many properties with scalar equations, it would definitely be wro
to think that these systems boil down to scalar equations. For example, even basic concepts in the fra
of scalar equations, such as coercivity, do not admit clear (or unique) equivalents for systems. We give
conditions under which a cooperative system satisfies themaximum principle, together with counterexamp
(Sections 3 and 10).

Our results are new even in the particular case of a linear system. Because of the importance of this case w
devoted to it a whole part of the article in which we restate our results in a more precise manner (Section
example, we give a detailed description of the way the coupling in the system reflects into the Harnack estimat

Further, in the linear setting we are able to give a complete answer to the coercivity issue we mentione
Specifically, in Section 14, we obtain a necessary and sufficient condition for the maximum principle to h
a linear system (this question has been open for some time in the non-divergence case). This is done in
a properly defined first eigenvalue of the system. Actually, it was not known before whether a general coopera
system admits a first eigenvalue with properties similar to those of the first eigenvalue of a scalar operato
for a partial and somewhat different result by Hess).

An application of our results are ABP and Harnack estimates for higher order equations such as

�nu = f.

Estimates for polyharmonic functions (f ≡ 0) are a very classical problem. Even though their study dates ba
the nineteenth century, such estimates were obtained much later, and they depend on the polyharmonic
function. A Harnack estimate was available neither for more general higher order equations, nor for equati
a right-hand side. See Section 15 for a discussion and results.

2. Examples

We give here a selection of problems, taken from different fields, which lead to weakly coupled coop
elliptic systems of type (1).

Switched diffusion processes (probability theory).Let λt ∈ {1, . . . , n} be a discrete valued Markov process a
let Xt be a diffusion process such that

dXt = bλt dt + σλt dWt,

whereWt is a standardn-dimensional Wiener process, independent ofλt . Supposepij � 0 is the probability of
transition from statei to statej of λt . Then

ui(x) = E(x,i)
[
φλτ(Ω)

(Xτ(Ω))
]
, i = 1, . . . , n,

is a solution of the linear systemLiui +
∑
j �=i

pij uj = 0 in Ω,

ui = φi on∂Ω, i = 1, . . . , n,

where

Liw = 1
tr(σ i(σ i)tD2w) + bi · Dw,
2
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andτ (Ω) is the first exit time ofXt from Ω . See [11] for a more detailed description of the problem.

Jumping volatility models(mathematical finance). In this well-known extension of the Black–Scholes prici
model the underlying asset follows the stochastic differential equation

dSt = rSt dt + σλt St dWt,

under the risk-neutral probability. Herer denotes the risk-free rate,σ is the volatility of the asset (σ can take
n different values) andλt ∈ {1, . . . , n} is a discrete-valued Markov process, independent of the standard
dimensional brownian motionWt . If we denote the price of an European call option with maturityT and strikeK
by C(t, St , λt ), then the function

Ci(t, S) = C(t, S, i), (t, S) ∈ [0, T ] × R+,

is shown to satisfy the system
∂Ci

∂t
+ (σ i)2

2
S2∂2Ci

∂S2 + rS
∂Ci

∂S
− rCi + 1

ρ

∑
j �=i

pij (Cj − Ci) = 0,

Ci(T ,S) = (S − K)+,

wherepij is as above andρ is the characteristic time ofλt . For details on this model, see [4,5,31].

Remark. Strictly speaking, the above system falls out of the scope of our work, since it is parabolic (or deg
elliptic). We consider it as a motivation for an extension of our work to parabolic systems. We do not dou
an extension is possible.

Mathematical biology. A number of models in population dynamics leadto elliptic and parabolic systems whic
can be transformed into cooperative systems of type (1). A simple example is the system{

�u + u(a − bu − cv) = 0,

�v + v(d − eu − f v) = 0
in Ω.

We refer to the abundant literature on this topic, for example, [34].

Switching games (stochastic games and control theory).A typical example is the system{
max{Liui − fi,−ui + Miu} = 0 in Ω, i = 1, . . . , n,

ui = 0 on∂Ω, i = 1, . . . , n,

whereLi are uniformly elliptic linear operators,u = (u1, . . . , un), and

Miu(x) = max
j �=i

{−kij + uj (x)
}
, for somekij ∈ R.

This problem arises when considering a system whose state processes are of Ito type and who can be sw
n different regimes. The problem is then to choose an appropriate switching so as to minimise the resulting co
See [32] for details on this problem.

Other problems from stochastic games theory lead to the more general system

min
{
max
{
Gi

(
D2ui,Dui, ui, x

)
,−ui + Mi(u, x)

}
,−ui + Ni(u, x)

}= 0,

i = 1, . . . , n, where

Mi(u, x) = max
j �=i

{
uj + gij (x)

}
, Ni(u, x) = min

j �=i

{
uj + hij (x)

}
,

with gij , hij ∈ C(Ω). See [27] and the references therein.
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3. Main results

We study the system{
Fi

(
D2ui,Dui, u1, . . . , un, x

)= fi(x),

i = 1, . . . , n,

defined in a bounded domainΩ ⊂ RN ; n,N � 1.
The elliptic operatorsF1, . . . ,Fn, defined onSN(R) × RN × Rn × Ω (SN(R) denotes the space of re

symmetricN × N matrices) are supposed to satisfy the following set of assumptions. First, we assume th
exist constantsα0 ∈ (0,1), γ � 0 and measurable functionsci , gi : Rn × Ω → R, i = 1, . . . , n, such that

(H0) ci(u, x), gi(u, x) are globally Lipschitz continuous inu ∈ Rn, uniformly in x ∈ Ω \ N for some Lebesgu
null setN ⊂ Ω , with Lipschitz constantν (in the sense that thel1-norms of∇uci and∇ugi are bounded
by ν);

(H1) Fi(M,p,u, x) � supA∈A tr(AM) + γ |p| + ci(u, x), i = 1, . . . , n;
(H2) Fi(M,p,u, x) � infA∈A tr(AM) − γ |p| + gi(u, x), i = 1, . . . , n,

for all (M,p,u) ∈ SN(R) × RN × Rn and a.e.x ∈ Ω , whereA denotes the set of all symmetric matrices wh
eigenvalues lie in the interval[α0, α

−1
0 ]. Elliptic estimates have been established for scalar equations which s

the above hypotheses (see Section 4). Without restricting the generality we can suppose thatci(0, x) = gi(0, x) = 0,
for a.e.x ∈ Ω and alli.

We assume that system (1) is cooperative (or quasi-monotone), in the following sense: for anyu,v ∈ Rn such
thatu � v component-wise and anyj ∈ {1, . . . , n} for whichuj = vj , we have

(H3) cj (u, x) � cj (v, x) andgj (u, x) � gj (v, x) for a.e.x ∈ Ω .

We studyLN -viscosity solutionsof (1), that is, vector functions

u = (u1, . . . , un) ∈ C
(
Ω,Rn

)
satisfying (1) in a sense that we make precise in Section 4 (see Definition 4.2). In particular, anystrongsolution
of (1) (that is, anyu ∈ W

2,N
loc (Ω,Rn), satisfying (1) pointwise a.e. inΩ) is aLN -viscosity solution; see Section

Proposition 4.2. We make the convention that, throughout the paper,all differential equations and inequations a
assumed to hold in the(LN)-viscosity sense, unless otherwise stated. Besides, all relations between vect
understood to hold component-wise.

We use the following notations

v ∨ w(x) = max
{
v(x),w(x)

}
, v ∧ w(x) = min

{
v(x),w(x)

}
,

v+(x) = max
{
v(x),0

}
, v−(x) = max

{−v(x),0
}
,

for any two functionsv andw.
We suppose that the right-hand side of (1) satisfies

(H4) fi ∈ LN(Ω), i = 1, . . . , n,

and setf = f1 ∨ · · · ∨ fn.
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Our first result is an Alexandrov–Bakelman–Pucci (ABP) type estimate. To our knowledge, this is th
estimate of this kind for systems of type (1)

Theorem 3.1(ABP estimate).We assume(H0), (H1), (H3)and (H4). Letu ∈ C(Ω,Rn) satisfy{
Fi

(
D2ui,Dui, u1, . . . , un, x

)
� −fi(x) in Ω,

i = 1, . . . , n.
(2)

In addition, we assume that either

(H5) for all i = 1, . . . , n

n∑
j=1

∂ci

∂uj

(u, x) � 0 a.e. inRn × Ω (3)

or
(H6) if we set


mij = sup ess
(u,x)∈Rn×Ω

∂ci

∂uj

(u, x)

(
mij � ν < ∞) then the matrix
M = (
mij )
n
i,j=1 is negative semi-definite, that is,( 
Mξ, ξ) � 0 for all ξ ∈ Rn.

Then the following ABP inequality holds

sup
Ω

(u1 ∨ · · · ∨ un) � C
(
sup
∂Ω

(u+
1 ∨ · · · ∨ u+

n ) + ‖f +‖LN(Ω)

)
. (4)

The constantC depends only onN , α0, γ , ν, anddiamΩ .
Under (H5) we can weaken(H0), namely we can suppose thatci are only locally Lipschitz inu. Furthermore,

under(H5) the following stronger conclusion holds true

sup
Ω

u1 ∨ · · · ∨ un � sup
∂Ω

u+
1 ∨ · · · ∨ u+

n + CABP‖f +‖LN(Ω), (5)

whereCABP depends only onN , α0, γ , anddiamΩ .

Theorem 3.1bis(ABP estimate).We assume(H0), (H2), (H3), (H4)and either(H5) or (H6), with ci replaced
bygi . Letu satisfy{

Fi

(
D2ui,Dui, u1, . . . , un, x

)
� fi(x) in Ω,

i = 1, . . . , n.

Then

− inf
Ω

(u1 ∧ · · · ∧ un) � C
(
sup
∂Ω

(u−
1 ∨ · · · ∨ u−

n ) + ‖f +‖LN (Ω)

)
, (6)

whereC depends only onN , α0, γ , ν, anddiamΩ .
Under (H5) we can suppose thatgi are only locally Lipschitz inu. Furthermore, under(H5) the following

stronger conclusion holds true

− inf
Ω

(u1 ∧ · · · ∧ un) � sup
∂Ω

(u−
1 ∨ · · · ∨ u−

n ) + CABP‖f +‖LN(Ω), (7)

whereCABP depends only onN , α0, γ , anddiamΩ .
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Remark 1. In the particular casef ≡ 0 Theorems 3.1 and 3.1bis yield a maximum principle for the nonlin
system (1).

Remark 2. Neither of hypotheses (H5) and (H6) contains the other, as the following example shows. Ta
following two couples of functions (withn = 2, u = (u1, u2)){

c
(1)
1 (u, x) = a(x)−1(−u1 + u2),

c
(1)
2 (u, x) = a(x)(u1 − u2),

{
c
(2)
1 (u, x) = −2u1 + 3 arctanu2,

c
(2)
2 (u, x) = arctanu1 − 2u2,

wherea(x) is a continuous function fromΩ onto[1
2,2]. Then the first couple satisfies (H5) but not (H6), while

second couple satisfies (H6) but not (H5).

Note that both (H5) and (H6) are hypotheses on the matrix

C(u, x) =
(

∂ci

∂uj

(u, x)

)n

i,j=1
.

A natural way to unify and extend these two hypotheses would be to suppose that the matrixC(u, x) itself is
negative semi-definite, for almost every(u, x). Indeed, one can see, under (H3), that this condition is implied by
either of (H5) and (H6), see Lemma 10.1. However, it turns out that the ABP inequality (and even the ma
principle) fails if we make this assumption only. See Section 10 for a counterexample.

Further, we establish a Harnack inequalityfor non-negative solutions of system (1).
The form of the Harnack inequality depends very much on the way the system relates the functionsu1, . . . , un

to each other. Here, for simplicity, we shallsuppose that system (1) links all functionsu1, . . . , un in a strong sense
or, more precisely, that system (1) isfully coupled. We give a suitable nonlinear meaning to this notion. Note
the assumption of full coupling can be removed and the result can be made much more precise - nevertheles
avoid heavy notations here, we state these more general results in the simplified framework of linear syst
Section 8).

Fix indicesk, l ∈ {1, . . . , n} such thatk �= l and letωkl be a non-null measurable subset ofΩ . We define the
function

ϕkl(t) = inf ess
x∈ωkl

gk(tel, x), for t � 0, (8)

whereel ∈ Rn is the vector withl-th coordinate equal to one and all other coordinates equal to zero. For sim
of notation we shall not write explicitly the dependence ofϕkl on ωkl . One can check that (H0) implies thatϕkl is
globally Lipschitz continuous on[0,+∞). Note thatϕkl is non-decreasing, because of (H3), andϕkl(0) = 0.

The following definition provides a nonlinear version of the commonly used notion of full coupling.

Definition 3.1.We call system (1) fully coupled inΩ , provided for any non-empty setsI, J ⊂ {1, . . . , n} such that
I ∩J = ∅ andI ∪J = {1, . . . , n}, there existi0 ∈ I andj0 ∈ J for which one can find a setωi0j0 ⊂ Ω with positive
Lebesgue measure such thatϕi0j0(t) does not vanish fort �= 0. Under (H3) this means that

ϕi0j0(t) > 0 for all t > 0.

In some sense, a system is fully coupled if it cannot be split into two subsystems, one of which does not
on the other. Note that any scalar equation is a fully coupled system.

Theorem 3.2(Harnack inequality).Suppose(H0) through(H4) hold and letu � 0 be a solution of(1) in a ball
B3R ⊂ Ω . Suppose, in addition, that system(1) is fully coupled inBR . Then there exists a non-negative continu
functionΦ :R2+ → R+, with Φ(0,0) = 0, depending only on{R2ϕij }, N , n, α0, γR, νR2, such that

supu1 ∨ · · · ∨ un � Φ
(

inf
BR

u1 ∧ · · · ∧ un,R‖f ‖LN (B3R)

)
. (9)
BR
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Remark 1. An explicit expression ofΦ is given in the proof of Theorem 3.2. Roughly speaking,Φ(t,0) is a
composition of the inverse functions of the functionsϕkl(t). For example, ifϕkl(t) � ctα for someα > 0 and all
indicesk �= l, thenΦ(t,0) � Ctα

−n(n−1)
.

Remark 2. In the particular case of a linear systemΦ(t, s) = C1t + C2s (see Section 8, Theorem 8.2 a
Corollary 8.1).

In the course of the proof of the Harnack estimate we obtain two estimates of independent inter
subsolutions and supersolutions of system (1). These have well-known counterparts in the scalar case too

We set, for anyp > 0,

|u|p,R =
(

1

meas(BR)

∫
BR

|u|p
)1/p

.

Proposition 3.1(local maximum principle).Suppose(H0), (H1), (H3), and (H4) hold. Letu ∈ C(B3R,Rn) be a
solution of{

Fi

(
D2ui,Dui, u1, . . . , un, x

)
� −fi(x),

i = 1, . . . , n,
(10)

in B3R. Then for allp > 0 we have

sup
BR

u1 ∨ · · · ∨ un � C
(|u+

1 ∨ · · · ∨ u+
n |p,2R + R‖f +‖LN(B2R)

)
,

whereC = C(N,α0,p, γR,νR2).

Proposition 3.2(weak Harnack inequality).Suppose(H0), (H2), (H3), and(H4) hold. Assume(1) is fully coupled
and letu ∈ C(B3R,Rn) be a non-negative solution of{

Fi

(
D2ui,Dui, u1, . . . , un, x

)
� fi(x),

i = 1, . . . , n,
(11)

in B3R. Then there exists a numberp = p(N,n,α0, γR, νR2) > 0 such that

|u1 ∨ · · · ∨ un|p,2R � Φ
(

inf
BR

u1 ∧ · · · ∧ un,R‖f ‖LN(B3R)

)
, (12)

whereΦ is as in Theorem3.2.

Counterexample 1.All our results fail for general non-cooperative systems. Simple examples are provided
systems{

�u − v = 0,

�v = 0,

{
�u − v = 0,

�v − u � 0,
in B1 ⊂ RN . (13)

The first system satisfies all hypotheses of Theorem 3.1 except for (H3). By takingu = 1− |x|2, v = −2N , we see
that Theorem 3.1 (withf ≡ 0) is false for this system sinceu = 0,v � 0 on∂B1 butu � 0 in B1. A counterexample
for the weak Harnack inequality (Proposition 3.2) is obtained by settingu = |x|2, v = 2N in the second system
since infB1 u ∧ v = 0 butu,v �≡ 0.

Counterexample 2.There is no hope to obtain maximum principles for general systems in non-divergenc
with coupling in the first-order terms. For example, consider the system of inequalities{

�u + vx − αu � 0,

�v + u − αv � 0
in Ω = (−1,1) ⊂ R, (14)
x
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whereα > 1 is arbitrary. The functions

u(x) =


0 in (−1,0)

1

4α
x(x − 1) in (0,1),

v(x) =
{

2 in (−1,0),

2− x in (0,1),

satisfy (14) andu = 0, v � 0 on ∂Ω . Howeveru � 0 in Ω . Note that the elliptic operatorsFi in (14) can be
arbitrarily coercive inui , whenα � 1, yet this does not help.

Counterexample 3.This example shows that even systems of equalities do not necessarily satisfy the maximu
principle if they are coupled in the first order terms.

The functions

u(x, y) = x2 + y2 − 1, v(x, y) = −1

3
x3 − 4y + 5

solve the system{
�u + vy = 0,

�v + ux = 0
in B1 ⊂ R2,

andu = 0, v > 0 on∂B1. Howeveru � 0 in B1.

Sections 4–7 are devoted to the proofs of Theorems 3.1 and 3.2.

4. Definition and properties of viscosity solutions

In this section we describe the class of viscosity solutions to which our results apply. The concept of viscos
solution has found many applications in PDE’s (see for example the fundamental work [12]).

Basic tools in the proof of our results are the ABP estimate and the Harnack inequality for viscosity solu
fully nonlinear scalar elliptic equations, obtained by Wang in [41], Caffarelli, Crandall, Kocan and Swiech
We shall state, for the reader’s convenience, the results from these papers that we need. We refer to the
Caffarelli and Cabre [8] for results onC-viscosity solutions of fully nonlinear elliptic equations.

Consider a measurable functionG :SN(R) × RN × R × Ω → R, such thatG(· , · , · , x) is locally uniformly
continuous, uniformly forx ∈ Ω \ N , whereN is a Lebesgue null set. Take a measurable functionf and a
continuous functionw, defined inΩ . We consider the scalar equation

G
(
D2w,Dw,w,x

) = f in Ω, (15)

providedG is uniformly elliptic, that is, there existsβ0 > 0 such that

β0|M ′| � G(M + M ′,P,w,x) − G(M,P,w,x) � β−1
0 |M ′|,

for any matrixM ∈ SN(R), any positive definite matrixM ′ ∈ SN(R), anyP ∈ RN , w ∈ R and a.e.x ∈ Ω . We
denote byAT the transposed matrix ofA, and set|A| =√tr(ATA), for anyA ∈MN(R).

We recall the definition of aLN -viscosity solution of a scalar equation.

Definition 4.1 (scalar equations; [41,9]). We say that the functionw ∈ C(Ω) is a (LN)-viscosity subsolution
(supersolution) of (15), provided for anyε > 0, any open subsetO ⊂ Ω , and anyϕ ∈ W2,N (O) (we callϕ a test
function), such that

G
(
D2ϕ(x),Dϕ(x),w(x), x

)
� f (x) − ε,(

G
(
D2ϕ(x),Dϕ(x),w(x), x

)
� f (x) + ε

)
a.e. inO,

the functionw − ϕ cannot achieve a local maximum (minimum) equal to zero inO. In this case we say that th
functionw satisfies the inequation
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G
(
D2w,Dw,w,x

)
� (�)f

in the(LN)-viscosity sense inΩ .
We say thatw is a solution of (15) ifw is at the same time a subsolution and a supersolution of (15).

Remark. This definition is equivalent to Definition 2.1 in [9], settingp = N there. It is easy to see, under o
hypotheses onG, that the class of viscosity solutions the above definition introduces is included in the cla
considered by Wang in [41].

Next, we recall the definition of the Pucci extremal operators

M+(M) = α−1
0

∑
ei>0

ei + α0

∑
ei<0

ei , M−(M) = α0

∑
ei>0

ei + α−1
0

∑
ei<0

ei,

for M ∈ SN(R), wheree1, . . . , eN denote the eigenvalues ofM. Then (see [8])

M+(M) = sup
A∈A

tr(AM), M−(M) = inf
A∈A

tr(AM), (16)

whereA denotes the set of all symmetric matrices whose eigenvalues lie in the interval[α0, α
−1
0 ]. To relate our

notations to those of [9] one has to note thatM+ = −P− andM− = −P+, with P+,P− defined in [9]. It is not
difficult to check that (see [8])

−M+(−M) =M−(M), M+(ηM) = ηM+(M) (17)

and

M+(M) +M−(N) � M+(M + N) � M+(M) +M+(N),

M−(M) +M−(N) � M−(M + N) � M+(M) +M−(N),
(18)

for every two symmetric matricesM, N , and everyη � 0.
We define the extremal operators

L+(D2w,Dw
) =M+(D2w

)+ γ |Dw|,
L−(D2w,Dw

) =M−(D2u
)− γ |Dw| (19)

(γ is defined in (H1) and (H2),| · | denotes the Euclidean norm inRN ). Note that

L+(D2w,Dw
) = −L−(−D2w,−Dw

)
. (20)

Definition 4.2 (systems). We call the vectoru ∈ C(Ω,Rn) a subsolution of (1) provided the equation

L+(D2ui,Dui

)
� −ci(u, x) + fi(x) (21)

is satisfied in the viscosity sense for eachi ∈ {1, . . . , n}, in terms of Definition 4.1. Equivalently, we say thatu

satisfies the system

Fi

(
D2ui,Dui, u, x

)
� fi(x), i = 1, . . . , n.

Respectively,u ∈ C(Ω,Rn) is called a supersolution of (1) provided the equation

L−(D2ui,Dui

)
� −gi(u, x) + fi(x) (22)

is satisfied in the viscosity sense for eachi ∈ {1, . . . , n}, in terms of Definition 4.1. Equivalently, we say thatu

satisfies the system

Fi

(
D2ui,Dui, u, x

)
� fi(x), i = 1, . . . , n.
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A solution of (1) is a vectoru ∈ C(Ω,Rn) which is both a subsolution and a supersolution of (1).

The rest of this section contains a list of results on viscosity solutions of scalar equations. We shall ne
in the sequel.

Proposition 4.1.The maximum of two viscosity subsolutions of a scalar equation is a viscosity subsolutio
minimum of two viscosity supersolutions of a scalar equation is a viscosity supersolution.

Proof. This is very well-known and obvious, from Definition 4.1.�
Proposition 4.2.Let f ∈ LN(Ω) and letL be a scalar extremal operator, as in(19). Suppose thatw ∈ W

2,N
loc (Ω)

is such thatL(D2w,Dw) � (�)f a.e. inΩ . ThenL(D2w,Dw) � (�)f in the viscosity sense. Conversely
w ∈ W

2,N
loc (Ω) satisfiesL(D2w,Dw) � (�)f in the viscosity sense inΩ thenL(D2w,Dw) � (�)f a.e. inΩ .

Proof. This follows from Lemma 2.5 and Corollary 3.7 in [9].�
The following lemma contains several easy, but important properties ofL+ andL−.

Lemma 4.1.(a) Let f ∈ LN(Ω). SupposeLk, k = 1, . . . , n, are linear uniformly elliptic second-order operator
without zero-order terms, with ellipticity constantα0 and all their coefficients bounded byγ . ThenLkw � f , for
somek, (resp.�) implies

L−(D2w,Dw
)
� f (resp.L+(D2w,Dw

)
� f ).

Conversely,L+(D2w,Dw) � f impliesLkw � f , andL−(D2w,Dw) � f impliesLkw � f , for all k = 1, . . . , n.
This is the reason for whichL+ andL− are called extremal.

(b) Let w ∈ W
2,N
loc (Ω). There exist scalar linear uniformly elliptic second order operatorsL+

0 , L−
0 (depending

onw) with bounded measurable coefficients, such that

L+(D2w,Dw
) = L+

0 w, L−(D2w,Dw
)= L−

0 w.

Furthermore,α0 is an ellipticity constant for the operatorsL+
0 , L−

0 , andγ is an upper bound for theL∞-norms of
their first order coefficients.

Proof. Part (a) is a direct consequence of (16) and Definition 4.1. Part (b) follows from the fact that the sup
and the infimum in (16) are attained (sinceA is compact). For instance, we take

L+
0 w(x) = tr

(
A+

0 (x)D2w(x)
)+ �b(x)Dw(x),

wherex → A+
0 (x) is a measurable selection of elements ofA at which

sup
A∈A

tr
(
AD2w(x)

)
is attained, and

�b(x) =
γ

Dw(x)

|Dw(x)| , if Dw(x) �= 0,

0, if Dw(x) = 0.

We shall use the following Alexandrov–Bakelman–Pucci inequality for fully nonlinear scalar equations.

Proposition 4.3.Letw ∈ C(Ω) andf ∈ LN(Ω) satisfy the scalar inequality

−L+(D2w,Dw
)
� f in Ω ∩ {w > 0}.
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sup
Ω

w � sup
∂Ω

w+ + C∗‖f +‖LN(Γ +).

HereΓ + denotes the upper contact set ofw, defined by

Γ + = {x ∈ Ω | w(x) = 
w(x)
}
, (23)

where
w is the concave envelope ofw, i.e.


w = inf
{
w̃ | w̃ � w andw̃ is concave

}
, (24)

and the constantC∗ depends only onN , α0, γ anddiamΩ .

The first to prove an ABP type result for viscosity solutions of nonlinear equations was Caffarelli
fundamental work [7]. In the casef ∈ L∞ Proposition 4.3 is due to Wang (see Theorem 3.14 and Lemma
in [41]). In its full generality, this proposition was proved in [9] (Proposition 3.3 in [9]).

We shall also make use of the following weak Harnack inequality for scalar equations (see Corolla
in [41], and Section 4.6 in [41] for more general equations). Another general result for parabolic equatio
stated in [13, pp. 2022–2025].

Proposition 4.4.Letw ∈ C(Ω) be a non-negative solution of the scalar inequality

L−(D2w,Dw
)− cw � f in B2 ⊂ Ω,

wherec ∈ L∞(B2), with 0 � c(x) � ν a.e. inB2, andf ∈ LN(B2). Then there existsp = p(N,α0, γ , ν) > 0 such
that

|w|p,1 � C#

(
inf
B1

w + ‖f ‖LN (B2)

)
,

whereC# = C#(N,α0, γ , ν). In particular, if f ≡ 0 then eitherw is strictly positive orw ≡ 0 (strong maximum
principle).

Remark. In fact, this proposition was proved in [41] in the particular casef ∈ L∞, but extension toLN is
straightforward, since the proof in [41] relies only on the ABP inequality, which holds true for right-hand
in LN (see Proposition 4.3 above).

The following existence result for extremal operators will be useful in the sequel.

Proposition 4.5. Let c, f ∈ L∞(B2), and 0 � c � ν a.e. in B2. Then there exists a unique solutionw ∈
W

2,N
loc (B2) ∩ C(B2) of the following problem{−L−(D2w,Dw

)+ cw = f a.e. in B2,

w = 0 on∂B2.
(25)

Moreover,w ∈ W
2,p

loc (B2) for all p < ∞, and one has the interior estimate

‖w‖W2,p (B1)
� C
(‖w‖L∞(B2) + ‖f ‖LN(B2)

)
, (26)

whereC = C(N,α0, γ , ν,p).

Proof. Whenc ≡ 0 this result was proved in [9] (Corollary 3.10 in that paper). Exactly the same proof wor
c � 0, since the authors use Theorem 17.17 in [22] and the ABP estimate, which both hold whenc � 0. �
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Finally, we prove two lemmas concerning sums and products of viscosity solutions and test functions.

Lemma 4.2.Suppose the linear operator

L0 =
N∑

i,j=1

aij (x)
∂2

∂xi∂xj

+
N∑

i=1

bi(x)
∂

∂xi

(27)

is uniformly elliptic inΩ , and supposeL0 has bounded measurable coefficients. Letf,g ∈ LN(Ω).

(a) Letw ∈ C(Ω) andψ ∈ W
2,N
loc (Ω) satisfyL0w � f in Ω andL0ψ � g a.e. inΩ . Then

L0(w + ψ) � f + g in Ω. (28)

(b) Let w ∈ C(Ω) satisfyL0w � f in Ω andψ ∈ W
2,p
loc (Ω) ∩ C(Ω), p > N , be strictly positive inΩ . Define

w̃ = w/ψ and f̃ = f/ψ . Then we have

L̃w̃ � f̃ in Ω,

whereL̃ is defined by

L̃ = L0 + 2
N∑

i,j=1

aij (x)
∂iψ(x)

ψ(x)

∂

∂xj

+ L0ψ(x)

ψ(x)
.

Proof. Suppose (28) does not hold. Then, by Definition 4.1, we can find an open setO ⊂ Ω (we can assum
O � Ω), ε > 0, x0 ∈O and a functionϕ ∈ W2,N (O) such that

L0ϕ � f + g − ε

� f + L0ψ − ε a.e. inO, (29)

ϕ � w + ψ in O andϕ(x0) = w(x0) + ψ(x0). Sinceψ ∈ W2,N (O), the functionϕ − ψ is a test function for the
equationL0w � f . However,L0(ϕ − ψ) � f − ε is a contradiction with this equation.

Next, suppose (b) is false. Then we can find an open setO � Ω , ε > 0, x0 ∈O, ϕ ∈ W2,N (O) such thatϕ � w̃

in O, ϕ(x0) = w̃(x0), and

L̃ϕ � f̃ − ε a.e. inO. (30)

A simple computation transforms (30) into

L0(ϕψ) � f − εψ

� f − ε1 a.e. inO, (31)

whereε1 = ε minO ψ > 0. Sinceϕψ ∈ W2,N (O) (W2,N is an algebra),ϕψ � w in O, ϕψ(x0) = w(x0), we obtain
a contradiction withL0w � f . �
Lemma 4.3.Let w ∈ C(Ω) satisfyL+(D2w,Dw) � f in Ω and supposeψ ∈ W

2,p

loc (Ω) ∩ C(Ω),p > N, is
strictly positive inΩ . Then
w = w/ψ satisfies the inequation

M+(D2
w)+(γ + 2α−1
0

√
N

|Dψ|
ψ

)
|D
w| +

(M+(D2ψ) + γ |Dψ|
ψ

)

w � f

ψ
.

Proof. Suppose firstw ∈ W
2,N
loc (Ω) so thatL+(D2w,Dw) � f is satisfied a.e. inΩ . We have

Dw = ψD
w + 
wDψ, D2w = ψD2
w + 2Dψ ⊗ D
w + 
wD2ψ. (32)
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It is understood here and in the sequel that⊗ denotes the symmetric tensor product, i.e., ifX,Y ∈ RN thenX⊗Y =
1
2(xiyj +xjyi)i,j . By putting (32) intoL+(D2w,Dw) � f and by using (18) we obtain the statement of the lem

Note that tr(A(X ⊗ Y )) � |A||X ⊗ Y | �
√

Nα−1
0 |X||Y |, whereA is a matrix whose eigenvalues lie in[α0, α

−1
0 ],

and|A| :=√tr(ATA). If u is only continuous we proceed as in the proof of part (b) of the previous lemma.�
Remark. In the same way we can prove thatL−(D2w,Dw) � f implies

M−(D2
w)−(γ + 2α−1
0

√
N

|Dψ|
ψ

)
|D
w| +

(M−(D2ψ) − γ |Dψ|
ψ

)

w � f

ψ
.

5. Proof of the ABP estimate

This section is concerned with the proof of Theorem 3.1. Recall thatu satisfies the system

−L+(D2ui,Dui

)− ci(u, x) � fi(x), i = 1, . . . , n.

The first lemma permits us to linearize the zero-order terms in this system.

Lemma 5.1.Supposec = (c1, . . . , cn) :Rn × Ω → Rn satisfies(H0), (H3) and either(H5) or (H6). Then there
existsM ∈ L∞(Rn × Ω,Mn(R)), with M = (mij ), such that

c(u, x) = M(u,x)u (33)

satisfying

mij (u, x) � 0 ∀i �= j, i, j ∈ {1, . . . , n}, (34)

for all u ∈ Rn and a.e.x ∈ Ω . In addition,
n∑

j=1

mij (u, x) � 0, ∀i ∈ {1, . . . , n}, (35)

in case(H5), or

mij (u, x) � 
mij , ∀i, j ∈ {1, . . . , n}, (36)

in case(H6) holds.

Proof. Because of (H0) the functionh(s,u, x) = ∇uc(su, x) belongs toL1((0,1) × BR × Ω), for anyBR ⊂ Rn,
R < ∞ (even ifc is only locally Lipschitz unu). By Fubini’s theorem the function

M(u,x) =
1∫

0

∇uc(su, x)ds (37)

is measurable onRn × Ω . By (H0) M ∈ L∞(Rn × Ω,Mn(R)). Further,M clearly satisfies (33)–(35), and (3
for a.e.(u, x).

Now for a.e.x ∈ Ω the matrixM(u,x) is well defined for allu ∈ Rn \ Zx with all the desired properties, whe
Zx ⊂ Rn is a set ofn-dimensional measure zero. It remains to defineM on Zx . To this aim, for anyu ∈ Zx we
takeuk ∈ Rn \ Zx such thatuk → u and observe that the sequenceM(uk, x) is bounded inMn(R). We can thus
defineM(u,x) as (any) limit of a subsequence ofM(uk, x), and observe that properties (33)–(35), and (36)
still satisfied at the limit.

This completes the proof of Lemma 5.1.�
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We infer from (H1), (2) and Lemma 5.1 that

M+(D2ui

)+ γ |Dui | +
n∑

j=1

mij

(
u(x), x

)
uj � −f +

i , (38)

for i = 1, . . . , n. We setmij (x) = mij (u(x), x).
We claim that the same inequality is satisfied by the positive parts of the functionsui .

Claim 5.1.We have

M+(D2u+
i

)+ γ
∣∣Du+

i

∣∣+ n∑
j=1

mij (x)u+
j � −f +

i . (39)

Proof. By (34)mijuj � miju
+
j , for i �= j . Hence bothv = ui andv = 0 satisfy the inequality

M+(D2v
)+ γ |Dv| + mii(x)v � −f +

i −
n∑

j �=i

mij (x)u+
j .

Hence, by Proposition 4.1,u+
i = max(ui,0) satisfies the same inequation.�

We are now ready to prove the ABP inequality in case (H5) is satisfied. By the previous considerations
restrict ourselves to a system of type (39), withmij satisfying (34) and (35). The basic idea of the proof is to sh
that the function

v(x) = u+
1 ∨ · · · ∨ u+

n (x) (40)

satisfies a scalar elliptic inequation, and then apply the scalar ABP estimate tov.

Lemma 5.2.Under(H5) we have

−L+(D2v,Dv
)
� f +

1 ∨ · · · ∨ f +
n in Ω. (41)

Proof. Suppose for contradiction that there are an open setO � Ω , a point x0 ∈ O, ε > 0, and a function
ϕ ∈ W2,N (O) such thatv � ϕ in O, v(x0) = ϕ(x0), and

−L+(D2ϕ,Dϕ
)
� f +

1 ∨ · · · ∨ f +
n + ε > 0 a.e. inO. (42)

We have to show that (42) is impossible. Fixk ∈ {1, . . . , n} such thatu+
k (x0) = v(x0). Then

ϕ � u+
k � 0 inO and ϕ(x0) = u+

k (x0). (43)

We distinguish two cases. First, ifϕ(x0) = 0, we see thatϕ attains a local minimum atx0. Then we apply the scala
strong maximum principle (seeProposition 4.4) to (42) and obtainϕ ≡ 0 in O. This contradicts (42).

Second, ifϕ(x0) > 0, we have, by (34), (35), (42) and (H0)

−L+(D2ϕ,Dϕ
)
�
(

n∑
j=1

mkj

)
u+

k + f +
k + ε (44)

�
n∑

mkju
+
j + f +

k + ε

2
a.e. inO1, (45)
j=1
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whereO1 ⊂O is an open neighbourhood ofx0 in which

uk > 0 and uk � u+
j − ε/2ν, (46)

for all j ∈ {1, . . . , n} (O1 exists, sinceuk(x0) = u1 ∨ · · · ∨ un(x0) > 0).
By (39)uk is a (viscosity) solution of

−L+(D2u+
k ,Du+

k

)
�

n∑
j=1

mkju
+
j + f +

k ,

which is a contradiction with (43) and (45). Lemma 5.2 is proved.�
Now we can apply Proposition 4.3 to (41). We obtain

sup
Ω

v � sup
∂Ω

v + C∗‖f +
1 ∨ · · · ∨ f +

n ‖LN(Ω),

which gives part (b) of Theorem 3.1.

Remark. If the functionsci are supposed to be only locally Lipschitz the above proof remains the same,
replaceν in (46) by the essential supremum of all

∑
j |mij (x)| in a neighbourhood ofx0.

We are going to show that if our system satisfies assumption (H6) then we can introduce a change of f
so that the transformed system satisfies (H5). So let us assume (H6), which saysmij (x) � 
mij for a.e.x, where

M = (
mij ) is a negative semi-definite matrix. First we perturb the system in order to make the zero order
negative definite. To this purpose, we setūi = u+

i /ψ , whereψ is the solution of
M+(D2ψ

)+ γ |Dψ| = −1 in Ω̃,

ψ = 0 on∂Ω̃,

ψ ∈ W
2,p
loc

(
Ω̃
)∩ C

(
Ω̃
) ∀p ∈ (1,+∞)

(47)

(this problem is solvable, seeProposition 4.5 and (20)), wherẽΩ is such thatΩ � Ω̃ . By the scalar maximum
principleψ > 0 in Ω̃ . By using the scalar ABP inequality, Lemma 4.1, and a theorem by Krylov which we
later (Theorem 7.1 in Section 7), one can see that
C � ψ � c̄ > 0 in Ω , where
C andc̄ are constants which depen
only onN , α0, γ , and diam(Ω).

By (H6), (39) and Lemma 4.3̄u satisfies the system of inequations

M+(D2ūi

)+(γ + 2α−1
0

√
N

‖Dψ‖∞
infΩ ψ

)
|Dūi | +

∑
j

(
mij − εδij )ūj � −f +
i

ψ
, (48)

where

ε = −M+(D2ψ) + γ |Dψ|
supΩ ψ

= 1

supΩ ψ
> 0.

SetMε = εI − 
M (Mε is positive definite), and letξ ∈ Rn be the solution of the linear system

Mεξ = (1, . . . ,1). (49)
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We claim that assumptions (H3) and (H6) implyξi > 0 for all i. In order to prove this we suppose first thatMε is
symmetric. It is well-known that (H6) implies that all principal minors ofMε are positive. We are going to use
algebraic lemma from [15] (Lemma 2.2 in that paper), the statement of which we give for readers’ convenience

Lemma 5.3 (de Figueiredo–Mitidieri).Let M = (mij ) ∈ Mn(R) be a matrix such thatmij � 0 for i �= j , and
det((mij )

k
i,j=1) > 0, for everyk ∈ {1, . . . , n}. Then

(−1)i+j detMij > 0,

whereMij is the submatrix ofM obtained by dropping itsi-th line andj -th column.

It follows from this lemma that(−1)i+j det(Mij
ε ) > 0. By Cramer’s rule

ξi = det
(
M−1

ε

) n∑
j=1

(−1)i+j det
(
Mij

ε

)
> 0.

If Mε is not symmetric we use the following elementary algebraic lemma.

Lemma 5.4.If A is a positive definite matrix then

det(A) � det

(
A + AT

2

)
> 0.

Lemma 5.4 implies that all principal minors ofMε are positive, even ifMε is not symmetric. For completenes
we give a proof of Lemma 5.4 at the end of this section.

We can now finish the proof of the ABP estimate. We setūi = ξi ũi . These transformed functions clearly satis

M+(D2ũi

)+ γ ′∣∣Dũi

∣∣+ 1

ξi

∑
j

d̃ij ũj � −f̃ +
i , (50)

where

d̃ij = (
mij − εδij )ξj , f̃ +
i = f +

i

ξi infΩ ψ
, (51)

γ ′ =
(

2α−1
0

√
N

‖Dψ‖∞
infΩ ψ

+ γ

)
. (52)

By (49), the zero-order matrix in (50) satisfies

1

ξi

n∑
j=1

d̃ij = − 1

ξi

< 0 (53)

for all i, i.e., assumption (H5). Therefore we can apply to (50) the ABP inequality we already proved.
ũi = u+

i /(ξiψ) we get

sup
Ω

(u1 ∨ · · · ∨ un) �
supi,x ξiψ(x)

infi,x ξiψ(x)

(
sup
∂Ω

(u+
1 ∨ · · · ∨ u+

n ) + C‖f +‖LN(Ω)

)
.

Theorem 3.1 is proved.�
We obtain the result in Theorem 3.1bis by settingv = −u in Theorem 3.1, by using (H2), and by noting th

g̃i (u, x) = −gi(−u,x) has the same properties asgi (namely, satisfies (H0) and (H3)).�
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c

r

Proof of Lemma 5.4. The lemma follows from the following more general fact.

Claim 5.2. Let B ∈ Mn(R) be a positive definite symmetric matrix and letR ∈ Mn(R) be a skew-symmetri
matrix (RT = −R). Then

det(B + xR) =
[n/2]∑
k=0

akx
2k,

whereak � 0 if k � 1, anda0 = det(B) > 0.

Lemma 5.4 follows by takingB = (A+AT)/2,R = (A−AT)/2, andx = 1 in the claim (note thatA andB are
matrices of the same quadratic form).

Proof of Claim 5.2. First we note that for any skew-symmetric matrixD the characteristic polynomial ofD can
be written in the following form

det(λI − D) = λp
(
λ2 + β1

) · · · (λ2 + βm

)
, (54)

whereβi > 0, i = 1, . . . ,m, p + 2m = n. Indeed, ifµ ∈ C and v ∈ Cn are such thatRv = µv, the equality
(Rv, v) = (v,RTv) impliesµ = −µ̄.

Next, we write

det(B + xR) = det(B) · xn · det

(
B−1R + 1

x
I

)
= det(B) · xn · (−1)n det(λI − SR), (55)

whereλ = −1/x andS = B−1 is a positive definite symmetric matrix. We setD = S1/2RS1/2. ThenD is a skew-
symmetric matrix, and the eigenvalues ofD andSR, counted with their multiplicities, are the same (ifv ∈ Cn is
an eigenvector ofSR corresponding to the eigenvalueµ andw solvesS1/2w = v, thenw ∈ Cn is an eigenvecto
of D corresponding to the same eigenvalue). Equalities (54) and (55) then yield

det(B + xR) = det(B)
(
β1x

2 + 1
) · · · (βmx2 + 1

)
,

which gives the desired result.�

6. Proof of the local maximum principle

This section is devoted to the proof of Proposition 3.1. From now on, we suppose thatR = 1 andB1 is centered
at y0 = 0, the general case being obtained by means of the coordinate transformationx → (x − y0)/R.

First, we claim that the functionu+
k satisfies the inequation

−L+(D2u+
k ,Du+

k

)
� νu+

1 ∨ · · · ∨ u+
n + f + in B3 (56)

(in the viscosity sense), for allk = 1, . . . , n. Recall thatf = f1 ∨ · · · ∨ fn.

Proof of (56). Setv = u+
1 ∨· · ·∨u+

n . Suppose (56) is false. Then, by Definition 4.1, there exist an open setO � B3,
x0 ∈O, ϕ ∈ W2,N (O), and a real numberε > 0 such thatv � ϕ in O, v(x0) = ϕ(x0) and

−L+(D2ϕ,Dϕ
)
� νv + f + + ε a.e. inO. (57)

Observe that the hypotheses of Proposition 3.1 imply, by Lemma 5.1,
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n

ith
can be
elations

p-
−L+(D2uk,Duk

)
�
∑
j �=k

mkj (x)u+
j (x) + mkk(x)(u+

k − u−
k )

� νv + m−
kk(x)u−

k + f + in Ω, (58)

for all k = 1, . . . , n. We then proceed as in the proof of the ABP estimate, Lemma 5.2. Ifv(x0) = ϕ(x0) > 0, we
takek such thatv(x0) = uk(x0) and obtain a contradiction with (57) and (58) in some open setO1 ⊂ O, where
uk > 0 (so thatm−

kku
−
k ≡ 0 in O1). If ϕ(x0) = 0, ϕ attains a local minimum atx0 and we obtain a contradictio

with the strong maximum principle, as in the proof of Lemma 5.2.�
Using the fact that the maximum of subsolutionsis a subsolution (Proposition 4.1), we obtain from (56)

−L+(D2v,Dv
)
� νv + f + in B3 (59)

in the viscosity sense. In order to obtain the conclusion of Proposition 3.1 we use Proposition 4.3, combined w
the localization argument in the proof of Theorem 9.20 in [22]. We are going to show that this argument
adapted to our situation. Since it relies on a cut-off procedure and pointwise estimates, for the differential r
to make sense we shall use a regularized version ofv, namely its sup-convolution, defined by

vε(x) = sup
y∈B5/2

{
v(y) − 1

2ε
|x − y|2

}
. (60)

Let us suppose first thatf is continuousin B3. We recall the following well-known properties of the su
convolution, see [28] and [29].

Lemma 6.1.

(1) vε ∈ C0,1(B5/2);
(2) vε → v uniformly inB2;
(3) vε is twice differentiable a.e. inB2;
(4) As a consequence of(59), vε satisfies

−L+(D2vε,Dvε

)
� νṽε + f̃ +

ε a.e. in B2, (61)

where

ṽε(x) = sup
|x−y|<δ(ε)

vε(y), f̃ +
ε (x) = sup

|x−y|<δ(ε)

f +(y), (62)

with δ(ε) = 2(ε‖v‖L∞(B5/2))
1/2.

We then setwε = ηεvε, where

ηε(x) = (2− δ(ε)
)−2β((2− δ(ε)

)2 − |x|2)β,

for someβ � 2. For simplicity of notation, we writeη instead ofηε.
By (16)–(18) and (61), we have

−L+(D2wε,Dwε

)
� −M+(ηD2vε

)− 2M−(Dη ⊗ Dvε) −M−(vεD
2η
)− γ |ηDvε + vεDη|

� η
(−M+(D2vε) − γ |Dvε|

)+ 2M+((−Dη) ⊗ Dvε

)+M+(−vεD
2η
)+ γ vε|Dη|

� νηṽε + f̃ +
ε + 2α−1

√
N
(|Dη‖Dvε | + |D2η|vε

)+ γ vε|Dη|
0
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ry from

n this

tion
a.e. inB2−δ(ε) (see also the proof of Lemma 4.3). Let us denote byH the right-hand side in the last inequality. B
using Proposition 4.3 we obtain

sup
B2−δ(ε)

wε � C∗‖H‖LN(Γ +
ε ), (63)

whereΓ +
ε is the upper contact set ofwε , see Proposition 4.3. By a concavity argument we get, as in the pro

Theorem 9.20 in [22],

|Dvε| � C(β)η−1/βvε

onΓ +
ε . Since

|Dη| � Cη1−1/β,
∣∣D2η

∣∣� Cη1−2/β,

we see that

H � ηνṽε + C
(
η−2/βwε + f +

ε

)
(64)

a.e. onΓ +
ε .

Here and in the sequelC denotes a constant which depends on the appropriate quantities and may va
line to line.

Then we follow the lines of the proof of Theorem 9.20 in [22] (in particular the last three inequalities i
proof) to infer from (63) and (64)

sup
B2−δ(ε)

wε � C
(‖ηṽε‖LN(B2)

+ ‖vε‖Lp(B2) + ∥∥f̃ +
ε

∥∥
LN(B2)

)
, (65)

whereC does not depend onε. By interpolation this implies

sup
B2−δ(ε)

ηvε − 1

2
sup
B2

ηṽε � C
(‖ṽε‖Lp(B2) + ‖vε‖Lp(B2) + ∥∥f̃ +

ε

∥∥
LN(B2)

)
. (66)

Note that, by (2) in Lemma 6.1̃vε → v uniformly onB2.
By letting ε → 0 we obtain the desired result.
Finally we have to remove the continuity assumption onf . This can be done through a (standard) approxima

argument. We take a solution of the problem
−L−(D2ψj ,Dψj

)= f j − f + in B2,

ψj = 0 on∂B2,

ψj ∈ W
2,N
loc (Ω) ∩ C

(
B2
) (67)

(see Proposition 4.5), wheref j ∈ C∞(B2), f j → f + in LN(B2).
Setvj = v+ψj . The scalar ABP inequality (Proposition 4.3), applied to (67), impliesψj → 0 uniformly inB2.

Then by (18)

L+(D2v,Dv
)
� L+(D2vj ,Dvj

)−L−(D2ψj ,Dψj
)= L+(D2vj ,Dvj

)+ f j − f +. (68)

Note that this is valid in the viscosity sense sinceψj has the regularity of a test function (ψj ∈ W
2,N
loc (Ω)). Now,

by (59)

−L+(D2vj ,Dvj
)
� νv + f j = νvj + f j , (69)

wheref j = f j + ν(v − vj ). Note thatf j ∈ C(B2) andf j → f + in LN(B2).
Applying the result we already proved (f j is continuous) to (69) withvj instead ofv and sendingj → ∞ in

the final inequality concludes the proof.
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.2 and
7. Proof of the Harnack inequality

In this section we prove the Harnack and the weak Harnack inequalities (that is, Theorem 3
Proposition 3.2) in the case when system (1) is fully coupled. We recall that we have takenR = 1.

We shall use the following equivalent definition of full coupling by a chain (see, for instance, [11]).

Lemma 7.1.The system(1) is fully coupled inΩ if and only if for anyk, l ∈ {1, . . . , n}, with k �= l, we can find
a sequence of indices{ij }rj=0, such thatij �= ij+1 for all j = 0, . . . , r − 1, i0 = k, ir = l, and sets with positive
Lebesgue measureωij ij+1 ⊂ Ω such that

ϕij ij+1(t) > 0 for all t > 0 (70)

(recall thatϕkl are defined in(8)).

For each couplei, j ∈ {1, . . . , n}, i �= j , we define the function

ϕ̃ij (t) = (κij ϕij (t) − C∗‖f ‖LN (B3)

)+
, (71)

whereκij = κij (N,n,α0, γ , ν,meas(ωij )) are positive constants (to be defined later) andC∗ = C∗(N,α0, γ , ν) is
the constant from the scalar ABP inequality (Proposition 4.3).

We set

ϕ̃(t) = inf
k �=l

ϕ̃ki1 ◦ ϕ̃i1i2 ◦ · · · ◦ ϕ̃ir−1l(t), (72)

where for each(k, l), k �= l, the chain{ij }rj=0 is chosen as in Lemma 7.1 above. Note thatϕ̃ is a Lipschitz
continuous non-decreasing function oft , with ϕ̃(0) = 0 in casef ≡ 0.

The following lemma plays a crucial role. It relates the values of the infimums of the functionsui .

Lemma 7.2.Under the hypotheses of Theorem3.2, suppose the indicesk andl are such thatk �= l and there exists
a setωkl ⊂ B1 with meas(ωkl) > 0, such thatϕkl(t) > 0 for all t > 0. Then

inf
B1

uk � ϕ̃kl

(
inf
B2

ul

)
. (73)

Therefore, for allk �= l,

inf
B1

uk � ϕ̃
(

inf
B2

ul

)
. (74)

Proof. If inf B2 ul = 0 there is nothing to prove. So suppose infB2 ul > 0. By assumption (H2) we have

L−(D2uk,Duk

)+ gk(u, x) � fk. (75)

By using the cooperativity assumption (H3) we get

L−(D2uk,Duk

)+ gk(ukek + ulel, x) � fk, (76)

whereei is thei-th vector in the canonical basis ofRn. By the assumed (uniform inx) Lipschitz continuity ofgk,
together with the cooperativity assumption (H3), (76) yields

L−(D2uk,Duk

)+ gk

(
inf
B2

ulel, x
)

− νuk � fk (77)

(recallν is a Lipschitz constant forgk).
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We are going to estimateuk from below by the solution of the following problem (see Proposition 4.5)
L−(D2w,Dw

)− νw = −gk

(
infB2 ulel, x

)
in B2,

w ∈ W
2,p

loc (B2) ∩ C
(
B2
)
, ∀p ∈ (1,+∞),

w = 0 on∂B2.

(78)

Note thatgk(0, x) = 0 andgk(· , x) ∈ C0,1 imply gk(u, x) ∈ L∞(Ω) for u fixed.
We are going to infer from (77) and (78) an elliptic inequality for the functionuk − w. We use the following

(essentially known) lemma.

Lemma 7.3.Letω be a domain and supposew1,w2 ∈ C(
ω) satisfy

M−(D2w1
)− γ |Dw1| � h and M−(D2w2

)− γ |Dw2| � 0 in ω, (79)

in the viscosity sense, for someh ∈ LN(ω), and thatw2 ∈ W2,N (ω). Then

−M+(D2(w2 − w1)
)− γ

∣∣D(w2 − w1)
∣∣� h in ω.

Proof of Lemma 7.3. Let us takex0 ∈ O ⊂ ω, ε > 0 and a test functionφ ∈ W2,N (O) satisfyingφ � w2 − w1
in O, φ(x0) = w2(x0) − w1(x0). Suppose for contradiction that

−L+(D2φ,Dφ
)
� h + ε in O. (80)

By (17), (18), (79) and (80) we get

−L+(D2(φ − w2),D(φ − w2)
)
� −M+(D2φ

)+M−(D2w2
)− γ |Dφ| − γ |Dw2|

� −M+(D2φ
)− γ |Dφ|

� h + ε

in O.
Sincew2 ∈ W2,N (ω), φ − w2 is a test function which satisfiesφ − w2 � −w1 in O, with equality atx0. Now

since−w1 satisfies

−L+(D2(−w1),D(−w1)
)
� h, (81)

we get, by Definition 4.1,

−L+(D2(φ − w2),D(φ − w2)
)

� h + ε (82)

in O, which is a contradiction. �
From inequalities (77), (78) and the above lemma, we deduce that the functionuk − w satisfies the inequality

−L+(D2(w − uk),D(w − uk)
)+ ν(w − uk) � fk (83)

in B2. Sincew − uk � 0 on∂B2 the scalar ABP inequality (Proposition 4.3) implies

− inf
B2

(uk − w) = sup
B2

(w − uk) � C∗‖fk‖LN(B2)
, (84)

which yields

uk(x) � w(x) − C∗‖fk‖LN (B2)
� inf w − C∗‖fk‖LN (B2)

(85)

B1
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for all x ∈ B1. Hence

inf
B1

uk � inf
B1

w − C∗‖fk‖LN(B2)
. (86)

The point is that infB1 w can be estimated from below byϕkl(infB2 ul). Let us prove this. By Lemma 4.1 the
exists an linear second order uniformly elliptic operatorL̃ such thatL̃w = L−(D2w,Dw). Then (H3) and (78
yield 

L̃w − νw = −gk(inf
B2

ulel, x) � 0 in B2,

L̃w − νw = −gk

(
inf
B2

ulel, x
)

� −ϕkl

(
inf
B2

ul

)
in ωkl ⊂ B1,

w = 0 on∂B2.

(87)

By the usual maximum principlew � 0 in B2. We now use the following consequence of a theorem by Kry
(Theorem 12 on p. 129 in [30]), in the form which was stated in [2].

Theorem 7.1(Krylov). Let L0 be a linear uniformly elliptic operator with bounded measurable coefficients in
the form(27), and supposec ∈ L∞(B2). Supposeα0 is an ellipticity constant forL0, and τ is an upper bound
for theL∞-norms ofc and the first order coefficients ofL0. Let v ∈ W

2,N
loc (B2) be a positive function satisfyin

L0v + cv � 0 a.e. inB2 andL0v + cv � −ρ a.e. in a closed subsetω ⊂ B2, for someρ > 0. Then there exists
constantm > 0, depending only onN , α0, τ , and a positive lower bound onmeas(ω) > 0, such that

inf
B1

v � mρ. (88)

This theorem and (87) give the following estimate from below

inf
B1

w � κklϕkl

(
inf
B2

ul

)
, (89)

whereκkl is the constant from Theorem 7.1. Combining (86) and (89) yields

inf
B1

uk � ϕ̃kl

(
inf
B2

ul

)
. (90)

This proves (73) in Lemma 7.2. Finally, we take a sequence{ij }rj=0 as in Lemma 7.1 and a sequence of nes
balls{Bαj }rj=0, αj = 1+ j/r. Then, as above,

ϕ̃ij ij+1

(
inf

Bαj+1

uij+1

)
� inf

Bαj

uij (91)

and the second estimate in Lemma 7.2 follows by iterating (91)r times (note thatr < n(n − 1)), in view of the
definition of ϕ̃ (see (72)). �

By using the cooperativity assumption (H3) and the Lipschitz continuity ofgk atu = 0 (recall thatg(0, x) = 0),
we have

L−(D2uk,Duk

)− νuk � f in B2, (92)

for k = 1, . . . , n. The weak Harnack inequality for scalarequations (Proposition 4.4) yields

|uk|pk,2 � C#

(
inf
B2

uk + ‖f ‖LN (B3)

)
, (93)

wherepk andC# are positive constants which depend only onN , α0, γ , andν. We setp = min{p1, . . . , pn} and
note that| · |p,R is non-decreasing inp > 0.
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and

ed
ise
lems and
Next, we replace everywhere in the above proof each functionϕij for which ϕij (t) > 0 if t > 0 by a Lipschitz
continuous function̂ϕij such thatϕ̂ij (t) � ϕij (t) andϕ̂ij (t) is strictly increasing, fort � 0 (if ϕij itself does not
have these properties it is easy to see that such a functionϕ̂ij can be constructed). Of course, estimates (73)
(74) in Lemma 7.2 continue to hold.

We set

φij (t) = ϕ̂−1
ij

(
t

κij

+ C∗
κij

‖f ‖LN (B3)

)
and

Φ0
(
t,‖f ‖LN(B3)

)= sup
k �=l

φ̃ir−1l ◦ φ̃ir−1ir−2 ◦ · · · ◦ φ̃i1i2(t) ◦ φ̃ki1(t),

where for each(k, l), k �= l, the chain{ij }rj=0 is chosen as in Lemma 7.1. Note thatΦ0(t, s) is continuous and

increasing on[0,∞)2, andΦ0(0,0) = 0.
Then estimate (74) can be recast in the form

inf
B2

ul � Φ0

(
inf
B1

uk,‖f ‖LN(B3)

)
, (94)

for all k, l = 1, . . . , n, k �= l.
Finally

|u1 ∨ · · · ∨ un|p,2 � |u1 + · · · + un|p,2

�
(
n1−1/p ∨ 1

) n∑
i=1

|ui |p,2

�
(
n1−1/p ∨ 1

)
C#

(
n∑

i=1

inf
B2

ui + n‖f ‖LN (B3)

)

�
(
n2−1/p ∨ n

)
C#Φ0

(
min

1�i�n
inf
B1

ui,‖f ‖LN(B3)

)
+ C‖f ‖LN

= CΦ0

(
inf
B1

u1 ∧ · · · ∧ un,‖f ‖LN(B3)

)
+ C‖f ‖LN(B3)

=: Φ
(

inf
B1

u1 ∧ · · · ∧ un,‖f ‖LN(B3)

)
,

which concludes the proof of Proposition 3.2.�
The full Harnack inequality is an immediate consequence of Propositions 3.1 and 3.2.�

Part II. Linear elliptic systems

8. The estimates in the linear case

In this section we restate and extend our resultsfrom Section 3 in the setting of linear weakly coupl
cooperative elliptic systems of second order. In this more simple but important case we obtain more prec
and easier-to-state results. In Section 10 we discuss some extensions and give some open prob
counterexamples.
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)

5) and
We study the system
L1u1 + c11(x)u1 + c12(x)u2 + · · · + c1n(x)un = f1(x),

L2u2 + c21(x)u1 + c22(x)u2 + · · · + c2n(x)un = f2(x),

...

Lnun + cn1(x)u1 + cn2(x)u2 + · · · + cnn(x)un = fn(x)

(95)

in the bounded domainΩ ⊂ RN ; n,N � 1.
In order to simplify the notations we write (95) in the form

Lu + Cu = �f ,

whereL = diag(L1, . . . ,Ln), C(x) = (cij (x))ni,j=1, u = (u1, . . . , un)
T, and �f = (f1, . . . , fn)

T.
The second-order elliptic operatorsL1, . . . ,Ln are supposed to be in general non-divergence form

Lk =
N∑

i,j=1

ak
ij (x)

∂2

∂xi∂xj

+
N∑

i=1

bk
i (x)

∂

∂xi

, (96)

and to be uniformly elliptic:

(L1) there existsα0 ∈ (0,1) such that for allξ ∈ RN , all k = 1, . . . , n, and almost everyx ∈ Ω we have

α0|ξ |2 �
N∑

i,j=1

ak
ij (x)ξiξj � α−1

0 |ξ |2.

We assume that the operatorsL1, . . . ,Ln and the matrixC have bounded measurable coefficients, with

(L2) max
1�k�n

N∑
i=1

∥∥bk
i

∥∥2
L∞(Ω)

= b2 � ν, max
1�k�n

n∑
i=1

‖cki‖L∞(Ω) � ν.

We assume that the system (95) is cooperative, that is, for all indicesi, j ∈ {1, . . . , n}, with i �= j ,

(L3) cij � 0 a.e. inΩ .

Finally, we assume

(L4) �f ∈ LN(Ω,Rn),

and considerLN -viscosity solutionsu ∈ C(Ω,Rn) of (95). Recall that anyu ∈ W
2,N
loc (Ω,Rn) which satisfies (95

a.e. inΩ is a viscosity solution.
The first result is the ABP estimate for (95). We prove it under an assumption which is milder that (H

(H6). Actually, assumptionΨ below is sharp, in a sense which will become clear later (see Section 14).

Theorem 8.1(ABP estimate). (a)We suppose that

(Ψ ) there exists a functionΨ = (ψ1, . . . ,ψn) ∈ W
2,p

loc (Ω,Rn) ∩ C(Ω,Rn), for somep > N, such that{
LΨ + CΨ � 0 a.e. inΩ,

Ψ > 0 in Ω.
(97)
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[2],

h

If (L1)–(L4) hold andu ∈ C(Ω,Rn) satisfies

Lu + Cu � − �f in Ω,

then

sup
Ω

(u1 ∨ · · · ∨ un) � C
(
sup
∂Ω

(u+
1 ∨ · · · ∨ u+

n ) + ‖f +‖LN(Ω)

)
(98)

(recall f = f1 ∨ · · · ∨ fn). Respectively, ifu is such thatLu + Cu � �f then

− inf
Ω

(u1 ∧ · · · ∧ un) � C
(
sup
∂Ω

(u−
1 ∨ · · · ∨ u−

n ) + ‖f +‖LN (Ω)

)
.

The constantC depends onN , α0, ν, Ψ , anddiamΩ .
(b) If instead of(Ψ ) one assumes in(a) the stronger(takeΨ = (1, . . . ,1)) condition

n∑
j=1

cij (x) � 0 a.e. inΩ, for everyi ∈ {1, . . . , n}, (99)

then the following stronger conclusion holds true

sup
Ω

u1 ∨ · · · ∨ un � sup
∂Ω

u+
1 ∨ · · · ∨ u+

n + CABP‖f +‖LN(Ω), (100)

and, respectively,

− inf
Ω

(u1 ∧ · · · ∧ un) � sup
∂Ω

(u−
1 ∨ · · · ∨ u−

n ) + CABP‖f +‖LN(Ω), (101)

where the constantCABP depends only onN , α0, ν, anddiamΩ .

Remark 1. Taking n = 1, u ∈ W
2,N
loc (Ω,R) in (100), we obtain Theorem 9.1 in [22] (compare also with

Theorem 1.3). This means our results contain theclassical ABP estimate for scalar equations.

Remark 2. Hypothesis (Ψ ) implies that the matrix operatorL + C satisfies the maximum principle inΩ (see [16]
and Section 14 of our paper).

Remark 3. In the case when the second order coefficients of the elliptic operatorsL1, . . . ,Ln are continuous
functions and∂Ω has some regularity, we can weaken hypothesis (Ψ ). More precisely, instead ofΨ > 0 in Ω we
could suppose thatΨ > 0 in Ω , with eitherΨ �≡ 0 on∂Ω or LΨ + CΨ �≡ 0 in Ω . This weaker condition will be
shown to be equivalent to (Ψ ) (see in particular Lemma 14.1 in Section 14).

Remark 4. The dependence inΨ of the constant in Theorem 8.1 is expressed in terms of upper bounds on∣∣∣∣ ∇Ψ

ψ1 ∧ · · · ∧ ψn

∣∣∣∣
L∞(Ω)

and

∣∣∣∣ψ1 ∨ · · · ∨ ψn

ψ1 ∧ · · · ∧ ψn

∣∣∣∣
L∞(Ω)

.

We turn to the Harnack inequality for non-negative solutions of (95).
Our first goal is to describe precisely the way system (95) can force the functionsu1, . . . , un to depend on eac

other.
Let us restate the definition of a fully coupled system in the linear case.

Definition 8.1. A matrix C(x) = (cij (x))ni,j=1, which satisfies (H3), is called irreducible inΩ , and the system
Lu + Cu = f is called fully coupled inΩ , provided for any non-empty setsI, J ⊂ {1, . . . , n} such thatI ∩ J = ∅
andI ∪ J = {1, . . . , n}, there existi0 ∈ I andj0 ∈ J for which

meas
{
x ∈ Ω | ci0j0(x) > 0

}
> 0. (102)
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For simplicity, when (102) holds we writeci0j0 �≡ 0 in Ω.

Next we give a notion of partial coupling for a non-fully coupled system. It is easy to see, by renumberin
and columns (i.e., by permuting the indices ofu1, . . . , un), that any matrixC can be written in the block triangula
form

C = (Ckl)
m
k,l=1, (103)

so that the matrix which we obtain still satisfies (H3); here 1� m � n, Ckl aretk × tl matrices,
∑m

k=1 tk = n, Ckk is
an irreduciblematrix for all k = 1, . . . ,m, andCkl ≡ 0 in Ω , for all k, l ∈ {1, . . . ,m} with k < l. Note thatm = 1
meansC is irreducible, whilem = n meansC is in triangular form.

From now on, we suppose thatC(x) is written in the form (103). We sets0 = 0, sk = ∑k
i=1 ti , Sk =

{sk−1 + 1, . . . , sk} and

uk = usk−1+1 ∨ · · · ∨ usk , uk = usk−1+1 ∧ · · · ∧ usk ,

for all k ∈ {1, . . . ,m}.

Definition 8.2.Let (95) be a non-fully coupled system and letk > l, for somek, l ∈ {1, . . . ,m}. We call system (95
(kl)-partially coupled, provided there exist indices(i, j) ∈ Sk × Sl such thatcij �≡ 0 in Ω . For simplicity, in this
case we writeCkl �≡ 0 in Ω .

We fix a pointx0 ∈ Ω and a ballB3R := B(x0,3R) ⊂ Ω . We suppose the matrixC(x) is written in the form (103)
in B3R (i.e.,Ckl ≡ 0 in B3R for k < l andCkk are irreducible inB3R).

We set, for allk, l ∈ {1, . . . ,m},

Λkl(B3R) = {(i, j) | (i, j) ∈ Sk × Sl, i �= j andcij �≡ 0 in B3R

}
, Λ =

m⋃
k,l=1

Λkl

(Λ can be empty, if (95) is totally decoupled) and fixα ∈ (0,3) such thatΛkl(BαR) = Λkl(B3R), for all
k, l ∈ {1, . . . ,m}.

We shall prove a Harnack inequality in the ballBαR. To avoid heavy notations, we takeα = 1 (in the genera
case the constants in the Harnack inequality depend on 3− α). We set, for all(i, j) ∈ Λ,

ωij = {x ∈ BR | cij (x) � ρ
}
, (104)

whereρ > 0 is taken so that meas(ωij ) > 0.

Theorem 8.2(Harnack inequality).Suppose(L1) through(L4) are satisfied and letu � 0 be a solution of(95)
in B3R. Then

sup
BR

uk � C
(

inf
BR

uk + R‖f ‖LN(B3R)

)
, (105)

for all k ∈ {1, . . . ,m}.
If, in addition,(95) is (kl)-partially coupled, then

sup
BR

uk ∨ ul � C
(

inf
BR

uk + R‖f ‖LN(B3R)

)
. (106)

The constantsC in (105) and (106) depend only onn, N , α0, νR2, ρR2, and a positive lower bound fo
R−N meas(ωij ), (i, j) ∈ Λ ∩ {1, . . . , sk}2.
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Counterexample.We recall that our results fail for general non-cooperative systems. For example, the functi
u = |x|2, v = 2N solve the system{

�u − v = 0,

�v = 0
in B1 ⊂ RN,

and violate (106). See also the counterexamples at the end of Section 3.

A particular case of (105) is the following

Corollary 8.1. Under the hypotheses of Theorem8.2we have

sup
BR

ui � C
(

inf
BR

ui + R‖f ‖LN(B3R)

)
, (107)

for all i = 1, . . . , n.
If, in addition, system(95) is fully coupled, then

sup
BR

u1 ∨ · · · ∨ un � C
(

inf
BR

u1 ∧ · · · ∧ un + R‖f ‖LN (B3R)

)
. (108)

Let us recall the earlier results on Harnack inequalities forelliptic systems. Extending results by Mandras [3
Chen and Zhao [10] obtained Corollary 8.1 for strong solutions of (95), in the case�f ≡ 0, under Hölder regularity
assumptions on the coefficients of the elliptic operatorsL1, . . . ,Ln. Their proof makes use of estimates on
Green functions ofL1, . . . ,Ln. The result of Chen and Zhao was shown to hold forak

ij ∈ C0,1, bk
i ∈ L∞ by

Arapostatis, Ghosh and Marcus [1]. All these works relied on typically “linear” tools which require�f ≡ 0 and lead
to the additional regularity assumptions on the coefficients of the elliptic operators. We note that, using a
Moser type iteration technique, Muscalu [35] recently obtained a weak form of the Harnack inequality for
of elliptic systems in divergence form.

Finally, we state the two half-Harnack inequalities.

Proposition 8.1(local maximum principle).Suppose hypotheses(L1) through(L4) hold. Let

Lu + Cu � − �f (109)

in B3R. Then for allp > 0 we have

sup
BR

u1 ∨ · · · ∨ un � C
(|u+

1 ∨ · · · ∨ u+
n |p,2R + R‖f +

1 ∨ · · · ∨ f +
n ‖LN(B2R)

)
,

whereC = C(N,α0, νR2,p).

Proposition 8.2(weak Harnack inequality).Suppose hypotheses(L1) through(L4) hold and letu � 0 satisfy

Lu + Cu � �f (110)

in B3R. Then there exists a numberp = p(N,n,α0, νR2) > 0 such that for anyk ∈ {1, . . . ,m},
|uk|p,2R � C

(
inf
BR

uk + R‖f +
sk−1+1 ∨ · · · ∨ f +

sk
‖LN (B3R)

)
, (111)

and, in case(95) is (kl)-partially coupled,

|uk ∨ ul|p,2R � C
(
inf
BR

uk + R‖f +
1 ∨ · · · ∨ f +

k ‖LN(B3R)

)
, (112)
whereC is as in Theorem8.2.
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9. Proofs

We begin with the proof of the linear ABP estimate (Theorem 8.1). First, the statement in (b) is a particu
of Theorem 3.1 in Section 3.

In case system (95) satisfies condition (Ψ ), we make the following change of functions

ūk = uk

ψk

, f̄k = fk

ψk

. (113)

A simple computation yields

1

ψk

Lkuk = L̄kūk + ūk

(
Lkψk

ψk

)
,

for all k = 1, . . . , n, where, as in Lemma 4.2,

L̄k = Lk + 2
N∑

i,j=1

ak
ij (x)

∂iψk(x)

ψk(x)

∂

∂xj

. (114)

We have then, by Lemma 4.2(b),

L̄kūk +
n∑

j=1

c̄kj ūj � −f̄k, (115)

where

c̄kj (x) = 1

ψk

(
ckjψ

j + δkjLkψk

)
.

We see that (Ψ ) implies

n∑
j=1

c̄kj (x) � 0 in Ω, (116)

for all k = 1, . . . , n. Thus, by making the change of functions (113), we obtain a new cooperative system
satisfies (99). By applying the ABP estimate for such systems, which we already have, we obtain

sup
Ω

u1 ∨ · · · ∨ un � supΩ ψ1 ∨ · · · ∨ ψn

infΩ ψ1 ∧ · · · ∧ ψn

(
sup
∂Ω

u+
1 ∨ · · · ∨ u+

n + C‖f +‖LN(Ω)

)
.

Theorem 8.1 is proved.�
The linear local maximum principle (Proposition 8.1) is a consequence of Proposition 3.1.
The proofs of the Harnack and the weak Harnack inequalities will be carried out through an induction argume

We use induction with respect tom, where, we recall,m is the number of irreducible blocks which appear wh
we write the matrixC in the form (103).

The casem = 1 (that is,C is irreducible) is a consequence of the nonlinear Harnack inequality we al
proved in Part I. Note that in the case of a linear system the functionsϕij are linear int

ϕij = t
(

inf
x∈ωij

esscij (x)
)

� ρt, (i, j) ∈ Λ,

so that the basic estimate (74) reduces to

inf ui � κij inf uj − C∗‖f ‖LN(B3)
, i �= j, (117)
B1 B2
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and the functionΦ0 which appears at the end of the proof of Theorem 3.2 is linear,Φ0(t, s) = C1t + C2s. Let us
suppose Theorem 8.2 and Proposition 8.2 hold for systems with at mostm − 1 irreducible blocks, and let us hav
a system withm irreducible blocks.

Note that, by the induction hypothesis, Theorem 8.2 and Proposition 8.2 hold for the system formed by the fi
sm−1 equations in (95). It remains to prove (105), (106), (111) and (112) fork = m.

The inequality (111) is obtained by repeating the lastargument in Section 7 and by using the fact that (1
holds fori, j ∈ Sm, i �= j . Note that (L3) implies

(Li − c−
ii )ui � fi in B2, i = 1, . . . , n,

so that the weak Harnack inequality for scalar equations yields

|ui |pi,2 � C
(
inf
B2

ui + ‖f +‖LN (B3)

)
. (118)

Let us prove (112). Fixl ∈ {1, . . . ,m − 1} such thatCml �≡ 0 in B1. Let for exampleci0j0 �≡ 0 in B1, for some
i0 ∈ Sm, j0 ∈ Sl . Then, by (117),

inf
B3/2

uj0 � C
(

inf
B2

ui0 + ‖f +
i0

‖LN(B3)

)
. (119)

Using (111), (117), (118), (119) and the induction hypothesis, we obtain

|um ∨ ul |p,2 � C
(|um|p,2 + |ul |p,2

)
� C

(∑
i∈Sm

inf
B2

ui + min
j∈Sl

inf
B3/2

uj + ‖f +‖LN(B3)

)

� C

(∑
i∈Sm

inf
B2

ui + inf
B3/2

uj0 + ‖f +‖LN(B3)

)

� C

(
2
∑
i∈Sm

inf
B2

ui + ‖f +‖LN (B3)

)
� C
(

min
i∈Sm

inf
B1

ui + ‖f +‖LN (B3)

)
= C
(

inf
B1

um + ‖f +‖LN(B3)

)
,

which proves (112).
Finally, let us prove (105) and (106). We distinguish two cases.
Case1. There exists a numberl ∈ {1, . . . ,m − 1} such thatCkl ≡ 0 in B1, for all k > l.
In this case we remove from (95) the equations with numbers inSl and obtain a system to which the inducti

hypothesis applies.
Case2. For alll ∈ {1, . . . ,m − 1} there existsk > l such thatCkl �≡ 0 in B1.
In this case we can even prove that

sup
B1

u1 ∨ · · · ∨ un � C
(
inf
B1

um + ‖f ‖LN (B3)

)
. (120)

In view of Proposition 8.1 it suffices to prove that

|ul|p,2 � C
(
inf um + ‖f ‖LN(B3)

)
, (121)
B1
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for all l ∈ {1, . . . ,m}. For l = m this follows from (111). On the other hand, the assumption of Case 2 imp
by (112), that for alll ∈ {1, . . . ,m − 1} there existsk > l such that

|ul|p,2 � C
(
inf
B1

uk + ‖f ‖LN(B3)

)
.

Finally, we take a sequencel = k0 < k1 < · · · < kr = m such that the latter inequality holds betweenuki and
uki+1 and at mostm − 1 nested balls betweenB1 andB2. Iterating the inequality between each two of them,
obtain (121). �
10. Further results and some open problems

While the hypotheses under which we prove our Harnack inequality seem natural – and the resul
complete in view of what is known for scalar equations – a number of questions remain to be answere
the ABP inequality, and even about the maximum principle. Namely, (H5) and (H6) are not optimal. For instan
one could expect that Theorem 3.1 holds only under the hypothesis

C(u, x) =
(

∂ci

∂uj

(u, x)

)n

i,j=1
is negative semi-definite for a.e.(u, x). (122)

Indeed (122) is more general than (H5) and (H6) in view of the following lemma.

Lemma 10.1.LetM = (mij ) ∈ Mn(R) be a cooperative matrix, i.e.,mij � 0 for i �= j . Suppose either that

n∑
j=1

mij � 0 for all i = 1, . . . , n (123)

or that

mij � 
mij , (124)

where 
M = (
mij ) is a negative semi-definite matrix(i.e., ( 
Mξ, ξ) � 0 for all ξ ∈ Rn). ThenM is negative semi
definite.

We give the elementary proof of Lemma 10.1 at the end of this section, for the sake of completeness.
Although Theorem 3.1 holds under (122) for some particular systems, this proves to be false in gene

section contains a discussion on these points.
The problem is quite delicate, even in the linear case. In particular, there turns out to be important differenc

between systems with divergence and non-divergence form operators, between systems with autonom
constant in the linear case) or non-autonomous zero-order terms, and between systems with the same o
linear elliptic operators.

To avoid technical complications, in this section we consider only strong solutions, that is,u ∈ W
2,N
loc (Ω,Rn) ∩

C(Ω,Rn).
First, it follows from Theorem 3.1(b) that the system

L+(D2ui,Dui

)+ (Cu)i = 0, i = 1, . . . , n,

satisfies ABP (that is, (4) holds), ifC is a constant negative semi-definite matrix.
Next, we recall that ABP remains true under (122) for linearsystems with elliptic operators in divergence for

Proposition 10.1.Supposeu ∈ W2,N (Ω,Rn) satisfies

Lu + C(x)u � − �f (125)
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in the regular domainΩ , whereLk, k = 1, . . . , n, can be written in the form

Lk =
N∑

i,j=1

∂i

(
ak
ij (x)∂j

)
for someak

ij ∈ C1(Ω), and supposeC(x) = C(u, x) satisfies(122). Then

sup
Ω

u1 ∨ · · · ∨ un � C
(
sup
∂Ω

u+
1 ∨ · · · ∨ u+

n + ‖f +‖LN (Ω)

)
. (126)

Remark. The assumption that the coefficients of the elliptic operators are regular can of course be rela
considering the weak formulation of (125). We have made these hypothesis for simplicity, in order to remai
non-divergence framework.

Proof of Proposition 10.1. As we show later, it suffices to prove thatL+C satisfies the maximum principle (sinc
this implies (Ψ ) from Theorem 8.1, see Section 14, Theorem 14.1). Letu be such that{

Lu + Cu � 0 in Ω,

u � 0 on∂Ω.
(127)

We have to show thatu � 0 in Ω . We use a standard argument. We multiply thei-th equation byu−
i and integrate

overΩ . We obtain

−
∫
Ω

(
AiDui,Du−

i

)
dx +

∫
Ω

n∑
j=1

cij uju
−
i � 0, i = 1, . . . , n,

whereAi = (ai
rs)r,s . Summing overi we obtain (recall thatu = u+ − u−)

n∑
i=1

∫
Ω

(
AiDu−

i ,Du−
i

)
dx −

n∑
i,j=1

cij u
−
j u−

i � 0.

Hence, by ellipticity and (122),

α0

n∑
i=1

∫
Ω

|Du−
i |2 dx �

∫
Ω

(
C(x)u−, u−)dx � 0,

which impliesu−
i ≡ const= 0, i = 1, . . . , n. �

The next result shows that the ABP inequality remains true for strong solutions of linear systems in no
divergence form under assumption (122), provided all elliptic operatorsLi coincide.

Proposition 10.2.SupposeC(x) = C(u, x) satisfies(122), u satisfies(125) and thatL1 = · · · = Ln is a scalar
second-order operator with bounded measurable coefficients in the form(96). Then(126)holds true.

Remark. We do have to restrict here to strong supersolutions; we suspect that this result extends to v
supersolutions, although we do not have a proof.

Proof. By dividing each functionui by a solution ofLψ = −1 in Ω̃ , Ω � Ω̃ , we can reduce to a modified syste
with negative definite zero-order matrix, see (47) and the computations thereafter. We keep the same not
simplicity. Hence we can assume(

C(x)ξ, ξ
)
� −α|ξ |2 for all ξ ∈ Rn, a.e.x ∈ Ω, (128)

for someα > 0.
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As we explained above, in order to establish (126) it is enough to show that the maximum principle ho
for L + C in Ω , i.e., that (127) impliesu−

i ≡ 0 in Ω , for all i. First, note that by the cooperativity assumption (L
thei-th equation in (127) yields

L1ui + ciiu
+
i −

n∑
j=1

cij u
−
j � 0. (129)

Let us denote byφε the convolution of the functionz → 1
2(z−)2 with a standard smoothing kernelρε (that is,∫

R
ρε = 1, ρε � 0, ρε ∈ C∞

0 (R), suppρε ⊂ (−ε, ε)).
Note thatφ′

ε(z) = ρε ∗ (−z−), so that|−φ′
ε(ui) − u−

i | � ε. By multiplying (129) by−φ′
ε(ui) (� 0) and by

using (128) we get

−
n∑

i=1

φ′
ε(ui)L1ui � −α

∑
i

(u−
i )2 + Cε, (130)

whereC depends only on‖u‖L∞(Ω). Observe that for anyw ∈ W
2,n
loc and any convexφ ∈ C2 we have the following

well-known Kato inequality

L1
(
φ(w)

)
� φ′(w)L1w. (131)

We assume for contradiction that
∑

i (u
−
i )2 > 0 and apply (131), withw = ui , φ = φε, to (130). This yields

−L1

(
n∑

i=1

φε(ui)

)
� −

n∑
i=1

φ′
ε(ui)L1ui � 0 (132)

for all ε > 0 small enough. By the scalar maximum principle applied to (132), noticing thatui � 0 on∂Ω implies
φε(ui) = O(ε) on ∂Ω , we get

n∑
i=1

φε(ui) � Cε (133)

in Ω . Takingε → 0 we getu−
i ≡ 0 in Ω for all i, a contradiction. �

In the nonlinear case we are able to prove that system (1) satisfies the maximum principle under (122),
it is autonomous. We do not know whether ABP holds in this situation.

Proposition 10.3.Supposeu ∈ C(Ω,Rn) satisfies
L−(D2ui,Dui

)+ ci(u) � 0 in Ω,

u � 0 on∂Ω,

i = 1, . . . , n

(134)

in the viscosity sense. Assume the functionsci satisfy(H0), (H3)and(
c(v), v

)= n∑
i=1

ci(v)vi � 0 for all v ∈ Rn. (135)

Thenu � 0 in Ω .

Remark. Condition (135) is weaker than (122). This is natural, since in Proposition 10.3 we aim at a maximu
principle only.
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Proof of Proposition 10.3. Setui = ūiψ , whereψ is a strong solution of the equation{
L−(D2ψ,Dψ

) = −1 in Ω̃,

ψ = 0 on∂Ω̃,

with Ω � Ω̃ . Up to adding a constant toγ we have
L−(D2ūi ,Dūi

)+ ĉi (ū) � 0 in Ω,

u � 0 on∂Ω,

i = 1, . . . , n,

(136)

whereĉ is defined by

ĉi (ū) = 1

ψ
ci(ūψ) − εūi, ε = 1

supΩ ψ

(see Lemma 4.3 and (48)). Now system (136) satisfies all hypotheses of Proposition 10.3, with a strict in
in (135), for allv ∈ Rn \ {0}. For simplicity we writec instead ofĉ andu instead ofū.

By (H3) we have

L−(D2ui,Dui

)+ ci(−u−
1 , . . . ,−u−

i−1, ui,−u−
i+1, . . . ,−u−

n ) � 0 in Ω

for all i. Hence

−L+(D2u−
i ,Du−

i

)+ ci(−u−) � 0,

sinceu−
i = −min(ui,0) and the minimum of supersolutions is a supersolution. Letx̄i ∈ Ω be a point of maximum

of the nonnegative functionu−
i . Setci = −ci(−u−

1 (x̄1), . . . ,−u−
n (x̄n)). We claim thatci � 0 for all i. If not, there

existsj ∈ {1, . . . , n} such thatcj < 0 and, by continuity,

cj

(−u−
1 (x1), . . . ,−u−

n (xn)
)
>

ci

2
,

for (x1, . . . , xn) ∈ O, whereO is a neighbourhood of(x̄1, . . . , x̄n), such thatu−
j achieves its maximum inO at x̄j .

We get

L−(D2(u−
j (x̄j ) − u−

j

)
,D
(
u−

j (x̄j ) − u−
j

))= −L+(D2u−
j ,Du−

j

)
� −ci

2
< 0

in O. By the scalar strong maximum principleu−
j ≡ u−

j (x̄j ) in O, which is a contradiction with the last inequalit

Setyi = u−
i (x̄i) � 0 andy = (y1, . . . , yn). Then, byci � 0 and (135),

0�
n∑

i=1

(−yi)ci(−y) < 0,

unlessyi = 0 for all i. �
Finally we show, through a counterexample, that condition (122) is not sufficient to ensure the validity of t

maximum principle in the non-autonomous case, even for a linear system.
SetI = (−3,3) and define the functionsa, d ∈ C∞(I) as follows

a(x) =


−ε if x ∈ [−3,−1],
−2

ε
if x ∈ [1,3], d(x) =

−2

ε
if x ∈ [−3,−1],

−ε if x ∈ [1,3]
and such thata(x)d(x) ≡ 2 in I .
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Let v ∈ C2(Ī ) be a positive function such that

v(−3) = v(3) = 0, v′′ > 0 in [−3,1) ∪ (2,3] and v′′ < 0 in (1,2).

Setu(x) = v(−x). It is easy to see that ifε andc0 are small enough the following inequalities hold
M+(D2u

)+ a(x)u + v � 0 in I,

M+(D2v
)+ u + d(x)v � 0 in I,

u, v = 0 on∂I.

(137)

This system satisfies (122) but it does not satisfy the maximum principle, sinceu,v � 0 in Ω . Note also that (137
can be written as a linear system, by using Lemma 4.1.

Proof of Lemma 10.1. Setaij = 1
2(mij + mji), āij = 1

2(
mij + 
mji), andA = (aij ), Ā = (āij ). If (123) holds one
gets by a trivial computation

(Mξ, ξ) = (Aξ, ξ) � −
∑
i<j

aij (ξj − ξi)
2 � 0.

In case (124) is verified (aij � āij and(Āξ, ξ) � 0 for all ξ ∈ Rn) we setBε = εI − A, 
Bε = εI − Ā = (b̄ij ), so
that 
Bε is positive definite. It is clearly enough to show thatBε is positive definite under the additional assumpt
thatA andĀ differ only in one entry, say

aij = āij if (i, j) �= (i0, j0) and ai0j0 < āi0j0. (138)

The result then follows easily by taking a chain of matrices each two consecutive elements of which differ onl
one entry, and by lettingε → 0.

So suppose (138) and setB(t) = (1− t)
Bε + tBε = (bij (t)). Let, as before,Mkl denotes the submatrix obtaine
from an arbitrary matrixM by removing itsk-th line andl-th column. By (138) detBi0j (t) = det
Bi0j (t), for any
j ∈ {1, . . . , n}. By Cramer’s rule and Lemma 5.3 we get

detB(t) =
∑
j �=j0

(−1)i0+j bi0j (t)detBi0j (t) + (−1)i0+j0bi0j0(t)detBi0j0(t)

�
∑
j �=j0

(−1)i0+j b̄i0j (t)det
Bi0j (t) + (−1)i0+j0 b̄i0j0(t)det
Bi0j0(t)

= det
Bε > 0.

It follows, by continuity int , that all eigenvalues ofB(1) = Bε are positive, i.e., thatBε is positive definite. �

Part III. Applications

In the third part of the paper we give several applications of the results obtained in Parts I and II. We
a maximum principle in unbounded domains and a sharp strong maximum principle for cooperative syste
important application is the existence of a principal eigenvalue and a principal eigenfunction of a fully c
system. This result permits us to obtain a necessary and sufficient condition for a cooperative (not necessa
fully coupled) system to satisfy the maximum principle. Finally, we show how our results can be applied
Harnack type estimates for a class of higher order elliptic equations, including the biharmonic and the polyh
equation. We show the existence of a principal eigenvalue and a principal eigenfunction for these equati
sense which seems to be new.

In order to simplify the presentation all these applications are given in the linear case although mos
(maximum principles, higher order equations) readily extend to nonlinear equations.
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11. A maximum principle in unbounded domains

We say that the operatorL + C satisfies the maximum principle inΩ provided for anyu ∈ C(Ω,Rn),{
Lu + Cu � 0 in Ω,

u � 0 on∂Ω
(139)

impliesu � 0 in Ω . WhenΩ is bounded, it is well-known that the assumptions of Theorem 8.1 (the ABP esti
are sufficient to ensure thatL + C satisfies the maximum principle inΩ (see [15]). This fact is a particular case
Theorem 8.1.

The ABP estimate can also be used to derive a maximum principle in unbounded domains. The next proposition
contains a result of this kind. General results of the same type for scalar equations can be found in [6].

Proposition 11.1.LetΩ ⊆ RN be a domain(bounded or unbounded). Suppose(L1) through(L4) hold and

n∑
j=1

cij (x) � −δ < 0 a.e. inΩ (140)

for all i = 1, . . . , n, and someδ > 0. Then there existsε0(δ,N,α0, ν) > 0 such that
Lu + Cu � 0 in Ω,

u � 0 on∂Ω, if ∂Ω �= ∅,

u−
1 (x) ∨ · · · ∨ u−

n (x) � Ceε0|x| in Ω, for someC > 0,

impliesu � 0 in Ω .

Proof. We takeβ > 0 such that 2
√

N α−1
0 β2 + ν

√
N β < δ and setε0 = β/2. We make the change of functio

ūi = ui/g, with g(x) = coshβx1 · · ·coshβxN . Thenū = (ū1, . . . , ūn) satisfies

L̄ū + 
Cū � 0 in Ω,

whereL̄ = (L̄1, . . . , L̄n),

L̄k = Lk + 2β
∑

1�i,j�N

ak
ij (x) tanhβxi

∂

∂xj

and


C = C + diag

(
L1g

g
, . . . ,

Lng

g

)
.

More precisely,
C = (c̄kj )
n
k,j=1, with

c̄kj = ckj + δkj

(
β2

∑
1�l,m�N

l �=m

ak
lm tanhβxl tanhβxm + β2

∑
1�l�N

ak
ll + β

∑
1�l�N

bk
l tanhβxl

)
.

Note that, because of the choice ofβ and ε0, 
C satisfies condition (99) and̄u− → 0 as |x| → +∞, x ∈ Ω .
By applying ABP inequality (Theorem 8.1, (101)) toū in balls of increasing radii, we obtain the conclusion
Proposition 11.1. �
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12. A sharp strong maximum principle

An immediate consequence of the weak Harnack inequality (Proposition 8.2) is the following strong maximum
principle. We recall we suppose that the zero order matrixC is written in the form (103) inΩ .

Proposition 12.1.Assume(L1) through(L4) hold. Supposeu ∈ C(Ω,Rn) satisfies{
Lu + Cu � 0 in Ω,

u � 0 in Ω.

Let 1 � k � m and suppose there exists a pointx0 ∈ Ω and an indexi ∈ Sk such thatui(x0) = 0. Thenuj ≡ 0 for
all j ∈ Sk . If, in addition,1 � k < l � m are such that there exists a sequence{ij }rj=0 for which

k = i0 > i1 > · · · > ir = l and Cij ij+1 �≡ 0 in Ω (141)

thenuj ≡ 0 in Ω , for all j ∈⋃r
j=0 Sij .

Remark 1. In the particular case when the system is fully coupled (m = 1), Proposition 12.1 reduces to the know
strong maximum principle (see [40]), which states thatui(x0) = 0 for somex0 ∈ Ω and somei ∈ {1, . . . , n} implies
u ≡ 0 in Ω .

Remark 2. The strong maximum principle given by Proposition12.1 is sharp in the sense that if a sequenc
in (141) does not exist then, clearly, the system does not relate the functions with indices inSk to the functions
with indices inSl .

13. Existence of a principal eigenvalue for a fully coupled system

Throughout this and the next section we suppose that (L1) through (L3) hold and, in addition,

ak
ij ∈ C(Ω),

for all i, j ∈ {1, . . . ,N}, k ∈ {1, . . . , n}. All functions considered belong toW2,q

loc (Ω,Rn)∩C(Ω,Rn), for all q < ∞
(except otherwise stated), so that, in contrast to the rest of the paper,all equalities and inequalities hold almo
everywhere.

For simplicity we suppose thatΩ is regular (for example,Ω satisfies a uniform exterior cone condition). A
our results can be extended to arbitrary domains, by using the arguments in [2].

We set

λ1 = λ1(L + C)

= sup
{
λ ∈ R | there existsΨ ∈ W

2,N
loc

(
Ω,Rn

)
such thatΨ > 0 and(L + C + λI)Ψ � 0 in Ω

}
.

Our main result in this section is the following theorem.

Theorem 13.1.Suppose thatC is an irreducible matrix(see Definition8.1). Then(a) there exists a function
Φ1 ∈ W

2,q

loc (Ω,Rn) ∩ C(Ω,Rn), ∀q < ∞, such that{
(L + C + λ1I)Φ1 = 0 in Ω,

Φ1 > 0 in Ω,

Φ1 = 0 on∂Ω.

(b) There are no eigenvalues of−(L + C) in the interval(−∞, λ1); the vectorΦ1 spansKer(L + C + λ1I) in
W

2,N
(Ω,Rn) ∩ C(Ω,Rn) under the Dirichlet boundary condition.
loc
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(c) Assume there is a functionΨ ∈ W
2,N
loc (Ω,Rn) such that

Ψ > 0 and (L + C)Ψ � 0 in Ω.

Then eitherλ1 > 0 or λ1 = 0 andΨ = const· Φ1.
(d) If Ψ̄ ∈ W

2,N
loc (Ω,Rn) ∩ C(Ω,Rn) satisfies{

(L + C + λ1I)Ψ̄ � 0 in Ω,

Ψ̄ � 0 on∂Ω

thenΨ̄ = const· Φ1.
(e) If we normalizeΦ1 = (φ1,1, . . . , φ1,n) in such a way that

min
1�i�n

φ1,i(x0) = 1

for somex0 ∈ Ω , then

sup
Ω

Φ1 := sup
Ω

φ1,1 ∨ · · · ∨ φ1,n � C,

whereC depends only onx0, Ω and the same quantities as the constantwhich appears in the Harnack inequali
(Theorem8.2 in Part II) .

Remark 1. Supposinga priori thatλ1 > 0 (he actually uses a hypothesis of type (Ψ ) and proves his hypothes
is equivalent toλ1 > 0), Sweers proved parts (a) and (b) of Theorem 13.1 in [40] (his proof relies on the K
Rutman technique; see also [3] for the case of a non-regular domain). We are going to use this result in t
of Theorem 13.1.

Remark 2. If the boundary ofΩ is not regular the principal eigenfunction may not belong toC(Ω) andΦ1 = 0
on ∂Ω only in a certain sense (as in [2] and [3]).

Remark 3. In [2] Berestycki, Nirenberg and Varadhan made a deep study of the properties of the pr
eigenvalue and the principal eigenfunction of a scalar elliptic operator in a general domain. The basic to
used are the ABP and the Harnack–Krylov–Safonov inequalities for scalar equations. Since we now ha
inequalities for cooperative elliptic systems, it is only a matter of technique to show that all results in [2] have th
analogues for systems. Here and in the next section we present some of these analogues (and often me
the proofs in [2] to the case of a system). To extend to systems the rest of the results in [2] is left to the in
reader.

Remark 4. The hypothesis that the system is fully coupled can be relaxed in Theorem 13.1.

Remark 5. In [25] Hess considered a related eigenvalue problem. He showed that the equationLΦ + µCΦ = 0
has a solution(µ,Φ) under Dirichlet boundary conditions, withµ > 0,Φ > 0 in Ω , providedc+

kk �≡ 0 for some
k ∈ {1, . . . , n}. In other words, Hess gave a condition onC under which one can find a positive constantµ such that
λ1(L + µC) = 0, in terms of our definition ofλ1.

Proof of Theorem 13.1. It follows from the definition ofλ1 that for anyλ < λ1 the matrix operatorL + C + λI

satisfies the hypotheses of Theorem 1.1 in [40] (namely, this operator is cooperative, fully coupled, and satis
a condition of type (Ψ )). This theorem implies the existence of couple(µλ,Φλ) such thatΦλ ∈ W

2,N
loc (Ω,RN) ∩

C(Ω,RN), µλ > 0 and{
(L + C + (λ + µλ)I)Φλ = 0 in Ω,

Φλ > 0 in Ω, (142)

Φλ = 0 on∂Ω.
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We claim that

λ < λ + µλ � λ1 � C1

R2 , (143)

whereC1 = C1(N,α0, ν) andR > 0 is such thatΩ contains a ball of radiusR.
The first inequality in (143) is obvious. The second inequality follows from the definition ofλ1 and (142). The

last inequality in (143) is known to hold ifλ1 is replaced byλ1(Li + cii) – the principal eigenvalue of thescalar
operatorLi + cii in Ω , for any i = 1, . . . , n (this is Lemma 1.1, page 51 in [2]). On the other hand, sinceC is
cooperative,

(L + C + λI)Φ � 0 implies (Li + cii + λ)φi � 0

(Φ = (φ1, . . . , φn)), henceλ1 � λ1(Li + cii), for all i = 1, . . . , n.
We now fixδ = δ(N,α0, ν,Ω) > 0 such that

δ <

{
2CABP

(
ν + C1

R2

)}−N

(CABP is the constant which appears in Theorem 8.1(b)).
Let x0 ∈ Ω . We normalize the vectorΦλ = (φλ,1, . . . , φλ,n) by dividing the equation in (142) b

min1�i�n φλ,i(x0) > 0, so that we can suppose

φλ,i(x0) � 1, for all i = 1, . . . , n,

and

φλ,1 ∧ · · · ∧ φλ,n(x0) = 1. (144)

We take a compact setK ⊂ Ω such that we havex0 ∈ K, BR ⊂ K, Λ(K) = Λ(Ω) (Λ is defined in Section 8
page 38), and

meas(Ω \ K) < δ.

It follows from (144) and our Harnack inequality (Corollary 8.1 in Part II) that

sup
K

φλ,1 ∨ · · · ∨ φλ,n � C2 (145)

(the constantC, indexed or not, depends only on the appropriate quantities, in particular,C is independent ofλ).
Sete = (1,1, . . . ,1) andΦ̄λ = Φλ − C2e, so that

Φ̄λ � 0 on∂(Ω \ K). (146)

We have, by (142) and (143),

(L + C − νI)Φ̄λ = −(ν + λ + µλ)Φλ − C2(C − νI)e

� −
(
ν + C1

R2

)
Φλ in Ω \ K, (147)

where we have used the fact that (L2) implies(C − νI)e � 0. This fact also shows that the operator in the left-h
side of (147) satisfies the hypotheses of the ABP estimate (Theorem 8.1(b)). Applying this estimate to (1
obtain

sup
Ω\K

φλ,1 ∨ · · · ∨ φλ,n − C2 � CABP

(
ν + C1

R2

)
δ1/N sup

Ω\K
φλ,1 ∨ · · · ∨ φλ,n

� 1

2
supφλ,1 ∨ · · · ∨ φλ,n. (148)

Ω\K
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By combining (145) and (148) we obtain

‖Φλ‖L∞(Ω) = sup
Ω

φλ,1 ∨ · · · ∨ φλ,n � C3.

Since

Lkφλ,k = −
n∑

j=1

(
ckj − δkj (λ + µλ)

)
φλ,j ,

we see thatLkφλ,k remain bounded inL∞(Ω) asλ → λ1, for all k = 1, . . . , n. Classical interior elliptic estimate
for scalar equations imply

‖Φλ‖W2,q (Ω ′) � C, (149)

for any 1< q < ∞ and anyΩ ′ � Ω .
We infer from (149) that there exists a sequence{λ(j)}∞j=1 and a functionΦ1 such that

λ(j) → λ1 and Φ(j) = Φλ(j) → Φ1

weakly inW
2,q

loc (Ω),1< q < ∞, and uniformly in any compact subset ofΩ . It follows thatΦ1 solves the equatio

(L + C + λ1I)Φ1 = 0 in Ω

(note that (143) impliesλ(j) + µλ(j) → λ1), and

0� Φ1 � C3e in Ω.

Since, by (144),Φ1(x0) � e, the strong maximum principle impliesΦ1 > 0 in Ω .
Finally,

LΦ(j) = −CΦ(j) − (λ(j) + µλ(j) )Φ
(j)

� −νC3e − C1C3

R2 e = −C4e in Ω,

so the usual maximum principle for scalar equations implies

Φ(j) � C4Φ0 in Ω,

whereΦ0 is the solution of the problem{
LΦ0 = −e in Ω,

Φ0 = 0 on∂Ω.

Hence

0< Φ1 � C4Φ0 in Ω,

soΦ1 ∈ C(Ω) andΦ1 = 0 on∂Ω .
Statements (a) and (e) of Theorem 13.1 are proved.
The first part of statement (b) follows from the result of Sweers (Theorem 1.1 in [40]). Indeed, ifλ̄ < λ1 is an

eigenvalue for−(L + C) then the operatorL + C + λ1+λ̄
2 I satisfies the hypotheses of Theorem 1.1 in [40],

hence does not have negative eigenvalues – a contradiction. The second part of (b) is a particular case of (d).
Let us prove statements (c) and (d). It is clear that the assumptions in (c) implyλ1 � 0. If λ1 = 0, set

τ = sup
{
t ∈ R | Ψ � tΦ1 in Ω

}
. (150)

By continuityΨ � τΦ1. If Ψ = τΦ1, we are done. If not, the strong maximum principle, applied to

(L + C)(Ψ − τΦ1) � 0,
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impliesΨ > τΦ1 in Ω . We now make use of the maximum principle in “small domains” obtained by de Figue
in [14] (this result is stated in Corollary 14.1 below). It follows from this result that if a compact setK ⊂ Ω is such
that meas(Ω \ K) is small enough, thenL + C satisfies the maximum principle inΩ \ K. SinceK is compact,
there existsε > 0 such thatΨ � (τ + ε)Φ1 in K. Since{

(L + C)(Ψ − (τ + ε)Φ1) � 0 in Ω \ K,

Ψ − (τ + ε)Φ1 � 0 on∂(Ω \ K),
(151)

we get, by the maximum principle,Ψ � (τ + ε)Φ1 in Ω , which contradicts (150).
Finally, let us prove (d). We can suppose thatλ1 = 0 (replaceC by C + λ1I ). It suffices to findα > 0 such that

Z = Ψ̄ + αΦ1 > 0 in Ω

(Z then satisfies the assumption in (c)). We fix a compactK ⊂ Ω such thatL + C satisfies the maximum principl
in Ω \ K and we takeα > 0 such thatZ > 0 in K. Since{

(L + C)Z � 0 in Ω \ K,

Z � 0 on ∂(Ω \ K),

we getZ > 0 in Ω \ K.
Theorem 13.1 is proved.�
At the end of this section we recall the following result of Sweers [40].

Theorem 13.2(Sweers).SupposeC is irreducible and let �f ∈ Lq(Ω,Rn), q � N . If λ1 > 0 then there exists a
unique solution inW2,q

loc (Ω,Rn) ∩ C(Ω,Rn) of the problem{
Lu + Cu = − �f in Ω,

u = 0 on∂Ω.

Moreover, �f � 0 in Ω impliesu � 0 in Ω ; �f = (f1, . . . , fn) � 0 andfi �≡ 0, for somei, imply �f > 0.

14. Necessary and sufficient conditions for a linear system to satisfy the maximum principle

The existence of a principal eigenfunction permits us to show that condition(Ψ ) in Theorem 8.1(a), which ha
long been known to be sufficient for the maximum principle, is also necessary for its validity. Our result, a
to a fully coupled system, says the maximum principle holds if and only if the principal eigenvalue of the
operatorL + C is positive. This result contains the well-known necessary and sufficient condition for a
operator to verify the maximum principle.

Let the matrixC be written in the form

C = (Ckl)
m
k,l=1 (152)

in Ω , where, we recall, 1� m � n, Ckl are tk × tl matrices,
∑m

k=1 tk = n,Ckk is an irreducible matrix for
all k = 1, . . . ,m, and Ckl ≡ 0 for all k, l ∈ {1, . . . ,m} with k < l. We have sets0 = 0, sk = ∑k

i=1 ti , and
Sk = {sk−1 + 1, . . . , sk}.
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Let λ
(k)
1 ∈ R andΦ

(k)
1 ∈ W

2,q

loc (Ω,Rtk ) ∩ C(Ω,Rtk ), ∀q < ∞, be the principal eigenvalue and eigenfunct

of the operatorLk + Ckk in Ω , where we denoteLk = diag(Lsk−1+1, . . . ,Lsk ). The existence ofλ(k)
1 andΦ

(k)
1 is

ensured by Theorem 13.1.

Theorem 14.1.Let (L1) through(L3) hold and letak
ij be continuous functions, for alli, j, k. The following are

equivalent:

(i) L + C satisfies the maximum principle inΩ , in the sense described in the beginning of Section11;
(ii) λ

(k)
1 > 0, for all k ∈ {1, . . . ,m};

(iii) there exists a functionΨ > 0 in Ω such that(L + C)Ψ � 0 in Ω , and eitherΨ �≡ 0 on ∂Ω or (L + C)Ψ �≡ 0
in Ω (component-wise).

Proof. (i) ⇒ (ii). Suppose there existsk ∈ {1, . . . ,m} such thatλ(k)
1 � 0. Set

Ψ = (0, . . . ,0,Φ
(k)
1 ,0, . . . ,0

)
(the only non-zero coordinates ofΨ are those with indices inSk). Then

(L + C)Ψ = (0, . . . ,0,−λ
(k)
1 Φ

(k)
1 ,Ck+1kΦ

(k)
1 , . . . ,CmkΦ

(k)
1

)
,

so, by (L3),{
(L + C)Ψ � 0 in Ω,

Ψ = 0 on∂Ω,

butΨ � 0 in Ω , which contradicts the maximum principle.
(ii) ⇒ (iii). We use a recurrent procedure to constructΨ = (Ψ (1), . . . ,Ψ (m)) (Ψ (k) consists oftk components)

SetΨ (1) = Φ
(1)
1 . If C21 ≡ 0 we takeΨ (2) = Φ

(2)
1 . If C21 �≡ 0 we takeΨ (2) to be the solution of the problem

(
L2 + C22 + λ

(2)
1

2

)
Ψ (2) = −C21Ψ

(1) in Ω,

Ψ (2) > 0 in Ω,

Ψ (2) = 0 on∂Ω.

This boundary value problem is solvable, by Theorem 13.2.
Finally, for anyl ∈ {2, . . . , n}, when we have constructedΨ (1), . . . ,Ψ (l−1), we takeΨ (l) to be eitherΦ(l)

1 , in
caseClk ≡ 0 for all k = 1, . . . , l − 1, or the positive solution of the problem

(
Ll + Cll + λ

(l)
1

2

)
Ψ (l) = −

l−1∑
k=1

ClkΨ
(k) in Ω,

Ψ (l) = 0 on∂Ω,

(153)

in case the right-hand side in (153) is not identically zero.
Then we haveΨ > 0 and

(L + C)Ψ �
(

−λ
(1)
1 Φ

(1)
1 ,−λ

(2)
1

2
Φ

(2)
1 , . . . ,−λ

(m)
1

2
Φ

(m)
1

)
< 0 in Ω.

(iii) ⇒ (ii). Let us noteΨ = (Ψ (1), . . . ,Ψ (m)) > 0. Since (L3) holds, we have(
Lk + Ckk

)
Ψ (k) � 0,
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and eitherΨ (k) �≡ 0 on∂Ω or (Lk + Ckk)Ψ
(k) �≡ 0 in Ω , for all k = 1, . . . ,m. It follows from Theorem 13.1(c) tha

eitherλ(k)
1 > 0 or λ

(k)
1 = 0 and, in the latter case,Ψ (k) = const· Φ(k)

1 . The last equality is impossible, by (iii) an
the properties ofΦ1.

(iii) ⇒ (i). We show that (iii) is equivalent to condition (Ψ ) in the ABP estimate (Theorem 8.1(a)). Then
conclusion is immediate, since the maximum principle is a particular case of the ABP estimate.

Lemma 14.1. Supposeλ(k)
1 > 0, for all k = 1, . . . ,m. Then there exists a function̄Ψ ∈ W

2,q

loc (Ω,Rn) ∩
C(Ω,Rn), ∀q < ∞, such that{

(L + C)Ψ̄ � 0 in Ω,

Ψ̄ � e in Ω.

Proof. Since (iii) is equivalent to (ii) we can consider the vectorΨ constructed in the proof of (ii)⇒ (iii). Then
we can adapt to our situation the proof of Lemma 6.1 in [2]. Let us sketch the argument.

We take a compact setK ⊂ Ω and solve the followingn scalar equations{
LW = −2νe in Ω \ K,

LW = 0 in K,

W = 0 on∂Ω.

As in [2], by takingK sufficiently close toΩ , we can ensure thatW < e in Ω . Takingε0 such thatΨ � ε0e onK

and setting

a = max
1�k�m

4ν

λ
(k)
1 ε0

and Ψ̄ = e + W + aΨ,

we get(L + C)Ψ̄ � 0 in Ω , as in [2].
Theorem 14.1 is proved.�
Finally, we give a lower bound for the principal eigenvalue, analogous to the estimate in Lemma 4.1 in [

Proposition 14.1.Under the conditions of Theorem13.1, set

b1 = max
1�j�n

{∑
i �=j

‖cij‖L∞(Ω) + ‖c+
jj‖L∞(Ω)

}
.

Then

λ1 � 1

CABP|Ω |1/N
− b1.

Proof. Apply the ABP estimate to

(L + C − b1I)Φ1 = −(b1 + λ1)Φ1.

The following maximum principle in small domains(see [14]) is a consequence of Proposition 14.1 and
Theorem 14.1.

Corollary 14.1. Suppose(L1)–(L3)hold. For anyd > 0 there exists a positive numberδ = δ(N, c0, ν, d) such that

diamΩ < d and |Ω | < δ

imply that the operatorL + C satisfies the maximum principle inΩ .
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15. Higher order equations. Estimates for equations of polyharmonic type

The equation�nu = 0, n � 2, is very classical. It is known that solutions of this equation (called polyharm
functions) do not admit the same estimates as harmonic functions. However, there is an important sub
polyharmonic functions (the so-called completely superharmonic functions, see below) for which Harna
Liouville type results have been obtained. The possibility of extending these results to equations with rig
side and zero-order term has been an open question for a long time. Our estimates for systems permit us
affirmative answer to this question.

Our results give ABP and Harnack estimates for equations of arbitrary order in the form(−Ln − cn(x)
) · · ·(−L1 − c1(x)

)
u − c(x)u = f (x) in Ω (154)

(in contrast to the rest of the paper, in this sectionu andf denote scalar functions). It is easy to see that (154
equivalent to the system

LU + CU = �f , (155)

where

C(x) =


c1(x) 1 0 . . . 0

0 c2(x) 1 . . . 0

. . . . . . . . .
. . . . . .

0 0 0 . . . 1
c(x) 0 0 . . . cn(x)

 , U =


u

(−L1 − c1)u
...

(
∏n−1

i=1 (−Li − ci))u


and �f = (0, . . . ,0, f )T. Note that the matrixC is fully coupled whenc �≡ 0 and is in triangular form whenc ≡ 0.

The simplest and most studied example for (154) is the biharmonic equation

−�(�u) + c(x)u = f (x) in Ω, (156)

which corresponds to the system{
�u + v = 0,

�v + c(x)u = f (x).
(157)

We have the following Harnack estimate for Eq. (154). We give separately the Harnack estimate
polyharmonic equation with a right-hand side.

Theorem 15.1.Letf ∈ LN(Ω).
(a)Suppose thatu ∈ C2n−2(Ω) satisfies the equation

(−�)nu = f (158)

in the viscosity sense inΩ and

(−�)ku � 0 (159)

in a ball B3R ⊂ Ω , for k = 0, . . . , n − 1.
Then

sup
BR

u � C
(
inf
BR

u + R‖f ‖LN (B3R)

)
, (160)

whereC = C(n,N,R).
(b) Let c ∈ L∞ andci ∈ L∞(Ω), i = 1, . . . , n, be functions such that

c �≡ 0, 0 � c � ν, max ‖ck‖L∞(Ω) � ν.

1�k�n
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Letu ∈ C2n−2(Ω) be a non-negative viscosity solution of

(−Ln − cn) · · · (−L1 − c1)u − cu = f in Ω (161)

such that

(−Lk − ck) · · · (−L1 − c1)u � 0

for all k = 1, . . . , n − 1.
Then

sup
BR

{
u ∨ max

1�k�n−1

(
k∏

i=1

(−Li − ci)

)
u

}
� C

(
inf
BR

{
u ∧ min

1�k�n−1

(
k∏

i=1

(−Li − ci)

)
u

}
+ R‖f ‖LN(B3R)

)
.

Functions which satisfy condition (159) are called completely superharmonic (of ordern − 1). It is easy to see
that this hypothesis cannot be omitted in Theorem 15.1 (take for exampleu = |x|2 in the unit ball; then the wea
Harnack inequality fails, since�2u = 0, u � 0, u(0) = 0, butu �≡ 0).

The particular role of completely superharmonic functions was already noticed by M. Nicolesco in his class
book [36, pp. 16–25]. He proved that the coefficients in the Almansi expansion of a polyharmonic function
satisfies this property are of constant sign, as well as a Harnack convergence type theorem for such f
Harnack type results for positive solutions of�nu = 0 were obtained by many authors, mostly by study
spherical means ofu (see, for instance, [18,20]). An interesting Liouville type result for completely superharm
functions was proved by [37]; other theorems of Liouville type can be found in [19]. The inequality (160) forf ≡ 0
andn = 2 appears for example in [39] (we could not find a reference forn > 2). All these results rely heavily on th
polyharmonicity of the function and could not be extended to equations with a non-trivial right-hand side. Qu
little is known about the equation(−�)nu − c(x)u = 0 either (see also Theorem 15.2).

Recently, using Green functions, Grunau and Sweers (see [23, Theorem 5.1]) obtained maximum principle type
results for classical solutions of (154), in the case when the domain is a ball and all derivatives ofu of order smaller
thann vanish on∂Ω . In [24] they used this result to obtain a local maximum principle for equations of orden,
provided the lower order coefficients are sufficiently small.

Theorem 13.1 permits us to define a “principal eigenvalue” and a “principal eigenfunction” for the operat
(−�)n − c(x), c � 0, under Dirichlet boundary conditions for the lower order Laplacians. The positivity of thi
eigenvalue is a necessary and sufficient condition for the operator to satisfy the maximum principle. N
the existence of a first eigenvalue for the other classical polyharmonic boundary value problem (Lau
problem) – in which the boundary conditions require thatDku = 0 on ∂Ω for k = 0, . . . , n − 1 – is well-
known.

Theorem 15.2.

(a) Let c ∈ L∞(Ω), 0 � c � ν. There exists a real numberλ1 = λ
(c)
1 and a functionφ1 = φ

(c)
1 in W

2n,q
loc (Ω) ∩

C2n−2(Ω), ∀q < ∞, such that

(−� − λ1)
nφ1 − cφ1 = 0 in Ω, (162)

φ1 > 0, (−� − λ1)
kφ1 > 0 in Ω, (163)

φ1 = 0, (−� − λ1)
kφ1 = 0 on∂Ω, (164)

for k = 1, . . . , n−1. There are no eigenvalues(with the Dirichlet condition(164))smaller thanλ1 and(λ1, φ1)

is the unique couple(up to a normalization ofφ1), which satisfies(162), (163)and(164).
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(b) λ
(c)
1 > 0 is a necessary and sufficient condition for the operator(−�)n − c to satisfy the maximum principle

in the following sense{
(−�)nu − cu � 0 in Ω,

(−�)ku � 0 on∂Ω, k = 0, . . . , n − 1,

implies(−�)ku � 0 in Ω , for k = 0, . . . , n − 1.
(c) Letφ(c)

1 be normalized so thatφ(c)
1 (x0) = 1, for somex0 ∈ Ω . Then

sup
Ω

φ
(c)
1 � C(n,N,ν,Ω).

(d) If {cj }∞j=1 is a sequence such thatcj � 0, {cj } is bounded inL∞(Ω) and {cj } tends to zero a.e. inΩ , then

λ
(cj )

1 tends to the principal eigenvalue of the Laplacian inΩ and

φ
(cj )

1 → φ1(�),(−� − λ
(cj )

1

)k
φ

(cj )

1 → 0, k = 1, . . . , n − 1,

weakly inW
2,q

loc (Ω) and strongly inC(Ω) (the functionsφ
(cj )

1 are assumed to be normalized as in(c)).

Proof. In view of Theorem 13.1 and the representation (155), only part (d) needs a proof. Suppose for sim
n = 2 (the casen > 2 is very much the same).

Setλj = λ
(cj )

1 andφj = φ
(cj )

1 . It follows from (143) and Proposition 14.1 that the sequence{λj } is bounded.
Hence (up to a subsequence) it converges to a numberλ̄.

We have{(−� − λj
)
uj = vj ,(−� − λj
)
vj = cjuj ,

(165)

whereuj = φj andvj = (−� − λj )φj .
Applying the theorem of Krylov we already used in Section 7 (Theorem 7.1 on page 33), we obtain fr

first equation in (165)

inf
K

uj � C(N,ν,K,Ω) inf
K

vj , (166)

for any compact subsetK ⊂ Ω .
Applied to (165), our local maximum principle (Proposition 8.1) yields

sup
BR

uj ∨ vj � C
(∣∣uj
∣∣
p,2R

+ ∣∣vj
∣∣
p,2R

)
, (167)

for any p > 0, any B2R ⊂ Ω , with C = C(p,N,νR2). The weak Harnack inequality for scalar equatio
(Theorem 9.22 in [22]) applied to(−� − λj

)
uj � 0 and

(−� − λj
)
vj � 0

then gives

sup
BR

uj ∨ vj � C
(
inf
BR

uj + inf
BR

vj
)

� C inf uj = C(N,ν,Ω)

BR
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if x0 ∈ BR , where we have used (166), (167), anduj (x0) = 1. Hence, for any compact setK ⊂ Ω ,

sup
K

uj ∨ vj � C(N,ν,K,Ω).

By proceeding as in the proof of Theorem 13.1, that is, by takingK close enough toΩ and by applying the ABP
inequality inΩ \ K, we get∥∥uj ∨ vj

∥∥
L∞(Ω)

� C(N,ν,Ω).

Then elliptic theory implies

uj → u and vj → v

weakly inW
2,q
loc (Ω), ∀q < ∞, and strongly inC(Ω). By passing to the limit in (165) we obtain

(−� − λ̄)u = v in Ω,

(−� − λ̄)v = 0 in Ω,

u = v = 0 on∂Ω.

(168)

Sincev � 0, we infer from the second equation in (168) that eitherv ≡ 0 or λ̄ = λ1(�) andv = φ1(�) > 0. In the
second case we obtain a contradiction with the first equation, since{(−� − λ1(�)

)
u > 0 in Ω,

u = 0 on∂Ω

has no solution. Hence{
(−� − λ̄)u = 0 in Ω,

u = 0 on∂Ω.

Sinceu � 0 andu(x0) = 1, we getλ̄ = λ1(�) andu = φ1(�).
Theorem 15.2 is proved.�
More generally, for anyn elliptic operatorsL1, . . . ,Ln, satisfying (H1)–(H2), and anyc � 0, there exists a

couple(λ1, φ1) such that

(−Ln − λ1) · · · (−L1 − λ1)φ1 − cφ1 = 0,

with the appropriate positivity and boundary conditions.
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