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ABSTRACT. — We study the asymptotic behavior as ¢ —» 0" of solutions
of the variational problems for the Van der Waals-Cahn-Hilliard theory
of phase transitions in a fluid. We assume that the internal free energy,
per unit volume, is given by &2 | Vp 12 +W(p) and the contact energy with
the container walls, per unit surface area, is given by &o(p), where p is
the density. The result is that such solutions approximate a two-phases
configuration satisfying a variational principle related to the equilibrium
configuration of liquid drops.

Key words : Phase transitions, variational thermodynamic principles, variational conver-
gence.

ResuME. — Nous étudions ici le comportement asymptotique pour
g — 07" des solutions des problémes variationnels qui viennent de la théorie
de Van der Waals-Cahn-Hilliard sur les transitions de phase des fluides.
Nous faisons I’hypothése que I’énergie libre de Gibbs, pour unité de
volume, est donnée par &2 | Vo [2+W(p) et que I’énergie de contact avec
la surface intérieure du containeur, pour unité de surface, est donnée par
ga(p), ou p est la densité. Le résultat est que ces solutions approchent

Classification AM.S. : 76 T05, 49 A 50, 49 F 10, 80 A 15.
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488 L. MODICA

une configuration & deux phases qui satisfait un principe variationnel lié
aux configurations a I'équilibre des gouttes.

INTRODUCTION

We continue in this paper the asymptotic analysis of the Van der
Waals-Cahn-Hilliard theory of phase transitions in a fluid, by taking also
into account, with respect to our earlier results [10], the contact energy
between the fluid and the container walls. Our results give a positive
answer to some conjectures by M. E. Gurtin [8].

Let us describe briefly the problem we are concerned with; we refer to
[10] for further information and bibliography. Consider a fluid, under
isothermal conditions and confined to a bounded container Q = R”, and
assume that the Gibbs free energy, per unit volume, W=W(u) and the
contact energy, per unit surface area, 6 =o (1) between the fluid and the
container walls 0Q are prescribed functions of the density distribution (or
composition) #=0 of the fluid. According to the Van der Waals-Cahn-
Hilliard theory, and in particular to the Cahn’s approach [2], the stable
configurations of the fluid are determined by solving the variational
problem

(%) min{f [sleu|2+W(u)]dx+j
Q

o

BWdA,_, }

where £>0 is a small parameter, and the minimum is taken among all
functions u =0 satisfying the constraint

'[ udx=m,
Q

m being the prescribed total mass of the fluid. The function W (¢) is
supposed to vanish only at two points t=a and t=p (¢ <p), and to be
strictly positive everywhere else. Of course, #,_, denotes the Hausdorff
(n—1)-dimensional measure.

Our goal is to study the asymptotic behavior as ¢ > 0" of solutions u,
of (%) by looking for a variational problem solved by the limit point (or
points) of u, in L'(Q). As conjectured by Gurtin [8], this limit problem
does exist and agrees with the so-called liquid-drop problem.
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PHASE TRANSITIONS 489

Namely (c¢f. Theorem 2.1 for a precise statement), if the function u, is
the limit of u, in L' (Q) as € » 0%, then u, takes only the values o and p
(i.e., uy corresponds to a two-phases configuration of the fluid), and the
portion E, of the container occupied by the phase u,=a minimizes the
geometric area-like quantity

#,_(CENQ)+y#,_,(0E N Q)

among all subsets E of Q having the same volume as E,. The number y
depends only on W and o, and it can be explicitly calculated:

,_8@®=5(B)

2¢q

where
B
Co= J W12 (s)ds,

and o represents a modified contact energy between the fluid and the
container walls, whose definition involves the values of o (t) and W (¢) for
every t=0. One has |y]§1 in correspondence with the geometrical mean-
ing of vy, which is the cosine of the contact angle between the fluid phase
o and the walls of the container.

The presence of such o instead of o disproves a part of the Gurtin’s
conjecture but, what is more interesting, it is perfectly in accord with
theory and experiments by J. W. Cahn and R. B. Heady ([2], [3]) about
critical point wetting. They discovered that, in a range of temperatures
below the critical one for a binary system, the phase o does not wet the
container (i.e. y=1) and a layer of phase B, which is, on the contrary,
perfectly wetting, appears between the phase o and the container walls. A
theoretical explanation of such phenomenon was given by Cahn in the
case £€>0.

We confirm in this paper, under very general assumptions and by a
fully mathematical proof, the existence of the critical point wetting pheno-
menon in the asymptotic case € — 0. Indeed, we show that y=1 and
c(®)=c(p) + 6,5 (0,p denotes the energy, per unit surface area, associated
to the interface between the phases o and B), for o and W having the
same global behavior exhibited in the semi-empirical figures of [2]. It now
suffices to remark that the balance of energy 8(&)=8(ﬁ)+caﬂ can be
interpreted as the contact energy on dE, (N 6Q coming from an infinitely
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490 L. MODICA

thin layer of the phase B interposed between the phase o and the container
walls (cf. Section 3 for details).

We think that other very interesting experimental evidences, discussed
by Cahn in [2], would deserve a similar careful mathematical treatment.
Finally, we would like to thank Morton Gurtin for stimulating and friendly
discussions.

1. SOME PRELIMINARY RESULTS

Throughout this paper Q will be an open, bounded subset of R* (n=2)
with smooth boundary 0Q; W and o will be two non-negative continuous
functions defined on [0, + oo[. The function W (¢) is supposed to have
exactly two zeros at the points t=o and t=p, with 0<a<p.

For every £>0 and for every non-negative function u in the Sobolev
space H! (Q), we define

ﬁs(u)=f[82]Du(x)|2+W(u(x))]dx+£f o)d#,_,(x) (1)
Q oQ

where Du denotes the gradient of u, u denotes the trace of u on 8Q, and
#,_, denotes the (n— 1)-dimensional Hausdorff measure.

1.1. ProrostTioN. — For every £>0 and for every m =0 the minimization
problem

(P) min{ﬁs(u):ueHl(Q),ugo,J u(x)dx=m}
Q

admits (at least) one solution.

Proof. — The proof is standard. Let
U={ueH1 (Q):uz0,&, (w)<c, j u(x)dx=m },
Q

with c e R large enough so that U# (. It suffices to prove that &, is lower
semicontinuous on U and U is compact with respect to the topology of
L2 (Q).
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PHASE TRANSITIONS 491

Let u_eU and (u,) be a sequence in U converging to u,, in L*(€): we
have to prove that

€. (u,) Sliminf &, (u,). @

h—- +o

Without loss of generality we can assume that there exists the limit of
&.(u;) as h > + oo and it is finite. Since W=0 and =0, we have that

J |Dul*dx<c/e?, VuelU; 3
Q

hence, modulo replacing (u,) by a subsequence, (u,) and (u,) converge
pointwise to u_, and u,, respectively almost everywhere on Q and #,_,-
almost everywhere on 9Q [recall that the trace operator is compact between
H!(Q) and L?(0Q, #,_,)]. Then (2) follows from lower semicontinuity of
the Dirichlet integral and from continuity of W and o, by applying Fatou’s
Lemma.

Lower semicontinuity of &, implies now that U is closed in L?(Q); on
the other hand, by (3) and by Poincaré Inequality, U is bounded in H!(Q).
Then Rellich’s Theorem gives that U is compact in L2(Q) and the proof
is complete. W

The aim of the present paper is to study the asymptotic behavior as
€ — 0" of (P). We shall prove in Section 2 that such asymptotic behavior
is related with the following geometric minimization problem:

(P,) min { Po(E) +7 #,_,(6*EN8Q):EcQ,

E|=m,}.

Here ye[—1,1], m,€[0,| Q][] are fixed real constants; |E|, Po(E), *E
denote respectively the Lebesgue measure of E, the perimeter of E in Q,
and the reduced boundary of E. We refer to the book by E. Giusti [6] for
these concepts, which go back to the De Giorgi’s approach to the minimal
surfaces theory. Anyhow, for reader’s convenience, we recall that
Po(E)=4,_,((EN Q) and 0* E=0JE, provided that the boundary of E
is locally Lipschitz continuous; hence (P,) consists in finding a subset E
of Q, with prescribed volume m,, which minimizes a quantity related with
the (n— 1)-dimensional measure of its boundary.

The problem (P,) is known as the liquid-drop problem (cf. E. Giusti [5]).
Since Q is bounded and |y|<1, it always admits (at least) one solution.
Such existence result could also be obtained by the following proposition,
which we need later.

Vol. 4, n° 5-1987.



492 L. MODICA

1.2. ProposITION. — Let 1: 0Q x R — R be a Borel function and define, for
ueBV(Q),

F(u)=j IDu|+f T u () d#,_y (x) (Y,
Q o

where u denotes the trace of u on 0Q. If

@) |16 ) —T(x,8)| < |51 -5, ),
VxeaQ, VSI’SZGR

then the functional F is lower semicontinuous on BV (Q) with respect to the
topology of L (Q).

Proof. — Fix u,, e BV(Q) and let (u,) be a sequence in BV (Q) converging
to u,, in L' (Q). We want to prove that

lim sup [F (u,,) — F (1,)] 0. 4

h—> +o

By (i) we deduce that

F(uw)—F(u;)éf |Du,| —‘[ |Du,| +J
Q Q

i, — i3, |d, ..

Q

Let 8>0 and define v;=(1—7y;) (u,—u,), where y; is the usual cut-off
function, i.e. x;€ CH(Q), 0= 1; <1, x5 (x)=1if dist (x,00Q) =8, | Dy, ] <2/8.
The trace inequality for BV functions (c¢f. G. Anzellotti and M. Giaquinta
[1]), applied to vs, gives that

J [Eoo_;h]dxn—‘l
Q

§c1j ' |D(uy, —uy)| +(201/5)J , |uw—uh}dx+c2j ’ |y —u,| dx,
Qs Qs Qs

(") For ueBV(Q) and E measurable subset of Q, we denote by -[ |Du[ the value of the
E
measure |Du| at the set E. Of course, if Du is a Lebesgue integrable vector function, then

f |Du| agrees with the ordinary integral f [Du(x) | dx.
E E

Annales de Ulnstitut Henri Poincaré - Analyse non linéaire



PHASE TRANSITIONS 493

where Qy={xeQ:dist(x,dQ)>8} and Q;=0O\Q;. Let us remark that
¢; =1 because 0Q is smooth (see [1]), and that

J|D(uw_u,,)p§f |Duw|+f [Du,,|+f ID ()],
Q3 Q5 Q3 Q5

Since u,, —u,e BV (Q), we have that
J‘ |D(up—u)| =0, VheN
Q5

for a set of $>0 of full measure; hence

F(ug)—F(u)

§f|nuw|+f [Duwl—J ;Duh|+(2+c2>f PR
Q Q5 Q5 3 Q3

and, by lower semicontinuity in L!(Q;) of the functional

uk—-)f | Du|,
Q5

we conclude that

lim sup [F(uw)—F(u;.)]§2j |Du,|
5

h— +o

for almost all >0. By taking & — 0*, the inequality (4) is proved. W

1.3. Remark. — The previous proposition fails to be true if dQ is not
smooth, or if the function t has in (i) a Lipschitz constant L>1. For
example, in the case Q=]0,1[ x J0,1[ and 1(x, s) = —As with A > 2/2, the
corresponding functional F is not lower semicontinuous at the point
u,=0; it is enough to check lower semicontinuity on the sequence (u,)
given by u,(x,y)=0 for x+y=1/h, u,(x,y)=h for x+y<l1/h. Anal-
ogously, in the case Q={xeR?:|x|<1} and t(x, s)=A|s| with A > 1, the
corresponding functional F is not lower semicontinuous at the point
U, (x)=|x|: one can choose u, (x)=min {|x],(h—1)(1—]x]}.

However, it is worth noticing that, in the particular case
T(x, s)=|s—\ll(x), with yeL'(6Q, #,_,), the functional F defined in
Proposition 1.2 is lower semicontinuous on L'(Q) even for Lipschitz

Vol. 4, n°® 5-1987.



494 L. MODICA

continuous 0Q. Indeed, by choosing an open, bounded set Q@ 2Q and a
function e BV (Q’) whose trace on dQ is s, we have that

F(u)=J |Du| +J |17(x)-—\|1(x)]d3f,,_1=f |Do,| —J _|DV|,
Q (7 %] Q’ Q@ Q

where the function v, is defined by v, (x)=u(x) for xeQ, v, x) =¥ (x),
for xe O\ Q. Since the first addendum of the right-hand side is lower
semicontinuous with respect to u in L! (Q), F also is lower semicontinuous
in L1(Q).

From now on, we let, for t=0,

o= j "Wz (5)ds, 9)
0
c(H=inf{c(s)+2|@(s)— @ (1)|:s20}, (6)
and, for ue BV (Q),
fé’o(u)=2j ID(<P°u)|+J G (u(x))dH, 1, (7
Q oQ

where, as above, u denotes the trace of u on 6Q.

1.4. ProposiTioN. — Let (u,) be a sequence of functions of class C* on Q.

If (u,) converges in L' (Q) to a function u,, and there exists a real constant
¢ such that

j‘ ID((pou,,)|dx§c
o

for every heN, then ¢oueBV(Q) and

&o(uy) Sliminf &4 (u,).

h—> +o0
Proof. — Let us denote v, (x)=¢ (4, (x)) and fix an open subset Q" of Q

such that Q' = Q. If we consider the smooth function v, (x)=v,(x)—9,,
where

3,= j v, dx,
o

Annales de Ulnstitut Henri Poincaré - Analyse non linéaire



PHASE TRANSITIONS 495

Poincaré Inequality gives
J|17,,ldx§c1(9)j |Dv,|dx<c,(Q)c
Q Q’

for every he N and for a real constant ¢; () depending on Q but indepen-
dent of Q' = Q. It follows that the sequence (v) is bounded in BV (Q);
hence, by Rellich’s Theorem, there exists a subsequence (v, @) Which
converges in L'(Q) to a function .

Since it is not restrictive to assume that (v, @) and (v, ) both converge
almost everywhere in Q, we infer that (9, @) converges in R to 9, and
finally that (v, ) converges in L'(Q) to v, +9,. We have of course
Vo +3,=0ou_, so we conclude that the whole (vy) converges in L (Q)
to v, =¢ou, and, by semicontinuity, that

f |D v, |<liminf |Dov,|Se< + 0.
Q h-> +0 Jo

We now consider the inverse function ¢! of ¢; note that ¢! exists
because @’ (t)=W (£)>0 except for t=aq, B. Denoting 1(s)=6 (0~ 1(s), we
have that

IT(S1)_T(52) |§2,S1—32|

for every s,, s, in the domain of ¢~ then Proposition 1.2 yields that
évo(um)=2j IDvco I+J\ T(Eoo) d'#n—l
Q o

gliminfl:2f le,,ldx+f (1) dx,,_l] =liminf &, (u,)
Q N

h= +o h-> +w

and Proposition 1.4 is proved. W
We now turn to the liquid-drop problem (P,) by proving that the class
of competing sets can be restricted to smooth sets.

1.5. PROPOSITION. — Suppose 0<m,<|Q| and |y|<1. If A is a fixed real
number such that

A=Po(A)+y#, 1 (0(ANQ) N Q)

Vol. 4, n° 5-1987.



496 L. MODICA

for every open, bounded subset A of R" which has smooth boundary and
satisfies #,_, (0A N 0Q) =0, |A N\ Q|=m,, then

)<min{ Po(E)+y#,_,(*EN0Q):E < Q,|E|=m, }.

Proof. — We omit the details because we closely follow the proof of
the analogous result proved for the case y=0 in Lemmas 1 and 2 of [10].

Let E, be the set which realizes the minimum of (P,). By a theorem of
E. Gonzalez, U. Massari and I. Tamanini ([7], Th. 1), which was stated
for y=0 but holds also in our situation because of its local character, we
have that both E, and O\ E, contain a non-empty open ball. Then,
arguing as in Lemma 1 of [10}, one can construct a sequence (E,) of
open, bounded, smooth subsets of R" such that |EhﬂQ|=m1, H
(0E, N Q)=0 for every heN, and

n—1

lim |(E,NQ)A Eo|=0, (8)
h—- +o
lim Pg(E,)=Py(E,), 9)
h—- +o
lim #,_,(3(E,NQ)NQ)=s#, ,(@*E, N Q). (10)

h- +o

The last assertion is not actually contained in Lemma 1 of [10] but it
easily follows from (8) and from

Jf"_l(a(EhﬂQ)ﬂaﬂ)=j iEthdfn—l’
oQ

fﬂ_l(a*EoﬂaQ)=J iEod‘#n—la

o0

where y; denotes the trace on dQ of the characteristic function of T for
T=E,NQ and T=E,.

The proof of the proposition is now a straightforward consequence of
(9) and (10). W

The next result, stated here without proof, was proved in [10] (Lemma 4).

1.6. ProprosiTION. — Let A be an open subset of R" with smooth,
non-empty, compact boundary O0A such that #,_,(0A N 0Q)=0. Define
the function h: R" - R by h(x)=dist(x, dA) for xe A, h(x)= —dist(x, dA)
for x¢ A. Then h is Lipschitz continuous, | D h(x) | =1 for almost all xeR",

Annales de UInstitut Henri Poincaré - Analyse non linéaire



PHASE TRANSITIONS 497

and

lim #,_,(S,NQ)=#, ,(0A NQ)

t—+0

where S,={xeR": h(x)=t}.

2. THE MAIN RESULT

We recall that Q denotes an open, bounded subset of R” (n = 2) with
smooth boundary, and W, o: [0, + oo[ > R denote two non-negative con-
tinuous functions. We assume also that W ()=0 only for t=o or t=p
with 0 < o < B.

2.1. TueoreM. — Fix me[a|Q|, B|Q|] and, for every € >0, let u, be a
solution of the minimization problem (P,). If each u, is of class C' and there
exists a sequence (g,) of positive numbers, converging to zero, such that '
(u,) converges in L' (Q) to a function u,, then

() W (uo(x))=0 [i.e. uy(x)=0 or uy (x)=P] for almost all xeQ;

(i) the set Eq={xeQ: uy(x)=o} is a solution of the minimization
problem (P,) with

y=S@=s® _B[Q|-m
2¢q B—a

:ng}

where [see (5) and (6)]

8(t)=inf{c(s)+2Uswm(y)dy

fort=uo, B, and

B
Co zf W2 (y) dy;

i) lim et 8, (u,)

=2¢o Po(Eg) +6 (%) #,_, (3*E, N Q)
+G(B) #,_ 1 (BQN\0* Ey).

Vol. 4, n°® 5-1987.
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For some comments about this statement we refer to Remarks 2. 5. The
proof of Theorem 2.1 is similar to that one of the result with =0 given
in [10]. Neverthless the extension is not trivial, because in the asymptotic
(e=0) boundary behavior, given by &, both the boundary and the interior
behavior for € > 0, given by W and o, are involved.

In the language of T'-convergence theory, the proof of Theorem 2.1
consists in verifying that (¢~ &,+1,)) converges as ¢ » 0%, in the sense of
I (L' (Q))-convergence, to the functional &,+1,, at the points ue L (Q)
such that W (u(x))=0 for almost all xeQ (cf. Section 3 in [10]). The
functional &, was defined in (7); I,, denotes here the 0/+ co characteristic

function of the constraint J u(x)dx=m.
Q

The main steps in the proof of Theorem 2.1 are the following proposi-
tions.

2.2. PROPOSITION. — Suppose that (v,), » o is a family in {ue C*(Q): u = 0}
which converges in L' (Q) as € » 0" to a function v,. If

liminfe™! &, (v,) < + o,

e-0"

then v, e BV (Q), W (v, (x))=0 for almost all xeQ, and

&o(vy) < liminfe 1 &, (v,). (11)

e-0"

2.3. PropOSITION. — Let A be an open, bounded subset of R" with smooth
boundary such that #,_, (0A N Q) =0. Define the function v,: Q —» R by
vo(x)=a for xe AN Q, vy(x)=p for xe O\ A. For every r > 0 denote

v—v|[L2 @ <7 J‘ vdx=j vodx}.
Q Q

Then, for every r > 0, we have that

U,={veH1(Q): v20,

lim sup inf €1 &, (v) £ &, (o). (12)

e—0t vel,
2.4. Remark. — For the connection between (12) and the corresponding
inequality in the usual definition of I'-convergence, see Proposition 1. 14

of [4].

Annales de UInstitut Henri Poincaré - Analyse non linéaire
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Proof of Proposition 2.2. — By the continuity of W and by Fatou’s
Lemma we have that

f W(vy)dx < liminf | W(v,)dx < liminf &, (v)=0;
Q

e—-0% Jo e-07

since W = 0, we have at once proved that W (v, (x))=0 for almost all

xeQ.
Now

[Ip@-0l=[ lo'@.onl. Dol as
Q Q
= J W(vs(x))|Dvs(x)|dx
Q
_S_f [e| Do, [*+& * W(v)ldx <71 &8, (v,),
Q

so Proposition 1.4 and ¢ < o apply for obtaining

& (v) < liminf &, (v,)

e—>0

=< lhninf{f [e| Do, |*+&7* W(v)] dx
Q

e—-0"

+J &(ve)dfn_l} <liminfe ' &, (v,).
N

e-0"

It remains to prove that v,eBV(Q). This is obvious because v, takes
only the values o and B, and @o°v,eBV(Q); hence the proof of
Proposition 2.2 is complete. B

Proof of Proposition 2.3. — Let us fix r >0 and also, for further
convenience, L = 0, M = 0 and & > 0. We shall not often indicate in the
following the dependence on r, L, M, & as well as on the other data n, Q,
W, a, B, o, A; in particular we shall denote by ¢,, c,, ... real positive
constants depending on all such data.

The following lemma contains a purely technical part of the proof.

2.5. LemMA. — Consider, for every € > 0, the first-order ordinary differen-
tial equation

Y |=e"t@+W Q) (13)

Vol. 4, n°® 5-1987.
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Then there exist three constants c,, ¢, 5, independent of €, and a Lipschitz
continuous function ¥, (s, t), defined on the upper half-plane Rx [0, + oo,
satisfying the following properties:

Y (s, =0 for s=c,g tZcyE,

(8 =B for s20, t=c kg,

(14
% (s, )=L  for s=Z0,
(s, =M  for s=c;g
0S¢ |Dr|Sefs (15)

on the strip {s <0, t <c, ¢} the function ¥ (s, t) depends only on t

and fulfils the equation (13) in the set {y.(t) # B}, on the strip
{s=cy& t <c &} the function ¥, (s, t) depends only on t and fulfils 16)
(13) in the set {x.(t) # a}; on the strip {0 Ss<cig t2¢ g} the
function (s, t) depends only on s and fulfils (13) in the set
{x:(s) # .

Proof. — We have to determine ¢,, ¢,, ¢; and to complete the definition
of ¥, on the strips

S;={s£0,t=Zc, ¢} S,={s=c;& t<c ¢}
S,={0<s=Zcet=c gl
and on the square Q=[0, ¢, &[ x[0, ¢, €[.
Let us begin by S,, where we have the prescribed boundary values

% (s, 1 8)=B, % (s, 0)=L. If =L, we define yx, (£)=p; if p > L, we solve
the Cauchy problem

y®=et@+We O yO=L

and we define x,(f)=min {B, y (¢)}; if B <L, we solve the same Cauchy
problem with —)’ instead of y’ and we define ¥, () =max {B, y(1)}. Since

x| =" G+ W @) z e 8

provided that yx () # B, we have x (t)=B for t=¢ |B—L|/3; then, in
order that 7, takes the prescribed boundary values ¥, (s, ¢, £)=P, we need
¢, 2 |p—L|/8. The same holds on S, and S, so we are led to define

¢, =max {|B—L|/5, |a—B|/3,

a—M]|/8}.

Annales de UInstitut Henri Poincaré - Analyse non linéaire
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Define also c¢,=max {a, B, L, M}, so that

0§Xz§c2

and

|Dy. | < e ' (8+max {W(s): 0 < s <c,})?

on (Rx[0, +0o)\Q. Finally, as we know y, on three sides of the square
Q, we can extend Y, on Q in such a way that x, becomes Lipschitz
continuous on the whole upper half-plane and (15) is satisfied with

c3=3¢, (8+max{W(s): 0 <s < c, )2

The proof of Lemma 2.5 is now complete. W

Let us return to the proof of Proposition 2.3. The first part of the
proof consists in constructing a family (v,) in U, such that v, converges to
voas €—>0%, and

inf &, (v)

veU,

is approximatively equal to &, (v,).
Define

FiG. 1.
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dg (x)=dist (x, 0Q), dy (x)=dist(x, A) for xeA,
d, (x)= —dist(x, 0A) for x¢A,
and let x, be the function constructed in Lemma 2. 5. Let, for xeQ,
v (¥) =% (da (%), dg (x)).

Look at Figure 1 for understanding the meaning of our construction.
Denoting

S;={xeANQ:d,(x)=s},
Z={xeQNA:dy(x)=t},
TP={xeQ\A: dy(x)=t},

Federer’s coarea formula and |Ddg|=|Dd,|=1 (see Proposition 1.6)
yield

le;—voldx
Q
Seof|[{xeQ:dg(x) Sc, et |+|{xeANQ: dy(x) < ¢, g} ]
018
=C4J [# -1 (EFUZD)+ 5, (S))dL;
(4]

hence, as A and 0Q are smooth, Proposition 1.6 implies
J‘ |v,—vo|dx S cs€
Q

for € small enough. It follows that v, converges to v, in L' (Q) as ¢ - 07

and, defining
na=J v;dx—f v, dx,
Q o

|| S ese (17)

we have that

for € small enough.
Let us choose a point x,e Q\JA and, for fixing the ideas, assume that
xo€QNMA. In the case QN A= or x,€Q\ A the changes in the proof
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are trivial. Note that the closed ball B,=B (x,, £!’") is contained, for ¢
small enough, in the set {v,=a}; then the function v, defined on Q by

v,=v, for x¢B,, and by
v, (X)=a+h,(1—e™ " | x—x, ),

for xeB,, is Lipschitz continuous whenever h e R.
We now choose

hy=—not n,e0 -,

€

with @,_; equal to the volume of the unit ball in R"™!, so that
J (ve_v::)dx=J‘ he(l—S_I/”‘x—xol)dx\=_na,
B B

and, by the definition of 1, and v,,

f v, dx=f vy dx
Bg B

for & small enough. Since, by (17),

|h,| < ceetlm
we have, for & small enough,
0<v,Z¢c,
and
lim | |v,—vo[2dx=0;
e~0t Ja
hence

lim inf £7!'&,(v) < limsupe™! &, (v,).

e»0t" vel, e-0"

(18)

(19)

(20)

(21)

(22)

The second part of the proof consists in a sharp estimate of the

right-hand side of such inequality. For the sake of simplicity, let

6718, (0)=8.(v; Q+8/ (v)

Vol. 4, n° 5-1987.



504 L. MODICA

with
& (v C)=j [e| Do > +e ' W(v)ldx (C<Q),
c

and

&} (vy) =J‘ oc(@)dH,_,.
50

By (20) and (21), and by the continuity of o and of the trace operator,
we at once obtain

limsup &/ (V)< f o (o) dH,
aQ

e->o0t
=o(L) #,_, (0ON\A)+c (M) #,_, QN A). (23)

The evaluation of &.(v; Q) is more complicated. Let us divide Q in

seven parts, corresponding to the construction of yx, in Lemma 2.5 and
of v, (see Fig. 1):

B.=B(x,, £'/),
QL={xeQ:d,(x)>c, & dg(x)>c & x¢B,},
Q={xeQ:d, (x)0; do(x)>c, e},
Qip={xeQ:0<d,(x)Zc, & dg(x)>c €},
5, = {xeQ:d, ()0, dy(M)<c, &),
Q y={xeQ:d,(x)>c, & do(x)Sc €},
Q={xeQ:0<d,(x)Sc ¢ do(x)Sc e}
On B, we have, by (19),

&.(v; By

=£‘he|28‘2/"|B5|+e‘1j W(a+h,(1—e 1" | x—x,|)) dx
Bg

§c7[82+J1W(a+h£(l—r))r"“dr:l;

o
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hence

lim sup &% (v; B, =0. (24)

e-0"
On Q; and Qf the function v, equals respectively a and B, so that
& vy Q)+E (v Q)=0. (25)

On Qp we have v,(x)=Y%,(ds(x), dq(x)); moreover, by (16),
% (8, £)=17.(s) depends only on the first variable and satisfies the equation

— %)= @G+ W(r (9"

on an interval ]0, [, with 0<rt,<c, ¢, while %, (s)=a for s=1,. Then,
applying Federer’s coarea formula and ¥, (0) =p, we obtain that

& (vs Qia)=r [exc (s)+&~ ! W (g (D] -1 (S ds
0

<(sup H#,_,(S)] f 2= ) B+ W () ds

0ss=stg

—(sup #,_,(S)) (2 f ﬁ(6+W(t))1/2dt>,

O0<s=<rtg o

and therefore, by Proposition 1.6,

»

B
limsup &,(v; L <2#,_ (ANQ) | G+WE)2d.  (26)

e-0% Ja

The same argument leads to
rL

limsup &; (v,; QG=2#, (0QNA) G+W@)2dt|, (@27
e—-0"t Jp
and to
M
limsup & (v; Q) <2#,_, (0QNA) J B+W ()2 dt|. (28)
e-o0t o

Finally, on Qf we have, by (15),
& (v Qp)<cge™' | Q5.
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Note that, again by coarea formula,

|Qg|=j 1 %n—l({xeg:dA(x)=S’ do(x)Sc e})ds
0

é ¢y ( sup '}fn— 1 (Ss\Qq s))’

0=<s=<c1¢

where Q, denotes here the set {xeQ:dy(x)>p}. Since we have
H -1 (0A N 0Q,)=0 for almost all p>0, Proposition 1.6 gives

hm sup ( sup '}fn -1 (Ss\ch s))

e-»0% O0Ss=cre

é lim sup ( sup '%n -1 (Ss\gp)

g—»>0"Y OSs=cre
=#,-1(0A N O(AN\QP))
for almost all p>0; by taking the infimum for p>0, we conclude that

limsup &, (v,; 5)=0. 29)

e->0"

Now, by collecting (22) to (29), we have that

B
limsup inf 8_1$8(v)§2%n_1(6AﬂQ)J B+W (@) dt

e>0* vel,

+H#,_,(GQNA) <2

JM(S +W ()2 dt

+0c (M)>

+%”_1(6Q(\A)(2

jL(8+W(r.))”2 dt

B

+0(L)>.

The left-hand side does not depend on 3, L, and M, so, by taking first
the infimum for >0, and then the infima for M>0 and for L>0 of the
right-hand side, we obtain, by the definition of & and c,, that

limsup inf e &, (v)
e—»0t vel,

<2¢oH#,_,CANQ)+6(a) #,_,(6Q N A)
+0(B) #,-; (0Q\A)

=2coH,_,(0A mg)+f o(vy)d#,_,. (30)

3Q
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Remarking that the Fleming-Rishel formula yields
2J ID(<P°vo)|=2J Po({xeQ:9(vo(x))>1})dt
Q R

®)
=2F Po(ANQ)dt=2c, #, ,(GANQ), (31)

9 (@)

the right-hand side of (30) agrees with &, (v,) and the proof of Proposition
2.3 is complete. W
Now, we can prove Theorem 2. 1. )

Proof of Theorem 2.1. — Assume for simplicity that all (u,) converges,
as € > 0%, to u,. By constructing, as in the proof of Theorem I of [10], a
suitable family of comparison piecewise affine functions, we first obtain
that

liminfe™ ' &, (u) < + 0; 32)

e-0"

hence Proposition 2.2 gives W (u, (x)) =0 and

6o (uo)<liminfe~' &, ().

e-ot

Now, let o be the class of all open, bounded subsets A of R, with smooth
boundary, such that &#,_, (6A N3Q)=0 and |A N\Q|=|Ey|=m,. For
every Aeo/, we define v§(x)=a for xe AN Q, vh(x)=Pp for xeQ\A;
applying Proposition 2.3 with r=1, we infer that

limsup inf €71 &, (V) <&, (v5),

e-0t veU

where

U={veH1(Q):v;0, J |[v—vh[2dx<]1, f vdx=f vﬁ‘dx}
Q Q Q

Since

J vhdx=m,
Q
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we have, by the minimality of u,, that
)€, (v), Voel,
and we conclude that

8o (up)<liminfe™' &, (u)<limsupe ' & (u) <&, (v2)  (33).

e->0" e-0"

for every A e o/. Arguing as for (30) and (31), we obtain
8o (o) =2co Po(Eg) +6(0) #,_, (0* B N 09Q)
+G(B) #,_, (OQ\I*E,) (34)
and
8o (15)=2¢oPo(A)+ (%) #,_, (RN A)+ G (B) #,_, (0Q\A),
so that
Po(Eo)+vH#,_1(0*Eq N OQ) <Py (A)+y #,_, (0(A NQ) N Q)

for every A e«/. Then the required minimality property (ii) of E, follows
from Proposition 1.5. Finally, by employing again (33) and
Proposition 1. 5, with

A=limsupe~! &, (u),

g 0+
we have that

éaO (uO) = hm € ! ge (us);

e-»o0t

hence the result (iii) follows from (34) and this concludes the proof of
Theorem 2.1. W

2.5. Remarks. — (a) The assumption that 6Q is smooth in Theorem 2.1
cannot be easily replaced by 0Q Lipschitz continuous, except for c=0
(cf. [10]). In fact, as we already observed in Remark 1.3, the liquid-
drop problem (P;) in bounded domains with angles requires a particular
treatment.

(b) Well-known growth conditions at infinity on W guarantee that the
minimizers u, are of class C'. Of course, if u,e L®(Q), then u, is smooth.
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(c) The (relative) compactness of (u,) in L!(Q) may be studied as in
Proposition 4 of [10]. It is ensured either by equiboundedness of (u,)
(¢f. [9]), or again by a growth condition at infinity on W.

3. A DISCUSSION
ABOUT CRITICAL POINT WETTING

We make here more precise some statements of Introduction, about the
connection between Theorem 2.1 and the critical point wetting theory by
J. W. Cahn [2].

According to this author, and looking in particular at page 3668 and
Figure 4 of [2], we assume that the contact energy o is a non-negative,
convex, decreasing function of class C!. Moreover we denote by W, the
Gibbs free energy at the temperature T (recall that we are concerned with
isothermal phenomena), by o and By the corresponding zeros, by M; the
maximum height of the hump between oy and B;. We assume that Wi (@)
increases for t>B;. By thermodynamic and experimental reasons (cf- [2],
page 3669), we assume also that B, and M, are decreasing in T, oy is
increasing in T and (By—o;) >0, M; — 0 when T increases towards a
critical temperature T, (critical point of a binary system). The ¢ and &
corresponding to ¢ and W will be denoted by ¢, and or.

Let us compute now Gy (t) for t2or. Since o is decreasing and

lim @;(t)=+ oo,

t= +o

we obtain that the minimum of s+ (s)+2| @1 (1)~ @ (s)| is attained at
a point s=A, y2t. Moreover, either A, ;=t¢, or

—-o’ (;"t T) =2 (P/ (xt, T) =2W'2 ()\‘t, T)'

For Ty-T small enough, that is for a temperature T below and close to
the critical one, the hump in the graph of 2 W2 between o, and By does
not intersect the graph of —o’ in the same interval; on the other hand,
since o is convex, the decreasing function — o’ does intersect the i increasing
function 2 W/? at a single point A 2 B, (see Fig. 2).
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2w+

-6’ (1)

M- ——

oT Br

FiG. 2

It is easy to check that A; (independent of t) is actually the minimum
point of s— o (s)+2| @y (t) — @ (s)|; hence we conclude that

é;"r O=c)+2(er (M) =01 (), ViZoy
hence

_ 81' (op) — 81' (By) —
2(or(Br) — or(oy)

T

in correspondence with the phenomenon of the perfectly wetting phase B
quoted in Introduction. If one prefers not to consider the modified energy
oy, it could be alternatively thought that a very thin layer of a third phase
of the fluid, with density A.> B, appears on the whole boundary of the
container.

When the temperature T is much more below T,, a possible relative
behavior of —o’” and 2 W2 is shown in Figure 3, with both p, and A;
relative minima of

s ()+2] () — o1 ()]

for every t > o
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2w,y

FiG. 3

Note that
61 (Br) =0 (A +2(¢r (M) — 0 (B),

while the value of oy (o) depends on the areas A and B. Indeed, if A <B,
then

&T (o) =0 (Ap) +2( 07 (Ay) — @1 (oy))
and yp=1 as above. On the contrary, if A >B, then
1 (0r) =6 (1) + 2 (@1 (1) — @1 (1)) <6 (M) +2(@1 (M) — P (0ty))

and y;<1; since we have analogously y;> —1, this means that both the
fluid phases wet the container walls. Or, alternatively, two thin layers of
fluid, with densities py and A;, are interposed between the phases o and
Br and the container.

Finally, we want to remark that the equation 6=o is equivalent to the
inequality

|0'(51)_0(52)[§2|(P(S1)"(P(52)Is V0<s, <s,, (3%
which gives in particular
o' (@) 2 ¢’ () =W (a) =0
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and analogously o’ () =0; hence (35) cannot be satisfied in the case ¢’ <0.
It would be interesting to know whether the inequality (35), and then the
equality =0, are verified in some other thermodynamic situation,
different from the phenomenon studied in [2] by Cahn.
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