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ABSTRACT. — We consider two-dimensional autonomous divergence free vector-fidlds in
Under a condition on direction of the flow and on the set of critical points, we prove the existence
and uniqueness of a stable a.e. flow and of renormalized solutions of the associated transpc
equation.
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RESUME. — On considére ici des champs de vecteurs a divergence nulle et a coefficients dar
LZ .. Avec une condition locale sur la direction du champ de vecteur, on prouve I'existence
et I'unicité d’un flot presque partout et des solutions renormalisées de I'équation de transpor
associée.

0 2003 Editions scientifiques et médicales Elsevier SAS

1. Introduction

We consider the following transport equation,

M0+ b() - Vautt, ) =0 1)

with initial conditions
u(0, x) =u’(x) )

wheret e R, x € Q,u’:Q — R, b: Q2 — R? satisfies div =0 andu :R x Q — R. The
domain is the torusl1?, or R? but in that case we must assume thatatisfies some
natural growth conditions, or a bounded open regular subset ahdb is then required
to be tangent to the surfad&2. We assume that® € IL? for somep € [1, oo].

As is well known, this transport equation is in some sense equivalent to the ODE

X(t)=b(X(1)). 3)

E-mail addresshauray@clipper.ens.fr (M. Hauray).
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Let us begin with some definitions and a proposition in which we always assume tha
b belongs at least thi.

DeFINITION 1.—-Given an initial condition ifL.>°, a solution of(1)—(2)is a function
in L°°([0, co) x ) satisfying for allp € C2°([0, co) x )

/ u(% +b-vx¢>) =~ [wp0., (4)
Q

[0,00) x Q2

DEFINITION 2.—We shall call renormalized solution a functienin L} ([0, 00) x
Q) such thatg(u) is a solution of(1) with initial value 8(u°), for all 8 € CL(R), the set
of differentiable functions froriR to R with bounded continuous derivative.

Remark— In this definition, we do not askto be a solution becauseifonly belongs
to Li., we cannot give a sense to the produet This is one of the reasons why we
introduce this definition. But, this is of course an extension of the notion of solution. If
u € L™ is a renormalized solution, it may be shown using ggatiatu is a solution.

We will give the next definition only for the case whe@e= I12 or a bounded open
subset ofR?. We refer to [4] for the adaptation to the caseRsfin order to simplify the
presentation.

DEFINITION 3.-—A flow defined almost everywheter a.e. flow solving (3) is a

functionX fromR x € to 2 satisfying
() X eCR,LYHY%;
(i) [qo(X(t,x))dx = [5¢p(x)dx V¢ € C™, Vi € R (preservation of the Lebesgue’s
measurg;

(i) X(s+t,x)=X#, X(s,x)) a.e.inx\Vs,t € R;

(iv) (3) is satisfied in the sense of distributions.
These properties implies that for almost aJlvr e R, X (¢,x) =x + fé b(X(s,x))ds.

Moreover, the useful following result is stated in [5].

ProPOSITION 1. —The two following statements are equivalent
(i) For all initial condition u® e L', there exists a unique stable renormalized
solution of (1).
(i) There exists a unigue stable a.e. flow solutior{3)f
Moreover the following conditiofR) implies these two equivalent statements

Every solution of(1) belonging taL.*° (R x €2) is a renormalized solutian (R)

This method of resolution of ODE’s and associated transport equations was introduce
by DiPerna and Lions in [4]. In this article, they show thabit WS, the problem
(1)—-(2) has a unique renormalized solutienin fact, even if it is not stated in these
terms in their article, we can adapt the method used in it to prove Proposition 1 and th
fact that (R) is true wheh € Wlé’cl. In our paper we will show that (R) holds provided

thatb € L2, and that the following conditionK,) on the local direction ob is true for
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a sufficiently large set of points
3t eR? a>0, e>0 suchthatforalmostall e B(x,e)b(y)-£>a.  (P)

This is a local condition and the quantitiese, ¢ depend orx.

We will also show that (R) still holds in the case of a physical Hamiltorfigw, y) =
y2/24 V(x) with V' € L ..

This paper is a extension of Desvillettes and Bouchut [3], in which similar results are
shown wherb is continuous. The authors use the fact that since we have an Hamiltonian
we can integrate the ODE to obtain a one dimensionnal problem, that we are able ti
solve. We will adapt this method with less regularityon

2. Main result

Since we are in dimension two and that @y= 0, there exists a scalar functidi
(the hamiltonian) such that H+ = b. If b belongs tdL”, thenH is in W17,

THEOREM 1. —Let Q' be an open subset ¢t. Assume thab < IL,,ZOC(Q’) and (P,)
holds for everyr € ', Then the conditioR) holds in<'.

Remarks—

(i) Two is the critical exponent. It corresponds to the critical cége! in [4] since
in two dimension we have the Sobolev embedding fiéth! to 2. In the fourth
paragraph, we shall describe a flow which idihfor all p < 2, which satisfy the
condition(P,) everywhere but for which uniqueness is false.

(i) This theorem does not extend the result in [4] in this particular case because
a vector-fields inW'! does not necessary satisfy the conditigh). We can
construct divergence free vector-fieldsii* which does not satisfy the condition
(P,) at any pointx.

(iif) Our method allow to prove the existence and the uniqueness directly (i.e. without
using (R)), but it raises many difficulties concerning localisation and the addition
of critical points.

(iv) Here we state a result for a subsetnfOf course, a particular case of interest is the
case wher2’ = 2, where we may then use Proposition 1 to obtain the existence
and the uniqueness of an a.e. flow and of the solution of the transport equation. Bu
the case2’ C Q will be useful when we will shall take into account some points
where(P,) is not true.

Proof. ~-We shall prove this result in several steps. First, we shall state and prove
some results about a change of variables. Then, we shall justify its application in
formula (1), and obtain a new transport equation. Finally, we reduces this problem tc
a one dimensionnal one, that we are able to solve.

Stepl. A change of variable.

It is sufficient to show the result stated in Theorem 1 locally. Then, we shall work in a
bounded neighbourhood of xg, in which we assume that- £ > « a.e. asinP,). We
defined® onU by

P(x) = ((x —xo0) - &, H(x)).



628 M. HAURAY / Ann. I. H. Poincaré — AN 20 (2003) 625-644

We wish to useb as a change of variable. For this, we use the following lemma

LEMMA 1.—Assume thatd € WP (U) for p > 2, then there exist a bounded
connected open sé&t containing (0, 0) and ®~* € W1”(V) such that

foralmostallx e U, ®x)eV and d o d(x)=nx,
foralmostallye V, & (y)eU and ®od (y)=y,

® and &1 leave invariant zero-measure sets.
Moreover, we have fof € L>°(V) the following formula

/fo¢@ﬂﬂmmwx=/fwwy (5)
U 74

Proof. —Without loss of generality, we may assume thgt=0, £ = (-1,0), U =
(—n,1) x (=n,n). According to [7] we can assume, sindé is Wt?, that H is
absolutely continuous on almost all lines parallel to the coordinate axes and that it i
true in particular for the linegy = £n}. Then we define a open s&tby

V={01y) €eR? H(y1,—n) <y2 < Hy1,n}.

To show thatV is connected we have to show thétx,, —n) < H(x1, n) for all x, €
(—n, n). Butwe havgb,(x)| > « for almost allx € U thenH (x1, n) — H (x1, —1) > 2n«
for almost allx; € (—n, ), then for all thoser; by continuity.

® preserve the first coordinate, and for almostwale (—n, 1), H(xq, -) is a strictly
increasing homeomorphism frof+-7, n) to (H(x1, —n), H(x1, n)). Hence we can
define a suitable mesurable?.

Now, we can prove Eqg. (5) using Fubini’'s theorem. First we consider the case wher
f is continuous. Then, we have

n

n
/foCID(x)|D<I>(x)|dx:/ (/f(xl,H(xl, xz))|b1(x1,x2)]dxz>dx1.
U

R
© v
® A
TN W N
1 U\ yl
U \%
I

Fig. 1. The® map.
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Next, if F is CY(R,R) and¢ is in WY?([a, b]), then F o ¢ is in WP ([a, b]) and
(F o) = (F o¢)p'. We now use this fact withi a primitive of /. Therefore, we can
write

H(x1,7m)

n
/ £ (1, H (x1, x2)) b (x1, x2) dixz = / £, y) dy.
-n H(x1,—n)

And if we use Fubini’s theorem again, we obtain the result.

Now, we prove (5) for an arbitrary function ib>. If O is an open subset df, we
choose a sequence @f continuous such thaf, — xo everywhere when goes toco.
By increasing convergence, the result is still true fgr. We have it for the caracteristic
function of an open set. If we use the fact thaf > «, we obtain the inequality

A(@7H0)) € %A(m

where) is the Lebesgue measure. NextFEifis a zero measure subset 6f we obtain
(using the above inequality with open set of small measure contaifjrihat ®—1(E)
is also a zero-measure set.

Now, if we approximate &.°°-function f by a sequence of continuous functiofjs
converging tof a.e., then the sequengg o ® converges tof o ® a.e. and with the
dominated convergence theorem, we obtain the resulf for

The formula (5) may be rewritten as follows

/f(x)|Dc1>(x)ydx:/focb—l(y)dy.
U %

By approximation, it is always true provided the left hand side is meaningful, as it is
the case, for instance whefi belongs tolL?(U), with ¢ the conjugate exposant @f
(pt4+4¢gt=1). Andif f e L%(U), then f o ®~* belongs tdL?(V) with b =a/q.
To show thatd~! belongs tow*”(V), and thatD (&) = (D®)~1 o &1, the most
difficult case is to show that
-1
9%, :_(2> oL, (6)

dx1 |b1]

First, sinceb, € L”(U) and|b;| > «, we can use the change of variables to deduce

/

Hence, the right handside of (6) belongdLio.
Then, letp be InC°(V), we have

1,08 [ 9
V/ @700 dy = U/ K2 0 () by ()] d

b,

by

p
odt= / boby ",
U

a



630 M. HAURAY / Ann. I. H. Poincaré — AN 20 (2003) 625-644
3(¢ 0 ) 3(¢ 0 )
— / x2< )|br()| — (X)bz(X)> dx
7 axl 8x2

= /(j) o ®(x)by(x)dx

—/¢(y>mo<b (x) dx

and this is the expected result. To obtain the second line from the first, we write

Oy, (po®) =0y, 0 D — broy,p 0 P,
e, (¢ 0 @) =b1d,,0 0 D.
And whenp > 2, these two quantities belongé and we may multiply the first by,

the second by-b, and add them to obtain the desired identity. To obtain the third line
from the second, we use an integration by parts and the fact thatd®. O

Step2. Equivalence with a new transport equation.
We now wish to apply the change of variables in the formula (we recall that we assume
thaté = (—1, 0))

/ u(d;¢p +b.Vo) = —/u”¢”. (7
[0,00)xU U

Sinceu belongs tal.**(U), this expression make sense fiin Wol’q([o, o0) x U)
(here and belowy is always the conjugate exponent @f. But, we want to apply (7)
with ¢ (¢, x) = ¥ (t, ®(y)), wherey € C°([0, 00) x V). In this casep will belong to
WP ([0, 00) x U) and will also have a compact support because of the ford.dh
addition, sincep > 2, we may write

b-V¢= bl(axﬂﬁ od — bgaxzw o®d) + bgblaxep od = blaxlw od
and we obtain, denoting by, y) = u(z, ®~(y)) andJ = |b1| o &1

v()w()
J

1

9 9, ——

/ (1( 09 () + ﬂﬁ(y))
[0,00) x

for all ¥ in C;°([0, 00) x V). In other words, is solution inV (in the sense of the

distributions) of

3 (;) +9,v=0 8)

with the initial condition(v/J)(0, -) =v°/J.
Conversely, ifv € L*>°([0, 00) x V) is a solution of (8), we may test it against
functionsy in Wg([0, 00) x V), and if ¢ is in C°([0, 00) x U) thenp o &L is in
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Wg’l([o, o0) x V). Thus we may follow the above argument backwards, and we obtain
that (8) is equivalent to (1).

Step3. Solution of the one dimensional problem.

In view of the precedent steps, it is sufficient for us to show that (R) hold for Eq. (8).
But, in this equation there is no derivative with respecp4oTherefore, it is equivalent
to say that for almost alf, 3, (v/J) + 9;,v = 0 on the seR x V,, with the good initial
conditions (heréV,, = {y e R | (y, y2) € V}). This would be obvious iV were of the
form (a, b) x (¢, d), but we can always se¢é as a countable union of such rectangular
sets. And since an open subseffofs a countable union of open intervals, we just have
to show that the property (R) is true for Eq. (8) on an inteival (a, b) of R, with J > «
a.e.onl.

Let F be a primitive of ¥J. F is continuous, strictly increasing ofu, b) onto
(F(a), F(b)), and its inverseF~! belongs to WY1(F(a), F(b)). Again, we may
performe the change of variables— z = F(y) and we obtain that Eq. (8) oh is
equivalent to

dw+0w=0 onl0,00) x (F(a), F(b)) 9)

wherew(t, z) = v(t, F~1(z)). For this equation the property (R) is true. In fact we have
aflow X (r, x) = F71(F(x) + 1) for (8), but we need to be careful because we are not
exactly on the whole line and so this quantity is not defined for.allo

3. Critical points

In the preceding result, we assumed that the condit®n was true for allx. We
want here to take into account possible critical points. However, since we only assum
thatb € Li,., we cannot define critical points (of the Hamiltonian) as points wiere
vanishes (the usual notion when the flow is continuous). In some sense, critical point
mean for us all those points whef&,) is not true. In fact, this yields a “larger” set of
critical points.

3.1. Isolated critical points

Our first result is the following

COROLLARY 1.-If b satisfies(P,) everywhere inQ2 except on a set of isolated
points, then théR) hypothesis holds.

Proof. —Without loss of generality we may assume tifat= R?, that (P,) holds
everywhere except at the origi®, 0) and thatb € 2. We takey € C°(R) so that
¥ =1 on a neighbourhood dD, 0) and vanishes outside the bdl of radius 1. We
definey, = ¥ (3).

Letg € C°([0, 00) x R?), B € C1(R) andu be a solution of the transport equation®fy
then(1— v, )¢ € C(R?\{(0, 0)}, and sincex is a renormalized solution dR?\{(0, 0)},
we may write

(8,8Gu) + div(BBW)). (L— Y)¢p) = / Bu*)(L— 1), (10)
RZ
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/ Bu)(L— ) (3 + b~ Vep) — / B)Pb - V.

[0,00) xR2 [0,00) x R2

= [ Buna-yos" (11)
RZ

Whene goes to 0, the first integral converges(&g (1) + div(bB(u)), ¢), the second
one converges to 0 since

‘/ﬁ(u)d)V% S Clbl2p) IVYeliLe < CIVY L2 l1bliLzs,)
R2

and the right hand side converges+qp. (u®)¢°.
We conclude that

(8,B0) + div(bBW)) . §) = / B(u’)g”
RZ

for all ¢ € C3°([0, 0o) x R?). Henceu is a renormalized solution. O
3.2. A result with moreregularity on H

The above result, of course, does not allow for many critical points. But we can
allow much more with stronger conditions di. First, points where there exists a
neighbourhood on whicly vanishes, are obviously easy to handle. We shall Gall
the set of all these points, arl the set of the points whergP,) is true. We denote
Z = (0 U P)° (this complementary is taken ). It is closed, sinc& and P are open.
Then we have the following corollary.

COROLLARY 2.—Assume thaf is continuous/ is a set of zero-measure R? and
H(Z) is a set of zero-measure R. Then(R) still holds.

Remarks—
(i) These conditions where introduced by Desvillettes and Bouchut in [3] in the case
whenb is continuous. Here, we only rewrite their proof in a less regular case.
(i) If p > 2, according to Sobolev embeddinds,is automatically continuous.
(i) We do not know if H(Z) has zero-measure since we cannot apply Sard’s lemma.

Proof. —Let u be a solution of the transport equation (1) 8 € C1(R), ¢ aC>-
test function, and, a compact set containing the supportf, -) for all . We define
Z,=ZNK,andK = H(Z,). ThenK is a zero-measure compact set. Then, we can
find functionsy, € C;°(R) such that, &< x, < 1, x, = 1 on a neighbourhood df and
X» = Xk, the characteristic function &, whenn goes taco. We set¥,, = x, 0o H. ¥,
is continuous, belongs 17 (R?) and¥, = 1 on a neighbourhood of,,.

By Theorem 18(u) is a solution of (1) inP, and is also a solution i®, because on
this setu is independent of the time. Since this two sets are opém) is a solution in
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PUO. (1—¥,)¢ is continuous and belongs W7 ([0, co) x K,) and has its support
in [0, >0) x (K,\Z,). Hence, sinc€K,\Z,) C P U O we can use it as a test function.
We have

(8,8(u) + div (b)), (1— W,)¢) = / Bu’)(L— W,)g°,
Q

/ Bu)(L—0,) (3,6 +b- V) — / Bu)b -V,

[0,00) xQ [0,00) x 2

= [pura-woe (12)
Q

The second integral vanishes becaWsk, = (®/ o H)VH andb = VH".
The first integral converges by dominated convergence to

/ Bw)(@,6 +b - Vo)

[0,00) x H=1(K)¢

while the left hand side goes te [, k. B(u’)¢°.
Then, to prove that (4) holds, we just have to show that

/ Bu) (0,0 +b- V)= — / Bu®)¢”. (13)

[0,00)x H=1(K) H-L(K)

But H € WP (R?) andK is a zero-measure set, and this is a classical result that in that
caseVH =0 a.e. onH %(K) (see for instance [5]). Theh,= VH' =0 a.e. on this set,
and

/ Bu)(@p+b- V) = / Blu)did.

[0,00)x H=1(K) [0,00)x H=1(K)

Moreover,H (K) N P is a set of zero-measure becauseRyvVH # 0 a.e. Hence
the following quantity will not change if we integrate only & (K) N (O U Z) or on
H~Y(K) N O sinceZ has zero-measure. But we already know thé independent of
the time on this set, then we can integrate in time to obtain the equality (I8).

As a conclusion to this section we just wanted to say that we do not know what
happens when the conditiqiP,) is not true on a sufficiently large set. Of course, we
can construct divergence free vector-fields which do not satiBfy at every point, but
it seems difficult to work with such flows because their definition is complex.

4. Oneexample

We observe in this section that the example introduced by DiPerna and Lions in [4]

provides an example of an divergence free vector figldach thab € LX.(R?\(0, 0)),
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A 2 I

Fig. 2. Flow lines of the example.

b isinL? in a neighbourhood of the origin for ghl < 2 but not forp = 2, b satisfies the
condition (P,) everywhere, but there exist several solutions to the transport equations
and several a.e. flows solving the associated ODE.

4.1. Definition of the vector-field

We define the hamiltoniafl as follows (see Fig. 2)

5 i
ol if g | <zl

H(x)=<{ —(x1—|x2| +1) if x> |x2],
—(x1+ x| =1 if x1 < —[x2].

Then,b is given by

JH . .
b1(x) = —— = —sign(x>) <—X1 L i<ing + Slgr(xl)llx1|>|x2|>v
dx2 x2S
oH 1
ba(x) = P <—|x2| Ly < + 1IX1I>IX2|>'

4.2. Form of the solutions

First, we construct an a.e. flow solution of the associated ODE. Since it would be
symmetric in relation to the,-axis, we only defined it fox; > 0. We also define it just
fort > 0.

In the case when € x, < x1, we set

X(t,x)=(x1—t,xp—1t) fort<xp,
X(t,x)=(x1—2x2+1t,x2—1) fort>xy,
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while for 0 < —x5 < x1, we set
X(t,x) =(x1+1,x2—1).

In the case when € x;1 < x», we set

/ 2t (x2)?
X(t,x) 1—()62)2 (x1,xp) forr< 5

[ 2t x2)?
X(t,x) )2 —1(x1, —xp) fore> ( ; .
And if 0 < x1 < —xo,
X0 = |14+ -2 (x1x2)
s, X) = (x2)2 X1, X2).

In the sequels, we denott={x e R? |0 < x; < —xo} andJ = {x e R?| 0 <
x1 < xp}. For an initial conditionu®, some tedious computation easily shows that the
solutions of the transport equation (we use the factiliatX (z, x)) is independent of
t as long asX (¢, x) does not reach the origin, and then we use the change of variable
(t,x) — (¢, X (¢, x)) on all the space, paying attention to what happens at the origin).
They are of the form

(X (=1, if I orxel andr< @2
u(t,x) = WX 0) *# * ) 2 (14)
u(X(—t,x)) if xel andt>(9€§) ’
wherer is any function defined od satisfying the condition
X2 X2
Vx, > 0, /ll(xl,xz) dx; = /uO(xl,xz) dx;. (15)
—X2 —X2

Indeed, we use here the flow for simplicity but these solutions are not defined
according to this flow when a trajectory pass through the origin. We will try to explain
what happens at the origin. Fos > 0, if the quantityu represent a density of mass, all
the mass on the segmeik, x,) | x € (—x, x»)} reaches the origin at the tin{e,)%/2.

After this time it continues to move ih always on segments parallel to theaxis, but
it can be redistributed on them in any way provided the total mass on this segment ir
conserved. This is what means the condition (15).

The renormalized solutions are always of this form, but the condition (15) should be

replaced by

Vxz > 0,8 € CL(R) / B@) (e, x2) dxy = / B’y x)dxr.  (16)
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This condition (16) is equivalent to the fact that for ajl € R, we have a measure-
preserving transformatio® from (—x;, x,) into itself such thati = u® o ®. We refer
to [6] for this point.

Moreover, we can also find all the flows solutions of the associated ODE. Choosing ¢
mesurable measure-preserving transformatiofrom (—1, 1) into itself, we defined a
flow Xy by

X, x if x ¢ Jors < @22
X\y(f,x)={ (r: ) ? 2

W()X(t,x) if xeJands > 92

To see that this defined a a.e. flow, we use the property stated in the definition of al
a.e. flow and the fact that an a.e. flow is measure preserving. Let us try to illustrate thi
definition. A particle with an initial position? in J moving according ty behaves as
follow. It moves on the half-lindx|x;/x; = &, x2 > 0} (with A = x{/x9) until it reaches
the origin. Then it continues to move inbut on the half-lindx|x;/x, = ¥ (1), x, < 0}.
Indeed, ¥ may be seen as a mapping between the upper half-lines and the lowel
ones.

We can thus see that in this case, we have renormalized solutions that are not define
according to an a.e. flow. Indeed, for a renormalized solution, we can choose differen
mappings between the upper half-lines and the lower ones forxga@h other words
i =u’(W,,(x1/x2)x2, x1) WhereWw,, is measure-preserving transformation frosi, 1)
into itself depending o), while for a solution defined according to an a.e. flow, this
correspondance will be independantvef

4.3. Remark about the uniqueness of the solution

First we remark that the flowX is a specific one. It is the only one for which the
hamiltonian remains constant on all the trajectories. Moreover, we observe that the
solutionu defined according t& is specific among all the others. This is the only one
which satisfies also the above family of equations (17), which says that the hamiltoniar
remains constant on the trajectories.

VfeCR,R) 9 (f(H)u)+div(f(H)bu)=0. (17)

Indeed, we do the same computation that leads to (15) with these equations and w
obtain the following conditions

Vx> 0, Vf e C(R,R), / iy, x2) f (xy) dxy = / W (i x2) f () dxr. (18)

This implies thati = u° and then that: = u.

Hence, adding the conditions (17) in the definition of a solution, we are able to define
it uniquely. Moreover, if we try to solve this problem by approximation, choosing a
sequence of divergence free vector-figjg converging tob in all L, for p < 2 (this

implies thatH,, converge toH up to a constant in aIWli,;{’, for p < 2), we obtain a
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sequence of solutiong,,, that satisfy all Eqs. (17) with the initial conditiagf. This
sequence,, is weakly compact ifl.°°. Extracting a converging subsequence, we see
that Egs. (17) are always true at the limit and then the sequepoenverge tai. This
solution is therefore the only that we can construct by approximation.

5. Thecase of aparticule moving on aline

We consider here a classical Hamiltonian
H(x,y)=y?/2+ V() or b(x,y)=(y,-V'())

with V a potential inW,é’c” (R). ThenV’ belongs taLf.(R). In this casep satisfies the
(P,) assumption irR?\{y = 0}. The set of criticals pointg has then zero-measure. We
can apply the preceding resultsHf satisfiesn (H (Z)) = 0. WhenV" is continuous, this
is true because we can apply the Sard Lemma. But this is false for a géneral} ..
If V' oscillates very quickly,Z may even be the whole line. And theii(Z) is an
interval becauséd is continuous. However, we will show that the result is always true
in this case. Moreover, we can only assume filabelongs toIL,,loc(R), since the other
composant ob is in Li5.(R).

The transport equation we are considering has the form

ou ou ou

—+y——V'(x)— =0. 19

o T3y (x) % (19)
Here we can solve the differential equatioh= y, y’ = —a(x) directly if we use the

fact that the Hamiltonian is constant on a trajectory and integrate the system. But thi
flow is not regular, and we do not know how to work directly with it in order to solve the
transport equation.

THEOREM 2.—For a flow b(x,y) = (y,-V'(x)) with V' € L{.(R) and

1/v/max(1, —V (x)) not integrable attoo, the transport equation has an unique renor-
malized solution.

Remarks—

(i) The condition of integrability onV is there to insure that a point does not
reach+oo in a finite time. It could be replaced by a stronger condition like
V(x) > —-C(1+x?).

(i) This result can be adapted to the case of two particles moving on a line according
to a interaction potential i . In order to do so this we just have to use a
change of variable which follows the classical way of reducing this two-body
problem to a one-body problem.

Proof. —We can use our previous theorem in the neighboorhood of a pointywtB.
This will give us “the result” on two half-planes, but we need to “glue” together the
information available on this two half-planes. Then we need to work differently, and we
shall follow the same sketch of proof as in our first theorem.

Stepl. A change of variables.
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Fig. 3. The domairB.

First we define
®,(x,y) = (x,y%/2+ V(x)) fromR x (0, 00) to B,
d_(x,y) = (x,y%/2+ V(x)) fromR x (—o0,0) to B,
whereB = {(x, E) e R? | V(x) < E}. Then®, and W_ are continuous and belong to

Wit with
1 0
DO, = _,
* (V(x) y)
and the same fob_.

These transformations are one-to-one and ontafapidx, E) = (x, £/2(E — V (x)).

-1 1 0
Dcp+ = . V' (x) 1 )
V2(E-V (x)) V2(E-V(x))

with a similar formula ford 1.
The following change of variables is true

/f(x,y)dxdyz dxdE

y>0

/ fo®X(x, E)
J 2(E = V({x))

for f in L> and even irlL.l.

Before going further, we state some properties about théi8et(B). We define
C>(B) (respectivelyC>°(B)) the space of restriction t& of C*-functions onRR?
(respectively such functions with compact support). We recall aat {(x, V (x)) |
x € R}.

PROPOSITION 2. —
(i) C°(B)is dense iWi(B).
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(i) The trace of a function itv11(B) has a sense ifi.l. More precisely, there exist
a continuous applicatior: W(B) — LY(R) such thatTr(¢) = ¢ (-, V(-)) if
¢ € C(B).

(i) C>°(B) = Ker(Tr), the kernel of the trace, also denoted y}-1(B).

(iv) The same results are true f& x B and[0, co) x B as well as locally.

Proof. —We refer to Theorem 3.18 in [1] for a complete proof. But we may adapt the
proof of this theorem to this simpler case. Fof & W1(B), we define fore > 0

fe=pe* (f(+28€) X(E=V (x)-2¢})

wheree = (0,1) and p.(x, E) = p(x/e, E/e) with p € C°(R?) satisfying [ p = 1.
Then, the functiong’. belong toC2°(B) and converges t¢ in Wi1(B) ase — 0.
For the second point, we chooges C3°(B). Then

79
flx V) =- / %(x,E)dE
V(x)

taking the absolute value and integratingrifeads to

‘/U@Voﬂ<nva@.
R

Then, the trace is a contraction frafff (B) with the W-norm intoL*(R), and since
C>°(B) is dense itW11(B), we may extend this application #%%1(B).

For the third point, we takg e Ker(Tr) and extend it by zero outside. We obtain
a f in WHL(R?). Then if we translatef in the direction ofe = (1, 0) and smooth it by
convolution, we can constru€t®-approximations off with supportinB. O

Step2. Equivalence with a simpler transport equation.
Now, letu be a solution of the transport equation. We may write

[ w@+yog - viag)drdy = [uwer (20)

[0,00) xR2 R2

for all ¢ € WH1([0, c0) x R?) with compact support (in the sense of distributions)
satisfying moreoved, ¢ € L=([0, c0) x R?).

Let W, and W_ be inC3°([0,00) x B), and ¥, and W_ satisfy the compatibility
condition W, 0 o) a8 = V- 10,00 a5~ We definegp from [0, c0) x R? to R with

\IJ+(Z,CI>+(X, )’)) if y >01

¢UJJO={w4L¢JLyD if y <0.

Then,¢ belongs tow([0, co) x R?), has a compact support, agd d,¢, d,¢ are in
LL°°. Moreover,
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09 = (V) od  +E(x)(3,W;)od, fory>0,
3y =y(B, ¥ )0 D,
3¢ =(3,V;)o0d,.
Then we have

0+ yoxdp — E(x)0y¢p = (8, W) o @y + y(0x W) 0 Py

for all y > 0. We writev, = u o 31, defined or{0, co) x B. Then, (20) may be written
as follows.

023V + V2(E — V)3, ¥)] 0 Dy

[0,00) x{y>0}
4 / - (3 W — V2(E — V)3, W_)] o &_
[0,00) x{y <0}
_/ (v0w?) oq>++/(v9\p9)oc1>_. (21)
y>0 y<0

We can apply the change of variables, and we obtain

/ (_a,% + 9w >+ / v (—a’q}‘ —a\p>
V2E—V(@) T 0o \WV2E-V@)

w9 +0 \1/0
«/Z(E V(x))

It is difficult to work with ®, and ®_ because of the compatibility condition. But we
may make the particular choice, = ®_ (below we will omit the indicest). Then (22)
becomes

[0,00

(22)

/ vy +v )at—qj-i-(v —v_)o,¥ = M\DO (23)
0 TP J2E = V() oo _B V2E—-V(E)

Now, we choosel = —W_ and W «)xss = 0 (we omit the indicest). In this case,
(22) becomes

8 VY _ (U+ - UO) O
/ (vy — )—Z(E ZED) 4+ (vy +v_)o, W _/W (24)

[0,00)x B

Then, (20) implies (23) for al in C2°([0, 0o) x B), and (24) for al € C°([0, 00) x
B) with W);0 ~yxs5 = 0, or equivalently for all € C2°([0, oc0) x B) sinceC®([0, 0o) x
B) is dense inW}1([0, 0c0) x B). And conversly, these two statements are equivalent
with (22) for all W, andW_ in C3°([0, c0) x B) having the same trace on the boundary.
Thus, we have to solve
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'U+ + V_ _ / n
a[<m> + ax(v+ — l)_) =0 onD ([O, OO) X B), (25)
3 (&> +8,(vs +v) =0 onD'([0,00) x B) (26)

i 2(E =V ) (VT V)= , X0) X ,

with the convenient initial conditions. In (25)' ([0, oo) x B) means that we allow test
functions inC> ([0, c0) x B).

We can do the same arguments backwards. Therefore, solving (25)—(26) is equivaler
to solve (19)

Step3. Reduction to one dimension.

These two equations do not contain any derivativ& inAs in the proof of the first
result, we want to reduce them to equations in one dimension of space. For the secor
equation (26), we can make the same argument and we obtain that this equation hol
on Bg, for almost allE in R (with B ={x e R | (x, E) € B}).

For the first equation (25) we can still apply the argument. We shall be more precise
since it is a little bit more involved. We choose a test funcifoaf the form¢,¢, with
¢1 depending only orir, x) and¢, depending orE. We obtain

((v I 1 SN ¢1)¢2= _OR Ay
o TP J2AE = V() T J V2E = V(@) '

(27)
Since the linear combinaisons of functions of the faf, are dense i€°([0, 00))
with the W-1-norm, (27) for allC>® ¢; and ¢, is equivalent with (23) for alC>® W.
Moreover, sincéV11([0, co) x R) is separable, it is sufficient (and necessary) to write
(27) for ¢1 choosen among a countable subBebf C°-functions.
Now, using Fubini’s theorem (27) may be rewritten

1
R/ ({0 m)/xBE (vy + v_)m + (vy —v_)0 @1 dt dx>¢2dE

- /( M¢adx>¢ . o
g Ny VAE-V) ! 2
for a fixed¢:. Since it is satisfied for all>°-¢,, we obtain that
M _ 24
[oo@/XBE (e o) 2(E—V(x))+(v+ v_)oc¢ —1 2(E—V(x))¢ (29)

for all E € R\N whereN is a zero-measure set dependingganNow, if we write this
equation for alkp; € Fy, we obtain that (25) is satisfied, but this timg@)oo) x B for
allmost allE € R. And we can do the argument backwards to show that this is equivalent
to the initial problem. Finally, we just have to solve (25)-(26)Bninstead ofB.

Step4. Solution of the one dimensional problem.

Bg is a countable union of disjoint open intervals. We demte=J, (a,, b,), where
a,, b, are disjoints reals. But, since we shall also work Ba we want that these
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open intervals are not to “close” to each other. For instance, if there exigst such
thatb, = a,, and if 1/./2(E — V(x)) is integrable on a neighboorhood &, a particle
reachingp, from the left may continue to go further right or may change direction and
go backwards. This will give rise to distinct solutions of the transport equation. But, we
shall show that for almost alt', we have some “free zone” around edah, b,,). More
precisely, for almost alE there exists am, > 0 such thatBg N (a, — €,, b, + €,) =

(a,, b,). If we admit this point, we see that we just have to solve (25)—(26) on an interval
of the type(a’, b'), wherea’ belongs td—oo, +00) andd’ to (—oo, +00]. Before going
further, we prove the

LEMMA 2.—For almost all E, if we write B = U, (a,, b,) then, for eachn, there
exists some, > 0 such thatBz N (a, — &, b, + €,) = (a,, b,).

Proof. —First we recall that sincé’ belongs toW.!, the image byV of a zero-
measure set is a zero-measure set. Then, we state a result similar to the Sard’s lemma
V. Let Z be the set wer&’ vanishes. We claim that (Z) has zero-measure. Of course,

Z is defined up to a zero-measure set, but this is irrelevant for our claim in view of the
fact recalled above. In order to prove our claim, we choose a sequence of opén sets
such thatZ c 0, andA(0,\Z) goes to 0 ag goes toco. Here and below denotes the
Lesbegue measure @or R?. We may writeO,, = U,, I,.. Where thel, ,, are disjoint
intervals ofR. Then,

A(V(0,) = ( (Ulnm>)<2xw(1n,m>)

<Z/|V|—/|V| [ v

[n m On \Z

and the last quantity goes to 0 mas> oo sincer(0,\Z) goes to 0 aa — oo and our
claim is shown.

Next, we denote by, the set such thaty is the set of Lebesgue points uf (i.e. the
set of points such that/{2¢) f”j [V'(y) — V'(x)|dy goes to zero as — 0). Then,
A(Z1) = 0. According to what we proved above, we know thav (Z U Z,)) = 0.
Now, if we chooseE € V(Z U Z;)¢, and write B = U, (a,, b,) as above, we know
that @, and b, are Lebesgue’s point oV’ with V'(a,) # 0 and V'(b,) # 0. Then
necessarilyV’(b,) > 0 andV is strictly increasing in a neighboorhood &f because
it is a Lebesgue’s point. Since we may make the same argumenineae have then
shown the existence @f, as stated in the lemma.C

To solve (25)—(26) oria’, b") we use the change of variabte— z = F(x) whereF
is a primitive of I/ /2(E — V (x)) from (da’, b’) to (a, b). We can because this quantity is
locally integrable on almost all lines (this result is easily seen using Fubini’s theorem).
Then, we obtain the two following equations

o (wy +w_)+0,(wy —w_)=0 o0on[0, c0) x [a, b], (30)
o (wy —w_)+0,(wy +w_)=0 on[0, 00) x (a,b), (32)
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a b

Fig. 4. Behaviour ofv, andw_.

with appropriate initial conditions. And as before, in (30) we use test functions in
C°([0, 00) x [a, b]) (in others words the tests functions do not necessarily vanish on
{z =a} and{z = b} whena andb are finite).

Here, ifa’ = —o0 or b’ = +00 we need the assumption of non-integrability Bnlf
it is not verified,a (or b) will be finite, and we cannot use test functions which do not
vanish on{z = a} (or {z = b}) in (25). And we shall not have the uniqueness of solutions
of the equivalent problem (as will become clearerr below).

Adding and substracting the two equationgif{[0, co) x (a, b)) yields

dwy +0,wy =0 inD'([0, 00) x (a, b)),
dw_—d,w_=0 inD'([0,00) x (a,b)).

Hence, the solutions are of the fonm, (¢,z) =@, (z — ) andw_(¢,2) = P_(z+ 1)
with &, and ®_ belonging toL*(R). but we have not used yet the fact that (30)
is true on[a, b]. This tells us formally thaiw, (t,a) = w_(¢,a) whena # —oco and
wy (t,b) = w_(t,b) whenb # +oo. This can be justified. Indeed, let us assume that
b # +oo and let we choose somgee C;°((0, 00)), ane € (0,b — a) and x, € C*(R)
increasing such that.(z) =0 forz < b — ¢ and somey,(z) =1 forz > b . We usep x.
as a test function in (30). We then obtain

(@1(z—1)+D_(z+1)dP (1) x:(z)dt dz
[0,00) x (b—¢,b)

+ / (@(z—1) = D_(z+1) (1) xe () di dz =O.
[0,00) % (h—¢,b)

Whene — 0, the first integral goes to 0. The second integral gogg 1, (®.(b —1) —
O_(b+1)¢(t)dt. Since it holds for allp € C°((0, 00)), we obtain thatb, (b — 1) =
®_(b+1t). We can prove similary thab, (a —t) = ®_(¢t + a) if a # —o0.
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Now, we shall assume thatand b are both finite (the other cases are similar and
simpler) and we definé= b — a. Without using the boundary conditions, the initial
conditions onw, andw_ impose the value ofb, and ®_ on the interval(a, b). Of
course, it should be understood in sense of functions defined almost everywhere, b
here it does not raise any difficulty and we will omit to specify it afterwards. Using the
boundary conditiond, (b — t) = ®_(b + t), we see thatb, and ®_ are determined
in (b,b +1). And the condition® (a — t) = ®_(t + a) determinesd, and ®_ in
(a —1,a). If we continue to use this symmetry argument further, we seelthand® _
are uniquely determined iR, provided we know them itu, ) (we remark here that it is
not the case if one of the boundary counditions is missing, as it is the casenwhermo
or b = +oo and the assumption of non-integrability &nis not satisfied).Then, for every
intial condition (onw, andw_) in IL*, there exists a unique solution to the system
(30)—(31). And in view of the form of those solutions, we see that they are renormalized
ones. This concludes the proofc
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