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Abstract

This paper studies the approximation of the Boltzmann equation by the Landau equation in a regime when grazing collisions
prevail. While all previous results in the subject were limited to the spatially homogeneous case, here we manage to cover
the general, space-dependent situation, assuming only basic physical estimates of finite mass, energy, entropy and entropy
production. The proofs are based on the recent results and methods introduced previously in [R. Alexandre, C. Villani,
Comm. Pure Appl. Math. 55 (1) (2002) 30-70] by both authors, and the entropy production smoothing effects established
in [R. Alexandre et al., Arch. Rational Mech. Anal. 152 (4) (2000) 327—-355]. We are able to treat realistic singularities of
Coulomb type, and approximations of the Debye cut. However, our method only works for finite-time intervals, while the
Landau equation is supposed to describe long-time corrections to the Vlasov—Poisson equation. If the mean-field interaction is
neglected, then our results apply to physically relevant situations after a time rescaling.
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Résumé

Nous étudions I'approximation de I'équation de Boltzmann par I'équation de Landau quand les collisions rasantes sont
dominantes. Alors que tous les résultats connus auparavant en la matiére concernaient le cas spatialement homogeéne, ici nous
parvenons a couvrir le cas général, spatialement inhomogéne, supposant seulement des estimations a priori physiquement
réalistes portant sur la masse, I'énergie, I'entropie et la production d’entropie. Les preuves reposent sur les résultats et méthodes
mis au point récemment par les auteurs dans [R. Alexandre, C. Villani, Comm. Pure Appl. Math. 55 (1) (2002) 30-70], et sur les
effets de régularisation par production d’entropie établis dans [R. Alexandre et al., Arch. Rational Mech. Anal. 152 (4) (2000)
327-355]. Nos résultats couvrent certaines singularités physiquement réalistes de type coulombien, et des approximations de
la coupure de Debye. Cependant, nos résultats s’appliquent sur un intervalle de temps fini, alors que I'équation de Landau est
censée décrire les corrections en temps grand de I'équation de Vlasov—Poisson. Si le terme d'interaction de champ moyen est
négligé, nos résultats s’appliquent a des situations physiquement réalistes aprés un changement d’échelle de temps.
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1. Introduction: binary collisions in plasmas

In 1936, Landau, as part of his important works in plasma physics, established the kinetic equation which is
now called after him, modelling the behavior of a dilute plasma interacting through binary collisions. Since then,
this equation has been widely in use in plasma physics, see for instance [5,8,10,20,27] and references therein. In
this paper we shall present what we believe to be an important advance in the problem of rigorously justifying
Landau’s approximation. Before we describe the results, let us explain their physical context and motivation.

The unknown in Landau’s equation is the time-dependent distribution fun¢tian, v) of the plasma in the
phase space (time positionx € R, velocity v € R3), and the Landau equation reads

af

E+U-fo+F(x)-va=QL(f, . 1)
Here F(x) is the self-consistent force created by the plasma,
K
ZFZ—VV*,O, V(x):—s p(tsx):/f(tvxvv)dvv (2)
477 | x|
R3

where K is a physical constant. Moreovef; is the Landau collision operator, acting only on the velocity
dependence of,

oL(f, f):Vv‘</dv*a(v_U*)[f*vvf_f(vvf)*]): 3)
R3

o= Ll _EY

@ = |z|[8"’ |z|2] @

Here the notatiorv- stands for the divergence operator. In the expression of the collision operator we have used
the shorthandf, = f(v«) and we have omitted the dependencefobn ¢ andx, since these variables are only
parameters in (3). This fact reflects the physical assumption that collisiotscatized particles which are not
located at the same (mesoscopic) position interact only via the mean-fieldffoFgrally, for simplicity we have
written the equation for a single species of particles, say electrons, while plasma phenomena usually involve at
least two species (typically, ions and electrons). The values of the physical corf§tantsL in (2) and (4) will
be discussed later on.

The novelty of Landau’s equation resided in the collision operé@p¢f, f), which had been obtained as an
approximation of the well-known Boltzmann collision operator,

05(f, f) = / dv, / do B — v, ) f £/ = f12). (5)
R3 §2

Here f' = f(v') and so on (again,andx are only parameters in (5)), and the formulae

z*; '”‘2“*' (o € 5?),

_ (6)
U,_v—i—v* v — vy
= 2 2

parameterize the set of all solutions to the laws of elastic collision, namelyv, = v + vy, |[v/|? + [v,|? =
[v]2 + |v.|2. We shall think of(v, v,) as the velocities of two typical particles before collision, &nd v}) as their
velocities after collision (actually we should do the reverse, but this has no importance).
The collision kernelB(v — vy, o), which only depends ofw — v,| (modulus of the relative velocity) and
((v —vy)/|v — v4], o) (cosine of the deviation angle), contains all the necessary information about the interaction.
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For a given interaction potentig(r) (r is the distance between two interacting particles), this kernel can be
computed implicitly via the solution of a classical scattering problem. In all the sequel, we shall use the otation
for the deviation angle, i.e., the angle between v, andv’ — v, so that

< v o>=cos€.

v — vy’

We shall also abuse notations by recalling explicitly the dependenBeupbn|v — v,| and co®:
B(v — vy, 0) = B(Jv — vy, CO).

Even if we take into account only elastic collisions, there are several types of electrostatic interactions in
plasmas: Coulomb interaction between two charged particles, Van der Waals interaction between two neutral
particles, or Maxwellian interaction between one neutral and one charged particle. Usually, interactions between
charged particles are prevailing; moreover the mathematical analysis of the Boltzmann equation is much simpler
for Van der Waals or Maxwellian interaction, than for Coulomb interaction. Therefore we restrict to this last case.

When the interaction between particles is governed by the Coulomb potential,

e2

¢(r)= 2 ) (7
TTEQY
then B is given by the well-known Rutherford formula,
2 4 2
B — v, 0) = — o/ Ereom) (®)

v — vy |3sint(6/2)

In the above formulaey is the permittivity of vacuumy: is the mass of the electron aadts charge.

Even though the Boltzmann collision operator is widely accepted as a model for describing binary interactions
in dilute gases, it is meaningless for Coulomb interactions. The mathematical reason of this failureBS that
is extremely singular a8 — 0. This singularity for zero deviation angle reflects the great abundangenihg
collisions i.e. collisions in which interacting particles are hardly deviated. From the physical point of view, these
collisions correspond to encounters between particles whianiarescopically very far apareind this abundance
is a consequence of the long range of Coulomb interaction.

Since grazing collisions hardly have any effect, one may a priori not be convinced that they are a serious problem
for handling the Boltzmann operator (5). In fact, the Boltzmann equation can be used onlyriethetransfer
of momentunbetween two colliding particles of velocitiesv, is well-defined. One can compute that the typical
amount of momentum which is communicated to a particle of velaciby collisions with particles of velocity
Vy IS

sU( [
/B(v —vy,0)(V —v)do = —%< /B(|v — vy, cose)(l— cos9) sind d@)(v — Us) 9

52 0

(of courseg S| = 27). Inthe case of the cross-section (8), the integral in the right-hand side of (9) does not converge
since
c0960/2)(1— cosh)
sin(6/2)
defines a logarithmically divergent integral@s> 0.

A physical consequence of this divergence is that when particles interact by Coulomb intergictiong
collisions are so frequent as to be the only ones to cdorgome sense: the mechanism of momentum transfer is
dominated by small-angle deviations, and a given patrticle is extremely sensitive to the numerous particles which
are very far apart. It is widely admitted, though not quite clear a priori, that these collective effects can still be
described by binary collisions, because corresponding deflections are very small.

do
do ~4=—
0
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The resulting model is not tractable: the divergence of the integral (9) makes the Boltzmann operator (5)
meaningless, as was certainly guessed by Landau, and recently checked from the mathematical point of view [32,
Part |, Appendix 1].

On the other hand, physicists usually agree that the physical phenomenonsefébaingtends to tame the
Coulomb interaction at large distances, i.e. when particles are separated by distances much larger than the so-called
Debye (or screening) length. The screening effect may be induced by the presence of two species of particles with
opposite charges: typically, the presence of ions constitutes a background of positive charge which screens the
interaction of electrons at large distances [5,10]. Some half-heuristic, half-rigorous arguments suggest to model the
interaction between charged particles by the so-called Debye (or Yukawa) potenitié®,/ (4 sor), wherei p is
the Debye length, rather than by the “bare” Coulomb potenfigdicor). For the Debye interaction the Boltzmann
operator can in principle be used. However, it is not very interesting, because the corresponding collision kernel is
horribly complicated (and not explicit), and because in most physical applications the Debye leregthlazge
with respect to the characteristic lengthfor collisions (Landau length), so that the potential is approximately
Coulomb after all. Hence it is desirable to search for an approximation at very large valygs of

Of course, in the limit.p /rg — o0, the Boltzmann operatap  diverges. But by heuristic physical arguments,
Landau was able to show that in this limit, it is to leading order proportional to the op€ratdrhe proportionality
factor is the so-calle€oulomb logarithmessentially, it is logrp/ro). We refer to [20] for Landau’s original
argument, to [5,10,28] for more physical background, and to [9] for a slightly more mathematically oriented
presentation. Also a variant of Landau’s argument can be found in [33].

While the derivation of the Boltzmann equation with screened interaction is still in need of a precise
mathematical discussion, the approximation in which it reduces to the Landau equation has been the object
of several mathematical works in the nineties [3,9,11,16,30]. Before discussing them briefly, we mention that
this approximation procedure (called the Landau approximation in the sequel) is one of the main theoretical
justifications for the Landau equation, but not the only one. As was observed by Balescu [5], the Landau equation
can also be recovered as an approximation of the so-called Balescu—Lenard equation. This equation (called the ring
equation in [5]) has been established independently in various forms by several authors in the sixties: Balescu [4],
Bogoljubov [6], Lenard [21], Guernsey [17], and (in some particular cases) Rostoker and Rosenbluth [26].
As a good modern source for the Balescu—Lenard equation and its Landau approximation, we recommend the
contribution of Decoster in [8].

Some physicists would recommend the Balescu—-Lenard equation as a more reliable starting point for the
derivation of the Landau equation. However, at present the mathematical theory of the Balescu—Lenard equation is
exactly void: to the best of our knowledge, no mathematically oriented paper has ever discussed it. Its complexity
is just frightening for a mathematician, and a discussion of it would first require a good understanding of the
influence of the permittivity of a plasma on the collisional mechanism, via the so-called “dynamical screening”

For the moment, we shall be content with a rigorous derivation of the Landau equation as an approximation of the
Boltzmann equation, and this will already turn out to be an extremely technical matter.

Let us review the existing mathematical literature on the Landau approximation. In his well-known treatise,
Cercignani [7] had shown, without a precise mathematical formulation, that for a fixed, sghab#hcontribution
of grazing collisions toQp(f, f) can be modelled by a Landau-type operator. Degond and Lucquin [9],
and Desvillettes [11] gave a more precise discussion. These works were only concerned with the stationary
approximation: the problem discussed was to show that

O(fL, )= 0L(f, )

in a certain asymptotic procedure, for a fixed, smoptdepending only on the velocity variable. It is interesting

to note [11] that these asymptotic procedures are not necessarily limited to a Coulomb interaction, but can be
performed for a whole range of interaction parameters. But the limit in the Coulomb case is the most troublesome,
because of the high singularity of the cross-section (8) in the relative velocity variable.
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Then, emphasis was put on the much more delicate (and of course much more relevant) problem of justification
at the level of solutions. More precisely, the following problem was investigaiexe that solutions of the
Boltzmann equation are well approximated, in certain asymptotics, by solutions of the Landau eduaten
various assumptions, this problem was solved by Arsen’ev and Buryak [3], Goudon [16], Villani [30] in the
framework ofspatially homogeneous solutiging. when the distribution functiofi is assumed to depend only on
t, v and not on the position. The assumption of spatial homogeneity is an enormous mathematical simplification,
but even taking this into account, the singularity in the relative velocity variable was still a significant source of
difficulties. It is only in [30] that the Landau approximation for Coulomb-type collision kernels was first handled.

In the present paper, we shall considerably generalize these previous works, by solving the problem of the Landau
approximation in the general, spatially inhomogeneous setting. However this will be achieved only for the model in
which the mean-field term is absent. This restriction looks strange, because the mean-field termis usually not such a
serious problem; but the pointis that the natural time scale for this term is not the same as for the collision operator!
To include the mean-field term in a physically satisfactory way, we should look at the Landau approximation like
along time correctionto the Vlasov—Poisson equation, and our methods do not apply for this problem. More
explanations about these subtleties will be given in the next section.

In all previous works, the true Debye cross-section was never considered. The second author mentioned in [30]
an application to true Debye, but this is because he had been abused by an ambiguous physical reference; in fact he
was treating the close approximation which is presented in the Appendix. In the present work we shall introduce
a very general framework, which in principle makes it possible to cover the true Debye potential; this however
requires to check a few technical assumptions about the precise form of this cross-section, a task which we did not
find enough courage to accomplish, due to the extremely intricate nature of the Debye cross-section. Here we shall
be content with the treatment of approximations of the Debye cut like the one described in the Appendix, or others
presented in the sequel.

The present study rests on recent developments in the study of grazing collisions for the Boltzmann equation:

1) a precise understanding of regularizing effects associated with the entropy production, which were studied
in our joint work [2] with Desvillettes and Wennberg (what we call entropy production here, is called entropy
dissipation there; this is just a matter of conventions). In short, the mechanism of production of the entropy,
combined with the fact that collisions tend to be grazing in the Landau approximation, prevents the distribution
function from “wildly” oscillating in the Landau approximation. This stabilizing effect is a key ingredient for
passing to the limit in the nonlinear collision operator;

2) a notion of weak solution for the Boltzmann equation with singular cross-section, which was introduced in our
previous work [1]. There we showed how to give sense to a so-called renormalized formulation of the Boltzmann
collision operator, allowing singularities in the cross-section, both in the angular and the relative velocity variables.
The most important features of this formulation is that (a) the basic a priori estimates of finite mass and energy are
sufficient to make sense of it, (b) contrary to all previous works, it does not rely on the finiteness of the total angular
cross-section, but rather on the finiteness of the total angular cross-section for momentum transfer. The fact that it
allows strong kinetic singularities will turn out to be important here.

The plan of the paper is as follows. In Section 2, we give a preliminary discussion of the Landau approximation,
which, so we hope, will help the reader to understand its physical and mathematical content. Also the physical
relevance of our contribution is discussed precisely. In Section 3, we state our main result, the proof of which is
performed in the rest of the paper. Sections 4 and 5 are devoted to some preliminary mathematical considerations
on the Boltzmann and Landau equations; in particular we shall recall those results of [1] which will be useful here.
Then Section 6 is devoted to the discussion of the role of the entropy production in our theorem, and there we shall
exploit some results established in [2]. Finally, in Section 7, we complete the proof of the Landau approximation.
In the Appendix, we discuss a relevant approximation of the Coulomb potential that can be found in the physical
literature.
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2. Preliminary discussion

In this section, we recall some facts from plasma physics, and discuss the asymptotics leading from the
Boltzmann to the Landau collision operator, taking into account the physical scales and the most obvious
mathematical difficulties.

As already mentioned, the Rutherford collision kernel can be written

2 2;C
B(v—v,,0)= ¢ b (COSQ), (10)
degm ) v — vs|3
where the angular kernéf is defined by
2 6/2
b€ (cosp) sing = 220%0/2) (11)
sin3(6/2)

The Rutherford cross-section is justv — v,, o) /|v — v,«|. The factor sim in (11) is proportional to the Jacobian
of the integration in spherical coordinates, and should be kept in mind when discussing integrability properties of
the kernel.

In a Boltzmann description, the natural scale of velocity is given by the thermal velocity,

kO
Uth =4 —» (12)
m

wherek is Boltzmann'’s constant; the mass of the electron, agtithe mean temperature of the plasma. Only this
velocity scale will be considered in the sequel.

On the other hand, when the interaction is Coulomb, the natural length scale is the sd-aaled lengthr,
which is the distance between two particles having an interaction energy of the same order as their kinetic energy:

2

ro= .
4 ek ®

(13)

Note that the dimensional constant in front of (10)rigv?,)2.

The Rutherford cross-section (10) presdnts singularities of very different nature:

—first, the kinetic collision kerne|p — v,| =3, is singular a3 — v, — 0. It is classical that kinetic singularities
are well tractable from the mathematical point of view if they lxeally integrable see for instance the well-
known paper of DiPerna and Lions [14]. Of course, this is not the case here|sintg L%C(R3, dz). This will
be a considerable source of complications (but presumably, only of mathematical nature);

—next, the angular kernei€ (cos9), is so singular that
b€ (cosH)(1 — cosv) ¢ L(sin6 db).

This second singularity reflects a true physical obstruction, and is directly linked to the divergence of the Boltzmann
collision operator (too many grazing collisions!). It is this angular singularity which makes the Boltzmann operator
meaningless for this kernel.

Since the Coulomb interaction cannot be handled, consider now a model in which particles interact via the
Debye potential

2
¢ e/,

¢p(r) =

4 eor

Justifications for this screening assumption can be found in many physical textbooks on plasma physics, as [5,10];
from the mathematical point of view we are still far from understanding it. The screening will result in a less
important role of collisions with a high impact parameter, therefore a less important role of grazing collisions. In
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a rough approximation, we can consider that it amounts to a sheer truncation of the Rutherford kernel, yielding a
new kernel proportional to

b€ (cos9)1,
( ) 0200 (14)
v — U*|3
where [10]
. Op 70
sin— = ——. 15
2 2w (15)
Let us use the notation
2
A=L2 (16)
ro

which is customary in plasma physics, up to numerical conventions (ours is from [10, Eq. (3.111)]).Aken
large but finite, the cross-section for momentum transfer is finite too:

e

|SY| / 2(cos0/2) 8|51
1-cos9)df = ——
|U—U*|39 sin(6/2) (1~ cosd) v — vg|3

Ma(v—vy) = logA.

And because this integral is finite, the corresponding Boltzmann equation is expected to maKelseasebe
written

v VoS = (08?0 £, (17)
where Q4 is the Boltzmann collision operator with nondimensional cross-section given by (14), as an
approximation to the true Debye cross-section. Agjoes to infinity, this equation diverges, and therefore we
shall look for new physical scales on which there is a meaningful limit equation. Note that for the moment, we
neglect the effect of mean-field interaction in (17).

Thus, let us now change the scales of time, length and density, and consider as unknown the new distribution

function f in nondimensional variables,

~ v3

ft,x,v) = ﬁ'f(n, Xx, vp), (18)

whereN is a typical densityT is a typical time and is a typical length of the system under study. We have set the
velocity scale to be,;, and to be consistent we impo&e= v,; T'. Thanks to the density scaling, we may assume
the mass off to be of order 1 without physical inconsistency (recall that the Boltzmann equation is established
in a regime when the density is small enough that only binary collisions should be taken into account). The same
holds true for the kinetic energy because of our choice of the velocity scale.
Plugging (18) into the Boltzmann equation (17), and dencofity f again, we arrive at theescaled Boltzmann

equation

af

S F U Ve[ =rGuaNT Qaf, ).
In order to make the limitA — oo meaningful, we consider a time scale such that (say)

1

= 19
(IogA)rgv,hN (19)

1 The equation does make sense under known a priori estimates, but it is still not known whether the Cauchy problem admits solutions; see
the discussion in [1, Section 5]. This problem is however an artifact due to a too wild cut-off; if the Rutherford kernel had been replaced by a
less singular, but still singular kernel, then it would not arise.
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With this system of units the rescaled Boltzmann equation now reads

af Qa(f, )
ot logA

and the total angular cross-section for momentum transfer of the rescaled Boltzmann collision operator converges
to a finite limit asA — oo, namely 85| |v — v, | 3.

Moreover, for anyp > 0, the contribution of deviation anglés> 6g in this total cross-section goes to 0 as
A — oo, because of the division by lag. In this sensepnly grazing collisions have an influence in the limit.

It is precisely the combination of these two points:

+U'fo: bl (20)

o the total angular cross-section for momentum transfer stays finite;
e only grazing collisions count in the limit,

which ensures that, in the limit — oo, the Boltzmann collision operator reduces to the Landau collision operator.
A general mathematical framework for this was introduced in [30]: a faily,cn of angular collision kernels
was said taoncentrate on grazing collisionf

b4
|51 fb,, (cos9) (1 — cosA) Sinf df —> uo € (0, +00)
0

V6o >0, supb,(cosd)——0.
060 n—o00

From this mathematical point of view (contrary to what is often believed), the scalings considered in [9] and
in [11] are just the same, and correspond respectively to the two model cases below:
Casel: [y b(cos9)(1 — cosh) sinf df = +oo. Then, define
b(cosh)1y> -1
1S 1), b(cosH) (1 — cosd) sinb df’

bn(cost) =

Case2: [cf b(cosh) (1 — cosh) sinb db < +oco. Then, with the notatiog, (9) = b(cosd) sind, defineb, (cosH)
in such a way that

a(0) = n3¢ (n6)

(by convention; vanishes for angles greater thah

However, this definition makes sense only when the collision kernels factor into the product of a fixed kinetic
kernel and a variable angular kernel. This has no physical basis; in the discussion above such a situation occurred
only because we resorted to a crude approximation of the kernel for Debye potential, wildly truncating small-
deviation angles. For the “true” kernel associated with a Debye approximation, this factorization property does not
hold. Moreover, this “true” kernel is known only via implicit formulas, apparently never used by physicists! This
provides strong motivation for introducing a very general definition of “concentration on grazing collisions”, with
a view to cover realistic situations.

In short, our main result on the Landau approximation can be stated as follows. Consider a family of solutions
(f™) to the Boltzmann equation with respective collision kerBgl where (B,),cn cOncentrates on grazing
collisions as: — oo (in a sense which is made clear in next section), @fdl satisfies the basic a priori estimates
of finite mass, energy, entropy and entropy production. Then the sequghoeonverges strongly, up to extraction
of a subsequence, to the solution of a certain Landau-type equation.

Before turning to precise statements, we would like to discuss the physical relevance of these results. The reader
who would only care about mathematics may skip all the rest of this section.
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For the Boltzmann equation to be relevant, it is usually required that
Nrid<1,  NE >l

Taking into account the definition of, this is satisfied if

ro 70 A3
9 2= . 22
v (logA) << v log A (22)
The dimensionless quantity
1
_ 23
g N2 (23)

is called theplasma parameteiClassical plasmas are often defined as those in whistvery small.
In the classical theory of plasmas, the Debye length can be computed in terms of the meanNamsitthe
Landau lengthrg:

g0k ® 1
AD = > = , (24)
Ne 4w Nro
and as a consequence
1
A=

=
NE AL

If we use the law (24), we find from (19)

T 70 1 7'L’r0A2

_wMWA<N%)_wMWA’

and the validity of our limitis ensured if & A% <« A3, which is of course consistent with the asymptotics> co.
We note that in plasma physics,ranges from 19to 10°°, so thatA is actually very large, but its logarithm is not
so large.

However, it would be dishonest to claim that our results are fully satisfactory. In the above discussion we have
assumed that the interaction between particles can be modelled by binary collisions. The resulting Boltzmann and
Landau equations, as we wrote them down, can be encountered in many physical textbooks (e.g. [5,10]). However,
most physicists would agree that a more precise description of a plasma is obtained when one also takes into
account collective effects modelled by a mean-field self-consistent force term of Poisson type, as the one appearing
in (1).

It would not be difficult to add such a term at the level of (20), and treat the Landau approximation for the model

of C04lf )
E“FU'fo“FF‘va— IogA ’ (25)
where
F(x)=-VV(), V(x):i*,o, p(t,x):/f(t,x,v)dv. (26)
47 | x|
R3

Then, the self-consistent coupling can be handled in exactly the same way as in Lions [22,23], and our main result
would apply. But this mathematical problem would not be consistent with physical scalégtually, witing
down physical constants explicitly, the Boltzmann equation with a mean field term should be

af

E+U'fo+4”(rovr2h)F'va= (rov?)*@a(f: £,
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with F defined as in (26), or

a
a_]; + v Vo f 447 (rov3) Fa - Vo f = (rovf,)Qa(f, ),

with F, defined asF but with a Debye potential. It is not clear to the authors which equation is the right one,
and neither has received a convincing mathematical derivation (they should be very simllaras). These
questions are certainly outstanding problems for future research in kinetic theory.
Then, going back to (18), with the notations of (26) we obtain the following rescaled Boltzmann equation:
of

PRV Aoy, NT?Fay - Vo f =r8vNT QA (f, f). (27)

Up to numerical constants, the quantity

w = /47 v? roN (28)

is called theplasma oscillation frequencit is believed to measure the inverse time scale for oscillations due to the
Poisson coupling, and plays a major role in plasma physics.

If we now wish to consider physical scalés T on which the relevant equation is the Landau equation with a
mean-field term, say

y ) QD)
o T Vaf FFay Vof = 0L(f. ) <_ log A )

we have to impose
1

47,/ vtzhroN

Identification of this formula with (19) implies that loty= /4 (Nr3)~/2, or

T=wt=

2(log A)2
TA3
Under this assumption (which implies that the typical length for oscillations is much smaller than the Debye
length) we are able to recover the “full” Landau equation (with a mean-field term) from the Boltzmann equation.
Unfortunately, Eq. (29) isotsatisfied in the classical theory of plasmas, since it is incompatible with (24). Instead,
one should have

(29)

_871
.

In particular, up to numerical constantse typical length for oscillations should coincide with the Debye length.
We refer to [10,8] for a more precise discussion, and much more on these scale problems.
The physical content of this obstruction is the following: strictly speaking, in the classical theory of plasmas,
the Landau equation with a mean-field term,
af

E_,_v.vqu-F-va:QL(f,f) .

is relevant onno physical scale! Indeed, as the parametegoes to infinity, or equivalently ag — 0, the
Boltzmann equation with a mean-field term should converge to the “pure” (collisionless) Vlasov—Poisson equation,
and the effect of collisions should only be feltlagge-time correctionso the Vlasov—Poisson equation.

Eq. (31) is however of greatimportance in physics, and it would be stupid to dismiss it. Let us try to sketch what
could be a mathematical justification of the Landau approximation when a mean-field term is present and when the

rp = Tug, A (30)



R. Alexandre, C. Villani / Ann. I. H. Poincaré — AN 21 (2004) 61-95 71

Debye length satisfies (24), (30). There are two natural candidate statements; for each of them we are aware of no
mathematical discussion, even formal.
1) First possibility adopt the time scale for the Landau equation

2rA 4
= —w
log A
Then the rescaled Boltzmann equation is
of 2rA\? Qa(f, )
~ 4+v-V — | Fip) - Vof = =227,
ar T Xf+(logA> - Vof log A
Problem: prove that on a fixed time interval, 4s— oo, solutions to this equation are close to solutions of
s s+ (EAY Fy Vs = 000 )
91 V- Vy log A ) - Yol =L, T)-

Itis not a priori clear if such a statement has a chance to hold truet Asoco, the very large mean-field term is
expected to induce very fast oscillations, and the strong compactification effects induced by the entropy production
mechanism will be lost. Passing to the limit in the colllision operator when such oscillations are present seems a
desperate task, and apparently the only hope would be to prove that solutions to both equations are wildly oscillating
in exactly the same way, but asymptotically close to each other in strong sense. Moreover, this problem should be
replaced in the context of a quasi-neutral limit, with a subsequent increase in complexity.

2) Second possibilityadopt the time scale for the Vlasov—Poisson equation

T=w"t

Note that this is consistent with (22) since

1« A« n®
logA
Then the rescaled Boltzmann equation is
af 1 logA QA(f, f)
-~ VS Fop-Vyf=— )= =" 32
at-i-v f+Fua f 2ﬂAQA(ff) oA logA (32)

Problem: prove that, a8 — oo, on a large time interval of siz&(A/log A), solutions of this equation are close
to solutions of
af

__logA
E“FU'fo‘f‘F‘va—mQL(f:f) (33)

(compare with [9]). Note that on any fixed time interval, solutions of both systems converge to solutions of the
collisionless Vlasov—Poisson equation (becausedlgg — 0), so that this problem can only be expressed in
terms of long-time corrections. Note also that formally,— F = O(1/A), so that the error due to the screening at
the level of the mean field should be at mogfiog A). Finally note that the coefficient in front of the dissipative
collision operator is vanishing as — oo, which suggests a considerable weakening of the regularizing properties
associated with collisions.

It is very difficult to imagine how the techniques once developed by DiPerna and Lions [14] for the Boltzmann
equation, generalized in [1] and extended for the needs of the present paper, may handle such a statement.
Indeed, they are mainly based on compactness arguments and convergence of approximate solutions; but, as we
just discussed, we should be looking for an asymptotic result, not convergence. A difficulty of the same kind
is encountered when trying to retrieve the compressible Navier—Stokes equations from the Boltzmann equation.
Progress on the Landau approximation from this point of view will certainly require the development of completely
new estimates. It seems likely that the recent theorems proven by Guo [18,19] are a plausible starting point for a
complete treatment of the close-to-equilibrium setting.
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3. Main result

This section is devoted to definitions and a precise statement of our main result. In order to make the
mathematical features of the Landau approximation more transparent, we shall consider general Boltzmann
operators. We set the problem @h 7] x Rf‘" X Rﬁ’: here[0, T'] is an arbitrary time interval fixed once for all, and
both the position and the velocity take value®ifi, N > 2. Thus the equations under consideration will be of the
form

)

v vir=00.n, (34)
where is either a general Boltzmann-type operator,

0n(s. 1) = [ dv. [ doBe-veo)s' sl 71, (35)

RN SN—l

with the notations (6) still in use, or a general Landau-type operator,

oL(f. = Vv( /dU*a(U —v)[fiVo f — f(vvf)*]> (36)

RN

In the Boltzmann case the collision kernel will satisfy the usual assumption of dependence upon the modulus of
the relative velocity and on the cosine of the deviation angle, and we shall write freely

UV — Vs
B(v—v*,cr)zB(|v—v*|,COSG), C059=< ,0’>.
[V — vy
Moreover, we shall assume thiatanges only fron® to /2. Not only is this sometimes considered as physically
realistic, but it is actually always possible to reduce to this case upon replacing the Rdmel

[B — v:.0) + B — vy, —0) | Leoss 0. (37)

Indeed, the product’ f; is invariant under this operation (from the physical point of view, this means that due to
the undiscernability of particles, one may freely rename particles after collision). Finally, we shall deidteeby
unit vector parallel ta — v,, so that
UV — Uy
k= , cosd =k -o.
[V — vy
More precisions will be given later on the assumptions tBalhas to satisfy for us to be able to handle the
corresponding Boltzmann equation.
On the other hand, in the Landau case, the matrix-valued fungtiorwill be of the form
«@=v()IQ, M@ =55,
where¥ is a nonnegative measurable function. Of couiise) is the orthogonal projection upart-.
In our previous study of the Boltzmann equation [1], we found that two mathematical objects play a central role
for the Boltzmann equation:
1) The cross-section for momentum trangfgra given relative velocity),

M(|v—v*|)= / B(v—vs,0)(1—k-0)do (38)
SN-1
/2

=|SN_2|/B(|v—v*l,cose)(l—cos@)sin’v_zede. (39)
0
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We shall always think oM as a function ob — v, but we abuse notations by writind (Jv — v,|) to recall that it
is a radially symmetric function.
2) The compensated integral kernel 101 (-, 1),

/2
_ — N-2 1 |U_U*| _ _ . 2
S(lv—vl) =S |/[cos’v(e/z)B(cos(e/z)’cose> B(lv u*|,cose)}smN 6do. (40)
0

Here

Op(g, )= / B(v —v4,0) (g, f" — g« f)dvsdo
RN x§N-1

stands for the bilinear Boltzmann operator. The keth@ linked to the bilinear operator by the relation that we
established in [1]: iff (v) is a distribution function, then

Sf=S«f=05(f1)= / B(v = v, 0)(f. — f) dvedo = S F. (41)
RN x §N-1
Remark. By the change of variable— z/cog6/2),

/2

/S(Izl)dz= /d@sinN_29|: / B(Izl,cosﬁ)dz—/B(Izl,cosﬁ)dzi|.
A 0 A/cog6/2) A

This is an alternative way of definin§jas a measure (note that the integrabadin a domain which is starshaped
with respect to the origin is always nonnegative).

It was shown in [1,2] that many properties of the Boltzmann collision operator were goveriédhysS. Our
new definition of the Landau asymptotics is based on these two objects.

Definition 1. Let (B,),cn be a sequence of admissible collision kernels for the Boltzmann equation, and let the
corresponding kernel#Z,, S, be defined as in formulas (38), (40). We say thBt) concentrates on grazing
collisions if

) S.(zl), 1zIM,(|z]) define sequences of measures which are bounded in total variation on compact sets,
uniformly in n;

(ii) there exists a nonnegative, radially symmetric measurable fun#figrsuch that

zM,(|z]) —> zMo(]zl)  locally weakly in the sense of measures
n—o0
(iii) for all 60> 0,

5%(|z]), 1zIME(1z]) — O locally weakly in the sense of measures
n—o0
whereSf,)O, Mf,)" are associated to the truncated cross—secﬁlﬁh& By, 150, via formulas similar to (38), (40).
Remarks.

(1) The class of admissible cross-sections for the Boltzmann equation will be defined in Section 4. Essentially,
admissible cross-sections are those such#handsS define meaningful mathematical objects.
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(2) Assumption (ii) is formally equivalent to the convergenca®ffto M, but our formulation is less sensitive to
the behavior ofM,, at the origin. This is important because of the nonintegrable singularity of the Rutherford
collision kernel.

(3) Condition (iii) means that only grazing collisions count in the limit.

Example. In view of Proposition 5 in Section 4, the family
Bn(cOst)

|z|V
concentrates on grazing collisions as soowas—> @ in L%C(RN),

D, (A - P, i i
sup LD 0D 4 (i), untormyin,

1<2<V/2 A—1

B, (z,0) = @n(|z|)bn(COS@) +

andb,,, B, concentrate on grazing collisions in the sense of (21).

Actually we shall also be led to introduce a few additional technical conditions. The first one is a decay condition
at infinity (this is to control large velocities). The second one ensures that “on the whole”, the sequence of cross-
sections is truly long-range (this is to ensure the immediate damping of oscillations via the entropy production).
The third one is a smoothness technical condition used in the passage to the limit.

Condition of decay at infinity.

My(lz])=0(1) as|z| > oo, uniformlyinn. (42)

Overall singularity condition. We require that

By (z,0) = @o(Iz])bon(k - 0), (43)
where®g(|z]) is a continuous nonnegative function, nonvanishing£p# 0, and
7/2
|sV=2| / bo,n(c0sH) (1~ cosd) sin" 26 d6 —— 1> 0. (44)
0

Smoothness of the approximation out of the originWe require that
1 1
/M, n—0 /My

locally uniformly onR¥ \ {0}.

(45)

In realistic cases, this assumption is always satisfied, becdse uniformly smooth away from the origin.
Certainly this technical condition could be significantly relaxed, but we do not see any real motivation for this. The
overall singularity condition could be relaxed by only requiring (43) and (44) to hol&fer (r, R), wherer and
R are arbitrary positive real numbers, ag, could be allowed to depend erandR.

The three conditions above will be sufficient to prove the Landau approximation. Thanks to the generality of
our definition, we shall be able to treat more complicated cases than the ones previously seen; for instance,

|[v — vy SING
(|v — v4|2siM?(0/2) + 1/n)2’
This family of collision kernels, used in quantum physics, is discussed in the Appendix.

By (v — vy, cosf) sing = (46)
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Another kind of kernels that we should now be able to handle is the one associated with the true Debye cross-
section. Even if all the tools seem there to perform this study, we were discouraged by the extremely tedious
computations involved (although there does not seem to be any real conceptual difficulty). Therefore we did not
check that the true Debye cross-section satisfies all our technical assumptions; for any interested reader we can
provide the partial results that we obtained.

Before formulating a statement we have to make our notion of solutions precise. We shall use the weak notion
introduced in [1] as a generalization of the well-known renormalized solutions of DiPerna and Lions [14]. Some
motivations for this definition are given in the next section.

Definition 2. Let f € C(RT; D'(RY x RY)) be a nonnegative function with finite mass and energy, in the sense

sup [ f(t,x,v)(1+ [v|?) dx dv < +c0. (47)
t>0
Let B be the set of all functions of the forg\ /) = f/(1 + &f), § > 0. We say thalf is arenormalized solution
of Eq. (34)with a defect measuiié

Vg ebB, @ +v-ViB(f) = B (HOS. ),

(48)
VvVt >0, /f(t,x,v)dxdv:/f(O,x,v)dxdv.

R2N R2N

In the rest of the paper, we shall simply say tlfas a weak solution of Eq. (34).

Let us make some comments on this definition:

1. The classB can be considerably enlarged, but the interest of this extension is not clear. The important
properties of the functiong in B are that they are strictly concave, vanish at the origin anddtigt) decreases at
infinity faster than 1(1+ f).

2. If the inequality sign in the first line of (48) was replaced by an equality sign, then (formally, after use of
the chain-rule formula) this equation would just be Eq. (34) multipliegtgy’). Thus definition 2 would coincide
with the usual definition of renormalized solutions.

3. The mass-conservation condition in the second line of (48) ensures that any smooth weak solution has to
satisfy the equality in the first line of (48). If nof, would have to lose some mass for positive times (to see this,
multiply the equation by A8’(f) and integrate). Thus, this mass-conservation condition impliesathasmooth
weak solution is a strong, classical solution

4. The precise meaning @ (f)Q(f, f), i.e., therenormalized formulatiomf the collision operator, will be
given in Section 4 wherQ is the Boltzmann collision operator, in Section 5 wh@nis the Landau collision
operator. The important point is that we shall be able to define it using only the physical assumptions of bounded
mass and energy.

5. This notion may seem quite weak, and it is! These solutions cannot be considered as completely satisfactory
answers to the Cauchy problem for Boltzmann or Landau equations. But in this work, we do not really want to
construct well-behaved solutions to these equations: our goal is to prove that solutions to the Boltzmann equation
converge to solutions of the Landau equation in a certain asymptotic regime, using only the basic physical estimates.
The weakness of the concept of solutions is a price that we pay for such a generality. Note also that our main result
is nontrivial even for smooth solutions. We however believe that developing a complete theory of smooth solutions
is the way towards further progress in the field.

We are now ready to state our main theorem.

Theorem 3. Let (f") be a sequence of weak solutions to the Boltzmann equation with respective collision
kernelB,,, on[0, T'] x RQ’ X R{}’. Assume thatB,,) concentrates on grazing collisions, in the sense of Definitjon
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and satisfies the condition@?2), (43), (45). Further assume that the sequencg’) satisfies the physical
assumptions of finite mass, energy and entropy, together with a localization condition in the space variable

sup sup / F(t,x, [T+ 2 + |x|? +log £ (1, x, v) ] dx dv < +o0, (49)
n te[0,T]
RY xRY

as well as the assumption of finite entropy production, i.e.

T
/dt / den(f”(t,x, ')) < 400, (50)
0 RQ’

whereD,, is the entropy production functional associated with the cross-sesfioas defined in Sectidh Assume,
without loss of generality, that for ap € (1, +00), f" — f weakly in wL? ([0, T]; LY(RY x RY)) asn — oo.
Then, f is a weak solution of the Landau equation with collision kernel
|21* Moo (|2])

Y(lz]) = AN-1) (51)

Moreover, the convergence ¢f to f is automatically strong.

The proof of this theorem is performed in Sections 6 and 7. Before undertaking it, we recall some facts about
the Boltzmann equation and about the Landau equation (just what we will need in the sequel).

4. Reminders from the theory of the Boltzmann equation

The lack of strong enough a priori estimates for the Boltzmann equation has hindered the development of the
theory for a very long time. To overcome this problem, DiPerna and Lions [13,14] suggested to write the equation
in renormalized formi.e., as in Definition 2. The main idea is that the renormalized opepatgn Qs (f, f) is
expected to be sublinear i (f) < C/(1+ f), and therefore should make sense under the assumptions of finite
mass and energy. The problem of tie@ormalized formulation of the collision operatrto give a meaningful
definition of 8’(f) O (f, f) for all B in a large enough clads of nonlinearities, under the basic physical a priori
estimates.

When the Boltzmann collision kernel is locally integrable, then it is quite easy to find a renormalized
formulation [14]. But this formulation does not cover the case of angular singularities. Moreover, it is definitely
not well-suited for the limit of the Landau approximation. A more general renormalized formulation, suitable for
our purposes, was introduced in our recent work [1].

Definition 4 (Renormalized formulationBy convention,

B (H)Os(f. f) = (R1) + (R2) + (Ra), (52)
where
R =[18'(f) - B()] / dvs doB(f! — 1.), (53)
RN x§N-1
(Ra) = / dv,do B[f8(f) — FB())] = Qs(f. B(P)). (54)

RN xSN-1
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Ro=~ [ dv.doBfirs. (55)
RN xsSN-1
rf, =8N =B =B OHU = .
In the case which we shall considgr,f) = f/(1+ 8f), then
5(f' = f)?

L+81)2(1+8f)

Let us examine successively each of the three t€fin3, (R2), (R3).
1) First of all, by (41),

Ry =[fB' (/)= B(NH]ST.

whereS is the linear convolution operator with kerngldefined in (40). This should be taken as a definition
of (R1).
2) As for the second terrtiR,), it is defined by duality as follows,

(56)

F(f!f/):

/ (R)o(v) dv = / dvdv, doB[fIB(f)) — fB()]e

RZNXSN_l
= f dvdv*f*ﬂ(f)[ / B(v—vy,0)(¢' —@)do, }
R2N SN-1
For future use we introduce the linear adjoint Boltzmann operator: for giveihis defined by
T:pr> / B(v — vy, 0) (¢ — @) do. (57)
SN-1

Equivalently, for a given, € RV, To (v, v,) is the adjoint off — Q(6,,, f). And, of course,

/(Rz)rp(v)dv= / dvdvs i B(S)Tp(v). (58)
R2N
3) Finally, the third term imonnegativeand can be given a sense as a locally integrable function.
In [1], we gave some sufficient conditions on the collision kerBefor getting satisfactory estimates on
(R1), (R2), (R3). Assumption B.1 below ensures th&tis not too singular in the angular variable (this means
essentially that the cross-section for momentum transfer is finite, with an additional very slight regularity

assumption), and also not too singular in the velocity variable (but borderline nonintegrable singularities are
allowed). As for Assumption B.2 below, it controls the large-velocity behavior.

Assumption B.1 (At most borderline kinetic singularityfssume that

Bolk - o) z
= +Bl(Z,U), k=_,
2|V Iz

for some nonnegative measurable functiBpsnd B1, and define

B(z,0) (59)

Ho = / Bok -0)(1—k-o)do, (60)
SN—l
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My (lzl) = / Bi(z.0)(1—k - o) do, (61)
SN—l
Mi(|zl) = / Bi(z,0)(1—k-0)do, (62)
SN—l
where

Bi1(Az,0) — B1(z,
Bj(z.0)= sup |B1(Az,0) — Bi(z,0)|
l<k§\/§ ()\' - 1)|Z|
We require that
po<+oo, and Ma(lzl). l2IM](lzl) € Lbo(RY).

Assumption B.2 (Behavior at infinity. As |z| — oo,
M(lzl)=0D),  lzIM'(jz]) = o(|z[?). (63)

Example. Consider the model case where
B(v — vy, 0) = |v — vy|” b(COSH), sinV=20b(cosd) ~ Ko~ 17V,
v >0, K > 0. Then Assumptions B.1 and B.2 allows0y > —N,0< v < 2.

Remarks.

(1) Assumption B.1 is just a “simple” sufficient condition for the kerngland |z| M (|z]) to be bounded, locally
in the sense of measures. In fact this last property would suffice.

(2) Assumption B.2 could be relaxed to consider positive valuessich thaty + v < 2, but when dealing with
the Landau approximation this would not be interesting.

The following estimates were established in [1].

Proposition 5.1f B satisfies Assumptiofis1 andB.2, then
(i) S is bounded in the sense of measures, and more precisely,

S(1zl) = rd0 + S1(lIz1), (64)
wheredg is the Dirac mass at the origin,
/2
a=—|sN72||sN / Bo(cosd) log cogd/2) sin ~26 ae,
0

and $1 is a locally integrable function,
2(N—4)/2

51001 < gogm /|

NMi(lzl) + lz1M5(121)]-

(i) The linear operatofT is bounded fronW2> to L™, in the sense

1 _
T < Slgllweslv = v*|(1+ & 2”*')M(|v —v,l).
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Note thath in (i) satisfiest < |SV~1|/(4 cog(/8))uo. As a consequence of this proposition, we obtained the
following a priori control of(R1), (R2), (R3):

Proposition 6. Assume that the cross-sectiBnsatisfies Assumptioris1 and B.2, and let f be a weak solution
of the Boltzmann equation. L& (v) = {v € RY, |v] < R}. Then, for allR > 0, the following a priori estimates
hold:

(i) (R1) € L®([0, T]; L*RY x Br(v)));

(i) (R2) € L0, T1; LXRY; W=21(Bg(v))));

(iii) (Rs) € LY(0,T]; LXRY x Bg(v))).

Even if we do not write it explicitly, all these estimates are quantitative and depend only on the estimétes on
and7, and on the a priori estimates of mass and energy. Therefore, they witlifeemin » when we perform the
limit leading to the Landau approximation.

To conclude this section, we recall the existence results established in [14] and in [1]. They depend on whether
the collision kernel is singular or not.

Definition 7. The collision kerneB is said to benonsingulaif B(z, o) € Llloc(IRN x $¥=1). On the other hand, it

is said to present amngular singularityif, for all r, R > 0 there exists a functioby(k - ') such that
r<lzlISR = B(z,0) 2 bolk-0),
where

/ bo(k -0)do = +o0.

SN-1

Of course, for singularity to hold true, it is sufficient thatz, o) > ®o(|z|)bo(k - o), wherebg is as above, and
@p is a nonnegative continuous functiabg > 0 if |z| #£ 0.

Proposition 8. Let B satisfy condition8.1 andB.2. If in addition, eitherB is nonsingular, or presents an angular
singularity, then for all initial datumyy satisfying

/ folx, v)[l—i— |v|2 + |x|2+ log fo(x, v)] dxdv < 400,

R2N

there exists a weak solution of the Boltzmann equation with initial dgfum

We note that this proposition leaves open the case wBed®mes not present an angular singularity, but is
still nonintegrable (due to a kinetic singularity). Such cases are not supposed to be realistic, but they are often
encountered in the physical literature as approximations of more realistic kernels: see Section 2.

5. Reminders from the theory of the Landau equation

Most of the considerations in the previous section easily adapt to the Landau equation. The renormalized
formulation of the Landau collision operator was already given several years ago by Lions [24], and further studied
in Villani [29]. Our presentation here differs only by details. ket g;; (z) be the matrix appearing in the definition
of the Landau collision operator. We define

b=V-a, c=V-b,
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whereV- denotes the divergence operator. More explicitly,
bjzza,’aij, szaijaij.
i ij

Because the matrix is of the forma(z) = ¥ (|z])I1(z), with IT a projection operator,
¥ (|z]) Z‘I’(|Z|)1|

=—(N—-1
b@)=-(N-D=5 EE

e =—(N -1V [ (65)

We also define
a=axf, b=bxf  i=cxf
and we immediately note that the Landau operator can be rewritten as

OL(f, f)=Vy-@Vyof —bf).

In order to define a renormalized formulation of the Landau equation, it is sufficient to make the following
assumptions.

1

|OC(RN), and|c(z)| be a locally bounded measure.

Assumption L.1 (Integrability). We require thatb(z)| € L

Assumption L.2. ¥ (|z]) = o(|z|?) as|z| — oo.

Remark. WhenN >3 and¥ (|z|) = |z|~ V=2, then
c(z)=—(N - 1)V - (ﬁ) = —(N = D[SV [50(2).

Definition 9. Let f be a distribution function with finite mass and energy, satisfying the additional a priori estimate

avuB(fIVuB(f) € Ligg(I0, TI; RY x RY). (66)
Then, by convention, the renormalized Landau collision operator is given by
B (NOLL, ) = =¢[fB' () = B()] (RY)
+Vy - [V @B —26B(H] (R 67)
B"(f) - L
— ——=aV, \% R3).
ﬁ/(f)za BHVB(S) (R3)

Remarks. (1) ExpressionsR ) and(R%) in (67) are well-defined sinag b, ¢ € LL . In view of assumption (66),
the expressiomzé) is also well-defined as an almost everywhere finite function. More(ﬂl’e.ﬁ;r) is nonnegative
sincep is concave. Fo8 = 1, we find—B"(f)/B' ()2 =21+ f).

(2) Formally,

Vo (aB(f)) — 2bB(f) =aVuB(f) — bB(f).
so that(Ré) can be rewritten as

QL(fv IB(f))s

whereQ; is now the bilinear Landau operator, defined by duality:

/ 0L (/. () dv = f FB() Topdvdu,,
RN RZN
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where
[ZL@](v, vi) =2b(v — Vi) - Vo (v) +a(v — vy) : D2<p(v). (68)

Here we used the notationi: B = )" A;; B;;. Thus there is an excellent analogy betwg®?) and(Rﬁ). And
since(Rf) has the form—[f8'(f) — B(f)]ISf, whereS is a convolution operator, there is a complete analogy
between (52) and (67).

(3) The exact analogues of estimates (i)—(iii) of Proposition 6 hold for the Landau equation under
Assumptions L.1 and L.2. In particular, this includes the additional estimate (66) which is required in the definition
of the renormalized formulation. Details (under somewhat different assumptions) can be found in Lions [24].

(4) One could be curious about a precise a priori definitiom\af8 () V,8(f), for a functionf which is only
assumed to have finite mass and energy. A simple (and natural) way to define it is by

Iimigf asVyB(fIVyB(f),

wherea, is defined asi, except thatV (|z]) is replaced by a cutoffed versiob (|z|) = ¥ (|z]) xe (|z]), with x.
smooth, identically vanishing fde| < € and identically equal to 1 fgi| > 2¢ (this definition does not depend on
the particular choice of.). Then we can say that V, 8(f)V,B(f) liesin LL ([0, T] x RY x RY) if

loc

V(v — v DT (v — v/ £ VB(f) € L2([0, T1 x RY ; LE (RY x RY)).

This last object always makes sense as a distribution giage e L, /f; € L2, andV - (IT/¥;) = /T (V -
IT) € L? (because¥, vanishes near the origin). Note that the idenfity (/7/¥;) = /%, (V - IT) follows from
v./¥, =0. This remark was already used in the end of [12] for a similar problem.

(5) In the proof of our main result, we shall show that Assumptions L.1 and L.2 are automatically satisfied for
the limit ¥, and that the a priori estimate (66) automatically holds for the limit distribution function.

6. Damping of oscillations via entropy production

Our main result asserts that the limit of a sequence of solutions of particular Boltzmann equations is itself the
solution of a Landau equation. As is well-known, passing to the limit in such nonlinear equations is most of the
time impossible if the sequence of solutiarecillatestoo much, in the sense that the convergence is only weak.

A noticeable exception to this rule is the case of the Boltzmann equation with cutoff, for which one can pass to the
limit using only weak compactness [14].

The point which we want to discuss in this section, and which is a crucial first step towards our main result, is
that in the limit that we are investigatingpere are no such oscillations

If we consider a sequencgg™) of solutions to a given Boltzmann equation, satisfying the usual a priori bounds
and converging to a weak limjt, it is known from [1] (see [25] for preliminary results) that the convergence is
automatically strong if the collision kernel is singular (and this is not true if the collision kernel is not singular [24]).
The situation that we are investigating now is almost the same: even if the collision kernels that we consider are not
necessarily singular, they become singular in the limit of grazing collisions, as ensured by the “overall singularity
condition” (43). This is whystrong compactness will appear in the limit of grazing collisions
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The basic ingredient towards the proof of this immediate damping of oscillations is the following proposition,
extracted from [2].

Proposition 10(Control of velocity oscillations)Assume thatB,,) concentrates on grazing collisions, and satisfies
the overall singularity conditio43). Then, there exists a sequenaa) — 0, such that

a(n)

/ bo.n(COs9)(1 — cosH) sif" =20 do — u >0,
n—oo

0

/2 (69)
/ bo,» (COSP) sif" =20 do = ¥ (n) — +o0.
n—00
a(n)

Let xg(v) be a smooth cutoff function, identicallyfor |v| < R and identically O fojv| > R + 1, and /" (v) be
a distribution function depending on thevariable. Letf» = xr f"* be the localized distribution function, and let
F,/ fr be the Fourier transform of its square root. Then for alk- 0, andn large enough,

C(N, xr, f*
/ |f/7g(s)|2ds<W%[m(f")+/f"(v>(1+|v|2)dv] (70)
[E1=A RY

Moreover, the constar@ depends ory” only via an upper and a lower bound on the dengity” dv, and upper
bounds on the energ f"|v|?>dv and the entropy f" log f" dv.

Combining Proposition 10 with the a priori estimate (50), the renormalized formulation, velocity-averaging
lemmas [15,22] and some work, one concludes to the statement in Theorenth@tbatvergence is automatically
strong The complete proofis not so short, but it is exactly similar to the one given in [1] for sequences of solutions
to the Boltzmann equation; so we skip it and refer to this work for details.

We conclude this section by displaying two basic examples for the sequencess (n) which control the
oscillations in Proposition 10.

Examples. (1) Consider the case An20b,(cosv) = £,(0), and lets,(0) = n3¢c(nb), where¢ has compact
support in[0, 7/2]. This framework is equivalent to the one considered in Desvillettes [11]. Thensfany
point such thayfy ¢ and /™/?¢ are positive, we can let(n) = an~1, and it follows that

a(n)

/ g,,(e)(l—cose)de=/n2<1—cos§);(9)d9—> %/ezg(e)de.
n n—o00
0 0 0

On the other hand,
/2 /2
/ gn(e)deznzfg(e)dejo;ﬁo.
an—l a

(2) For the approximate Debye potential discussed in the Appendix, Eq. (A.1) below, we write

11 _
By (Iz], cosd) > < 2] 4)( H;E‘n/zm 1>’
4maxz|, 1) logn sin*(6/2)
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and we choose (n) = n~Y/2, so that on one hand

n-1/2 n-1/2

1 1- cost 8 d6
/ (1~ C9%) Ging.ao ~ / Y4

logn sin*(6/2) logn f n—oo

(r/2)n"1 (r/2)n"1
while on the other hand
/2
1 / sind do n
: ~ +00

logn sin*(@/2) 4logn n—oo

—~1/2

n

7. Proof of the Landau approximation
We begin with two important lemmas.
Lemma 11.If (B,) concentrates on grazing collisions, in the sense of DefinitionSection3, then

$u(12D) —= V- (Mool12)

weakly in the sense of measures.

Remarks.

(1) Formally,V - (zMuo(|z])) = |zIM),(1z]) + NMso(|z]), whereM[  denotes the (distributional) derivative of
M, on the real line.

(2) The limit coincides with the negative of the kermeh (65) if Moo (|z]) = 4(N — 1)l1/(|z|)/|z|2.

(3) As a particular case, B, (|v — v«|,0) = b, (k - 0)/|z|V, with an total angular cross-section for momentum
transferu, — o, thens, = A, 80, where

ISV

2
A =—| SN[V 2 /de sin 265, (cosd) log cog6/2) df —> oo
n—oo
0

Proof of Lemma 11. From Definition 1, we know that, up to extraction of a subseques)cepnverges to a signed
measure, locally weakly in the sense of measures, and that, fay; all

/2

- 2 inN—2
/ [cosV ©/2) B”(cos(e/z)’c°‘°’9> = Ballzl 0089)} sin'~26d6 — 0
o

(weakly). Thus we may consider only the contribution of anglesy, wheref is small enough.
Next, letp(z) be a test-function with compact support. By the change of variables / cog6/2),

o
N-2 i N-2 1 Izl _
|S |/dz/d93|n G[COS’V(G/Z)B"(cos(@/Z)’COS@) Bn(lzl,cos9)}<p(z)dz
RN 0

0o
=[sV7?| /dz/d@ sin' 20, (|z|, cosd)[p(zc06/2)) — ¢(2)]. (71)

RN 0
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Sincey is smooth and compactly supported,
¢(2c090/2)) — ¢(2) = —Vo(2) - z(1 — cog6/2)) + O(z|26%).

The error termO (|z|26%) is negligible in the limit: indeed,
6o
|z|2/ By (121, cosp)0*sinV =26 do = O(631z1%) My (Iz])
0

convergesto 0 locally in measure. Therefore, up to a small er(r&ﬁ')Othe expressionin (71) is well approximated
by

0
SN72 . 1
| y I/dz[/d@smNZGBn(Izl,COSG)(l—COSG):|z-V(p(z)m—Z/[Moo(lzl)z]-Vw(z)dz.
RN 0 RN
This proves our claim. O

In the next lemma, we are interested in the behavior offfteas defined in (57).
Lemma 12.Let 7, be the operator associated with), as in formula(57), where(B,) is a sequence of collision
kernels concentrating on grazing collisions. Then,

7, — T indistributional sense

where

Moo (v — vi]) v — U*Iz

TN -D (v —vy): D%p(v). (72)

1
Toop (V) = —EMoo(w —0:]) (v — vs) - Voo (v) +

Remarks.

(1) This property is underlying already existing proofs of the Landau approximation in a spatially homogeneous
context. But the variants which had been used so far, were based on symmetrization with respegt to
which would be a bad idea in the present case.

(2) If we setMuo(|z]) = 4(N — 1)¥ (|z])/|z|3, then the linear operatdf, coincides withZz in formula (68).

Proof of Lemma 12. Let us recall from [1, proof of Proposition 4] that
U — Uy
Thp = — / doBy(v—vs,0)(1—k -U)T -V (v)
SN-1

/

1
+ / dch,,(v—v*,(r)lv—v*lzfds(l—s)<D2<p(v+s(v'—v)). vov g> (73)
0

[V — il [ — vyl
SN—l
Here we have used the fact that — v| = |[v — v,| SIN6/2).
Our goal is to show thaf, ¢ converges tdo.¢ in D'(RY x RY); so we can assume that, v,) stays within a
bounded subset &" x RV . By using assumption (iii) of Definition 1 and estimate (i) in Proposition 5, it is easy
to show that the contribution of “large” deviation angles in (73) is negligible and therefore one can assume that
6 < 6p wheredy is arbitrarily small.
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We change variables to separétéom the other coordinates, writing the spherical decomposition
o = (cosd, sindp), ¢ e SN2,
where the first component is the projection offa We note that
vV—v  o-—k
[v — vl 2

Sincegy is smooth and compactly supported, we find that, up to an e(égy which goesto 0 agp — 0, 7,,¢
is well approximated by

/2

— M, (jv - v*|)”__2”* Vo) + / 6 sin¥ =20 B, (Jv — v.], co89) v — v,
0

1 5 o—k o—k
Xi[/<D W5 >d¢}‘
N-2

We shall now study the behavior of the integral in square brackets(.gh<; j<nv be the components of the
symmetric matrixD2¢p(v), where the first component corresponds to the axibwe separate the first component
from the other ones, the componentsof k are((cosd — 1), sinf¢). Therefore, in the term involvings; there

is a factor(cosd — 1)2, of order 4 ind, and this term disappears in the limit> co. By symmetry with respect to
¢, the terms with j¢, j # k, also disappear. We are only left with thg, i =2, ..., N, and they all appear with
the same coefficient, which is

1.
7SIm0 / (e-$)?dp, |e|=1.
SN-2
By a classical computation,
/ (- $)2de = ISN‘2|f‘j’T coSasin'Dada _ SN2
, Io sif" 2 da N-1
SN-

On the whole, using sfié ~ 2(1 — cost) asé — 0, we find

5 o—k o—k\ _|S¥2|(1-cos) .
/d¢<D<p(v)' > 3 >— 2N 1D (v —vy) : D% (v).

SN-2
Here, by ~" we mean again “up to an error which goes to ®gs> 0”. The conclusion follows immediately.O

After these preparations, we finally turn to the proof of our main result.

Proof of Theorem 3. Let (f") be a sequence of weak solutions of the Boltzmann equation, satisfying the
assumptions of Theorem 3. Without loss of generality we can assumg’that f weakly, and our goal is to

pass to the limit in the renormalized equation satisfied/ByBy the strong compactness discussed in Section 6,

we have in fact strong convergencefdfto f; therefore itis immediate th&d; +v- V) B(f*) — (3, +v- V) B(f)

in the sense of distributions. Next, combining Lemmas 11 and 12 above, the estimates recalled in Sections 4 and 5,
the technical assumption (42) and the strong compactness again, it is an easy task to show that

(RD)" = (R, (R2)" — (R2)™ inweak sense
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with obvious notations. The proofs follow the very same lines as in [1, Section 4] and we skip them to avoid
repetition.
It remains to show that

(Re)™ < liminf(Ra)". (74)

This is considerably more difficult that the similar problem treated in [1] because we cannot rely on Fatou’s
lemma any more. All the rest of this section is devoted to the proof of (74), which will conclude the proof of
Theorem 3. O

Without loss of generality, we only consider the casel,i.e.8(f) = f/(1+ f). In view of (55) and (56),

2
Ray'= [ dvdo (), (L4 1) Buto = v ) [B(7) = BT
RN x§N-1
Our argument is somewhat lengthy and a little bit intricate, and we shall sometimes skip easy verifications. In

a preliminary step, we establish a crucial a priori bound stemming out (once again) of the entropy production
estimate.

Lemma 13(Entropy production bounds).
T

sup | dt / dxdvdv*daBn(v—v*,G)[ff+(f”);][ﬂ(f")—,B(f")/]2<+oo.
nelt 0 RN xR2N x V-1

Proof of Lemma 13. By the standard inequalityx — y) log(x/y) = 4(/x — ﬁ)z, we deduce from the entropy
production bounds that

sup dtdxdvdv*dch ,/ f” f" \/f"f* <+oo

neN
Let us introduce an increasing Lipschitz functiBnto be precised later. Clearly,

1?515 dtdxdvdv*dch ,/ f” f" \/f"f* [%}<+o& (75)
Just as in [31], we write
1 1
VIR =N IE= 5T+ VDV E=VE) + 5T =V VEA+VE),
plug this inside (75) and expand the square, to find
P ny/ P n
sop| [ LU+ IR/ i PP P
n m' = f
/ / P(f") — P(f")
» n\" _ ¢n n\" _ rn 76
= [ Bl - Iy - LI e @

(there is also another nonnegative term, that we throw away). By pre-postcollisional change of variables and
symmetry, the second integral can be rewritten as

[ Bl = 21 = P = [ 8P (. - 2]
=/dtdxdvdv*5n(|v - v*|)P(f”)f:,
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where we have used the Cancellation Lemma, formula (41). This integral is a priori bounded as Boo. &5
since in that cases, * P)(vy) < C(1+ |v4]?). ChoosingP (f) = B(f) = f/(1+ f), from the preceding remark,
formula (76) and the identity

2B(f) = B(f) : 21+ A+ £
VI =) == =B - B —=F5
VI =7) T =AU = BU] WG

we get
1 2 n\/ n 2(1+fn)(1+fn)/
sup | B, ny 4 Jfn - +
| B, + VI8 = BN 2 oy < oo
To conclude, it suffices to note thétt+ f)(1+ f)/(VF +/f)?>>1/2. O

Remark. Lemma 13 will imply the estimate
T

/dt / dx dvdvs aVyB(f)VuB(f) < +o0.
0 RN xR2N

To see this, writeB,, (g’ — g)2 = By |v — v4|2sin?(6/2) (g’ — g)?/|v' — v|? (Wwhereg = B(f)) and pass to the limit as

n — oo in the same way as below. This remark shows that the estimatg(f)V,8(f) € Lﬁ)c, which is required

in our definition of renormalized solutions, is satisfied. In fact, we could even remove the “loc”!
We now come back to the main argument.

Proof of (74). In view of our a priori bounds, we only need to show that for all smooth nonnegative test-function
o(t, x, v) with compact support if0, 7] x RY x RY,

/ (R3)®p?dvdxdt < liminf / (R3)"9?>dvdxdt. (77)

We divide the proof into six steps.
Stepl. By the usual pre-postcollisional change of varialiles,, o) — (v, v}, k), which has unit Jacobian,
we rewrite [ (R3)"¢? as

/(Rg)”(pzdv dx dt =/f;’(1+ £7)Ba(lv = val, c089) [B(f") = B(f")]*(¢")2do dvdv. dx dt.

Step2. By monotonicity, we only need to prove the result wiigris replaced by, (|v — vi|) B, (Jv — vy|, COSH),
wheree > 0 and.(|z|) is a smooth cutoff function, identically vanishing fat < ¢, |z| > ¢~1. This truncation
will save us from considerable trouble associated with small relative velocities.

Step3. Let us introduce

ISV=2|sinV =20 B, (Jv — v4|, COSH)|v — v4]2(1 — cOSH)
My (Jv — v — 042 '

5n(|U_U*|s9) =

By construction,f(;’/2 3,(Jv — vi|, 0) d6 = 1. We again introduce a spherical system of coordingteg) for o.

By Jensen’s inequali'qﬁ(Rg,)”go2 is greater than

7/2 / n 2
%/ff(l—l—f”)Mnﬂv—v*Dlv—v*|2|:/Sn(lv—v*l,é?)(p'wcw] dpdvdv,dxdt

]
0
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T
1
=§/dt/dx / dvdvy / do(a)?, (78)
0 RN R2N SN-2

where
/2

(@n =111+ f"/desinN*
0

248" 21y (Jv — v], cOD) v — v, |*(1 — cosh) ,[ﬁ(fny - ,B(f")j|
VM (v = i) |v — 042 v — v

/2
= ff\/l'i‘f"/|U—UH%(IU—UH,@W’[%]C{&
0
The factor ¥2 in (78) comes from the identity
1  1/1-cos
IU_U*|2_2 v —v2 )

and we have introduced the quantity

B, (Jv — vy|, c0sH) (1 — cosh)
Mn(lv_v*l) ’

From the fact thatB,) concentrates on grazing collisions, we deduce thatM, converges taV(|z|)8g—o,
locally in the sense of measures,Rff x [0, 7 /2]. Combining this with (45), we deduce that for all bounded open

set2 c RN with 0 ¢ £2,
(|21, COS9) ——> /Moo (21890 (80)

weakly in the sense of measures@nx [0, 7 /2].
To conclude the proof it is sufficient to show that

(@)n = (@)oo (81)
in the sense of distributions, where

@00 = VIV TF Fy Moo(lv = vDlo — v: 2o VuB (") - 4.

Here ey = ¢4 (v, v4) is a unit vector orthogonal tb = (v — v,)/|v — v.|, with coordinateg in our system of

spherical coordinates. The convergencéwf, to (a)« should hold inD’([0, 7] x RY x RY x R} x Sq’b"*z) (as
in the other weak limits considered below). If (81) holds true, then the proof of (77) follows by Jensen’s inequality
(convexity of the square function) in the form

/(a)go < Iiminf/(a),%,

and the formula

mn(Jv — vel, cosd) = [ SV 72| sinV 29 (79)

|SN=2|
N-—-1

ve e RV, / (0-ep)?dp = |1e)?

SN—Z
(cf. the proof of Lemma 12).
We immediately note a mathematical subtlety: it is not always possible to defime a smooth way on
the spheresV—1 (think that there is no smooth field of unit tangent vectors on spheres of even dimension). So
convergence i’ (RY x R{}’* X Sq’b"*z) seems meaningless. But what we really wish to prove is a local property,

that is |, (@)%, <liminf [, (a)? for all (bounded) open set in [0, 7] x RY x RY x RY x §)/~2; so we only
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have to prove(a), — (a)o On “sufficiently small” open sets; the general case can then be obtained by using
partitions of unity, etc. And since we have already cut out small values -efv,, we may assume that the
projection of A ontoRY x RUN* lies in a neighborhood on which one can define spherical coordinates with axis
(v — vy)/|v — vy, In @ smooth way (with respect tg v,). From now on, we work in such an open subgebf
[0, T] x RY x RY x RY x Sg’*z, which will also be assumed to be smooth and bounded.

Also, we shall not really prove thaét),, — (a)~, because the lack of smoothness of the square root function in
J/ fIF might cause technical problems. Instead, we shall rep|age by s, (f'), wheres, is a smooth (Lipschitz)
bounded approximation of the square rapt,f) < Vs (f) = &/f asa — 0, the convergence being monotone.
Denoting by(a), . this modification of(a),, we shall prove (with obvious notations) that

(@)pq — (@) inthe sense of distributions. (82)
n—oo ’

This will entail that, for eaclx > 0,
/(73\3)§°<p2<Iiminf/(@)/g¢zgliminf/(R3)" 2 (83)
n—o0 n—o0

where(%, m are just the same a®3)>°, (R3)", but with £, replaced by, ( f:)2. Once (83) is established,
if we leta — 0, Beppo Levi's monotone convergence theorem will imply the same inequality R} in place

—~

of (R3)3°, and the conclusion will follow.

In the sequel, we shall drop the subscripand write justs(f), (a),, etc.

Step4. From the strong convergence of the sequefiteve know that./1+ f* — /1+ f, strongly in
L%C([O, T1 x RY x RY). Therefore, to prove (82) it is sufficient to prove the convergence of the distribution

/2

On=s(r2) [ o= v oo — [ 2LT LI gy,
0

v — vl

(84)

inweakL?([0, T] x RY x RY x RY x Sé:"z), or more rigorously inL2(A), wheren, is defined in (79), to

(b)oo = S(f*)\/Moo(|U — D)V = vl 29V B(f) - eg.
From (80) and the boundednesssyfwe have

Ml = val = 89-0 ® [ Moo(lv — vV — v3 2
weakly in the sense of measures. By Lemma 13 and Jensen’s inequality, we can see that
sup||(®)u | 2 < +o0;
n

therefore we only have to check that
(), —> (b)s indistributional sense. (85)
n—oo

Step5. At this point, we want to partly symmetrize the integrand in (84). This will be done with the help of the
following auxiliary lemma:

Lemma 14.1f x (¢, x, v, v, ¢, 0) is a smooth function supported i x [0, 7/2], and if F" and G" converge
to F and G respectively, locally inL.? ([0, T] x RY x RY) and in L4([0, T] x RY x RY) respectively, with
(1/p) + (1/q) =1, then
/2
/d9 M ([0 = vl 0) X (1, %, 0, V4, ¢, 0) F" (V) G" (v},) = v/ Moo ([ — vi) X (£, X, v, V4, ¢, 0) F () G (vy) (86)
0
in D'(A).
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Proof of Lemma 14. Let v be a test-function in the variablés x, v, vs, ¢). We have

/dt dx dvdv, dg do na(lv — vl, 0) Y x (F")'(G").,

Na(JU — i, 0)
|SN=2|sinfV=2¢
whereo can be seen as a functionwfv,, 6 and¢ via our choice of spherical coordinates; and simil@rlgan be

seen as a function af, v, ando: ¢ = ¢ (v, v, o). We can now perform a pre-postcollisional change of variables,
and find that the integral above coincides with

=/dtdxdvdv* do vx(F") (G"),

M (v — vsl, 6)
|SN-2|sinV =29

whereg’ = ¢ (v, v}, k) (the notatiork = (v — v,)/|v — vy] still in use). Of course this integral can be rewritten as

/dt dx dvdv.do Y, x, v, v, ) x (v, v, ¢, 9)(F”)(G")*,
/dt dxdvdv,db d¢nn(|v — vy, G)w(t,x, RV D O 9)(F”)(G”)*.
As 6 — 0, we havey’ — v, v, — vy, 0 — k and¢’ — ¢; and all of this is uniform om. In particular,
/de d¢7ln (IU - U*Iv e)w(ts X, 'U/, U;, ¢/)X(U/v U:kv ¢1 9)
- V MOO(IU - U*I)I/f(ts X, U, U, ¢)X(U, U, ¢1 0)1

at leastin weak sense. Combining this with the strong converger¢gnfx, v)G" (¢, x, v,) to F (¢, x, v)G (¢, x, vy),
we easily conclude the proof of the lemmax

Now, let us write(b),, as

s(ff)/nnlv—vn((p —w)ﬂ(f ) =B

2 [V — v
+S(f>:l)/77n|v—v*|<¢ -2F<ﬂ),3(f|3,:,fl(f ) a6, (87)

Sincey is smooth, we haviy’ — ¢| < C|v’ —v|. Itis easy to see that the first integral in (87) is boundetdnwe

want to check that it actually goes weakly to 0, and for this we just have to check that it convergesaA)n
SinceB(f") convergest@(f) in all Ll’;c spaces, X p < oo, this will be a consequence of Lemma 14, where we
sety (t,x,v, v, @) = (@ —¢")/|lv—"2'|, F" = B(f™) andG" = 1 (note thaty is not a smooth function dafv, v')!).

Then we see that the first integral in (87) can be written as the difference of two integrals which have the same
weak limit asn — oo.

Next, we wish to prove that

(e),,Efden,,(|u—v*|,9)[s(f”)*—s(f”);](‘p“L‘p )ﬁ(f ) = FUT) 0 (88)

2 v/ — v| n—00

in weak sense.
Let« (v, v") be a smooth cut-off function with supportifv — v’| < §). By another application of Lemma 14, it
is not difficult to show thate), x converges weakly to 0; thus we only have to worry about small valugs efv|.
We can assume thatis chosen in such a way that(x) — s(y)| < C|8(x) — B(»)|; then, using the fact that
|v, — v«| = [v" — v|, we can bound the integral ¢fe),| over the regior(jv — v'| < §) by
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ca/nn(lv—v*l,e)‘ﬁ(fn)*_ﬂ(fn);‘ BU™) = B do dvdvs dx dt
|v], — v« [v" =]
ny _ ny/ \ 2
<C8/nn(|v—v*|,9)<%) dodvdvydxdt,

where we have used the Cauchy—Schwarz inequality. By Lemma 13, this expression is boundé&d)lizndO
hence negligible a& — 0.
As a conclusion of Step 5, using (88) we see that (85) holds if

() —> ()0 (89)
n—oo
in distributional sense, whefe), is the symmetric expression

M + n; + ¢ ny _ n
/denn(w_v*"@)[s(f ) 2s(f ) ](cp Zco )ﬁ(f“i,_fl(f )

’

and

(oo =S(f*)\/ Moo(|U - U*|)(ﬂvv,3(f) C€gp-

Step6. Now that we have obtained a symmetric enough expression, we can use a duality argument to prove (89).
Let us multiply(c),, by a smooth, compactly supported test-functiom, v.). Let alsox be a smooth test-function
in the variables, x, ¢. The functionsy andx are chosen in such a way thak is supported iM. We shall use
the shorthand’ = ¥ (v/, v,). What we have to prove is

/(c)nl///c do d¢ dvdv, dx dt — /(c)oow dod¢ dvdv, dx dt. (90)
n—oo

One should be careful in writing down the weak formulation for the integral on the right-hand side of (90). The
formula

Y (v, v) = Y V) 2 v =V [(Vy = Vo )Y (v, 04) -eg (0 — 0) (91)

shows that this integral can be rewritten as

%/dtdx dp dvdv,dO ks(fu)v MopB(f)(Vy — Vo) (v, vs) - €. (92)

One should not be surprised by the non-appearance of derivativga/gf: this can be attributed to the fact that
VM is parallel tov — v,.
By the pre-postcollisional change of variables, the integral on the left-hand side of (90) is

5 [[araxapavaveao I v*lﬁ)((p - )[ﬂ(f”) FB( S )

Taking into account (93) and (92), the convergence of (90) follows by a last application of Lemma 14. The proof
of (74) is now complete. O

Appendix: An approximate Yukawa cross-section
In this appendix, we check our technical assumptions on a rather realistic model coming from physics.

Computations are a little bit long and we shall present them in a slightly sketchy way. Most of the following
physical discussion below is taken from [34].
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The Yukawa potential is just the same as the Debye potential, except that it is usually considered in a quantum
context (for instance, scattering of electrons or ions by neutrons). Up to a dimensional multiplicative factor, the
Yukawa potential is given by

efr/)h
V()= ;
r

wherea is the screening length. When dealing with quantum collision processes, one can “show” that (essentially)

hZ
A=—0.
mez

When the relative velocity satisfies théorn approximationi.e.
> &
4 ne

then the scattering cross-section can be approximated in such a way that

1 |z](e?/m)?
B(|zl, cosf) sinb = - '
(lzl. cosd) sind = 3 7 20/ + (h) 2 B2

This expression does not take into account exchange terms due to Pauli's exclusion principle. At the level of the
Rutherford cross-section, these corrective terms can be computed explicitly, see for instance [10, Eq. (3.83)], and
it is clear that they are negligible for small deviation angles. We shall admit that the same holds true here.

Note that

G 2
<2m)\) = amn
Turning to nondimensional units, we denote this parameter/lay 40, up to a multiplicative factor; coincides

with the screening length. Then we may rewrite the approximate cross-section as

|z| Sin@
(I1zI12sir?(0/2) + 1/n)2’

B(|z|, cosd) sind =

Now, we rescale this expression by a factoriddghe Coulomb logarithm). This leads us to our final expression

|z| sind
logn (1z|2sin?(6/2) + 1/n)2

B, (|z], cosd) sing = (A1)
We claim that the sequence of collision kernéls,),>1 concentrates on grazing collisions, in the sense of
Definition 1, and satisfies the technical assumptions of Section 3 as well. Let us sketch the proof of this claim.
First of all, B, is admissible (for fixed:), because it is just a nonsingular cross-section.
Next, let

/2
|SY| |z Sind(1 — cosv) do
M, = ) A2
(I<1) Iogno (|z]2sir?(6/2) + 1/n)? (A-2)

For anyéfp > O,

C(fo)

Mfo(|Z|) < m,
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and from Proposition 5 in Section 4 we see tMﬁO < Ando, With A, — 0 asn — oo. Hence the contribution of
large angles in (A.2) is asymptotically negligible, and we can assume thaty whereéy is very small. Then,
locally in z, we can replace the integrand by its equivalent, &fdoy

1z 34 4|81 1 2 1 1
ISIIZI/ 6346 1Y) 2]
= 1 | —0, (@) .
2logn | (21262/4% 1/n)? |z|3[ " logn Og( ot )+ <Iogn)i|
0

As a consequenceM, (|z|) converges weakly (locally) in the sense of measured1g,(|z|), with
1S4

oo(|Z|) = W

Further note that, sino@/m)6 < sind <6 and 1— cos? < #2/2 for6 € [0, /2], we also have

M) <l [ ot 0
R 0 (121202/2+1/n)? lz]>00

uniformly in n, by the same estimate as above. Thus assumption (42) holds.
Next, we compute (see (40))

o 1 lz]
sa(|zl, 0) = sin® [0083(9/2) B, <COS(9/2) , cose) — Bu(lzl, cos@)}, (A.3)

and investigate the behavior of tideintegral of this expression, which gives the ker§¢Jz|). Again, one can
check that the contribution of large deviation angles is negligible in the timit co, and we concentrate on small
values ofg. For smallé we find that (A.3) is equivalent to
1 4 1/(z%0%/4)
logn |z[30 (14 1/(1z|2(02n/4)))3
By the changes of variablés— (\/n/2)6 andz — z0,

(Vn/2)m/2
/ / 1/(|z1*©%n/4)) 1 / d_@( / dz 1)z )
Iogn 1212 (1+1/(121(6?n/4))3 ~ logn 0 2 A+1/12133)

lzI<A 0 lzI< A0

Since

dz  1/Jz? 4
7\Cma9
/|z|3(1+1/|z|2>3 X0, 2).
[z]<AO

we see thatf i<aSn(z)dz = Jiz1<a J d0sn (21, 0) is bounded uniformly imu (this is the remaining part of
assumption (|) in Definition 1).
Next, for any6p > 0,

|z|
nlogn (|z|2+1/n

sn(121,0)1gzg, <

3 19>

which easily leads to
/2

C(@o) |z|dz
/ dz / n(121.0)d0 < 350 /(|z|2+1)3 s

lzZI<A 6o
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ThusS% convergesto 0 il (R3).
As for the technical conditions (43) and (80): the first one was established in Section 6, and the second one is a

consequence of the uniform smoothnes®pin the z variable away from the origin.
Remarks.

(1) We have not considered the part of the kerBekhich comes from deviation angles larger thar? (recall
formula (37)). This part has no influence on the estimates.
(2) If we denote by: = 1/(4|z|?), we have, again by a homogeneous change of variable,

/2 Jnm /2

1 /ﬁ a/®n) 1 / do a/6?> Ca

logn J 6 (1+a/n62)3  logn 0 (1+a/62)3 " nlogn’
0

This expression goes to 0 for eaghand in fact uniformly for|z| > ¢, which shows thas, will converge
weakly to a Dirac measure at the origin. This was expected in view of Lemma 12 and formula (64).
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