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Abstract

We prove a local smoothing effect and Strichartz type estimates for the Schrédinger equation on the exterior of a non-
trapping obstacle. As a consequence we deduce global existence and uniqueness results for the Cauchy problem for nonlinear
Schrédinger equations in these particular geometries.
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Résumé
On démontre un effet de régularisation local et des inégalééyme Strichartz pour I'équatioredSchrodinger a I'extérieur
d’'un obstacle non captant. On en déduit des résultats d'existence globale et d’unicité pour I'équation de Schrédinger non
linéaire.
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1. Introduction

Let ® c R?, d > 2, be a compact smooth obstacle. Denotebyhe complementary of. In this paper we
shall suppose that the obstaéeis non-trapping which means that any light ray reflecting on the bounda#y of
according to the laws of the geometdptics leaves any compact set in firit@e. In other words any generalized
bicharacteristic in the boundary cotangent bulidiés2 (see Melrose and Sjéstrand [23,24] for a precise definition)
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leaves any compact set in finite time. Our goal here is to study the existence of global strong solutions for the
nonlinear Schrédinger equation, poseds®n

(id+Au=F@u), INRxQ (1.1)
with initial data

u(0,x) =uo(x), xe€s2, (1.2)
subject to Dirichlet boundary conditions

u(,x)=0, (,x)eRx0d82. (1.3)

The nonlinear interactiod ’is supposed to be of the forii = 0V /dz with F(0) = 0, where the “potentialV is
real valued and satisfigé(ez) = V (z) for everyz € C, 6 € R. Moreover we suppose thétis of classC? and

DV <c(@+12)* 7, k=0,123.

Some phenomena in Physics turn out to be modeled by exterior problems and moreover one may expect rich
dynamics under various boundary conditions. A first step &t threction is to establish well defined dynamics

in the natural spaces determined by tlomgervation laws associated to (1.1)ulf, ) H(}(.Q) NH%()is a

solution of (1.1) then (see Cazenave [13, Tieeo 4.1.1]) it enjoys the conservation laws

%/|u(t,x)\2dx =0 (charge conservation) (1.4a)
2

%{/|Vu(t,x)|2dx+/V(u(t,x))dx} =0 (energy conservation) (1.4b)
2 2

and therefore one can obtain via the Gagliardo—Nirembeequalities that for a large class of potenti¥ighe
quantity|u(z, -) ||H&(9) remains finite along the trajectory starting fragme H(}(.Q) N H?(£2). This fact makes the

study of (1.1) in the spacH(}(.Q) of particular interest and motivates us to QHQ(.Q) the energy space for (1.1).
It is clearly also of interest to study of (1.1) ikP(£2), the space associated to the conservation law (1.4a). The
main issue in the analysis is that the regularitiegfdfor L2 are a priori too poor to be achieved by the “classical
methods” (see, e.g., Segal [26], Lions [22]) for establigHdcal existence and uniqueness for (1.1)—(1.2)—(1.3).

The Cauchy problem associated to (1.1) with= R¢ attracted much attentioduring last 20 years (see
the books by Bourgain [3], Cazenave [13], Sulem andeBu[27] and the references therein) and the theory
of existence of finite energy (ak?) solutions to (1.1) for potential¥ of polynomial growth has been much
developed (for a discussion on this issue and open problems we refer to Bourgain [4]). Roughly speaking the
argument for establishing finite energy solutions of (1.1) consists of combifithépcal well-posedness with
conservation laws (1.4a), (1.4b) which eventually provide a control oiithaorm. The local well-posedness is
carried out by the classical Picard iteration scheme and the nonlinearity is controlled in the iteration process due
to some smoothing properties of the free evolution. In the sase R? the crucial fact on the free evolution is
the family of so called Strichartz estimates which can be deduced from an explicit formula for the free solution
and the Tomas—Stein restriction argument from harmonic analysis. Unfortunately in the case of exterior problem no
suitable explicit representation of the free evolution is available and therefore the problem of establishing Strichartz
estimates for the solution of (1.1) with = 0 meets serious difficulties. However as it was shown by our experience
with NLS on compact manifolds (see [9]) one may approach the problem of the existence of finite energy solutions
for (1.1) even with weaker linear estimates than the whole family of Strichartz inequalities. That is exactly what
we are going to do here.

In 24, local well-posedness ifif},(§2) (see the next section for definition of that space}, 1, for the initial
boundary value problem (1.1)—(1.2)—(1.3) can be obtained by “classical methods” and therefore one barely misses
the key regularity®. Nevertheless it is known that fer < 2 (see Cazenave [13, Theorem 4.5.1], Brézis and
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Gallouet [5], Vladimirov [38], Ogawa and Ozawa [25]) one can obtain the global existeriéé sélution to (1.1)

for a suitable class of potentiald. The work of M. Tsutsumi [32] shows that one could extend the result to
o € ]2, 3] if the dataug € H(}(.Q) is such that such thatug € H(}(.Q). Here we will be able to extend these
results to much more general nonlinearities. Even wheh3 we have a stronger result comparing to the above
mentioned works since we obtain that the flow map is Lipschitz continuous on boundedHé(Q)f. On the other
hand the considerations in [5,38,25,32] are valid on any dof?awith smooth boundary without any geometric
assumption.

The main difficulty in higher dimensions is that one needs to “gain at le&stl&rivative” with respect to the
classical well-posedness results. We will be able to do this as fara%f—z which does not cover all possible
nonlinearities ford ! theory in the cas& = R?. Recall that (see, e.g., Kato [18]) wheh= R the critical order
of the nonlinearity for the well-posedness in the energy sgédurns out to bex = ﬁ. It seems however
that here we obtain the first global existence and uniqueness results in dimehsid@for (1.1)—(1.2)—(1.3) with
large initial data. It should be mentioned that “small dathnhiques” can be applied to 3—(1.2)—(1.3) under some
geometric assumptions (which imply our non-trapping assumptios) (see Y. Tsutsumi [34], M. Tsutsumi [33]).
That approach yields the global existence of small amplitude solutions to (1.1)—(1.2)—(1.3) in any dimension for
nonlinearities of sufficiently high order (and initial data sufficiently smooth).

We now state our result concerning finite energy solutions.

Theorem 1. Suppose that < -25, V(z) > —C(1+ [z)#, B < 2+ § and that® is non-trapping. Then

(1) For any ug € Hol(Q) the initial boundary value problenil.1)-(1.2)—-(1.3)has a unique global solution
u € C(R; H}(£2)) satisfying the conservation laws.4a), (1.4b)

(2) If d =2,3,4, for anyT > 0 the flow mapig — u is Lipschitz continuous from any bounded seHéf(Q) to
C(-T,T]; Hy(£2)).

(3) Whend = 3 anda = 2 statement$1) and (2) hold provided||uo||H&(m be sufficiently small.

Our proof of Theorem 1 strongly relies on a local smoothing effect for the free evolutiair &xp), where
Ap is the Laplace operator acting dif(£2), with domainD = H?($2) N H}(£2). This phenomenon has been
first observed in the case & in the works of Constantin and Saut [14], Sj6lin [28] and Vega [37]. It was later
generalized by many authors to different perturbations of the flat Laplacian (see Ben Artzi and Klainerman [1],
Constantin and Saut [15], Doi [17] .. .). Itis important to realize that the local smoothing can be redboedds
on the cut-off resolvent of the corresponding stationaryrajoe. Since such resolvent estimates are fortunately
available for the exterior problem of non-trapping obstacle we will be able in Section 2 below to derive a local
smoothing estimate for exfgAp) and hence to extend the above mentioned results to the case of boundary
value problems, a fact which seems to be of independent interest. Following a strategy suggested by Staffilani
and Tataru [30], we shall also be able to prove that awaw fitee obstacle the free evolution enjoys the Strichartz
estimates exactly as for the flat space. Once we havénbar estimates we performetusual Picard iteration
to get H! well-posedness for the nonlinear problem. Let us mention that the assumfition: —C (1 + |z|)?
in Theorem 1 is crucial for the global existence of solutions. For example=if2, d = 2 andV (z) = —|z|4,
regular solutions can develop singularities in finitedi(see [11], Remark 1.1). Blow up phenomena for boundary
problems with more general nonlinearities are displayed in Kavian [19] by using viriel type identities, however it
is not clear to us whether these arguments can be applied to exterior domains. Note that despite of the fact that the
functional F' is not Lipschitz continuous on bounded setsij(Q), due to the “dispersive properties” of the linear
part of the equation, the flow map turns out to have that property at leagtdat. It is an interesting problem to
check that property in dimensions higher than 4.

Our second global well-posedness result deals Witlsolutions.
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Theorem 2. Suppose tha < 2/d and that® is non-trapping. Then for anyg € L2(£2) the initial boundary
value problen{1.1)—(1.2)—(1.3has a unique global solution in the following cla¥s

olfa < 1thenX = C(R; L2(£2)).

o If « > 1 then X is any of the space€ (R; L2(£2)) N L{ (R; L4(£2)) where (p, q) satisfy% + g =4,

loc
2<p< 2.
ad—

Moreover

(1) The solutiorn: satisfies the conservation laii..4a)
(2) For any pair (p, q) satisfying2 < p < oo, £ + 4 = ¢ one has: € L (R; L9(£2)).
(3) For any T > 0 the flow mapuo — u is Lipschitz continuous from any bounded set Icf(£2) to

C(-T,T]; L3(R2)).

Remark 1.1. The result of Theorem 2 is in strong contrast with the case of a bounded open lseteed, in [12],
we proved that, if2 is a ball, there exists somg > 0 such that, for every € 10, ], the Cauchy problem for

idu+ Apu = (1+ |u|2)a/2u

is not well-posed oh?(£2) in the sense of Theorem 2.

Remark 1.2. For the sake of conciseness, we have chosen to restrict the study to the case of Dirichlet boundary con-
ditions. However, the case of Neumann conditions could be handled using the same ideas (see Remarks 2.3 and 2.9).

Remark 1.3. The structural assumptions on the nonlinear interacticsre needed to establish the global well-
posedness. If one is interested only in local in time results then we can assume only the following growth conditions,

|F(z1) — F(z2)| £ lz1 — z2l (L + |zal + Iz2l)”,

(D22F)(z1) — (D= 2F)(z2)| < |21 — 22l (1+ Jza] + lzal) ™7,

The rest of the paper is organized as follows. We complete this section by introducing some notation. In
Section 2, we first state the Sobolev embeddings we need for the sequel. Then we state some estimates for the
cut-off resolvent ofA p. Further we prove local smoothing estimates in the form needed for the proof of the crucial
nonlinear estimate. We complete Section 2 by proving Strichartz type inequalities for&yp. We distinguish
the cases when we evaluate the free wave away from the obstacle. Section 3 is devoted to the proof of Theorem 1
while Section 4 deals with the proof of Theorem 2.

Notations.For T > 0, p € [1, +o0], if X is a Banach space, we denotelbg/x the Banach space of valued
functions on[0, T'] equipped with the following norm
T

1/l x = {/

0

with the usual modification fop = +-c0. For any positived andB the notationA < B (respectivelyd > B) means
that there exists a positive constarguch thatd < ¢B (respectivelyd > ¢B).

1/p
Hf(t)Hidr}

2. Linear estimates
2.1. Functional spaces and embeddings

Let 2 c R4, d > 2, be a smooth domain. Fer=> 0, p € [1, +00], we denote by* 7 (£2) the Sobolev spaces
on £2. We write L?(£2) and H*(£2) instead of W07 (£2) and W*%?2(£2) respectively. Fos € Z, the norm in
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WP (£2) can be expressed in an explicit way while for non-integer valuesmbre care is needed and one can
define in this case the spachs: P(Q) by suitable interpolation (see [2]). BW& 1(£2), we denote the closure of
Cyo(£2)in wl4(£2). The spacéV, (.Q) is usually denoted b;ﬁo (£2). If £2 has compact boundary then we have

w(2)n HF(2) C Wo’q(.Q), q=>2. (2.1)

In order to obtain (2.1), we can use thﬁ;} (£2) can be identified with the kernel of the natural trace map from
Wwla(2) to L1(3£2) and then use that?(92) c L?(382), ¢ > 2, which follows from the compactness of the
boundary. ByA p we denote the Dirichlet Laplacian g. The domain ofA p is H (£2)N H%($2). Fors >0, we
can defing—A p 4+ 1)*/2 via the functional calculus of self-adjoint operators. We denot&Bys2) the domain of
(—Ap + 1)*/2, Itis known that (see, e.g., [31])

HL(2) = H}2) (2.2)

and we will make often use of (2.2) without explicit mention. We next deﬂlgé(.(z) (this space is often denoted
in the literature simply by? ~1(£2)) as the dual oHll)(Q). Then we defind?},(£2) for s € [—1, 0] viainterpolation
and due to Corollary 4.5.2 in [2], we have the duality betw&g($2) and H,,* (£2) for s € [0, 1]. We now state
the Sobolev embeddings that will be used in that paper.

Proposition 2.1. Let 2 ¢ R¢, d > 2 be smooth domain. Then the following continuous embeddings hold

2d
H}(2)CLP(2), 2<p< ﬁ(p<+oo ifd =2), (2.3)
1 1 =
H}(2) C LP(2), vt s €[0,1], (2.4)
HPH @) c whr(2) 1. 1_s se[0,1] (2.5)
D E) 2 p dv ) £ .
1 1 1 1
WHP(2)cL1(2), ———=-=,1<p<qg<-+o0, (2.6)
p q d
d
WSP(2)CL®(2), s>—, p=>1, (2.7)
p
+1 1 d d
”(!Z)CW“’(.Q) —+——§,p>2 s €0, 1]. (2.8)
P q

The proof of Proposition 2.1 follows from the standamb8lev embeddings and the udeegtension operators.

2.2. Resolvent estimates

Since—Ap is a positive self-adjoint operator the resolvenatA , — 1)~ 1 is analytic inC \ R*. In this section
we collect several bounds fo+-A p — A)~1 whenx approache®*. We first state the high frequencies bound.

Proposition 2.2. For everyx € Cg° (RY), d > 2, there exists a positive constafitsuch that for everyx| > 1 and
O<e <k 1lonehas
HX(_AD - * ie)z) X HLZ(.Q)—>L2(.(2) Clr™
The result of Proposition 2.2, for which the non-trapassumption plays a crucial role, is proven/fdrs> 1 in

greater generality by Lax and Phillips [21], Melrose and Sj6strand [23,24], Vainberg [35], Vasy and Zworski [36].
We also refer to [8] for a self contained proof which, joined with the results in [6], would relax the smoothness
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assumption. The boundedness of the cut-off resolvertZgs®) for finite |A| O results from Rellich uniqueness
theorem (see [21] or [7, Annexe B.1]). Proposition 2.2 can be also stated as a wdiglestimate for the operator
(—Ap — (L tie)®)~ L

Remark 2.3. Proposition 2.2 is also true for the resolvent asated to Neumann boundary conditions. The proof
in this case is the same, using propagation of singularities arguments.

Next we state the small frequencies bound.

Proposition 2.4. Assume tha® # . Then for everyy € CS"(R”’), d > 2, the cut-off resolveny (—Ap — (A £
i£)>)~1x, 1A <1,0< ¢ « 1is a bounded operator oh?(§2) with an operator norm independentofnde.

For the proof of Proposition 2.4, we refer to [7, Annexe B.2]. Remark that this latter proof breaks down if
® = ¢ since the Poincaré inequality is used to control the ldéahorm of a function by the local.?-norm of
its gradient (that is is why £ ¢ is required). Propositions 2.2, 2.4 cha used to prove the boundedness of the
cut-off resolvent between Sobolspaces as shows the next proposition.

Proposition 2.5. Assume tha® # (. Then for everyy € Cgo(Rd), d>2, x>0, everys > —1 there exists a
positive constan€ such that for every € R and0 < ¢ <« 1 one has

Ix(~ap —(n£ie)d) x|

@) @) S C- (2.9)

Remark 2.6. For Rez < 0, an integration by parts gives

C

(1+ |Rez|)1/2 (210

-1
|x(=ap -2 x| HS (2)— H () S
which, in the region-¢2 < Rez < 0, implies the same estimate as in (2.9) (one can get even better).

Proof of Proposition 2.5. Setyu = A £ i¢ and letu and f be such that
(Ap + pdu = xf. (2.11)

We multiply (2.11) byy i and after integration o, we get

—/x|w|2+u2/x|u|2—/(Vu,w)m=/x2fﬁ,

wherey; € Cg° (R?), x1 > 0, is equal to one on the supportpfand(-, -) denotes the scalar product@{. Since
xS X12 and using thatu| < [A| + 1 we obtain that for every > 0,

2 _ _
/x|w|2§(|x|+1) fxf|u|2+8/|v)<|2|vm2+(48) 1/|x1u|2+‘/x2fu

Since|Vx|? < x and by choosing small enough, we get

2
/x|w|2 S (1M + 1) a2 o ) + xS 1720
Using Propositions 2.2, 2.4, we deduce that

(2 + Dlaul 2@ S (M + 1) [xa@p + 1) 0ax N 20y S 1xf 2



N. Burg et al. / Ann. I. H. Poincaré — AN 21 (2004) 295-318 301

and therefore
2 2
Using again Propositions 2.4 and 2.2, we get

”Xu”Hll)(_Q) S ||Xf||L2(.Q)‘

This completes the proof of Proposition 2.5 fo£ 0, i.e.,

HX(_AD -G£ "8)2)71)( H L2(2)— H3(2) <C (2.12)
Dualizing (2.12), we obtain,
HX (~Ap -+ ig)z)_lx H HyY(2)—>L2(2) <C (2.13)

which yields Proposition 2.5 with= —1.
We next prove it fors = 1. Let agairu and f be such that (2.11) holds and < C8°(Rd), x1 = 0, be equal to
one on the support of . Write

”X””le)(g) ~ ”X””Hll)(g) + HAD(XM)HLZ(.Q)'
Since||xu||Hll)(m can be estimated by means of (2.12), we only need to bgang xu) || 2. Further we write
Ap(xu) = xApu+I[Ap, x1x1u
and using that the commutatiok p, x 1 is bounded fromH 3 (£2) to L?(£2), we get
H[ADa X1x1u HLZ(.Q) S ”Xl””Hll)(_Q)~
Using (2.12), we obtain
el gy ) = [xa(Ap + 12 0ax )| 2oy S 1xfll2(@)-

It remains to bound x Apull 2. SinceApu = x f — n?u, we deduce thad pu € Hp(£2). SinceA pu solves
the equation

(Ap + u?)(Apu) = Ap(xf),
a use of (2.13) yields

IxApullzzz) SIxaAp GO p-ve) S IX ks )

where we used that1Ap is bounded fromHll)(Q) to Hgl(Q). This proves the result for = 1. Since we
obtained (2.9) fos = —1 ands = 1 we can use an interpolation argument to get itsfer[—1, 1]. Applying the

operatorA p to the equation and an induction argument give the result fox @M. Finally we use interpolation
togetitforanys > 1. O

2.3. Local smoothing

Now we are going to use the resolvent bounds of the previous section to deduce several estimates for the linear
Schrédinger equation posed ghwith Dirichlet boundary conditions. Thigpcedure is known in the literature at
least for the homogeneous estimates (see, for example, [1]). The proof presented here is based on the observation
that it is sufficient to establish the non-homogeneous bound and then all other estimates follow by the so called
TT* argument together with a simple symmetry consideration. Finally the nonhomogeneous estimate is proven by
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performing Fourier transform in time and applyingposition 2.5. From now on we shall work on positive time
intervals only. Of course similar considerations apply to negative time intervals.

Proposition 2.7. Assume tha® # (. Then for evenf” > 0, for everyy € C3°(Rd), d>2

||Xu||L2 H5L2) S S Clixfllzz gy 2 (2.14)
wheres € [-1, 1] andu(r) = [, €22y f (1) dr,

IIXUIIL;%H;)H/z(Q) < Cllvoll g (2) (2.15)

wheres € [0, 1] andv(¢) = €/2pyg.

Remark 2.8. Remark that in the estimate abomgis notassumed to have compact support. Remark also that the
proof will show that the constants do not depend off, i.e., the estimates aggobal in time.

Proof of Proposition 2.7. We first prove (2.14). Extend (z, -) by zero fort ¢ [0, T]. According to the support
properties off andu their Fourier transforms (in time) are holomorphic in the don{&imz < 0} and satisfy the
equation
(—z+ Ap)i(z, ) = x f(z.).
Takingz =1 —ie, L € R, ¢ > 0, lettinge tend to zero, using Proposition 2.5 and Remark 2.6, we get
Xl L2, sy S 1S 2@y 2y, 5 € 1111

The proof of (2.14) is completed by observing that the Fourier transform of any functioririona Hilbert space
H defines an isometry oh?(R; H).
Now we turn to the proof of (2.15). We first prove it for= 0, i.e. if we denote byA the operator which to

givenug € L?(£2) associateg €'~ uq, we need to prove that is bounded fromL?($2) to L2 H 1/2(.(2) But the
continuity of A from L2(£2) to L2 1/2(52) is equivalent to the continuity of its adjoint
T

(A (1) = / e A0y f(r)dr
0

_1/2 —1/2

from L2 (£2) to L2(£2), which in turn is equivalent to the continuity ofA* from L2 (£2) to
1/2(:2) Write
T
(AA* (1) = / x€TOAy f(r)dr
0
t T
=/xé(’_’)A”xf(t)df+/xei(’_’)A“xf(r)df
0 t
and it suffices to apply (2.14) with= —3 1 (together with time inversion for the second term) in order to conclude
-1/2 1/2

thatAA* is bounded frorrL% (£2) to L2 (£2). This completes the proof of (2.15) fee= 0.
We now prove (2.15) fos = 1. Observe that the boundednessy@’~> from H}(2) to L2 3/2(.(2) is
equivalent to the continuity of—A p + 1) x €42 from H} (£2) to L2 H _1/2(.(2) Write

(=Ap + Dy €0 = x(=Ap + DE'A? — [Ap, x1€'4P.



N. Burg et al. / Ann. I. H. Poincaré — AN 21 (2004) 295-318 303

Lety € Cgo(Rd) be such thaf = 1 on the support of. Then
A N
[[AD, x1€' D”°”L§H;”Z(m < |tap, x1xe! D”°”L§H;1/2(m

5 \|)Z€”ADMOHL%HL1,/2(Q)

S ||M0||L2(_Q),
where in the last line we used that (2.15) foe 0 is already established. Therefduep, x1€2? is bounded
from L?(2) to L2 H l/2(9) and in particular fromi} (2) to L2 H l/2(52) Hence it remains to prove that the
operator
B:=x(—=Ap + 12D

—1/2 1/2

is bounded fron¥ 5 ($2) to L2 H,, ™' “(£2) or equivalently thaBB(— A p + 1)1 B* is bounded fronL.2 H;/“(£2) to
L2H 71/2(.(2) An easy computat|0n yields
T
(B(—Ap + 1B f) (1) = / X(~Ap + D0 £ (1) de
0
=(—Ap+ 1y / U DAy f(r)dr +[x, Ap] / U8y f(1) dr.
Observe that

T
(—Ap+D)x / gDy f(r)dr = (=Ap + D(AA* /) (1)
0
and therefore using (2.14) with= 3 together with a splitting of the integration @6, 7] as shown above, we
readily get that—A p + 1) AA* is bounded fromL2 H 1/2(52) toL2H _1/2(52) Next we write

[x,Apl / g8y f(r)dr =[x, Apl(AA* f)(1)

and again due to (2.14) with= 3 we obtain the boundednessigf, Ap]AA* from L2 H 1/2(.(2) toL2H 2(2).
This completes the proof of (2.15) fer= 1. We finally obtain (2.15) fos € [0, 1] via an mterpolatlon argument
which ends the proof of Proposition 2.70

Remark 2.9. If one considers the Neumann Laplaciag,, we can obtain a similar result as in Proposition 2.7,
with constants depending on the time interval. Indeed takeCg° (R) equal to 1 close to 0 and decompose

u=¥(—An)u+ 1 —-¥)(—An)u,
f=YEANF+HA-Y(AN S (2.16)
vo=Y(=Ap)vo+ (1= ¥)(—=Apn)vo.

Taking into account Remark 2.3, we can apply the strategy of the proof of Proposition @ #t&)(—Ay)u,
(1—v)(—Ap)f and(1— ¥)(—An)vo to obtain estimates similar as (2.14), (2.15) for the contributions of these
terms. To deal with the contributions of the other terms, we simply use the conservation/sf tieems and the

fact that for these parts, the? and HI’\‘, norms are equivalent (due to the spectral cut-off). This argument gives an
L™ in time estimate for these terms which can be converted (using Hélder inequality) ihfoiatime estimate.
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2.4. Strichartz type estimates

In the next proposition we show that away from the obstdbk free evolution satisfies the usual Strichartz
bounds. We will use a strategy of [30] where similar considerations are performed in the contéxtuairt range
perturbation of the free Laplacian @&f .

Proposition 2.10. For everyT > 0, for everyy € Cg° (RY), x =1 close to® there exists” > 0 such that

wheres € [0, 1], u(r) = €'2Pug and(p, q), p > 2, is any Strichartz admissible pair, i.e.
2 d d
Z42=2. (2.18)
P q 2
Proof. Setv(r) = (1 — x)€'2Pug. Thenv satisfies the equation
{ @0 +AM)v=[Ap, —x]u,
v(0) = (1 — x)uo.

Sincey =1 close to®, Eq. (2.19) can be regarded in the whole spRteHence

(2.19)

t
v(r):ei’AO(l—X)u0+/e"<’—f>A0[AD,—X]u(r)dr,
0

where Ag is the free Laplacian of? and therefore the contribution @1 — yx)uo satisfies the usual Strichartz
estimate and we have reduced the problem to the study of

t
w(r) == / DA Ap, —xu(z)dr. (2.20)
0

Using Proposition 2.7, we get
H[AD: _X]uHL%H—l/Z(Rd) S ”MO”LZ(Q)'

Let Agp(t, x) := €'20p(x). We proceed by using the smoothing effect fog. Applying inequality (1.10) in
Corollary 2 and inequality (3.4) in Propositiorfrdm [1], we have, for every cutoff functiogg in R¢,

(2= 200" *(x0A0®) | 120,71 xre) S 101l L2Ra) -
The dual inequality reads

|45 (x0L = A" W) || 2ray S 1¥ 1220, 1R -
Combining with Strichartz estimates & for Ao, this yields
[ 4045(x0L = 20) )| 1 14 ay S luoll 2 (221)

Notice that

T
Ao A(f)(1) = / &0=% £ (1) dr.
0
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However we are interested in estimating) defined by (2.20) rather than
Ao AG([AD, —x1u).
For this it suffices to use the following result due to Christ and Kiselev [16].

Theorem (M. Christ and A. Kiselev)Consider a bounded operator
T:LP(R; B1) — LY(R; Bp)

given by a locally integrable kerndd (¢, s) with values in bounded operators frof to B, whereB; and B, are
Banach spaces. Suppose that ¢. Then the operator

Ty = / K(t,5)y(s)ds
s<t
is bounded fron.?(R; B1) to LY(R; B2) and

1_,-1 _1|

IT e R By—19®R: By S (L =27 "1 N NT |l Lo R: By— 19 (R: By -

In view of (2.21), we apply Christ-Kiselev’s theorem to
K (t,5) = Ljo.11() 10, 71(5)€ "™V 200(1 — Ag)*/*
and we set) = (1 — Ag) " Y4[Ap, —x]u with xo = 1 near the support of. This yields, forp > 2,
”w”L‘T'Lq(Rd) S ”[AD, _X]MHL%H—l/Z(Rd) S ||M0||L2(_Q)~

This completes the proof for= 0.

The cases = 1 can be treated similarly simply by differentiating the first equation of (2.19), considered as
equation on the whole spa®¢. Since we established (2.17) foer= 0 ands = 1 an interpolation argument
completes the proof of Proposition 2.100

Now we state a Strichartz estimate (with loss of derivative) ot

Proposition 2.11. For everyT > 0 there exist< > 0 such that
||M||L/;WS,q(_Q) < C”“O”Hl:;l/p(g): (2.22)

wheres € [0, 1], u(t) = €'2Pug and(p, q), p > 2, satisfieg2.18)

Remark 2.12. In [9], Strichartz inequalities as (2.22) are proven for the free Schrédinger equation posed on a
compact Riemannian manifold (without boundary). Although the estimates are the same, the ideas behind are very
different. In [9], the loss of derivatives (optimal for the endpoint cases on the sphere) came from the fact that we
were able to prove the usual estimates (without loss) only for small time intervals (depending on the frequency).
Here the loss (certainly not optimal . . .) comes from the fact that close tmtivedary, we perform simply Sobolev
embeddings together with the local smoothing. The gain arising from the smoothing effect tells us that the wave
spends few time close to the obstacle.

Remark 2.13. In [29] Smith and Sogge prove that the wave equation posed on the exterior of strictly convex
obstacle satisfies the same Strichartz estimas the solution of the wave equation posed®6nlt is natural to
expect that the techniques of [29] coméd with the semi-classical apgrch of [9] can provide the full set of
Strichartz inequalities, at least locally in time, for the Schrédinger equation posed on the exterior of strictly convex
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obstacle. Such a result would extend the well-posedness theory of the flat space to the case of the exterior of a
strictly convex obstacle.

Proof of Proposition 2.11. Considery € C§° (R?) equal to 1 close t@ and decompose
u(t) = x€"2Pug+ (1 — x)€"2Pug = v(r) + w(r).

Due to Proposition 2.10, we obtain thats) satisfies the usual Strichartz estimates (without losses) and therefore
we only need to evaluatg). Using Proposition 2.7, we get

19122 gy S Nl 32 g (2.23)
Next we use an energy argument to deduce,

||U||L;°L2(_Q) S lluoll 2oy (2.24)
Interpolating between (2.23) and (2.24) with weigﬁtand 1- % respectively gives

10l 2 gy 0l -

Since 2 + 4 7 7 using Proposition 2.1 we have tthz/”(.Q) C L41(82) and the embedding is continuous,
therefore

||U||L1’Lq(g) [lzoll 1/1)(9)

which completes the proof of Proposition 2.11 whea 0.
Next we consider the case= 1. Applying an energy argument, we get

Vil oo -2y S IIMOIIHp/(p 22 (2.25)
Interpolation between (2.23) and (2.25) with weigﬁtand 1- % respectively gives
101 5210 gy S 0l g g (2.26)

Due to Proposition 2.1 the continuous embedcﬁfﬁz/”(ﬂ) c Wl4(£2) holds which together with (2.26) ends
the proof fors = 1. The case < [0, 1] can now be treated by interpolationc

Now we state the main result of this section.

Proposition 2.14. For everyT ¢ 10, 1] there exist< > 0 such that
||u||LPqu(_Q) C”“O”HD(Q)a (2.27)

wheres € [0, 1], u(r) = €'2Pug and(p, q), p > 2 satisfies

1 d d
—+-=5. (2.28)
P q 2
Moreover
||M||LPqu(_Q) C”f”Ll H} () (2.29)

wheres € [0, 1], u(t) = [y €722 f(z)dr and(p, q), p > 2 satisfieg2.28)

Proof. Let x € C3° (R9) such thaty = 1 close to®. The triangle inequality yields,

”M”LPWHI(Q) ”XM”LPWHI(_Q)+H(1 X)MHprsq(_Q)
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and hence it is sufficient to evaluaach term in the right-hand side of thleove inequality. Using Proposition 2.7,
we obtain

Next an energy argument yields,
Ixullese ms (@) < lluoll w2 (2.31)
Interpolation between (2.30) and (2.31) with weigﬁtand 1- % respectively yields,

il p s+ ) S ol -

Next using the embedding‘z)*l/p([z) c W54(£2), s € [0,1], p > 2, where the paitp, q) satisfies (2.28) (see
Proposition 2.1), we obtain,

Ixull Lo wsa () S lluollwy @)-

We next bound1 — x)u. Fix (p, ¢), p > 2 satisfying (2.28). Lep* be such thatp% + ;—1 =4.i.e, p* =2p.Using
Hoélder’s inequality in time and Proposition 2.10, we get

H(l_ X)M” L?W“vq(ﬂ) 5 Tl/(zp) ”(1_ X)u||L¥*Ws»q(Q) 5 ||u0||H;)(Q)‘

This completes the proof of (2.27). Estimate (2.29) follows from (2.27) and the Minkowski integral inequality
applied in time variable. O

The next proposition is a consequence of (2.27) and Christ—Kiselev's theorem.

Proposition 2.15. For everyT ¢ 10, 1] there exist< > 0 such that
5/2
”u”L/;WS,q(Q) < C”(l_ AD)S/ fHL’;L‘?(.Q)’ s €0, 1], (2-32)
whereu(t) = [5 €040 f(z)dr, (p,q), p > 2, satisfieg2.28)and (5, §), j € [1, 2], satisfies

1 d d
—+-=1+-, (2.33)
P q 2

i.e.(p/(p—1),q/(q — 1)) satisfieq2.28)

Remark 2.16. Notice that in estimate (2.32) the paifg, ¢) and (p, g) are not necessarily conjugate Hoélder
exponents.

Proof of Proposition 2.15. Due to Christ-Kiselev’s theorem, it is sufficient to evaluate

T
w(t) :=/ei(’_T)ADf(r)dt.
0

Using (2.27), we obtain
||w||L§WS,q(_Q) < ||F||H;)(.Q)» s [0, 1],
whereF = foT e iTAD f(1)dr. Next the dual of (2.27) gives,
2
IF ) S 1A= 20Y2f [ 21500,

where(p, ¢), p €[1, 2|, satisfies (2.33). This completes the proof of Proposition 2.15.

s €[0, 1],
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3. Proof of Theorem 1

We prove Theorem 1 for positive times. Similar arguments can be performed for negative times. The initial
boundary value problem (1.1)-(1.2)—(1.3) cannréten as an integral equation (Duhamel form),

1
u(t) = e”ADqur/e"“*f)ADF(u(r))dz, (3.1)
0

where the nonlinearity” is as described in the introduction. The assumptiong' @nd on the potentidl imply
the following pointwise estimates,

[F @] < lul(L+ [ul®), (3.2)

|VFW)| S I1Vul(14 |ul®) (3.3)
and moreover by writing

1
Fu)— F(v) = / F'(tu+ (1 —1)v)(u —v)dt
0

we obtain

|F(u) — F)| < lu— (14 [ul* + [v]%), (3.4)

IV(Fu) — F0)| S [V — )| (L4 [l + [v]%) + lu — o] (1Vue] + [Vol) (L+ Jul + o) ™0 (3.5)

We note that assumptions (3.2)—(3.5) on the nonlinear interaction would be sufficient for the local well-posedness
analysis.

3.1. Unigueness

As a first consequence of our linear estimates, we prove the uniqueness.vLefith 1(0) = v(0) be two
solutions both inC ([0, T1; Hy(52)). By the Sobolev embedding v € L$°L?/(@=2(2) henceF (u), F (v) are in
the sum ofL$° L24/(@=2@+D)(2) and L3 L?(£2). The conditionw < 525 implies that 2/((d — 2)(1+ @) is
bigger than 2/(d + 1) which is the end point value f@grin (2.32). As a consequengeandv are both inL’;L‘i(.Q)
for any pair(p, ¢), p > 2, satisfying (2.28). Therefore the uniqueselaim of Theorem 1 will be a consequence
of the next proposition.

Proposition 3.1. Let u and v be two solutions of1.1)—(1.2)—(1.3)ying in C([0, T']; H(}(Q)). Then there exist
B € la, 751, p > 2, andé > 0 such that forT € 0, 1,

0 B B
e = vllyr S [0 = 0O o + T (14 Ml ) + 101 oy ) e =l

whereYr = L¥L2(2) N LY L9(£2), % + g = 4, is equipped with the natural norm.

Proof. Lety € C3°(R) be such that/(x) =0 for |x| < 1 andy(x) = 1 for |x| > 2. By the splitting
Fu) = F) =y (Ju®+ [v]?) (F @) — F©)) + (1= ¥ (lul*+ [v|?)) (F () = F(v))
and Propositions 2.14 and 2.15, we infer the bound

lu = vllyy < [w® = O o+ Tl = vl ez + | (L= v (Il + [012)) (F @) = F@) [ 2,5
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where(p, ¢), p € [1, 2[, satisfies (2.33). We choogesuch that% = % + 8, wheres > 0 is small enough to be
chosen later. We further take the parameteinvolved in the statement a% =1 _ 5. Next, using the Holder

inequality and the Sobolev embedding, we get

1@ = (i + 1B (F@ = FO) | g0 S W=l o (g, + 10001 ,)

1/2=-1/py,, _ B B
ST — vl (Bl 1007 )

where 8 € [«, d—fz[ is to be chosen later and the parametets g1 satisfy the Holder inequality conditions

1_1.,1 11,1 ; _ -1 1_1-2% ; ; - 2d
=3t andg =t e.pi= 8 anda = = . Finally the Sobolev inequality condition2 8q1 < ;5
can be written as

2 4 2 )

i 4 Paiz iz

We can ensure (3.6) by choosiidgsmall enough ang close enough todf—z. This completes the proof of
Proposition 3.1. O

(3.6)

3.2. Proof of Theorem 1 id

(See also [9, Proposition 3.1].) In this subts@e we perform the proof of Theorem 1 far= 2. We shall only
make use of Proposition 2.11. Consider a plane dorfzahich is the complementary of a compact smooth non-
trapping obstacle. Fix a pair(p, ¢) € R? such thap > « and% +1 =1 Theaimis to show that for sufficiently
smallT > 0 we can solve (3.1) by a Picard iteration scheme in t[ﬁe space

X7 = LPHJQ2)NLEwiYra(),
equipped with the natural norm
lullx; := ”u”L%OH&(_Q) + ”M”Liwl—l/pvq(gy

Proposition 2.11 gives #i the free evolution’€*? is bounded fronH(}(.Q) to Xr. Next we define a map as
follows

t
(Af)(1) := / gU=DAD f(7) dr.
0

We claim that the magpt is bounded fronL7. Hy(£2) to X7, i.e., the following estimate holds,
”Af”XT 5 ”f”[‘%[-[&(g)' (37)

Indeed, the boundedness df from L1 H3(£2) to L¥H(s2) follows from an energy argument while the
boundedness froni} H}(2) to Ly Wi-1/r-4(2) results from Proposition 2.11nd the Minkowski integral
inequality. This proves (3.7).

Next we bound the nonlinear termfi(«) in the spaceL%H(}(.Q). Using (3.2), (3.3) and the embedding
H}(22) C L2tV (£2) (see Proposition 2.1), we obtain

1
HF(M)HL%Hol(.Q) S ”u”L%CHé-(_Q)(T + ”u”(zl%LOO(Q)) + T”M”lz—o:oH&(Q)' (3.8)

Due to the assumptiop > «, a use of Hélder inequality in time yields,

a < 70 o4
”M”L%LOC(Q)NT ”u”LgLoo(.Q)’
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where =1 — %. Next sinceq > 2 we have that - % > 5 and therefore due to the continuous embedding
wi-Yr.a(2) c L°°(2) (see Proposition 2.1), we get

6 6
el oy S TSy sy S T M0l

Plugging the last estimate into (3.8) we deduce that for ewahere exist$1 > 0 such thatfor X 7' < 1,

”F(M)HL%;HO]-(_Q) ST ullx, (1+ IIMII‘S‘(T). (3.9)
Similarly to the proof of (3.9), we can show that for everyhere exist®, > 0 such that for 6 7 < 1,
| F(u) — F(v) HL%H&(.Q) ST2||u - vllx, (1+ llull, + IIUII?gT). (3.10)

It is now a standard issue to see that (3.9), (3.10) together with (3.7) allow us to solve (3.1) via Picard iteration
scheme inXy providedT be sufficiently small. This yields the local well-posedness and the Lipschitz property
of the flow map. For the global well-posedness we first observe that the smallness assumgtiontbe local
well-posedness depends only on the sizHét.Q) norm ofug and not on its profile. The rigorous derivation of the
conservation laws (1.4a), (1.4b) can be done by a staraggndximation argument (see [13], Section 4). Next due

to (1.4a), (1.4b), the assumption dhand Gagliardo—Nirenberg ineditg we obtain the control on thélol(.(z)

norm of the local solutions solution (see [13], Section 6). Therefore we can reiterate the local well-posedness
argument and extend the local solution to an arbitrary time interval.

3.3. Proof of Theorem 1 in three space dimensions

ForT > 0, we define a Banach space
X7 :=LPH}2)N LW (),
equipped with the norm
lullx, := ”u”L%OH&(_Q) + ”M”L?%Wl»lgﬁ(g)'

The next proposition is a direct consequence of Proposition 2.14.

Proposition 3.2. Define a nonlinear mag as follows,
t
(W) (1) := / UDAP F(u(1)) dr. (3.11)
0

Then
qu(“)”xr N ”F(M)HL%H&(Q)’
|o@ - @) HXT S|F@) — F) ”L%H&(Q)'
The next proposition contains the nonlinear estieninvolved in the proof of Theorem 1 i/ 3

Proposition 3.3. For everya € 10, 2] there exist®; («) > 0 andf2(«) > 0 such that forT € 10, 1],
| F@ 11 yay S Tl + T2 ull%, (3.12)
[ F) = FO) 1130y < e = vl (T + T2 (14 )%, +1101%,)). (3.13)

wherebz(a) = 0 only fora = 2.
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Proof. Using the embeddingl}(2) ¢ L2*t1(£2), a €10, 2] (see Proposition 2.1), we obtain

HF(”)HLlLZ(.Q) ”””L1 Hl(ﬂ)(1+ ”””LlH (g))
STlullx, (1+ IIMIIXT). (3.14)
Using (3.3) we obtain that
[VE@)| S Vul (14 [ul?),
wherea < 8 < 2. Since
IVull 1202 S Tlullx, (3.15)

we need to boundk |V in L%LZ(Q) for a suitables (the auxiliary parametes will be chosen close enough
to 2). We now claim that
1 1 1
||M||LPW1¢1(_Q) lluell x7, 5"‘5:5’ p=3 (3.16)

Estimate (3.16) follows clearly from the definition &f-. Next using Holder inequality we get fgr> 1,
-1 -1
H'“'ﬁ uvVu HL;LZ(_Q) < ” Jul? ” L%Lw(g)”“”L?T’ng(g)||V”||L§L18/7(9) (3.17)

and moreover using (3.16) and the Sobolev embed#ind®’($2) c L18(£2) (see Proposition 2.1), we deduce
that

1lP=2u V]| 100 S el

TLZ(_Q) 3(ﬁ 1)L18(ﬁ 1)(9)” ”XT

Choosey such that ﬁl =3

using Proposition 2 1, we obtain

It is always possible to havwg > 2 by choosings close enough to 2. Next

leell p368-2 rap-1 () S S llull, WD yyig (o)

Chose nowp such that3— + 2= z Sincep < 2, we have thay < 17 nd thereforq; 3. Moreover sincgs <
1_
p

we have thatll; and an easy computation ylelggﬁ— Hence we obtain that for& g < 2,

3(,9 1) P Z(ﬁ l)

il 36 14 ) S TE P EED )
and therefore (see (3.17)),

HIuI’SWIILl 1o S < 7@-P/@B-1), ||ﬂ+l
which in turn together with (3.14) and (3.15) gives

[P 12 i3y S Tl (L e, ) + 7@ 2/ CE D37
ST g, + T2 u3, .

whereds(a) = min{1, »22_} and

2(8-1)
1, if a =2,
Or(e) = {9 (), fa<2

This ends the proof of (3.12). The proof of (3.13) is similar by invoking (3.4), (3.5). The only new feature in the
analysis is the estimate of the quadratic expresBion v|(|Vu| + |Vv|). Thus we need to bound s&y — v)Vu
in L%LZ(Q). This can be done by using Holder inequality, Proposition 2.1 and (3.16) as follows,
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— < — < —
H (M U)Vu HL%—LZ(.Q) ~ ”u U”L:’;/ZLg(_Q)”VM”L%L]-S/7(Q) ~ ”M U||L?_/2wl,9/4(g)”u”XT
1/2 1/2
STV = vll o yrojag lullxy S T2l = vl lullx,

This completes the proof of Proposition 3.32

Using Propositions 3.2 and 3.3, we obtain thatdar ]0, 2[ there exist® («) > 0 such that fofl" € ]0, 1],
| @@y, ST lulx, (1+ 11, (3.18)
and
|ew) -2y, ST lu—vix, 1+ lulk, + IvI%,)- (3.19)
Since &2 is an isometry orf}(£2) we deduce that fox € ]0, 2[ the map

(Kuo () (1) := €"22ug + (& () (1) (3.20)

is a contraction in a suitable ball &f7, providedT be sufficiently small. Therefore if we consider the sequence
{vn}o2 g vn € X7 such thatp = 0, v, 41 = Kyy(v,) thenv, converges inXr to the unique solution iX7 of the
integral equation

t
u(t) = e"’ADuo+/e"(’—”ADF(u(r))dr
0

which implies the local well-posedness for< 2. If @ = 2, again using Propositions2Z3and 3.3, we obtain that
K., is a contraction on a suitable ball & only if in addition we impose a smallness assumption|m@1|H&(9).

The global well-posedness can be obtained as explaindwiprevious section. The Lipschitz continuity of the
flow map on bounded sets ﬁtol(Q) for small time intervals is a consequence of (3.19) while for an arbitrary time
the argument should be iterated using the controHél(IQ) norm provided by the energy conservationm

3.4. Higher dimensions

In dimensiond > 4, we deal with the space

1,.d_d

p g 2

equipped with the natural norm. The parameger 2 will be chosen close enough to 2. Unfortunately in

dimensionsd > 5 it is not evident that the transformatidq,, defined by (3.20) contracts suitable balls)df.
However now we will show thak,, maps a suitable ball oﬁfi (of radiu5c||u0||H&(9)) into itself, for somep > 2,

XP = LPHJ(2) N LEw(92),

providedT be small enough as far as< %5.

Proposition 3.4. For everya € |0, 72,[ there exisi8 > «, 6 > 0, p > 2 such that forT € 10, 1],

[ Ko@)l p S 0l g3y + 77l g (14l )- (3.21)

Proof. Let ¢ € C5°(R) be such that/(x) =0 for [x| < 1 andy(x) = 1 for |x| > 2. Split the map® defined
by (3.11) asP (u) = @1(u) + d2(u), where

1
(@1(w)) (1) :=/e?(’—”AD(w(\u(r)|2)F(u(r)))dr.
0
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Using Proposition 2.14, we deduce that for every 0, everyp > 2, we have

[ ®20) | o Sl 3 ey S Tllullxp-
Hence the issue is to evaluabg () in Xf for somep > 2 andT < 10, 1]. We first prove that with a proper choice
of B>w,0>0,p>2,(p,q), p €1, 2[ satisfying (2.33), one has the bound

2 0 B

[ () @ 7 yaaig) S T ullxp (L+ lullyp)- (3.22)
Sinceg < 2, we use the pointwise bound

¥ (Jul?) F )] < ul 242,
Therefore due to Proposition 2.1,

2 } 1/p d/(d-2) 1/py,,4/(d=2)
[V () F@ 13y ST Ml i) S TP lullyy™

Next we observe that
V(¥ (lul®)Fw)| < [ulP|Vul, B>a,

and we deduce that the main pointin the proof of (3.22) is to bowlfd7u in L’;LEI(Q) forsomes € [a, d—fz[ and
a suitable choice ofp, ¢) satisfying (2.33). Let us first perform the chain of inequalities, involved in the estimate
for |u|BVu,

NPVl 17 sy S NP 22 ) 1V EI 22 a2 )

< ful? u
S ||L;;p1Lﬁql(_Q)|| ||x§

< ful? u
S ||L[;-plwlyq*(9)” ||x§

6 +1
STl
T

whered = p—ll — % and the following conditions are imposed on the parameters appearing in the above computation,

1 d d " "
—+=-=1+ > pe[l,2[ (Proposition2.15 condition)
P q
1 1 1 1 1 1 : . "
—+—=—-, — 4+ — == (Hotlder inequality condition)
pr p2 p q1 42 ¢
1 d 1 d d o "
—+—=—+—=-, p2>2 p*>2 (Proposition 2.14 condition)
p2 q2 p* g 2
1 1 1 . .
———=—, q*<d (Sobolevembeddg condition)
q* PBg1 d

Bp1 < p* (small factor condition)

Let us now show that it is indeed possible to make a proper choice of the parameters involved in the above
computation. We start by fixingp, p*) as follows,

1 1 1 1

—=Z-5 = —:=Z-3

p2 2 p* 2
wheres$ > 0 is a sufficiently small parameter to be fixed lafine other parameters will be chosen following the
scheme,

(p2. p") — (q2,94") > q1— G — p — p1.
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In order to keep the parameters in the permitted regions, in the first step we should vergfy thds in the third
one thatz € [3, %71 and in the final step we should verify what is the restriction imposed by the small factor
assumptiorBpy < p*.

Taking into account Proposition 2.14 condition, we define,
1._d—1+8 1._d—1+5
g2 2d d’ g 24  d
Note thatg* € ]2, d[ and taking into account Sobolev embedding restriction, we set,
1 d—3) ¢
1 _pd-3) o

qa 2d d’

Next taking into account Holder inequality condition, we define
1 ,3(d—3)+d—1+5(ﬁ+1)
g 2d d

; -~ 2
An easy computation shows that by choosingmall enough ang sufficiently close to;=;, we can have

1 [1d+1
2 . 2
qe[z’ 2d [ (3.23)

Next Proposition 2.15 conditiopermits us to defing and due to (3.23) we havg € [1, 2[. Finally taking into
account the first Holder inequality condition, we set
1 d—3
_1_BUd=3

— 8.
p1 2 b

It is now easy to verify that the small factor conditiBp, < p* is equivalent to < d—fz which ends the proof
of (3.22). Using Poposition 215, forp > 2, p < p*,

[ 2160y S 1@ = A2 (luP) F@) 713

where (p, ), p € [1, 2|, satisfies (2.33). Using (3.22) together with (2.1) and an approximation argument, we
obtain that there exist§ > 0 such that for every e X7,

1/2 2 0 B
@ —Ap)Y2(w(Jul )F(u))HLp;Lé(Q) <CT ||u||X¥(1+ ||u||x¥), (3.24)
where(p, 4, p, B, 0) are the same as in (3.22). This completes the proof of Proposition 814.

Due to Propositions 2.15 and 3.4, we deduce that<'tfd—f2 andug € H(}(.Q) then the maX,,, sends a suitable
ball in X’T7 into itself, providedl" <« 1 andp close enough to 2. Finally, using Proposition 3.1 we obtain &gt

is a contraction on this ball in the weaker topoldgy L2(£2) N L?Lq'(.Q), wherep* is the exponenp involved
in Proposition 3.1 andp*, ¢*) satisfies (2.28). This completes the proof of the existence claim of Theorem 1.

Remark 3.5. Various continuous dependence with respect to tiiteal data results can be obtained by using the
bounds on| K, || x, . Unfortunately these considerations do not give Lipschitz bounﬂﬁ}i(rn) for the flow map.

3.5. Lipschitz bound in four space dimensions

In this sectiond = 4. The argument, we present is inspired by the work of Keraani (see [20]) and is very
similar to the consideration in [10, Appendix 1]. In order to carry out this argument one essentially needs to control
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quadratic nonlinearities in the analysis performed in the previous sectioB. het bounded convex setHbl(Q).
Fix T > 0. In the previous section, we established the existence of a well-defined flow map

®:uge B> ueC(-T,T1, H3(2)).

Our aim is to show that the differential @b is bounded in the natural functional framework, a fact which
clearly implies the Lipschitz property. Fixp € B and let® (ug) = u. Then for everywg € H&(.Q), we have that
@;O(vo) := v satisfies the equation

. oF IF _
(i +ANv=—v+ —v
ou ou
with v|;—0 = vo. For 0< § « 1, we define the space
Y% = L%/(1—25)W1,8/(3+25)(Q) n LeT,Wl,lz/s(Q)

equipped with the natural norm.ifC R is an interval, we can define the spart;sein a natural manner. Similarly to
the previous section, we introduce the spm:}’eand moreover by taking close enough to 2 antismall enough,
one gets the bound

lvllg, < lvol gy + (Tat g ) vl
where Ty € [0, T]. As a consequence there exists a positive constastich that if 7y + ||u||y;§ < A, then
. . 1
||v||x¥l < C||vo||H&(9) for someC > 0 and in particular
”U”L%?LHol(Q) < C||U0||H01(Q)~ (3.25)
Next we split{—7, T] into N intervalsiy, ..., Iy such that
[ 1| + ||u||y;sk <A.
A simple geometric observation shows that we can always realize the above slicing ®éttisfying
N<T+ ||u||Y;.
Note that the above bound fof depends only off andu but not onvg. Iterating estimate (3.25), we finally infer
0l oo 3y < €V lvoll ya ey
which completes the proof of the Lipschitz bound fioe 4.

4. Proof of Theorem 2

The proof of Theorem 2 has the flavor of the considerations of the previous section. We first prove that for
uo € L?(£2), the mapk,,, defined by (3.20) is a contraction in a suitable set of the space

1 d d
XP = LRLA)NLLLI(R), =+ —-=—,
T 7 L°(82) rL1(82) p+q >

providedT « 1 and a suitable choice ¢f > 2. Indeed that follows from the next statement.
Proposition 4.1. For everya € |0, 2] there exists € [«, 2[ and p > 2 such that for € 10, 1],
| Kuo @)l g < Mol 2y + T4l p (L+ Nl ). (4.1)

1-Bd/2 B B
[ Kuo@) = Ko@) [ yp S T2l = wll g (14 llullyp + 101l )- (4.2)
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Proof. We shall only prove (4.2) since (4.1) follows from (4.2) with= 0 combined with Proposition 2.14 with
s = 0. Lety be the cut-off function used in the proof of Proposition 3.4. We write

Fu) — F) =y (ul?+ [v1?)(Fu) — F()) + (1= ¥ (lul? + [v|?)) (F ) — F(v)),
and we use Proposition 2.14 with= 0 and (3.4). We obtain
[2@) = 2@y S Tliu = vl 2y + [ @ =0 (1l + 2F)] 2400

where the transformatiod is defined in Proposition 3.3, € [«, %[ and the pai(p, ¢), p € [1, 2[, satisfies (2.33).
Next, using Holder inequality, we obtain

[ =000l 101 g 13y 1= 00 om0 2y g+ 0002y )
where
1 1 1 1 1 1 1 d d
—+—==, —+—==, — 4+ —=z. (4.3)
pr p2 p 91 92 q P o 2
Let p* be such that
1 d d
——=_. 4.4
Bqz 2 44
Let us choose the parametérs, p2, q1, g2, p, 4, p*) satisfying (2.33), (4.3), (4.4) as follows,
1_1_1 1 d-1 3 1_,3(d—1)+/38
1 p* 2 g1 2 d’ g2 2d d’
1 B+DHd-1)  (B+1)é 1 3 B@d-Y
- = ; — =5 —F%5— — 1s,
7 20 T 4 ;=2 2 ¥+
1 d—1
L PE=D_ B8.
p2 2

We choose the free parametérand g as follows. Sincel > 2 we takes positive but small enough angl close
to 2/d in order to ensure thai € [1, 2[. Thus, we finally get

flu — U”L¥1qu(9) Sllu—vllx,

and

+ o) ST P2 (Jlu)? +vl?

1’ Lﬂqz(g) Ll’ Lﬂqz(g)

)

Jlull?
L2 b2 (@) L2 1pa2(2) ™~

S Tl‘ﬁ"/z(nunxT +vllk,)-

This completes the proof of Proposition 4.10

We now turn to the uniqueness issue. Let first - 1 . Assume that andv are two solutions both iﬂ%LZ(Q).
ThenF(u) and F (v) are in the sum oL°°L2/(1+°‘)(.Q) andL*L2(£2). Sincea < 3 |mpl|es = > dzfl, we can
apply Propositions 2.14 @n2. 15 to deduce that,v € X”, p > 2. The umqueness in the considered case now
follows from (4.2). Let nowx > . Assume thai: andv are two solutions both ||1L°°L2(S2) N L” L‘i(.(z) with
2<p <22t ThenF(u) andF(v) belong to the sum ol”/(1+°‘)L‘1/(l+°‘)(Q) andL°°L2(.Q) Letg := L. It
follows from the condition orp thatg > d+1 Moreover if p is such thal‘—L + 4 = 2 + 1 thenp < 1” since

lto dd+o) (A+od d . 1 d
p q 2 2 P 4
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Therefore by Propositions 2.14 and 2.15, we obtaindhatdv are both inX”, p > 2, and the uniqueness in the
considered case follows as above from (4.2). This completes the proof of Theorem 2.
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