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ABSTRACT. – We study the behavior near the origin ofC2 positive solutionsu(x) of

auλ � −�u� uλ (∗)

in a punctured neighborhood of the origin inRn (n > 2) where the constantsλ anda satisfy
n
n−2 < λ< n+2

n−2 and 0< a < 1. We also study the existence ofC2 positive solutions of (∗) in R
n.

In both cases we show that changinga from one value in the open interval(0,1) to another value
in (0,1) can have a dramatic effect.
 2002 Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. – On étudie le comportement prés de l’ origine des solutions positives de classeC2

u(x) de

auλ � −�u� uλ (∗)

dans un voisinage épointé de l’ origine dansR
n (n > 2) où les constantesλ et a satisfont

n
n−2 < λ < n+2

n−2 et 0< a < 1. On étudie aussi l’ existence de solutions positives de classeC2

de (∗) dansR
n. Dans les deux cas nous montrons que changer la valeur dea dans l’intervalle

ouvert(0,1) peut avoir un effet dramatique.
 2002 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

Gidas and Spruck [3] prove the following two theorems:

THEOREM A [3]. – If u(x) is aC2 positive solution of

−�u= uλ (1.1)
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in a punctured neighborhood of the origin inRn (n > 2) where the constantλ satisfies

n

n− 2
< λ<

n+ 2

n− 2
(1.2)

then eitheru has a removable singularity at the origin or

|x|2/(λ−1)u(x)→ � as|x| → 0+

where�= �(n,λ) is a positive constant.

THEOREM B [3]. – There does not exist aC2 positive solution of(1.1) in R
n (n > 2)

when the constantλ satisfies1 � λ < n+2
n−2 .

In this paper we study the more general problem

auλ � −�u� uλ (1.3)

in various subsets ofRn wherea ∈ (0,1). Henceforth we assumen > 2.
Our two results on the local behavior at the origin ofC2 positive solutions of (1.3) are

THEOREM 1. –Supposeλ > n/(n− 2). Then there existsa = a(n,λ) ∈ (0,1) such
that for each continuous functionϕ : (0,1)→ (0,∞) there exists aC2 positive solution
u(x) of (1.3) in R

n − {0} satisfying

u(x) �= O
(
ϕ(|x|)) as|x| → 0+.

THEOREM 2. –Supposeλ satisfies(1.2). Then there existsa = a(n,λ) ∈ (0,1) such
that if u is aC2 positive solution of(1.3) in a punctured neighborhood of the origin in
R
n then

u(x)= O
(|x|−2/(λ−1)) as|x| → 0+ (1.4)

andu(x)/ū(|x|) is bounded between positive constants for|x| small and positive where
ū(r) is the average ofu on the sphere|x| = r .

Our two results on the local behavior at infinity ofC2 positive solutions of (1.3) are

THEOREM 3. –Supposeλ > n/(n− 2). Then there existsa = a(n,λ) ∈ (0,1) such
that for each continuous functionϕ : (1,∞)→ (0,∞) there exists aC2 positive solution
u(x) of (1.3) in R

n satisfying

u(x) �= O
(
ϕ(|x|)) as|x| → ∞.

THEOREM 4. –Supposeλ satisfies(1.2). Then there existsa = a(n,λ) ∈ (0,1) such
that if u is aC2 positive solution of(1.3) in the complement of a compact subset ofR

n

then

u(x)= O
(|x|−2/(λ−1)) as|x| → ∞ (1.5)

andu(x)/ū(|x|) is bounded between positive constants for|x| large whereū(r) is the
average ofu on the sphere|x| = r .

Our two results on the global existence ofC2 positive solutions of (1.3) are
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THEOREM 5. –Supposeλ > n/(n− 2). Then there existsa = a(n,λ) ∈ (0,1) such
that there exists aC2 positive solutionu(x) of (1.3) in R

n.

THEOREM 6. –Supposeλ satisfies(1.2). Then there existsa = a(n,λ) ∈ (0,1) such
that there does not exist aC2 positive solutionu(x) of (1.3) in R

n.

Whenλ satisfies (1.2), these six theorems show that changinga from one value in the
openinterval (0,1) to another value in(0,1) can dramatically affect the local behavior
and global existence ofC2 positive solutions of (1.3).

Note that Theorem 3 implies Theorem 5. However we state Theorem 5 because it
nicely complements Theorem 6 and because it facilitates our discussion below.

Theorems 1 and 2 answer two of the seven open questions posed in [8] where we
study in a general wayC2 positive solutions of

af (u)� −�u� f (u)

in a punctured neighborhood of the origin inRn wherea ∈ [0,1) is a constant and
f : (0,∞) → (0,∞) is a continuous function. Our proof of Theorem 1 in Section 3
is different and shorter than the proofs of two special cases of Theorem 1 given in [8].

Theorem 1 is not true whenλ� n/(n− 2). In fact we prove in [9] that ifu(x) is aC2

positive solution of

0� −�u� f (u)

in a punctured neighborhood of the origin inRn where f : (0,∞) → (0,∞) is a
continuous function satisfying

f (t)= O
(
tn/(n−2)) ast → ∞

then

u(x)=O
(|x|2−n) as|x| → 0+

andu(x)/ū(|x|) is bounded between positive constants for|x| small and positive where
ū(r) is the average ofu on the sphere|x| = r .

Whenλ= (n+ 2)/(n− 2), which is of interest in geometry, we prove in [7] that the
conclusion of Theorem 1 is true for eacha ∈ (0,2−4/(n−2)) and we conjecture there that
the conclusion of Theorem 2 is true for eacha ∈ (2−4/(n−2),1).

Supposeλ satisfies (1.2) anda ∈ (0,1). Then Gidas and Spruck [3, Theorem 3.3]
prove that ifu is a C2 positive solution of (1.3) in a punctured neighborhood of the
origin in R

n such that

h(x) := −�u(x)
u(x)λ

isC1 (1.6)

and

|∇ logh(x)| = O
(

1

|x|
)

as|x| → 0+ (1.7)

then eitheru has aC1 extension to the origin or|x|2/(λ−1)u(x) is bounded between
positive constants for|x| small and positive. (However we do not understand the third



892 S.D. TALIAFERRO / Ann. I. H. Poincaré – AN 19 (2002) 889–901

sentence of their proof of Theorem 3.3 and we have contacted them for an explanation.)
Conditions (1.6) and (1.7) in their result cannot both be omitted whena is near 0 by our
Theorem 1. An open question is whether conditions (1.6) and (1.7) can be omitted when
a is near 1. This open question reduces to an ODE problem by our Theorem 2 and the
fact that everyC2 positive bounded solution of (1.3) in a puncture neighborhood of the
origin has aC1 extension to the origin.

Theorem 3 is not true whenλ � n/(n − 2). In fact Serrin and Zou [6, Theorem I]
prove that if 0� λ� n/(n− 2) then there does not exist aC2 positive solution of

−�u� uλ in R
n −B1(0)

and this result can be easily extended to include all negative values ofλ.
Consider the

Question. – For what values ofλ ∈ R and a ∈ (0,1] does there exist aC2 positive
solution of (1.3) inR

n?

To answer this question we consider three mutually exclusive possibilities for the
value ofλ.

CaseI. Suppose−∞< λ� n/(n− 2). Then for eacha ∈ (0,1], (1.3) does not have
aC2 positive solution inRn by Serrin and Zou’s result mentioned above.

CaseII. Supposeλ satisfies (1.2). Then our Theorems 5 and 6 hold.
CaseIII. Suppose(n+ 2)/(n− 2)� λ <∞. Then for eacha ∈ (0,1], (1.3) has aC2

positive solution inRn because Fowler [2] shows that (1.3) witha = 1 has aC2 positive
radial solution inRn.

For λ satisfying (1.2) and forj = 1,2, . . . ,6, let Ij = Ij (n, λ) be the set of all
a ∈ (0,1) such that the conclusion of Theoremj is true. By Theorems 1–6,

(i) Ij is a nonempty subinterval of(0,1) for j = 1,2, . . . ,6.
(ii) The left endpoint of each of the intervalsI1, I3, andI5, is 0.
(iii) The right endpoint of each of the intervalsI2, I4, andI6, is 1.
(iv) I1 ∩ I2 = I3 ∩ I4 = I5 ∩ I6 = ∅.
(v) I5 ∪ I6 = (0,1) andI3 ⊂ I5.

Some interesting open questions are:
(i) Is I1∪I2 = (0,1) (respectivelyI3∪I4 = (0,1))? If not, what is the local behavior

at the origin (respectively at infinity) ofC2 positive solutions of (1.3) when
a ∈ (0,1)− (I1 ∪ I2) (respectivelya ∈ (0,1)− (I3 ∪ I4))?

(ii) Is I1 = I3 = I5?
(iii) Is I2 = I4 = I6?
(iv) Which of the intervalsIj , j = 1,2, . . . ,6, are open?
With regard to question (iii) we have

THEOREM 7. –Supposeλ satisfies(1.2). Then

I λ2 ⊃ I6 and I λ4 ⊃ I6

where we defineI λ = {aλ: a ∈ I }.
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2. Preliminary lemmas

For later we need two lemmas.

LEMMA 1. –Suppose, forj = 1,2, . . . , there exists aC2 positive solutionuj (x) of

aj |x|−σ uλj � −�uj � |x|−σ uλj in �j (2.1a)

uj(x) �= O
(|x|−(2−σ)/(λ−1)) as |x| → 0+ (2.1b)

where�j is a punctured neighborhood of the origin inRn (n > 2), λ > n/(n− 2) and
σ ∈ [0,2) are constants, and the sequence{aj }∞

j=1 ⊂ (0,1] converges toa ∈ (0,1]. Then
there exists aC2 positive solutionv of

aλvλ � −�v � vλ in R
n. (2.2)

Whenσ = 0 andaj ≡ 1, Lemma 1 is well-known and easy to prove using a blow-up
argument of Schoen [5]. See also Chen and Lin [1, p. 982]. However whena ∈ (0,1),
C2 regularity is lost at a critical point in their proofs and new methods are needed.

Proof of Lemma1. – Choose positive constantsrj such thatB2rj (0) ⊂ �j ∪ {0} and
let�j = Brj (0). Sinceuj is positive and superharmonic in�j , it is well-known (see for
example [4]) that

uj ,−�uj ∈L1(�j) (2.3)

and that there exist a nonnegative constantmj and a continuous functionhj :�j → R

which is harmonic in�j such that

uj(x)= mj

|x|n−2
+ αn

∫
�j

−�uj(y)
|x − y|n−2

dy + hj(x) for x ∈�j − {0}. (2.4)

Hereαn = 1
n(n−2)ωn

whereωn is the volume of the unit ball inRn. It follows from (2.3),

(2.1a), and the nonnegativity ofσ that uλj ∈ L1(�j). Thus, sinceλ > n/(n − 2) we
havemj = 0.

Let {εj }∞
j=1 ⊂ (0,1) be a sequence which converges to 0. Choosex̄j ∈ 1

2�j −{0} such
that limj→∞ |x̄j | = 0,

lim
j→∞|εj x̄j |2/(λ−1)|x̄j |−σ/(λ−1)uj (x̄j )= ∞, and

max
�j

|hj |< |x̄j |−(2−σ)/(λ−1).
(2.5)

Following Schoen [5], letBj = Bεj |x̄j |(x̄j ) and defineϕj :Bj → [0,∞) by

ϕj(x)= uj(x)dj (x)
2/(λ−1)|x|−σ/(λ−1) wheredj (x)= dist{x, ∂Bj }.

Choosexj ∈ Bj such thatϕj (xj )= maxBj ϕj . Then

ϕj(xj )� ϕj(x̄j )→ ∞ asj → ∞ (2.6)
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by (2.5).
Making the change of variables

wj(ξ)= uj (x)

uj (xj )
, x = |xj |σ/2uj (xj )−(λ−1)/2ξ + xj (2.7)

in (2.4) we obtain

wj(ξ)= αn

∫
&j

−�wj(ζ )

|ξ − ζ |n−2
dζ +Hj(ξ) for ξ ∈&j − {ξj} (2.8)

where&j is the set of allξ ∈ R
n such thatx, as given by (2.7), is in�j and whereξj is

the inverse image ofx = 0 in (2.7) and where

Hj(ξ)= hj(x)

uj (xj )
.

By (2.5) and (2.6) we have

max
&j

|Hj |< (1− εj )
−σ/(λ−1)

ϕj (xj )
→ 0 asj → ∞. (2.9)

Note that the ball given by|x − xj | < 1
2dj (xj ) maps under the transformation (2.7)

onto the ball|ξ |< ρj where

ρj := 1

2
ϕj(xj )

(λ−1)/2 → ∞ asj → ∞

and that

wj(ξ)= ϕj(x)

ϕj (xj )

(
dj (xj )

dj (x)

)2/(λ−1)( |x|
|xj |

)σ/(λ−1)

< 22/(λ−1)
(

1+ εj

1− εj

)σ/(λ−1)

for |ξ |< ρj

becausedj (x) >
1
2dj (xj ) for |x − xj |< 1

2dj (xj ). Also by (2.1a) we have

(
1− εj

1+ εj

)σ
ajw

λ
j � −�wj �

(
1+ εj

1− εj

)σ
wλ
j for |ξ |< ρj . (2.10)

It follows therefore from standard elliptic theory that there exists a continuously
differentiable functionw :Rn → [0,∞) such that a subsequence ofwj (which we again
denote bywj ) converges uniformly on compact subsets ofR

n to w. (However unless
a = 1 we cannot conclude thatw isC2.)
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Letting j → ∞ in (2.8) and using (2.9), (2.10), and Fatou’s lemma we get

w(ξ)� αn

∫
Rn

aw(ζ )λ

|ζ − ξ |n−2
dζ for ξ ∈ R

n. (2.11)

Thus lim inf|ζ |→∞w(ζ ) = 0 for otherwise the integral in (2.11) would be infinite for
eachξ ∈ R

n.
We now show that (2.11) holds with the inequality reversed and the factora omitted.

Let ξ1 ∈ R
n and letε > 0. Chooseξ2 ∈ R

n such thatw(ξ2) < ε/2n−1 and then choose
r > 0 such that

|ζ − ξ2| � 2|ζ − ξ1| for |ζ |> r. (2.12)

For j large enough thatBr(0)⊂&j − {ξj } we have by (2.8) that

wj(ξ1)= αn

∫
|ζ |<r

−�wj(ζ )dζ

|ζ − ξ1|n−2
+ Ij +Hj(ξ1) (2.13)

where

Ij := αn

∫
&j−Br(0)

−�wj(ζ )dζ

|ζ − ξ1|n−2

� 2n−2[wj(ξ2)−Hj(ξ2)
]
, by (2.12) and (2.8)

� ε, for j large

by (2.9). Thus lettingj → ∞ in (2.13) and using (2.10) we find

w(ξ1)� αn

∫
|ζ |<r

w(ζ )λ dζ

|ζ − ξ1|n−2
+ ε � αn

∫
Rn

w(ζ )λ dζ

|ζ − ξ1|n−2
+ ε. (2.14)

Sinceε > 0 was arbitrary it can be omitted in (2.14). Thus letting

v(ξ)= αn

∫
Rn

w(ζ )λ dζ

|ζ − ξ |n−2

we have by (2.11) thatv is aC2 nonnegative solution of (2.2). By (2.7),w(0)= 1 and
thusv is positive onRn. ✷

LEMMA 2. –Suppose, forj = 1,2, . . . , there exists aC2 positive solutionvj (y) of

ajv
λ
j � −�vj � vλj in �j

vj (y) �= O(|y|−2/(λ−1)) as |y| → ∞
where�j is the complement of a compact subset ofR

n (n > 2), λ is a constant
satisfying(1.2), and the sequence{aj }∞

j=1 ⊂ (0,1] converges toa ∈ (0,1]. Then there
exists aC2 positive solutionv of (2.2).
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Proof. –Let uj(x) = |y|n−2vj (y) wherey = x/|x|2. (This is the Kelvin transform.)
Thenuj(x) is aC2 positive solution of (2.1a,b) whereσ = n+ 2−λ(n− 2)∈ (0,2) and

�j = {x ∈ R
n: x/|x|2 ∈�j

}
is a punctured neighborhood of the origin. Thus Lemma 2 follows from Lemma 1.✷

3. Proofs

In this section we prove Theorems 1–7.

Proof of Theorem1. – DefineW, w :Rn → R by

W(y)=



1, for |y|< 1
1

|y|n−2
, for |y| � 1

andw = N(Wλ) whereN is the Newtonian potential operator overR
n. Thenw(y)

equals

1

n− 2

[(
1

2
+ 1

λ(n− 2)− 2

)
−
(

1

2
− 1

n

)
|y|2

]
or

1

n− 2

1

|y|n−2

[(
1

n
+ 1

λ(n− 2)− n

)
−
(

1

λ(n− 2)− n
− 1

λ(n− 2)− 2

)
1

|y|λ(n−2)−n

]

depending on whether|y|< 1 or |y| � 1 respectively. Hence

C1 � W(y)

w(y)
�C2 for y ∈ R

n (3.1)

whereC1 = C1(n, λ) andC2 = C2(n, λ) are positive constants whose values willnot
change from line to line.

For eachh > 0 defineVh, vh :Rn → R by Vh(x) = KW(x/h), whereK = K(h)

satisfiesKλ−1h2 = 1, andvh =N(V λ
h ). Then

vh(x)=Kw

(
x

h

)
for x ∈ R

n.

Thus by (3.1)

C1 � Vh(x)

vh(x)
� C2 for x ∈ R

n and h > 0. (3.2)

For later note that

Vh(x)=


K, for |x|<h
L

|x|n−2
, for |x| � h

(3.3)
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whereL= L(h) satisfies

Lλ−1 = hλ(n−2)−n. (3.4)

Let ε be a positive constant and letϕ : (0,1)→ (0,∞) be a continuous function. Let
U0 =W and let{εj }∞

j=1 ⊂ (0,1) be a sequence such that

∞∑
j=1

εj = ε. (3.5)

Since, by (3.3) and (3.4),

lim
h→0+ sup

|x−xj |�rj

Vh(x − xj )

U0(x)
= 0 for j = 1,2, . . . ,

where xj = (2−2j ,0, . . . ,0) ∈ R
n and rj = 2−2j−1, there existshj ∈ (0, rj ), j = 1,

2, . . . , such that
∞∑
j=1

Lλj <∞ whereLj = L(hj)= h
(λ(n−2)−n)/(λ−1)
j , (3.6)

lim
j→∞

Kj

ϕ(|xj |) = ∞ whereKj =K(hj)= h
−2/(λ−1)
j , (3.7)

and

Uj(x)� C1

C2
εjU0(x) for

∣∣x − xj
∣∣� rj andj = 1,2, . . . (3.8)

whereUj(x)= Vhj (x − xj ) for j = 1,2, . . . .
Lettinguj =N(Uλ

j ), j = 0,1, . . . , and noting that (3.2) and (3.1) imply

C1 � Uj(x)

uj (x)
�C2 for x ∈ R

n andj = 0,1, . . . (3.9)

it follows from (3.8) that

uj � 1

C1
Uj � εj

C2
U0 � εju0 on R

n −Brj
(
xj
)

(3.10)

for j = 1,2, . . . .
Let r0 > 0. Choose a positive integerj0 such that|xj0| + rj0 < r0. Then forj � j0 and

|x|> 2r0 we see by (3.3) that

Uj(x)
λ = Vhj

(
x − xj

)λ = Lλj

|x − xj |(n−2)λ
�

Lλj

r
(n−2)λ
0

(3.11)

and

∣∣∇(Uj(x)λ)∣∣= (n− 2)λLλj
|x − xj |1+(n−2)λ

�
(n− 2)λLλj
r
(n−2)λ+1
0

.
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Thus by (3.6),
∑∞

j=j0Uj(x)
λ is C1 and uniformly Lipschitz continuous on|x| > 2r0.

Hence
∑∞

j=0Uj(x)
λ is uniformly Lipschitz continuous on|x|> ρ for eachρ > 0.

Also by the monotone convergence theorem,

u :=N

( ∞∑
j=0

Uλ
j

)
=

∞∑
j=0

N
(
Uλ
j

)=
∞∑
j=0

uj in R
n − {0} (3.12)

which by (3.10) and (3.5) implies thatu is finite at each point ofRn − {0}. Henceu is
C2 on R

n − {0} and

−�u=
∞∑
j=0

Uλ
j �

∞∑
j=0

Cλ
2u

λ
j � Cλ

2u
λ in R

n − {0}. (3.13)

Furthermore, it follows from (3.12), (3.9), and (3.7) that

u(xj )

ϕ(|xj |) � uj(x
j )

ϕ(|xj |) � 1

C2

Uj(x
j )

ϕ|xj |) = 1

C2

Kj

ϕ(|xj |) → ∞ asj → ∞.

To complete the proof of Theorem 1, we now show

−�u� Cλ
1

(1+ ε)λ2λ−1
uλ in R

n − {0}. (3.14)

First by (3.12), (3.10), (3.5), (3.9), and (3.13) we have inR
n − {0} −⋃∞

j=1Brj (x
j ) that

Cλ
1u

λ �Cλ
1(u0 + εu0)

λ � (1+ ε)λUλ
0 � (1+ ε)λ(−�u).

Next letj be a fixed positive integer. Then by (3.10),

ui � εiu0 in Brj (x
j ) for i /∈ {0, j}.

Thus by (3.12), (3.5), (3.9), and (3.13) we have inBrj (x
j ) that

Cλ
1u

λ �Cλ
1(u0 + uj + εu0)

λ � Cλ
1(1+ ε)λ(u0 + uj )

λ

�Cλ
1(1+ ε)λ2λ−1(uλ0 + uλj

)
� (1+ ε)λ2λ−1(Uλ

0 +Uλ
j

)
� (1+ ε)λ2λ−1(−�u).

Hence (3.14) holds. ✷
Remark. – The proof of Theorem 1 gives an explicit expression fora(n,λ). Indeed,

letting

A1 = 1

2
+ 1

λ(n− 2)− 2
, A2 = 1

n
+ 1

λ(n− 2)− 2
, and

A3 = 1

n
+ 1

λ(n− 2)− n
,



S.D. TALIAFERRO / Ann. I. H. Poincaré – AN 19 (2002) 889–901 899

the optimal choices forC1(n, λ) andC2(n, λ) in (3.1) are

C1 = n− 2

max{A1,A3} and C2 = n− 2

A2

and the proof of Theorem 1 shows thata = a(n,λ) in the statement of Theorem 1 can
be taken to be any positive number less than

Cλ
1

Cλ
22λ−1

= Aλ2

2λ−1 max{Aλ1,Aλ3}
.

Proof of Theorem2. – Suppose for contradiction that for each constanta ∈ (0,1) there
exists aC2 positive solutionu(x) of (1.3) in a punctured neighborhood of the origin in
R
n such that (1.4) does not hold. Then letting{aj }∞

j=1 ⊂ (0,1) be any sequence which
converges to 1, we have by Lemma 1 withσ = 0 that there exists aC2 positive solution
of (1.1) inR

n which contradicts Theorem B in the introduction.
Let u(x) be aC2 positive solution of (1.3) in a punctured neighborhood of the origin

in R
n which satisfies (1.4). To complete the proof of Theorem 2, it remains only to show

thatu(x)/ū(|x|) is bounded between positive constants for|x| small and positive, and
this is indeed the case by the asymptotic Harnack inequality (see Veron [10, Lemma 1.5])
and the fact that

0<
−�u(x)
u(x)

� u(x)λ−1 = O
(|x|−2) as|x| → 0+. ✷

Proof of Theorem3. – A proof of Theorem 3 can be obtained by making the following
changes to the proof of Theorem 1. The first change occurs above (3.6) where we now
definexj = (22j ,0, . . . ,0) and rj = 1. The next change is to replace the paragraph
containing equation (3.11) with the following paragraph.

Let r0 > 1. Choose a positive integerj0 such that|xj0| − 1> r0. Then forj � j0 and
|x|< r0 we see by (3.3) that

Uj(x)
λ = Vhj

(
x − xj

)λ = Lλj

|x − xj |(n−2)λ
� Lλj

and

∣∣∇(Uj(x)λ)∣∣= (n− 2)λLλj
|x − xj |1+(n−2)λ

� (n− 2)λLλj .

Thus by (3.6),
∑∞

j=j0Uj(x)
λ is C1 and uniformly Lipschitz continuous on|x| < r0.

Hence
∑∞

j=0Uj(x)
λ is uniformly Lipschitz continuous on|x|< ρ for eachρ > 0.

Finally, in the remainder of the proof of Theorem 1 replace each occurrence of
R
n − {0} with R

n. ✷
Proof of Theorem4. – The proof of Theorem 4 is basically the same as the proof of

Theorem 2 except we use Lemma 2 instead of Lemma 1. We omit the details.✷
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Proof of Theorem5. – Theorem 5 has three short proofs. First, Theorem 3 implies
Theorem 5. Second, by Theorem 1 there exists a constanta ∈ (0,1) such that (1.3) has a
C2 positive solutionu in R

n −{0} which does not satisfy (1.4). Applying Lemma 1 with
σ = 0 and withaj = a anduj = u for j = 1,2, . . . , we obtain Theorem 5. And third, a
C2 positive solution of (1.3) inRn with a = (C1/C2)

λ is u= C
λ/(λ−1)
2 w, whereC1, C2,

andw are as defined in the first paragraph of the proof of Theorem 1.✷
Proof of Theorem6. – Suppose for contradiction there exists a sequence{aj }∞

j=1 ⊂
(0,1) such that limj→∞ aj = 1 and a sequence{uj :Rn → (0,∞)}∞

j=1 of C2 functions
satisfying

aju
λ
j � −�uj � uλj in R

n. (3.15)

It follows then from Lemma 2 and Theorem B that (after omitting a finite number of
terms of the sequenceuj )

uj (x)= O
(|x|−2/(λ−1)) as|x| → ∞. (3.16)

Thusuj assumes its maximum at somexj ∈ R
n. By translating and scaling eachuj we

can assumexj = 0 and

uj(0)= 1 = max
Rn

uj . (3.17)

It follows from (3.15), (3.17), and standard elliptic theory that there exists a continuously
differentiable functionu :Rn → [0,∞) such that a subsequence ofuj (which we again
denote byuj ) converges uniformly on compact subsets ofR

n to u. Thus multiplying
(3.15) by a nonnegative test functionϕ ∈ C∞

0 (R
n), integrating overRn, integrating by

parts, and lettingj → ∞ we obtain

uλ � −�u� uλ in D′(
R
n
)
.

Hence−�u= uλ in D′(Rn) and this together with the fact thatu isC1 impliesu isC2,
which contradicts Theorem B.✷

Proof of Theorem7. – Let {aj }∞
j=1 ⊂ (0,1)− I2 be a sequence which converges to the

left endpointA2 of I2. Then by the last paragraph of the proof of Theorem 2 there exists
aC2 positive solutionuj of

aju
λ
j � −�uj � uλj

in a punctured neighborhood�j of the origin such that

uj (x) �= O
(|x|−2/(λ−1)) as|x| → 0+.

Thus by Lemma 1 withσ = 0 we haveAλ2 ∈ I5. Hence

I6 ⊂ (
Aλ2,1

)= (A2,1)
λ ⊂ I λ2 .

Similarly, using Lemma 2 instead of Lemma 1, we obtainI6 ⊂ I λ4 . ✷
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