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Abstract. We study the simple random walk on the giant component of a supercritical Erdős–Rényi random graph on n vertices,
in particular the so-called vacant set at level u, the complement of the trajectory of the random walk run up to a time proportional
to u and n. We show that the component structure of the vacant set exhibits a phase transition at a critical parameter u�: For u < u�

the vacant set has with high probability a unique giant component of order n and all other components small, of order at most
log7 n, whereas for u > u� it has with high probability all components small. Moreover, we show that u� coincides with the critical
parameter of random interlacements on a Poisson–Galton–Watson tree, which was identified in (Electron. Commun. Probab. 15
(2010) 562–571).

Résumé. Nous étudions la marche aléatoire sur la composante principale d’un graphe aléatoire d’Erdős–Rényi avec n sommets, en
particulier l’ensemble vacant au niveau u, le complément de la trajectoire de la marche aléatoire jusqu’à un moment proportionnel
à u et n. Nous prouvons que la structure de composant montre une transition de phase à un valeur critique u� : Pour u < u�

l’ensemble vacant se compose, avec une forte probabilité quand n croît, d’une seule composante principale avec volume d’ordre n

et des composantes petites d’ordre au plus log7 n, alors que pour u > u� tous les composants sont petits. En outre nous montrons
que u� coïncide avec le paramètre critique des entrelacs aléatoires sur un arbre de Poisson–Galton–Watson identifié en (Electron.
Commun. Probab. 15 (2010) 562–571).
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1. Introduction

Recently, several authors have been studying percolative properties of the vacant set left by random walk on finite
graphs and the connections of this problem to the random interlacements model introduced in [21]. The topic was
initiated with the study of random walk on the d-dimensional discrete torus in [6], which was further investigated in
[24]. [8,10] and [11] studied random walk on the random regular graph, and [11] also studied random walk on the
Erdős–Rényi random graph above the connectivity threshold.

In this work we consider the supercritical Erdős–Rényi random graph below the connectivity threshold. We prove
a phase transition in the component structure of the vacant set left by random walk on the giant component of this
graph, and we identify the critical point of this phase transition with the critical parameter of random interlacements
on a Poisson–Galton–Watson tree.

We start by introducing some notation to precisely state the result. Let Pn,p be the law of an Erdős–Rényi random
graph, i.e. a random graph G such that every possible edge is present independently with probability p = ρ

n
, defined

on the space G(n) of graphs with vertex set {1,2, . . . , n} endowed with the σ -algebra Gn of all subsets. It is well
known that the component structure of G varies with the parameter ρ (see e.g. [7,12,13,16]). We will in this paper
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consider such a random graph for a fixed constant ρ > 1. In this case, with probability tending to 1 as n → ∞, the
graph G is supercritical: There exists a unique largest connected component C1(G) of size approximately ξn, the
so-called giant component. Here, ξ is the unique solution in (0,1) of e−ρξ = 1 − ξ .

For a graph G on n vertices and its largest connected component C1 = C1(G) (determined by some arbitrary tie-
breaking rule), let P C1 be the law of the simple discrete-time random walk (Xk)k≥0 on C1 started from its stationary
distribution, defined on the space {1,2, . . . , n}N0 of trajectories on n vertices endowed with the cylinder-σ -algebra Fn.
Let Ωn = G(n)×{1,2, . . . , n}N0 endowed with the product σ -algebra Gn ⊗Fn, and define the “annealed” measure by

Pn(A × B) =
∑
G∈A

Pn,p(G)P C1(G)(B) for A ∈ Gn,B ∈ Fn. (1.1)

On the product space Ωn we define the vacant set of the random walk at level u as

Vu = C1 \ {
Xk: 0 ≤ k ≤ uρ(2 − ξ)ξn

}
. (1.2)

We refer to Remark 1.2 for an explanation of this somewhat unusual time scaling. Let C1(Vu) and C2(Vu) be the
largest and second largest connected components of the subgraph induced by Vu.

Theorem 1.1. The component structure of the subgraph induced by Vu exhibits a phase transition at a critical value
u�:

• For u < u�, there are positive constants ζ(u,ρ) ∈ (0,1), C < ∞, such that for every ε > 0,

lim
n→∞ Pn

[∣∣∣∣ |C1(Vu)|
n

− ζ(u,ρ)

∣∣∣∣ ≤ ε

]
= 1, (1.3)

lim
n→∞ Pn

[ |C2(Vu)|
log7 n

≤ C

]
= 1. (1.4)

• For u > u�, there is a positive constant C < ∞, such that

lim
n→∞ Pn

[ |C1(Vu)|
log7 n

≤ C

]
= 1. (1.5)

The critical parameter u� is the same as the critical parameter of random interlacements on a Poisson(ρ)–Galton–
Watson tree conditioned on non-extinction, which is by [22] given as the solution of a certain equation.

We refer to Section 2.3 for a short summary of the used results on random interlacements and its critical parameter,
and the derivation of the characterizing equation (2.15) for u�. The constant ζ(u,ρ) is given as the solution of equation
(5.2).

Theorem 1.1 confirms the following general principle: The vacant set of random walk on a sufficiently fast mixing
graph exhibits a phase transition and the critical point is related to the critical value of random interlacements on the
corresponding infinite volume limit.

This principle has been investigated recently in several other situations. Results that are more detailed than Theo-
rem 1.1 are known to hold for random walk on a random d-regular graph on n vertices run up to time un: [8] and with
different methods [11] proved the phase transition in the component structure of the vacant graph, [8] identified the
critical parameter u� with the critical value of random interlacements on the infinite d-regular tree, and [10] showed
that there is a critical window of width n−1/3 around u� in which the largest component is of order n2/3. [11] used
their methods to also prove a phase transition for random walk on the Erdős–Rényi random graph above the con-
nectivity threshold (ρ � logn). Weaker statements are known for random walk run up to time uNd on the discrete
d-dimensional torus of sidelength N , see [6] and [24]. The statements in this case are proved for u small or large
enough respectively, but it is only conjectured that there is indeed a phase transition at a critical parameter u� that
coincides with the critical value of random interlacements on Z

d (cf. Conjecture 2.6 in [9]). We believe that in our
case, as in [10] for the random regular graph, it should be possible to prove the existence of a critical window around
the critical point. We did not further investigate this.
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The main difficulties in proving Theorem 1.1 compared to previous results are that our graph, i.e. the giant com-
ponent of an Erdős–Rényi random graph, is of random size and non-regular. The proof consists of three main steps.
The key idea of the first step is the following “spatial Markov property” of random walk on a random graph. Instead
of sampling a random graph and performing random walk on the fixed graph, one can consider sites unvisited by the
random walk as not yet sampled sites of the random graph. Then the unvisited or vacant part of the graph has the law
of some random graph, depending on the random graph model. In the case of a connected Erdős–Rényi random graph
the vacant part is again an Erdős–Rényi random graph, this was used to prove the phase transition in [11]. In the case
of a random regular graph the vacant part is a random graph with a given degree sequence, a well-studied object (see
e.g. [14]). This was used to prove the phase transition in [11] and the critical behaviour in [10].

The situation in our case is more involved, because we consider random walk only on the giant component of a
not connected Erdős–Rényi random graph. This random walk cannot satisfy such a spatial Markov property, since the
graph must be fixed in advance for the giant component to be known. To be able to still use the idea, we introduce in
Algorithm 4.1 a process X̄ = (X̄k)k≥0 on an Erdős–Rényi random graph that behaves like a random walk but jumps
to another component after having covered a component. In Lemma 4.2 we make precise the aforementioned spatial
Markov property for this process X̄, namely that the vacant graph left by X̄ still has the law of an Erdős–Rényi random
graph, but with different parameters. The classical results on random graphs imply a phase transition for this vacant
graph.

In a second step we translate this phase transition to the vacant graph left by the simple random walk X = (Xk)k≥0

on the giant component. To this end, we introduce in Proposition 4.3 a coupling of X and X̄ where the two processes
are with high probability identified in a certain time interval. This can be done because the process X̄ will typically
“find” the giant component after a short time and then stay on it long enough.

The third step, requiring most of the technical work, is the identification of the critical point of the phase transition.
From Lemma 4.2 it is clear that the crucial quantity deciding the critical point is the size of the vacant set left by X̄.
The coupling of X and X̄ has the property that the sizes of the vacant sets of X and X̄ are closely related (Lemma 4.4),
which allows to reduce the problem to the investigation of the size of the vacant set left by X. The first part of this
paper, Section 3, is devoted to this investigation. In Proposition 3.1 we will on one hand compute the expectation of
the size of the vacant set left by X, and on the other hand we will show that the size of the vacant set left by X is
concentrated around its expectation.

We close the introduction with a remark on the connection to random interlacements and a heuristic explanation of
the time scaling uρ(2 − ξ)ξn that appears in the definition (1.2) of Vu. For readers unfamiliar with random interlace-
ments and the notation, we refer to Section 2, in particular Section 2.3.

Remark 1.2. In the giant component C1 of an Erdős–Rényi random graph the balls B(x, r) around a vertex x with
radius r of order logn typically look like balls around the root ∅ in a Poisson(ρ)–Galton–Watson tree T conditioned
on non-extinction. One expects that random interlacements on T give a good description of the trace of random
walk on C1 locally in such balls, where the intensity u of random interlacements is proportional to the running time
of the walk. To determine the proportionality factor, we compare the probability that a vertex x ∈ C1 has not been
visited by the random walk on C1 up to time t with the probability that the root ∅ ∈ T is in the vacant set of random
interlacements on T at level u.

Note first that the probability that the random walk on C1 started at x leaves a ball of large radius around x before
returning to x is approximately the same as the probability that the random walk on T started at the root never returns
to the root,

P C1
x [H̃x > HB(x,r)c ] ≈ P T

∅
[H̃∅ = ∞]. (1.6)

The main task of Section 3 will be rigorous proof of the following approximation for the random walk on C1,

P C1 [x is vacant at time t] ≈ e−tP
C1
x [H̃x>HB(x,r)c ]π(x). (1.7)

We will also show that the average degree of a vertex in C1 is ρ(2 − ξ), and so the stationary distribution π of the
random walk on C1 is π(x) ≈ deg(x)

ρ(2−ξ)ξn
. On the other hand, according to [23], the law Qu of the vacant set of random
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interlacements on the infinite graph T at level u satisfies

Qu[∅ is vacant] = e−u capT (∅), (1.8)

where the capacity is here capT (∅) = deg(∅)P T
∅

[H̃∅ = ∞]. As argued above, random interlacements describe the
random walk locally, so the probabilities (1.7) and (1.8) should be approximately equal for the time t corresponding
to random interlacements at level u. The approximation of π(x) together with (1.6) leads to t = uρ(2 − ξ)ξn if the
parameter u in both models should be the same.

Compared to the time scalings uNd and un in the discussions of random walk on the torus [6,24] and random
regular graphs [8,10] respectively, where only the size of the graph (in our case the factor ξn) appears in the time
scaling, the additional factor ρ(2 − ξ) for the average degree might be surprising. It is however only a consequence
of how one defines the uniform edge-weight on the underlying graph, which scales the capacity by a constant. For
the aforementioned 2d-regular graphs the weight chosen is 1

2d
. For non-regular graphs it is the canonical choice to

define edge weights as 1, as is done in [23] and [22], and we stick to this definition.

The paper is structured as follows. In Section 2 we introduce some further notation and recall some facts on random
graphs, random walks, and random interlacements. In Section 3 we investigate the size of the vacant set left by the
simple random walk X on the giant component. In Section 4 we introduce the process X̄ and compare it to the random
walk X. Finally, we gather all intermediate results to prove Theorem 1.1 in Section 5.

2. Notations and preliminaries

We will denote by c, c′, c′′ positive finite constants with values changing from place to place. ε will always denote a
small positive constant with value changing from place to place. All these constants may depend on u and ρ, but not
on any other object. We will tacitly assume that values like uρ(2 − ξ)ξn, log5 n, nε etc. are integers, omitting to take
integer parts to ease the notation.

We use the standard o- and O-notation: Given a positive function g(n), a function f (n) is o(g) if limn→∞ f/g = 0,
and it is O(g) if lim supn→∞ |f |/g < ∞. We extend this notation to random variables in the following way. For a
random variable An on a space (Ωn,Qn) we use the notation “An = f (n) + o(g) Qn-asymptotically almost surely”
meaning “∀ε > 0, Qn[|An − f (n)| ≤ εg(n)] → 1 as n → ∞,” and “An = O(g) Qn-asymptotically almost surely”
meaning “∃C > 0 such that Qn[|An| ≤ Cg(n)] → 1 as n → ∞.”

2.1. (Random) graphs

For a non-oriented graph we use the notation G to denote the set of vertices in the graph as well as the graph itself, con-
sisting of vertex-set and edge-set. For vertices x, y ∈ G, x ∼ y means that x and y are neighbours, i.e. {x, y} is an edge
of G. We denote by deg(x) the number of neighbours of x in G, and by 
G = maxx∈G deg(x) the maximum degree.
By dist(x, y) we denote the usual graph distance, and for r ∈ N, B(x, r) is the set of vertices y with dist(x, y) ≤ r .
For a subset A ⊂ G, denote its complement Ac = G \ A and its (interiour) boundary ∂A = {x ∈ A: ∃y ∈ Ac,x ∼ y}.

We denote by Ci (G) the ith largest connected component of a graph G. If there are equally large components, we
order these arbitrarily. The subgraph induced by a vertex-set V ⊂ G is defined as the graph with vertices V and edges
{x, y} if and only if x, y ∈ V and x ∼ y in G. Again we use the notation Ci (G) for the set of vertices as well as for the
induced subgraph. Usually (but not necessarily) C1 = C1(G) will be the unique giant component. A graph or graph
component is called “simple” if it is connected and has at most one cycle, i.e. the number of edges is at most equal to
the number of vertices.

Recall from the introduction that Pn,p denotes the law of an Erdős–Rényi random graph, i.e. a random graph
on n vertices such that every edge is present independently with probability p = ρ

n
. Let En,p be the corresponding

expectation. An event is said to hold “asymptotically almost surely” (a.a.s.) if it holds with probability tending to 1 as
n → ∞ (cf. the above defined o- and O-notation). Throughout this work ρ > 1 is a fixed constant. It is well known
that the following properties then hold Pn,p-a.a.s.

The graph G has a unique giant component C1 of size |C1| satisfying ||C1| − ξn| ≤ n3/4, where ξ is
the unique solution in (0,1) of e−ρξ = 1 − ξ . All other components are simple and of size smaller
than C logn, for some fixed constant C.

(2.1)
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The spectral gap λC1 of the random walk on the giant component (cf. (2.12)) satisfies λC1 ≥ c

log2 n
for

some fixed constant c.
(2.2)

The maximum degree 
G satisfies 
G ≤ logn. (2.3)

(2.1) and (2.3) are classical results (see e.g. [7,13,16] or [12]), and (2.2) follows from [18, Theorem 12.4] with the
O(log2 n) bound on the mixing time of the random walk on the giant component proved in [5]. We use the terminology
“typical graphs” for graphs G on n vertices satisfying (2.1), (2.2) and (2.3). We will usually prove our statements for
typical graphs only, since we are interested in a.a.s.-behaviour.

For a quantitative version of the first statement in (2.1) see [15, Theorem 4.8], which states that

Pn,p

[∣∣|C1| − ξn
∣∣ > n3/4] ≤ cn−c′

. (2.4)

The choice of the constant 3/4 is arbitrary, any ν ∈ ( 1
2 ,1) would work.

We will also need a quantitative version of (2.3), we therefore briefly present a proof. Fix a vertex x ∈ G and
denote all other vertices by yi , i = 1, . . . , n − 1. Let Ei = 1{{x,yi } is an edge}. Then the Ei are i.i.d. Bernoulli(p) random
variables, deg(x) = ∑n−1

i=1 Ei , and for any fixed α > 0 by the exponential Chebyshev inequality,

Pn,p

[
deg(x) > logn

] ≤ n−α
En,p

[
eα

∑Ei
] = n−α

(
1 + ρ

n

(
eα − 1

))n−1

≤ cn−α,

where the constant c depends on α. We choose α = 4, this will be suitable for our purposes. Then a union bound
implies

Pn,p[
G > logn] ≤ nPn,p

[
deg(x) > logn

] ≤ cn1−α = cn−3. (2.5)

2.2. Random walks

Let P C1 be the law and EC1 the corresponding expectation of the simple discrete-time random walk X = (Xk)k≥0
on the component C1 started stationary, i.e. the law of the Markov chain with state space C1, transition probabilities
pxy = 1

deg(x)
1{x∼y} and X0 ∼ π , where π is the stationary distribution, π(x) = deg(x)∑

y∈C1
deg(y)

. (2.1) and the a.a.s. upper

bound (2.3) on the maximum degree 
G imply the following bounds on π . Pn,p-a.a.s.

π(x) = deg(x)∑
v∈C1

deg(v)
≤ c logn

n
, (2.6)

π(x) = deg(x)∑
v∈C1

deg(v)
≥ c

n logn
. (2.7)

For real numbers 0 ≤ s ≤ r denote by X[s,r] = {Xk: s ≤ k ≤ r} the set of vertices visited by X between times s

and r . We let the random walk X run up to time t and denote by V(t) = C1 \ X[0,t] the vacant set left by the random
walk at time t , and again we use the notation V(t) to also denote the subgraph of C1 induced by these vertices. As
defined in (1.2), we will use the short notation Vu for V(uρ(2 − ξ)ξn).

We will, where it is clear in the context, drop the superscript from P C1 and EC1 . The notation Px is then used to
denote the law of the random walk on C1 started at vertex x, Ex is the corresponding expectation. For a set A ⊂ C1 we
denote by

HA = inf{t ≥ 0: Xt ∈ A}, H̃A = inf{t ≥ 1: Xt ∈ A}
the entrance time and hitting time respectively of A, and we write Hx and H̃x if A = {x}. From [1, Lemma 2] or [2,
Chapter 3, Proposition 21] together with (2.6) we get the following bound on E[Hx]. Pn,p-a.a.s. for all x ∈ C1,

E[Hx] ≥ (1 − π(x))2

π(x)
≥ cn

logn
. (2.8)
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For all real valued functions f and g on C1 define the Dirichlet form

D(f, g) = 1

2

∑
x,y∈C1

(
f (x) − f (y)

)(
g(x) − g(y)

)
π(x)pxy. (2.9)

A function f on C1 is harmonic on A ⊂ C1 if
∑

y pxyf (y) = f (x) for x ∈ A. For x ∈ C1 and r ∈ N define the
equilibrium potential g� :C1 → R as the unique function harmonic on B(x, r) \ {x}, 1 on {x} and 0 on B(x, r)c . The
dependence of g� on x and r is kept implicit. Then it is well known that

g�(y) = Py[Hx < HB(x,r)c ], (2.10)

D
(
g�, g�

) = Px[H̃x > HB(x,r)c ]π(x). (2.11)

The spectral gap of the random walk on C1 is given by

λC1 = min
{
D(f,f ): π

(
f 2) = 1,π(f ) = 0

}
. (2.12)

The relevance of the bound (2.2) on λC1 is in the speed of mixing of the random walk on C1. From [18, Theorem 12.3
and Lemma 6.13] it follows that for all t ∈N

max
x,y∈C1

∣∣Px[Xt = y] − π(y)
∣∣ ≤ 1

minz∈C1 π(z)
e−λC1 t . (2.13)

2.3. Random interlacements

Random interlacements were introduced in [21] on Z
d as a model to describe the local structure of the trace of

a random walk on a large discrete torus, and in [23] the model was generalized to arbitrary transient graphs. It is
a special dependent site-percolation model where the occupied vertices on a graph are constructed as the trace left
by a Poisson point process on the space of doubly infinite trajectories modulo time shift. The density of this Poisson
point process is determined by a parameter u > 0. The critical value u� is the infimum over the u for which almost
surely all connected components of non-occupied vertices are finite.

In [22] it is shown that for random Galton–Watson trees the critical value u� is almost surely constant with respect
to the tree measure and is implicitly given as the solution of a certain equation. Except for the identification of the
critical parameter of Theorem 1.1 with this u� as the solution of the same equation, we will not use any results on
random interlacements. We refer to the lecture notes [9] for an introduction to random interlacements and many more
references.

We quote the result from [22] to derive the characterizing equation for u� in the case of a Poisson–Galton–Watson
tree. This requires some more notation. Denote by PT the law of the supercritical Poisson(ρ)–Galton–Watson rooted
tree conditioned on non-extinction and by ET the corresponding conditional expectation. Let f (s) = eρ(s−1) be
the probability generating function of the Poisson(ρ) distribution, and denote by q the extinction probability of a
(unconditioned) Poisson(ρ)–Galton–Watson tree. It is well known that q is the unique solution in (0,1) of the equation
f (s) = s, and hence q = 1 − ξ , where ξ is as in (2.1). Let

f̃ (s) = f ((1 − q)s + q) − q

1 − q
. (2.14)

This is in fact the probability generating function of the offspring in the subtree of vertices with infinite line of descent
(see e.g. [19, Proposition 5.26]).

Consider the simple discrete-time random walk (Xk)k≥0 on the rooted tree T started at the root ∅, whose law we
denote by P T

∅
, and let H̃∅ = inf{t ≥ 1: Xt = ∅} be the hitting time of the root. Define the capacity of the root by

capT (∅) = deg(∅)P T
∅

[H̃∅ = ∞].
By [22, Theorem 1], the critical parameter u� of random interlacements on the Galton–Watson tree conditioned on

non-extinction is PT -a.s. constant and given as the unique solution in (0,∞) of the equation(
f̃ −1)′(

ET
[
e−u capT (∅)

]) = 1.
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In particular for the Poisson(ρ)–Galton–Watson tree,

(
f̃ −1)′

(t) = 1

ρξt + ρ(1 − ξ)
,

and u� is the solution of

ρξET
[
e−u capT (∅)

] + ρ(1 − ξ) = 1. (2.15)

3. Size of the vacant set

In this section we investigate the size of the vacant set Vu left by the random walk X on the giant component C1. As
already mentioned we omit the superscripts from P C1 and EC1 . Recall the definition (1.1) of the annealed measure Pn.

Proposition 3.1.

1. E[|Vu|] can asymptotically be approximated in terms of a Poisson(ρ)–Galton–Watson tree conditioned on non-
extinction:

E
[∣∣Vu

∣∣] = ξnET
[
e−u capT (∅)

] + o(n), Pn,p-a.a.s.

2. The random variable |Vu| is concentrated around its mean:∣∣Vu
∣∣ = E

[∣∣Vu
∣∣] + o(n), Pn-a.a.s.

3.1. Expectation of the size of the vacant set

The proof of part (1) of Proposition 3.1 is split up into several steps. We first quote and extend [17, Proposition 11.2].
It formalizes the well known fact that an Erdős–Rényi random graph locally looks like a Galton–Watson tree. Here,
by locally we mean balls of radius of order logn. More precisely, fix some γ > 0 such that 6γ logρ < 1, and set

r = γ logn. (3.1)

For a graph G, a vertex x ∈ G and a tree T with root ∅, define the event

Ix(G,T ) =
{

B(x, r + 1) ⊂ G is isomorphic to B(∅, r + 1) ⊂ T , with the
isomorphism sending x to ∅

}
. (3.2)

Denote by P
0
T the law of the unconditioned Poisson(ρ)–Galton–Watson tree T , and by {|T | < ∞}, {|T | = ∞} the

events of extinction and non-extinction respectively of the tree T .

Proposition 3.2.

1. Given an arbitrary fixed vertex x ∈ {1,2, . . . , n}, there is a coupling Qx of G under Pn,p and a tree T under P0
T ,

such that for n large enough

Qx

[
Ix(G,T )

] ≥ 1 − cn3γ logρ−1. (3.3)

For n large enough, this coupling satisfies

Qx

[
x ∈ C1, |T | < ∞] ≤ cn−c′

, (3.4)

Qx

[
x /∈ C1, |T | = ∞] ≤ cn−c′

. (3.5)
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2. For an arbitrary point x ∈ G, with r as in (3.1),

Pn,p

[∣∣B(x, r)
∣∣ ≥ n3γ logρ

] ≤ cn3γ logρ−1. (3.6)

3. Given two arbitrary fixed vertices x �= y, there is a coupling Qx,y of G under Pn,p and two trees Tx and Ty , each
having law P

0
T , such that Tx and Ty are independent and for n large enough

Qx,y

[
Ix(G,Tx) and Iy(G,Ty)

] ≥ 1 − cn6γ logρ−1, (3.7)

and statements (3.4) and (3.5) hold under Qx,y for x, Tx and y, Ty , respectively.

Proof. (3.3) is, up to the enlargement of the radius by 1, the statement of [17, Proposition 11.2], and (3.6) is [17,
Corollary 11.3]. Note that, in contrary to the actual statement, [17, Proposition 11.2] is proved for an a priori fixed
vertex and not a randomly chosen one.

For part (1) it remains to show the properties (3.4) and (3.5). For simplicity write Bx = B(x, r) ⊂ G and B∅ =
B(∅, r) ⊂ T . Denote by {z ↔ Bc

z } the event that z is connected to the complement of Bz, or equivalently that ∂Bz is
non-empty, and by {z � Bc

z } its complement. To prove (3.4), we first claim that

Pn,p

[
x ∈ C1, x � Bc

x

] ≤ cn−c′
. (3.8)

To see this, note that if x ∈ C1 and x � Bc
x , then Bx = C1. But by (3.6), Bx is unlikely to be large: For every small

ε > 0, Pn,p[|Bx | ≥ n1−ε] ≤ cn−c′
. However, if Bx is smaller than n1−ε and Bx = C1, then C1 is smaller than n1−ε , but

this happens with probability smaller than cn−c′
by (2.4), and (3.8) follows.

Note that if the coupling succeeds, i.e. the balls of radius r + 1 are isomorphic, then {x ↔ Bc
x} = {∅ ↔ Bc

∅
}. This

happens with probability ≥ 1 − cn−c′
by (3.3), so together with (3.8),

Qx

[
x ∈ C1, |T | < ∞] ≤ Qx

[
x ↔ Bc

x, |T | < ∞] + cn−c′

≤ Qx

[
∅ ↔ Bc

∅
, |T | < ∞] + cn−c′ = P

0
T

[
∅ ↔ Bc

∅
, |T | < ∞] + cn−c′

.

The tree T conditioned on extinction has the law of a subcritical Galton–Watson tree with mean offspring number
m < 1 (see e.g. [19, Proposition 5.26]). If q is the extinction probability and Zk denotes the size of the kth generation
of the tree, we can use the Markov inequality to get

P
0
T

[
∅ ↔ Bc

∅
, |T | < ∞] = P

0
T

[
Zr ≥ 1||T | < ∞]

q

≤ E
0
T

[
Zr ||T | < ∞]

q = qmγ logn = cn−c′
,

which proves (3.4).
For (3.5), let Cx be the component of G containing x. Let M > 0 be such that Mγ > (ρ − 1 − logρ)−1. Then, by

e.g. [12, Theorem 2.6.4], Pn,p[x /∈ C1, |Cx | > Mγ logn] ≤ cn−c′
. Using this on the first line and (3.3) on the second,

it follows that

Qx

[
x /∈ C1, |T | = ∞] ≤ Qx

[|Cx | ≤ Mγ logn, |T | = ∞] + cn−c′

≤ Qx

[|B∅| ≤ Mγ logn, |T | = ∞] + cn−c′
.

To bound this latter probability that the ball of radius r = γ logn in a surviving Poisson(ρ)–Galton–Watson tree is
smaller than Mr , let again Zr be the size of the r th generation and denote by Z�

r the number of particles in the r th
generation with infinite line of descent. Then

Qx

[|B∅| ≤ Mr, |T | = ∞] ≤ P
0
T

[
Zr ≤ Mr||T | = ∞]

P
0
T

[|T | = ∞]
≤ P

0
T

[
Z�

r ≤ Mr||T | = ∞]
ξ.
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By e.g. [19, Proposition 5.26] or [4, Theorem I.12.1]

P
0
T

[
Z�

r ≤ Mr||T | = ∞] = P̃T [Z̃r ≤ Mr],

where Z̃r under P̃T is the r th generation size of a Galton–Watson tree with offspring distribution defined by the
probability generating function f̃ as in (2.14), a tree with extinction probability q̃ = 0. Let κ = f̃ ′(0) = f ′(q). Since
f , the probability generating function of Poisson(ρ), is strictly convex and increasing, and by definition of q = 1 − ξ ,
we have 0 < κ < 1. Let f̃r be the r th iterate of f̃ , which is in fact the probability generating function of Z̃r . From [4,
Corollary I.11.1] we know that

lim
r→∞κ−r f̃r (s) = Q(s) ∈ (0,∞) exists for 0 ≤ s < 1.

It follows that

f̃r (s) ≤ (
Q(s) + ε

)
κr

for r ≥ r0(s, ε). Using this, for any λ > 0 we obtain for r ≥ r0(e−λ, ε)

P̃T [Z̃r ≤ Mr] ≤ P̃T
[
e−λZ̃r ≥ e−λMr

] ≤ eλMr f̃r

(
e−λ

)
≤ (

Q(s) + ε
)
eλMr+r logκ .

By choosing λ < − logκ
M

we can make this smaller than ce−c′r , and (3.5) follows since r = γ logn. This finishes the
proof of part (1) of the proposition.

We now prove part (3). Define the coupling Qx,y as follows. By using part (1) of the proposition, we can
find a coupling of two independent graphs Gx and Gy , both with vertex set x, y,3, . . . , n, and two independent
Poisson(ρ)–Galton–Watson trees Tx and Ty , such that with probability larger than 1 − 2cn3γ logρ−1 both Ix(Gx,Tx)

and Iy(Gy,Ty) hold.
We then construct a graph G with the same vertex set x, y,3, . . . , n in the following way. We first explore the

ball B(x, r + 1) ⊂ G by determining the state of all possible edges with at least one adjacent vertex in B(x, r) ⊂ Gx

according to their state in Gx , i.e. setting them present or absent. In a second step we determine the ball B(y, r + 1) ⊂
G in the same way by Gy , only that we do not change the state of already determined edges. The remaining edges in
G are set present independently with probability p and absent otherwise.

By construction this graph G has law Pn,p . If both Ix(Gx,Tx) and Iy(Gy,Ty) hold and there is no collision in the
second step, i.e. we never want to set an edge present that is already set absent or vice versa, then both Ix(G,Tx) and
Iy(G,Ty) hold, and the coupling succeeds. It thus remains to bound the probability of such a collision.

Note that if there is a collision, then the sets of vertices B(x, r + 1) and B(y, r + 1) must have non-empty intersec-
tion: If B(x, r + 1) ∩ B(y, r + 1) = ∅, the only edges possibly causing a collision are edges {u,v} with u ∈ B(x, r)

and v ∈ B(y, r), but these edges must be set absent by both Gx and Gy , or else u ∈ B(y, r + 1) or v ∈ B(x, r + 1).
The sets B(x, r + 1) and B(y, r + 1) are smaller than n3γ logρ with probability larger than 1 − cn3γ logρ−1 by

(3.6), and they are by construction random subsets of {x, y,3, . . . , n}. But the probability that two random subsets of

{x, y,3, . . . , n} of size k intersect is smaller than k2

n
, so the probability of a collision is smaller than

Qx,y

[
B(x, r + 1) ∩ B(y, r + 1) �=∅

] ≤ 2cn3γ logρ−1 + 1

n
n6γ logρ ≤ cn6γ logρ−1.

This proves (3.7). By construction it is clear that statements (3.4) and (3.5) hold analogously under Qx,y . �

We will denote by EQx and EQx,y the expectations corresponding to the couplings Qx and Qx,y . For easier use
later we now define some events and estimate their probabilities. Let Bx on the space of the coupling Qx be the event

Bx = Ix(G,T ) ∩ ({
x ∈ C1, |T | = ∞} ∪ {

x /∈ C1, |T | < ∞})
. (3.9)
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This event can canonically also be defined on the space of the coupling Qx,y when replacing T by Tx . Then define on
the space of Qx,y the event

Bx,y = Bx ∩By. (3.10)

From Proposition 3.2 it is immediate that

Qx[Bx] ≥ 1 − cn−c′
, (3.11)

Qx,y[Bx,y] ≥ 1 − cn−c′
. (3.12)

On the space of the coupling Qx , and similarly on the space of Qx,y , we further define the event

{x good} = {x ∈ C1} ∩ {|T | = ∞} ∩ Ix(G,T ) = Bx ∩ {x ∈ C1}. (3.13)

Since P
0
T [|T | = ∞] = ξ and 1{x good} = 1{|T |=∞} − 1{|T |=∞,x /∈C1} − 1{|T |=∞,x∈C1,Ix(G,T )c}, it follows with (3.3) and

(3.5) that

Qx[x good] = ξ + o(1) as n → ∞.

Note that the probability of x being good is bounded away from zero, so every graph property holding Pn,p-a.a.s.,
as well as every property of a ball of radius r in a Galton–Watson tree holding P

0
T -a.a.s. as r → ∞ will also hold

Qx[·|x good]-a.a.s.
As a first application of Proposition 3.2 we prove a law of large numbers for the sum of degrees of vertices in the

giant component, which leads to an approximation of the stationary measure π . This result may be well known, we
did however not find it in the literature. The technique of the proof will be used again later.

Lemma 3.3.∑
x∈C1

deg(x) =
∑
x∈G

1{x∈C1} deg(x) = ρ(2 − ξ)ξn + o(n), Pn,p-a.a.s.

Proof. Every vertex in the random graph G has Binomial(n − 1,
ρ
n

) neighbours, but on C1 their degree is above
average and there is some dependency. For x ∈ G denote

Zx = 1{x∈C1} deg(x),

Z̃x = 1{|T |=∞} deg(∅),

where the tree T is defined by the coupling Qx from Proposition 3.2, and ∅ is the root of T . We will approximate
En,p[Zx] = EQx [Zx] by EQx [Z̃x] and show that the sum of the Zx is concentrated around its expectation using the
second moment method.

Let us first compute the expectation of Z̃x . Recall that PT denotes the law of the Poisson(ρ)–Galton–Watson tree
conditioned on non-extinction, and ET the corresponding conditional expectation. Then

EQx [Z̃x] = E
0
T

[
deg(∅)||T | = ∞]

P
0
T

[|T | = ∞] = ET
[
deg(∅)

]
ξ. (3.14)

Using the same technique as in the proof of [19, Proposition 5.26], it is straightforward to see that the expected
offspring in a Galton–Watson tree conditioned on non-extinction is

ET
[
deg(∅)

] = 1

1 − q

(
f ′(1) − qf ′(q)

)
,

where f is the probability generating function of the offspring distribution. Here, the offspring is Poisson(ρ), so
q = 1 − ξ , f ′(1) = ρ and f ′(q) = ρ(1 − ξ), which leads to

ET
[
deg(∅)

] = 1

ξ

(
ρ − ρ(1 − ξ)2) = ρ(2 − ξ). (3.15)
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We now approximate EQx [Zx] by EQx [Z̃x]. Because Z̃x is unbounded, we will truncate it by logn. By defini-
tion Z̃x is stochastically dominated by a Poisson(ρ)-random variable Λ, in particular it has finite mean, and there-
fore EQx [Z̃x1{Z̃x<logn}] ↗ EQx [Z̃x] as n → ∞. Using E[etΛ] = eρ(et−1) we have P [Λ ≥ logn] = P [etΛ ≥ nt ] ≤
eρ(et−1)n−t = cn−c′

. It follows that

EQx [Z̃x ∧ logn] = EQx [Z̃x1{Z̃x<logn}] + lognQx[Z̃x ≥ logn]
= EQx [Z̃x] + o(1) as n → ∞.

Recall from (3.9) the definition of the event Bx , on which Zx = Z̃x , and Zx = Z̃x ∧ logn if 
G ≤ logn. With
(3.11) and (2.5) we can bound∣∣EQx [Zx] −EQx [Z̃x ∧ logn]∣∣ ≤ nQx[
G > logn] + lognQx

[
Bc

x

] ≤ cn−c′
. (3.16)

With (3.14) and (3.15) it follows that

En,p

[∑
x∈G

Zx

]
= nEQx [Zx] = ρ(2 − ξ)ξn + o(n) as n → ∞.

It remains to show that the sum of the Zx is concentrated. Take x �= y arbitrary vertices in G and consider the
coupling Qx,y from Proposition 3.2. Recall from (3.10) the definition of the event Bx,y . On Bx,y we have Zx = Z̃x

and Zy = Z̃y , so with (3.12) and (2.5) we get∣∣EQx,y [ZxZy] −EQx,y

[
(Z̃x ∧ logn)(Z̃y ∧ logn)

]∣∣
≤ n2Qx,y[
G > logn] + log2 nQx,y

[
Bc

x,y

] ≤ cn−c′
. (3.17)

The trees Tx and Ty are independent, so Z̃x ∧ logn and Z̃y ∧ logn are independent. Therefore, from (3.16) and (3.17)
we conclude that for two arbitrary vertices x �= y,

En,p[ZxZy] = En,p[Zx]En,p[Zy] + o(1) as n → ∞.

Denote Z = ∑
x∈G Zx . It follows from the above, together with (2.5), that

En,p

[
Z2] =

∑
x∈G

En,p

[
Z2

x

] +
∑
x �=y

(
En,p[Zx]En,p[Zy] + o(1)

)

= O
(
n log2 n

) + O
(
n3)

Pn,p[
G > logn] +En,p[Z]2 − nEn,p[Zx]2 + o
(
n2)

= En,p[Z]2 + o
(
n2) as n → ∞.

Thus VarZ = o(n2) and the Chebyshev inequality implies for any ε > 0

Pn,p

[∣∣Z −En,p[Z]∣∣ > εn
] = o(1) as n → ∞.

This finishes the proof of the lemma. �

We proceed with the proof of part (1) of Proposition 3.1, i.e. the computation of E[|Vu|]. First observe that

E
[∣∣Vu

∣∣] =
∑
x∈C1

P
[
x is vacant at time uρ(2 − ξ)ξn

] =
∑
x∈C1

P
[
Hx > uρ(2 − ξ)ξn

]
.

The task is therefore to approximate the probabilities P [Hx > uρ(2 − ξ)ξn].
Assume that the random walk X is the discrete skeleton of a simple continuous-time random walk Xc, i.e. the

times between jumps of Xc are i.i.d. Exponential(1). Denote by Hc
x the entrance time of x for this continuous-time
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walk and by Sk the time of the kth jump. It is clear that E[Sk] = k and E[Hc
x ] = E[Hx]. From [1] or [2, Chapter 3,

Proposition 23] we know that the distribution of the entrance time of such a continuous-time walk can be approximated
by an exponential distribution, namely for all t > 0

∣∣P [
Hc

x > t
] − e−t/E[Hx ]∣∣ ≤ 1

λC1E[Hx] . (3.18)

If k = k(n) → ∞ as n → ∞, by the law of large numbers P [|Sk − k| > εk] = o(1) as n → ∞ for all ε > 0. This
implies

P [Hx > k] = P
[
Hc

x > Sk

] = P
[
Hc

x > Sk,Sk ≥ (1 − ε)k
] + P

[
Hc

x > Sk,Sk < (1 − ε)k
]

≤ P
[
Hc

x > (1 − ε)k
] + o(1) as n → ∞ for all ε > 0,

and similarly

P [Hx > k] ≥ P
[
Hc

x > (1 + ε)k
] + o(1) as n → ∞ for all ε > 0.

We obtain P [Hx > k] = P [Hc
x > k]+ o(1) as n → ∞, and together with the bounds (2.2) for λC1 and (2.8) for E[Hx]

it follows from (3.18) that Pn,p-a.a.s.∣∣P [
Hx > uρ(2 − ξ)ξn

] − e−uρ(2−ξ)ξn/E[Hx ]∣∣ = o(1). (3.19)

Approximating the probabilities P [Hx > uρ(2 − ξ)ξn] therefore reduces to the investigation of E[Hx]. We will
use Proposition 3.2 from [8], which states that E[Hx] can be approximated in terms of the Dirichlet form of the
equilibrium potential g� (cf. (2.10) and (2.11)).

Proposition 3.4 [8, Proposition 3.2].

D
(
g�, g�

)(
1 − 2 sup

y∈B(x,r)c

∣∣f �(y)
∣∣) ≤ 1

E[Hx] ≤ D
(
g�, g�

) 1

π(B(x, r)c)2
, (3.20)

where f �(y) = 1 − Ey [Hx ]
E[Hx ] .

To use this result, we need to control the function f �. To this end, we give in the next lemma a bound on the
probability that the random walk on C1 started outside B(x, r) hits x before some time T . Recall the coupling Qx

from Proposition 3.2, the definition (3.13) of the event {x good}, and the definition (3.1) of the radius r .

Lemma 3.5. There is a constant c, such that, for T ∈N possibly depending on n,

Qx

[
sup

y∈B(x,r)c
Py[Hx ≤ T ] ≤ T e−cr

∣∣x good
]

→ 1 as n → ∞.

Proof. For x good let T be the infinite Poisson(ρ)–Galton–Watson tree defined by the coupling Qx to which the
neighbourhood of x is isomorphic. Let P T

w be the law of the simple random walk on the tree T started at w ∈ T . To
bound the escape probability of random walk on a Galton–Watson tree we use [17, Proposition 11.5], which states
that

sup
w∈∂B(∅,r)

P T
w [H∅ < ∞] ≤ e−cr , P

0
T -a.a.s. as r → ∞.

Since P T
w [H∅ < ∞] ≥ P T

w [H∅ < HB(∅,r)c ], this implies

sup
w∈∂B(∅,r)

P T
w [H∅ < HB(∅,r)c ] ≤ e−cr , P

0
T -a.a.s. as r → ∞.
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As argued before, since Qx[x good] is bounded away from zero, this also holds Qx[·|x good]-a.a.s. For x good,
P T

w [H∅ < HB(∅,r)c ] = Pz[Hx < HB(x,r)c ], where z ∈ ∂B(x, r) is the image of w under the isomorphism between
B(x, r + 1) ⊂ G and B(∅, r + 1) ⊂ T . It follows that

Qx

[
sup

z∈∂B(x,r)

Pz[Hx < HB(x,r)c ] ≤ e−cr
∣∣x good

]
→ 1 as n → ∞.

On the way from y ∈ B(x, r)c to x, the random walk on C1 must visit some z ∈ ∂B(x, r). From there it either reaches
x or leaves B(x, r) again. The probability of the first event is Qx[·|x good]-a.a.s. bounded by e−cr , and if the second
event occurs, we can repeat the previous reasoning. But in time T , this procedure can be repeated at most T times,
leading to the required bound on Py[Hx ≤ T ]. �

With Lemma 3.5 we can give a bound on supy∈B(x,r)c |f �(y)| on the left hand side of (3.20).

Lemma 3.6. There are constants c, c′, such that

Qx

[
sup

y∈B(x,r)c

∣∣∣∣1 − Ey[Hx]
E[Hx]

∣∣∣∣ ≤ cn−c′ ∣∣∣x good

]
→ 1 as n → ∞. (3.21)

Proof. Note first that by the general O(k3)-bound on the expected cover time CG of a graph G on k vertices (see e.g.
[3]), we have

sup
z∈C1

Ez[Hx] ≤ CC1 ≤ n3. (3.22)

Before considering the expectation of Hx with the random walk started from y ∈ B(x, r)c , we consider the expec-
tation of Hx starting from XT for some time T where the walk is well mixed. Set T = log4 n. With (2.13), (2.2), (2.7)
and (3.22) we get Pn,p-a.a.s. for all z ∈ C1∣∣Ez

[
EXT

[Hx]
] − E[Hx]

∣∣ ≤
∑
z′∈C1

∣∣Pz

[
XT = z′] − π

(
z′)∣∣Ez′ [Hx]

≤
∑
z′∈C1

1

minv∈C1 π(v)
e−λC1 T Ez′ [Hx]

≤ cn5 logne−c′ log2 n ≤ cn−c′
. (3.23)

By the Markov property at time T and using (3.23), Pn,p-a.a.s.

Ez[Hx] ≤ T + Ez

[
EXT

[Hx]
] ≤ T + E[Hx] + cn−c′

. (3.24)

With (2.8) it follows that Pn,p-a.a.s. for all z ∈ C1

Ez[Hx]
E[Hx] − 1 ≤ (

T + cn−c′) 1

E[Hx] ≤ cn−c′
. (3.25)

Since everything holding Pn,p-a.a.s. also holds Qx[·|x good]-a.a.s., (3.25) is enough for one side of (3.21).
For the other side take now y ∈ B(x, r)c and apply the Markov property at time T , use (3.23) on the first line and

(3.24) for the supremum on the second line to get Pn,p-a.a.s.

Ey[Hx] ≥ Ey

[
1{Hx>T }EXT

[Hx]
] = Ey

[
EXT

[Hx]
] − Ey

[
1{Hx≤T }EXT

[Hx]
]

≥ E[Hx] − cn−c′ − Py[Hx ≤ T ] sup
z∈C1

Ez[Hx]

≥ E[Hx] − 2cn−c′ − Py[Hx ≤ T ](T + E[Hx]
)
.
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This holds Pn,p-a.a.s., so as argued before it also holds Qx[·|x good]-a.a.s. With the bound (2.8) and using Lemma 3.5,
where we note that e−cr = n−c′

by (3.1), it follows that Qx[·|x good]-a.a.s.

Ey[Hx]
E[Hx] − 1 ≥ −cn−1−c′

logn − log4 ne−c′′r
(

c′′′ log5 n

n
+ 1

)
≥ −cn−c′

.

Together with (3.25) this proves the lemma. �

Applying Lemma 3.6 in (3.20) and using Lemma 3.3, we obtain the following approximation of the probabilities
P [Hx > uρ(2 − ξ)ξn].

Lemma 3.7. For any fixed u > 0 and every ε > 0,

Qx

[∣∣P [
Hx > uρ(2 − ξ)ξn

] − e−uPT
∅

[H̃∅>HB(∅,r)c ]deg(∅)
∣∣ ≤ ε|x good

] → 1 as n → ∞.

Proof. First recall (2.11) and use (2.6) to get Pn,p-a.a.s.

D
(
g�, g�

) = Px[H̃x > HB(x,r)c ]π(x) ≤ c logn

n
. (3.26)

For the left hand approximation in (3.20), Lemma 3.6 and (3.26) imply that Qx[·|x good]-a.a.s.

1

E[Hx] ≥D
(
g�, g�

) − cn−1−c′
. (3.27)

For the right hand approximation in (3.20), first recall that by (3.6) Pn,p-a.a.s., |B(x, r)| ≤ n1−ε for some ε > 0.
Together with (2.6) we get Pn,p-a.a.s.

π
(
B(x, r)c

) ≥ 1 − ∣∣B(x, r)
∣∣max
v∈C1

π(v) ≥ 1 − cn−ε logn.

Using this and (3.26) in (3.20) yields Pn,p-a.a.s.

1

E[Hx] ≤ D
(
g�, g�

) 1

(1 − cn−ε logn)2
≤D

(
g�, g�

)(
1 + cn−ε logn

)
≤ D

(
g�, g�

) + cn−1−ε log2 n ≤D
(
g�, g�

) + cn−1−c′
. (3.28)

Combining (3.27) and (3.28) we obtain that Qx[·|x good]-a.a.s.

e−uρ(2−ξ)ξn/E[Hx ] = e−uρ(2−ξ)ξn(D(g�,g�)+o(n−1)) = e−uρ(2−ξ)ξnD(g�,g�) + o(1).

Together with (3.19) it follows that

Qx

[∣∣P [
Hx > uρ(2 − ξ)ξn

] − e−uρ(2−ξ)ξnD(g�,g�)
∣∣ ≤ ε|x good

] → 1 as n → ∞. (3.29)

Lemma 3.3 implies that Pn,p-a.a.s. for x ∈ C1, π(x) = deg(x)
ρ(2−ξ)ξn

(1 + o(1)). Recalling (2.11), this implies that Pn,p-
a.a.s.

uρ(2 − ξ)ξnD
(
g�, g�

) = uPx[H̃x > HB(x,r)c ]deg(x) + o(1).

Using this in (3.29), and noting that if x is good,

e−uPx [H̃x>HB(x,r)c ]deg(x) = e−uPT
∅

[H̃∅>HB(∅,r)c ]deg(∅),

finishes the proof of the lemma. �
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Proof of part (1) of Proposition 3.1. We use the same technique as in the proof of Lemma 3.3: We compute the
expectation of E[|Vu|] under Pn,p and then show that E[|Vu|] is concentrated. Define the random variables

Wx = 1{x∈C1}P
[
Hx > uρ(2 − ξ)ξn

]
,

W̃x = 1{|T |=∞}e−uPT
∅

[H̃∅>HB(∅,r)c ]deg(∅),

where the tree T is defined by the coupling Qx from Proposition 3.2, and ∅ is the root of T .
Let us first compute the expectation of W̃x as n → ∞. Since r → ∞ as n → ∞, and the tree T has law P

0
T ,

lim
n→∞EQx [W̃x] = lim

n→∞E
0
T

[
e−uPT

∅
[H̃∅>HB(∅,r)c ]deg(∅)||T | = ∞]

P
0
T

[|T | = ∞]
= ET

[
e−u capT (∅)

]
ξ. (3.30)

For ε > 0, define on the space of the coupling Qx the event

Ax,ε = {|Wx − W̃x | ≤ ε
}
. (3.31)

By definitions (3.9) and (3.13) of the events Bx and {x good}, on Bx either Wx = W̃x = 0 or x is good, i.e. Ac
x,ε ∩Bx =

Ac
x,ε ∩ {x good}. With Lemma 3.7 and (3.11) it follows that

Qx

[
Ac

x,ε

] ≤ Qx

[
Ac

x,ε,Bx

] + Qx

[
Bc

x

]
≤ Qx

[
Ac

x,ε|x good
]
Qx[x good] + Qx

[
Bc

x

] = o(1) as n → ∞. (3.32)

Since Wx and W̃x are bounded by 1, this implies∣∣EQx [Wx] −EQx [W̃x]
∣∣ ≤ 2ε + Qx

[
Ac

x,ε

]
for any ε > 0,

and thus

EQx [Wx] = EQx [W̃x] + o(1) as n → ∞. (3.33)

With (3.30) we conclude that

En,p

[
E

[∣∣Vu
∣∣]] = En,p

[∑
x∈G

Wx

]
= nEQx [Wx] = ξnET

[
e−u capT (∅)

] + o(n) as n → ∞.

For the concentration of E[|Vu|] we use again the second moment method. Consider the coupling Qx,y from
Proposition 3.2 for two fixed vertices x �= y. The random variable W̃z as well as the event Az,ε for z ∈ {x, y} are
canonically also defined on the space of Qx,y when replacing T by Tz in the definition of W̃z. Let Ax,y,ε = Ax,ε ∩
Ay,ε , and recall the definition (3.10) of the set Bx,y , on which either Wz = W̃z = 0 or z is good, for both z ∈ {x, y}.
Note that the statement of Lemma 3.7 also holds on the space of Qx,y when replacing T by Tz for both z ∈ {x, y}
respectively. As in (3.32), with Lemma 3.7 and (3.12) we obtain

Qx,y

[
Ac

x,y,ε

] ≤ Qx,y

[
Ac

x,ε,Bx,y

] + Qx,y

[
Ac

y,ε,Bx,y

] + Qx,y

[
Bc

x,y

]
≤ Qx,y

[
Ac

x,ε|x good
] + Qx,y

[
Ac

y,ε|y good
] + Qx,y

[
Bc

x,y

] = o(1) as n → ∞.

Since the Wz and W̃z are bounded by 1, it follows that∣∣EQx,y [WxWy] −EQx,y [W̃xW̃y]
∣∣ ≤ ε + Qx,y

[
Ac

x,y,ε

]
for any 1 > ε > 0,

and thus

EQx,y [WxWy] = EQx,y [W̃xW̃y] + o(1) as n → ∞. (3.34)
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The trees Tx and Ty are independent, so the random variables W̃x and W̃y are independent. Therefore, (3.33) and
(3.34) imply that for arbitrary vertices x �= y

En,p[WxWy] = En,p[Wx]En,p[Wy] + o(1) as n → ∞.

Recall that E[|Vu|] = ∑
x∈G Wx . By the boundedness of the Wx , it follows directly from the above that

En,p

[
E

[∣∣Vu
∣∣]2] = En,p

[
E

[∣∣Vu
∣∣]]2 + o

(
n2) as n → ∞.

Thus VarE[|Vu|] = o(n2) and the Chebyshev inequality implies for any ε > 0

Pn,p

[∣∣E[∣∣Vu
∣∣] −En,p

[
E

[∣∣Vu
∣∣]]∣∣ > εn

] = o(1) as n → ∞.

This finishes the proof of the first part of Proposition 3.1. �

3.2. Concentration of the size of the vacant set

To prove part (2) of Proposition 3.1, we use similar techniques as in [8] and [10]. We define a sequence of i.i.d.
stationary started random walk trajectories of length nδ and glue them together at the endpoints to obtain a trajectory
which is, by the fast mixing of the random walk, in distribution close to the random walk on C1 but has a different
dependency structure, which allows to apply the following concentration result by [20].

Theorem 3.8 [20, Theorem 3.7]. Let W = (W1, . . . ,WM) be a family of random variables Wk taking values in a set
Ak , and let f be a bounded real-valued function on

∏
Ak . Let μ denote the mean of f (W). Define

rk(y1, . . . , yk−1)

= sup
y,y′∈Ak

∣∣E[
f (W)|Wk = y,Wi = yi ∀i < k

] − E
[
f (W)|Wk = y′,Wi = yi ∀i < k

]∣∣,
and let

R2 = sup
y1,...,yM−1

M∑
k=1

r2
k (y1, . . . , yk−1).

Then for any t ≥ 0,

P
[∣∣f (W) − μ

∣∣ ≥ t
] ≤ 2e−t2/R2

.

Let us define precisely the above mentioned approximation of the random walk. Denote by P L
x the restriction

of Px to CL+1
1 , i.e. the law of the trajectory (X0, . . . ,XL) and by P L

x,z the law of the random walk bridge, that is
P L

x conditioned on XL = z. Fix δ > 0 and let L = nδ . For a given typical random graph G define on an auxiliary
probability space (Ω̂, Â, P̂ ) the i.i.d. random variables (Zi)i≥0 as vertices of C1 chosen according to the stationary
measure π . Given the collection (Zi), let (Y i)i≥1 be conditionally independent elements of CL+1

1 such that each
(Y i

k )k=0,...,L is distributed according to the random walk bridge P L
Zi−1,Zi . We define the concatenation of the Y i as

Xt = Y i
t−(i−1)L, when (i − 1)L ≤ t < iL.

Denote by Pu the law of X on Cuρ(2−ξ)ξn+1
1 and write P u for P uρ(2−ξ)ξn, that is P restricted to Cuρ(2−ξ)ξn+1

1 . The
next lemma shows that Pu approximates P u well if L is large enough.
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Lemma 3.9. Pn,p-a.a.s. the measures Pu and P u are equivalent, and for n large enough and constants c, c′ depend-
ing on δ,∣∣∣∣dP u

dPu
− 1

∣∣∣∣ ≤ ce−c′nδ/2
.

Proof. Let u′ be the smallest number greater or equal to u such that u′ρ(2 − ξ)ξn is an integer multiple of L and
set m = u′ρ(2−ξ)ξn

L
. Since Pu and P u are the restrictions of Pu′

and P u′
to Cuρ(2−ξ)ξn+1

1 , it is sufficient to prove the

lemma for Pu′
and P u′

. Let A be any measurable subset of Cuρ(2−ξ)ξn+1
1 . Then by the Markov property

P u′ [A] =
∑

x0,...,xm∈C1

P u′ [A|XiL = xi,0 ≤ i ≤ m]P u′ [XiL = xi,0 ≤ i ≤ m]

=
∑

x0,...,xm∈C1

P u′ [A|XiL = xi,0 ≤ i ≤ m]π(x0)

m∏
k=0

P L
xk

[XL = xk+1]. (3.35)

Next, note that Pu′ [XiL = xi,0 ≤ i ≤ m] = 0 if and only if P u′ [XiL = xi,0 ≤ i ≤ m] = 0: One can always choose
the m xi ’s, but there might not be any way to connect them by random walk bridges, whence the probability is zero.
In this case, there is also no random walk trajectory going through this points. On the other hand, when there is no
such trajectory, there are also no bridges.

From this and the construction of the measure P it follows that, whenever this is well-defined,

Pu′ [A|XiL = xi,0 ≤ i ≤ m] = P u′ [A|XiL = xi,0 ≤ i ≤ m],
(3.36)

Pu′ [XiL = xi,0 ≤ i ≤ m] =
m∏

k=0

π(xk).

Comparing (3.35) and (3.36), it remains to control the ratio PL
x [XL=y]

π(y)
. We use (2.13), (2.7) and (2.2) to get Pn,p-

a.a.s. ∣∣∣∣P L
x [XL = y]

π(y)
− 1

∣∣∣∣ ≤ 1

(minz∈C1 π(z))2
e−λC1 L ≤ cn2 log2 ne−(c′/log2 n)L.

With nδ

log2 n
≥ cnδ/2 for n large enough it follows that Pn,p-a.a.s.

(
1 − cn2 log2 ne−c′nδ/2)m ≤ P u′ [A]

Pu′ [A] ≤ (
1 + cn2 log2 ne−c′nδ/2)m

,

and hence Pn,p-a.a.s. Pu′
and P u′

are equivalent, and the lemma follows by changing constants to accommodate the
terms polynomial in n and logn. �

Proof of part (2) of Proposition 3.1. We show that for any δ > 0,

P
[∣∣∣∣Vu

∣∣ − E
[∣∣Vu

∣∣]∣∣ ≥ n1/2+δ
] ≤ ce−c′nδ/2

, Pn,p-a.a.s., (3.37)

which implies the statement of the proposition.
Set m = �uρ(2−ξ)ξn

L
� and u′ = mL

ρ(2−ξ)ξn
. Then uρ(2 − ξ)ξn − u′ρ(2 − ξ)ξn ≤ L, and so ||Vu| − |Vu′ || ≤ L. It

follows that for n large enough

P
[∣∣∣∣Vu

∣∣ − E
[∣∣Vu

∣∣]∣∣ ≥ n1/2+δ
] ≤ P

[∣∣∣∣Vu′ ∣∣ − E
[∣∣Vu′ ∣∣]∣∣ ≥ n1/2+δ − 2L

]
≤ P

[∣∣∣∣Vu′ ∣∣ − E
[∣∣Vu′ ∣∣]∣∣ ≥ 1

2
n1/2+δ

]
. (3.38)
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Let Uu′ = C1 \X[0,mL] be the vacant set left by the concatenation X , and denote by E the expectation corresponding
to P . Lemma 3.9 implies that Pn,p-a.a.s.

∣∣P [
Vu′ ∈ ·] −P

[
Uu′ ∈ ·]∣∣ ≤ ce−c′nδ/2

,

∣∣E[∣∣Vu′ ∣∣] − E
[∣∣Uu′ ∣∣]∣∣ ≤ cne−c′nδ/2 ≤ 1

4
n1/2+δ.

From this we obtain that Pn,p-a.a.s.

P

[∣∣∣∣Vu′ ∣∣ − E
[∣∣Vu′ ∣∣]∣∣ ≥ 1

2
n1/2+δ

]
≤P

[∣∣∣∣Uu′ ∣∣ − E
[∣∣Uu′ ∣∣]∣∣ ≥ 1

4
n1/2+δ

]
+ ce−c′nδ/2

. (3.39)

We now apply Theorem 3.8 with M = m, Ak = CL+1
1 , Wk = Y k and f (W) = |Uu′ |. We claim that

rk(y1, . . . , yk−1)

= sup
y,y′∈Ak

∣∣E[∣∣Uu′ ∣∣|Y k = y,Y i = yi ∀i < k
] − E

[∣∣Uu′ ∣∣|Y k = y′, Y i = yi ∀i < k
]∣∣

≤ 2L.

Indeed, when conditioning additionally on Y k+2, . . . , Ym, the only two different segments Y k and Y k+1 can change
the size of the vacant set by at most the length of two segments, and the claim follows by integrating over all possible
Y k+2, . . . , Ym.

Then R2 ≤ m(2L)2 ≤ uρ(2−ξ)ξn
L

4L2 = cn1+δ , and Theorem 3.8 implies

P
[∣∣∣∣Uu′ ∣∣ − E

[∣∣Uu′ ∣∣]∣∣ ≥ 1

4
n1/2+δ

]
≤ 2e−2(n1+2δ/16)/(cn1+δ) = ce−c′nδ

.

This together with (3.38) and (3.39) proves (3.37) and hence part (2) of Proposition 3.1. �

4. Coupling of processes

In this section we introduce a process X̄ which satisfies the spatial Markov property described in the introduction. We
derive a phase transition in the vacant set of this process, and we compare it with the simple random walk X on the
giant component.

Consider the following algorithm defined on an auxiliary probability space (Ω̃, Ã, P̃ ) which builds an element
of Ωn = G(n) × {1,2, . . . , n}N0 , that is a graph on n vertices and a random walk-like process on this graph. All the
random choices made in the algorithm are independent variables defined on Ω̃ .

Algorithm 4.1. At the beginning all n vertices are unvisited, and all
(
n
2

)
possible edges are unexplored. When the

algorithm (or the so defined process) passes an unvisited vertex, this vertex is marked visited. Edges adjacent to the
vertex will be explored and become either open or closed. After being explored, the state of an edge does not change.

(1) Start at time 0 with a uniformly chosen vertex v0 among all n vertices, mark it visited.
(2) Being at time k ≥ 0 with current vertex vk , check first if there are any unvisited vertices left:

• If there are, let any unexplored edge adjacent to vk be explored and marked open with probability p = ρ
n

and
closed otherwise. All vertices w such that the edge {vk,w} is open are called neighbours of vk .

• If there are no unvisited vertices left, let {vl}l>k be uniformly at random chosen vertices and terminate the
algorithm (this choice of continuation of the process vk is totally arbitrary and does not influence the reasoning
below).

(3) If vk has at least one neighbour, and if there are any unvisited vertices adjacent to explored edges, choose vertex
vk+1 uniformly among all neighbours of vk and mark vk+1 visited, go to step (2) and proceed with current vertex
vk+1.
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(4) If vk has no neighbours or if there are no unvisited vertices adjacent to explored edges, the current component
is entirely covered. Then choose vertex vk+1 uniformly among all n vertices, mark it visited, go to step (2) and
proceed with current vertex vk+1.

By construction, the law of the graph explored by this algorithm (edges present if they are marked open) is Pn,p .
Let X̄ be the process defined by X̄k = vk .

It will be helpful to have two different points of view on Algorithm 4.1. The first is to look at the picture at the
end of the algorithm: There is a graph G and a trajectory of X̄ covering all the vertices of the graph. Using this point
of view, denote by P̄ G the law on ({1,2, . . . , n}N0,Fn) of the process X̄ under P̃ conditioned on the event that the
graph explored by the algorithm is G ∈ G(n) (i.e. conditioned on the random choices in Algorithm 4.1 that determine
the states of edges, but not on the random choices that determine the trajectory of X̄). Under P̄ G, the process X̄ is,
between two occurrences of step (4) of the algorithm, a simple random walk on the currently explored component,
started with uniform distribution on this component. Define on Ωn = G(n)×{1,2, . . . , n}N0 the annealed measure (cf.
(1.1)) by

P̄n(A × B) =
∑
G∈A

Pn,p(G)P̄ G(B) for A ∈ Gn,B ∈ Fn.

The second point of view is to look at Algorithm 4.1 as building the graph G on-the-go. Having this in mind,
the next lemma, which is crucial for the proof of Theorem 1.1, is straightforward (cf. [11, Lemma 6] for a similar
statement). Let V̄(t) = G \ X̄[0,t] be the vacant set left by the process X̄ at time t , defined on (Ωn, P̄n). Once again
we use the same notation V̄(t) for the set of vertices as well as the induced subgraph of G.

Lemma 4.2. Under P̄n conditioned on |V̄(t)| = N the graph V̄(t) has marginal law PN,p .

Proof. By construction of Algorithm 4.1, the vacant graph V̄(t) consists of the |V̄(t)| unvisited vertices at time t .
Edges possibly connecting V̄(t) and the already visited vertices as well as all edges possibly connecting two already
visited vertices are explored. So the edges eligible to be edges of V̄(t) are exactly all unexplored edges at time t . Be-
cause their state has not yet been decided by the algorithm, all these edges are open with probability ρ

n
, independently

of what happened before, independently of each other. Therefore, the vacant graph V̄(t) is a standard Erdős–Rényi
random graph on N = |V̄(t)| vertices, every edge present with probability p = ρ

n
, and hence it has law PN,p . �

From Lemma 4.2 and the classical results on random graphs it follows directly that the component structure of the
vacant graph V̄(t) exhibits a phase transition at the time t for which |V̄(t)|ρ

n
= 1. To translate this phase transition to

the simple random walk X on the giant component C1(G), we need to couple X to the process X̄. We do this by first
giving a coupling of X and X̄ under P C1 and P̄ G respectively on a fixed typical graph G. In Section 5 we will extend
this coupling to an “annealed” coupling of X and X̄ under Pn and P̄n, respectively.

Proposition 4.3. For n large enough, for every fixed typical graph G ∈ G(n) there exists a coupling QG of X̄ under
P̄ G and X under P C1(G) such that

QG
[{

Xk = X̄k+2 log5 n for all k = 0,1, . . . , uρ(2 − ξ)ξn
}c] ≤ c

nc′ .

Proof. We first show that X̄ typically is on the largest component C1 at time log5 n, that it mixes quickly, and then
stays on C1 until time uρ(2 − ξ)ξn+ 2 log5 n. This will allow us to identify X with X̄ in this time interval on an event
of high probability.

Let G be the typical graph (i.e. a graph satisfying (2.1), (2.2) and (2.3)) explored by Algorithm 4.1 and C1 its giant
component, i.e. we look at the picture after completion of the algorithm. Define the probability distribution π̄ on G

as the distribution of X̄2 log5 n, and view the stationary distribution π of the random walk on C1 as a distribution on the

whole graph G by setting π ≡ 0 on G \ C1. Denote by || · ||TV the total variation norm. Define τ = min{t ≥ log5 n:
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step (4) of Algorithm 4.1 is performed}. τ is the first time after log5 n where X̄ does not behave like a random walk.
We show that for n large enough the following properties hold for a typical graph G:

P̄ G[X̄log5 n /∈ C1] ≤ c

n1+c′ , (4.1)

P̄ G
[
τ ≤ uρ(2 − ξ)ξn + 2 log5 n

] ≤ c

n1+c′ , (4.2)

‖π̄ − π‖TV ≤ c

nc′ . (4.3)

Since G is typical, there is a giant component of size ||C1| − ξn| ≤ n3/4, and all other components are simple (i.e.
they have at most as many edges as vertices) and of size smaller than C logn. For (4.1), since for n large enough the
random walk cannot cover C1 in log4 n steps,

P̄ G[X̄log4 n /∈ C1] ≤ P̄ G
[
X̄ starts on a small component and stays on small

components for time longer than log4 n
]
. (4.4)

Let Ns be the number of small components that X̄ visits before reaching the giant component. By construction and
since by (2.1) |C1| ≥ (ξ − ε)n for some ε > 0, Ns is stochastically dominated by a Geometric(ξ − ε) random variable,
in particular it has a finite mean. Then by the Markov inequality

P̄ G[Ns ≥ logn] ≤ c

logn
. (4.5)

Let C
(i)
s be the cover time of the ith small component covered by X̄. The expected cover time of a graph on k vertices

and m edges is bounded by 2m(k − 1) (see e.g. [3]), so the expected cover time ĒG[C(i)
s ] of a simple component of

size smaller than C logn is bounded by C′ log2 n. The Markov inequality implies

P̄ G

[logn∑
i=1

C(i)
s ≥ log4 n

]
≤ lognĒG[C(i)

s ]
log4 n

≤ c

logn
. (4.6)

From (4.5) and (4.6) it follows that the probability on the right hand side of (4.4) is smaller than c
logn

. Given X̄ has

not found C1 after log4 n steps, some small components are partly or entirely covered, but one can use the same line
of arguments as above for the next log4 n steps to get

P̄ G[X̄2 log4 n /∈ C1|X̄log4 n /∈ C1] ≤ P̄ G[X̄log4 n /∈ C1].
Using this, we have

P̄ G[X̄2 log4 n /∈ C1] = P̄ G[X̄2 log4 n /∈ C1|X̄log4 n /∈ C1]P̄ G[X̄log4 n /∈ C1] ≤ P̄ G[X̄log4 n /∈ C1]2.

Since X̄ cannot cover C1 in log5 n steps we can iterate the above logn times, then

P̄ G[X̄log5 n /∈ C1] ≤
(

c

logn

)logn

≤ c

n1+c′ ,

which proves (4.1).
To prove (4.2) first note that P C1 [·] = ∑

z∈C1
π(z)P

C1
z [·]. With (2.7) it follows that

sup
z∈C1

P C1
z [·] ≤ 1

minz∈C1 π(z)
P C1[·] ≤ cn lognP C1 [·]. (4.7)
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Using (4.1) we have

P̄ G
[
τ ≤ uρ(2 − ξ)ξn + 2 log5 n

]
≤ sup

z∈C1

P C1
z

[
cover time of C1 is smaller than uρ(2 − ξ)ξn + 2 log5 n

] + P̄ G[X̄log5 n /∈ C1]

≤ sup
z∈C1

P C1
z

[
vacant set V

(
uρ(2 − ξ)ξn + 2 log5 n

)
is empty

] + c

n1+c′ .

Since adding a trajectory of length 2 log5 n can decrease the size of the vacant set by at most 2 log5 n = o(n), it follows
that asymptotically |V(uρ(2 − ξ)ξn + 2 log5 n)| = |V(uρ(2 − ξ)ξn)| + o(n). Using (4.7), from (3.37) and part (1) of
Proposition 3.1 it follows that for a typical graph and ε small enough

sup
z∈C1

P C1
z

[∣∣V(
uρ(2 − ξ)ξn

)∣∣ < εn
] ≤ cn lognP C1

[∣∣V(
uρ(2 − ξ)ξn

)∣∣ < εn
] ≤ c′n logne−c′′nδ/2

,

where δ > 0 is the parameter defining the length of the random walk bridges in Section 3.2. For any choice of δ we
can find constants such that the above expression is smaller than c

n1+c′ , and (4.2) follows.

For the proof of (4.3) let P
C1
μ denote the law of the random walk on C1 started at initial distribution μ. When X̄ is

on C1 at time log5 n, it has then some distribution μ and it cannot cover C1 in time log5 n. Using (2.13), we thus get
for every y ∈ C1∣∣P̄ G[X̄2 log5 n = y] − π(y)

∣∣ ≤ P̄ G[X̄log5 n /∈ C1] + sup
μ

∣∣P C1
μ [Xlog5 n = y] − π(y)

∣∣
≤ P̄ G[X̄log5 n /∈ C1] + 1

minv∈C1 π(v)
e−λC1 log5 n.

With (4.1), (2.2) and (2.7), it follows for every y ∈ C1∣∣P̄ G[X̄2 log5 n = y] − π(y)
∣∣ ≤ c

n1+c′ . (4.8)

We set π ≡ 0 on G\C1, and by (4.1) and (4.2), P̄ G[X̄2 log5 n = y] ≤ c

n1+c′ for y ∈ G\C1. Thus (4.8) holds for all y ∈ G.

(4.3) follows from (4.8) since by e.g. [18, Proposition 4.2] we have ‖π̄ −π‖TV ≤ nmaxy∈G |P̄ G[X̄2 log5 n = y]−π(y)|.
We can now define the coupling of X under P C1 and X̄ under P̄ G. Consider again the (possibly enlarged) auxiliary

probability space (Ω̃, Ã, P̃ ), on which originally X̄ was defined. On this auxiliary space we define a random variable
Y on G with distribution π . Y depends on the graph G (i.e. it depends on the random choices in Algorithm 4.1 that
determine the states of edges), and it may depend on the random choices that determine the trajectory of X̄ up to time
2 log5 n, but it is independent of all the random choices that determine the trajectory of X̄ at times 2 log5 n + k, k ≥ 1.
By e.g. [18, Proposition 4.7] we can choose Y such that P̃ [X̄2 log5 n �= Y ] = ‖π̄ − π‖TV. By (4.3) it follows that

P̃ [X̄2 log5 n �= Y ] ≤ c

nc′ . (4.9)

Moreover, we define on Ω̃ a collection X̃z, z ∈ G, of independent simple random walks on G started at z, independent
of X̄ and Y (i.e. depending only on the random choices in Algorithm 4.1 that determine the states of edges, but
independent of the random choices that determine the trajectory of X̄).

Define the process X using X̄, Y and X̃z as follows,

Xk = X̄k+2 log5 n for 0 ≤ k ≤ τ,

Xk = X̃
X̄τ

k for k > τ,

}
if X̄log5 n ∈ C1 and Y = X̄2 log5 n,

Xk = X̃Y
k for k ≥ 0, if X̄log5 n ∈ C1 and Y �= X̄2 log5 n,

Xk = X̃Y
k for k ≥ 0, if X̄log5 n /∈ C1.

(4.10)
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Let QG denote the joint law of X̄ and X on {1,2, . . . , n}2N0 . Since Y has distribution π and X̄ behaves like a random
walk between occurrences of step (4) of Algorithm 4.1, in any case X is a simple random walk on C1 started stationary,
so QG is indeed a coupling of simple random walk on the giant component and the process X̄ from Algorithm 4.1
with marginal laws P C1 and P̄ G respectively.

By (4.9), (4.1) and (4.2) the first case of the coupling (4.10) happens with probability ≥ 1 − c

nc′ , and by (4.2) also

τ > uρ(2 − ξ)ξn + 2 log5 n with high probability, and the statement of the proposition follows. �

The coupling (4.10) defined in the proof of Proposition 4.3 will allow us to deduce the phase transition in the
vacant set left by X from the phase transition in the vacant set left by X̄. To apply the results of Section 3, we have
to find the relation between the sizes of these vacant sets. This relation is given by the next lemma. Denote V̄u =
V̄(uρ(2 − ξ)ξn + 2 log5 n) = G \ X̄[0,uρ(2−ξ)ξn+2 log5 n] and as before Vu = V(uρ(2 − ξ)ξn) = C1 \ X[0,uρ(2−ξ)ξn].

Lemma 4.4. For a sequence of typical graphs G and any fixed u > 0, with respect to the corresponding sequence of
couplings QG, the random variables |V̄u| and |Vu| satisfy∣∣V̄u

∣∣ = ∣∣Vu
∣∣ + (1 − ξ)n + o(n), QG-a.a.s.

Proof. Denote W̄u = G\X̄[2 log5 n,uρ(2−ξ)ξn+2 log5 n]. Then ||V̄u|−|W̄u|| ≤ 2 log5 n, and for any ε > 0, εn−2 log5 n ≥
ε
2n for n large enough, thus

QG
[∣∣∣∣V̄u

∣∣ − ∣∣Vu
∣∣ − (1 − ξ)n

∣∣ > εn
] ≤ QG

[∣∣∣∣W̄u
∣∣ − ∣∣Vu

∣∣ − (1 − ξ)n
∣∣ >

ε

2
n

]
.

By Proposition 4.3, QG-a.a.s. the sets W̄u and Vu differ only by the small components of the graph G, i.e. W̄u = Vu ∪⋃
i≥2 Ci (G). By (2.1), in a typical graph G the total size of small components satisfies |⋃i≥2 Ci (G)− (1 − ξ)n| ≤ ε

2n

for n large enough. Therefore, for every ε > 0,

QG

[∣∣∣∣W̄u
∣∣ − ∣∣Vu

∣∣ − (1 − ξ)n
∣∣ >

ε

2
n

]
≤ QG

[
W̄u �= Vu ∪

⋃
i≥2

Ci (G)

]
→ 0 as n → ∞.

This proves the lemma. �

5. Proof of main result

We first extend the coupling QG that was defined for typical graphs in Proposition 4.3. Let QG for a non-typical graph
G be the joint law on {1,2, . . . , n}2N0 of two independent processes X and X̄ under P C1(G) and P̄ G respectively. We
define the annealed coupling measure Qn on the space Ω ′

n = G(n) × {1,2, . . . , n}2N0 with the canonical coordinates
G, X̄, X as

Qn(A × B) =
∑
G∈A

Pn,p(G)QG(B),

where A ∈ Gn and B = B1 × B2 with Bi ∈ Fn for i = 1,2 (cf. (1.1) for the definition of the σ -algebras Gn and Fn).
Then Qn is a coupling of the two processes X and X̄, where X has marginal law Pn and X̄ has marginal law P̄n, and
since every G is Pn,p-a.a.s. a typical graph the statements of Proposition 4.3 and Lemma 4.4 hold Qn-a.a.s.

Proof of Theorem 1.1. For the proof we use the annealed coupling Qn of X and X̄. As a direct consequence of
Proposition 3.1 and Lemma 4.4 we obtain that∣∣V̄u

∣∣ = ξnET
[
e−u capT (∅)

] + (1 − ξ)n + o(n), Qn-a.a.s.
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It follows from Lemma 4.2 and the classical results on random graphs that the graph V̄u = G \ X̄[0,uρ(2−ξ)ξn+2 log5 n]
exhibits a phase transition at the value u such that limn→∞ |V̄u|ρ

n
= 1. This value is the solution u� of the equation

ρξET
[
e−u capT (∅)

] + ρ(1 − ξ) = 1. (5.1)

V̄u has therefore Qn-a.a.s. a unique giant component C1(V̄u) of size ζ(u,ρ)n + o(n) and all other components of
size smaller than C̄ logn if u < u�, and it has Qn-a.a.s. all components of size smaller than C̄ logn for u > u�, where
C̄ > 0 is some fixed constant. For u < u�, the constant ζ(u,ρ) is given as the unique solution in (0,1) of the equation

exp
{−ζ

(
ρξET

[
e−u capT (∅)

] + ρ(1 − ξ)
)} = 1 − ζ. (5.2)

It remains to translate this phase transition to the vacant graph Vu of the random walk on the giant component.
Let us first translate the phase transition to the subgraph induced by the slightly enlarged set V̄u ∪ X̄[0,2 log5 n].

Adding one vertex of degree d in G to the graph V̄u can merge at most d components of V̄u. By (2.3) the degree d

is Qn-a.a.s. bounded by logn, so adding the vertices of X̄[0,2 log5 n] can Qn-a.a.s. merge at most 2 log6 n components.

It follows that Qn-a.a.s., by adding X̄[0,2 log5 n] to V̄u, any component of size smaller than C̄ logn in V̄u can either

merge with the giant component if there is one, or it can become a component of size at most 2C̄ log7 n. Also, in the
supercritical phase the giant component can Qn-a.a.s. grow by at most 2C̄ log7 n = o(n). Therefore, the graph induced
by V̄u ∪ X̄[0,2 log5 n] exhibits a phase transition at u� with the same size ζ(u,ρ)n + o(n) of the giant component

for u < u�, and with the bound 2C̄ log7 n for the size of the second largest component for u < u� and the largest
component for u > u�.

Recall that W̄u denotes the set G \ X̄[2 log5 n,uρ(2−ξ)ξn+2 log5 n] as well as the induced subgraph. We have the fol-
lowing inclusions of sets and induced subgraphs in G,

V̄u ⊂ W̄u ⊂ V̄u ∪ X̄[0,2 log5 n].

Consider the vacant set Vu ⊂ C1 of the random walk X on the giant component. By Proposition 4.3 and since every
graph is Pn,p-a.a.s. a typical graph, we have Qn-a.a.s. W̄u = Vu ∪ ⋃

i≥2 Ci (G). It follows that

V̄u ⊂ Vu ∪
⋃
i≥2

Ci (G), Qn-a.a.s., (5.3)

Vu ⊂ V̄u ∪ X̄[0,2 log5 n], Qn-a.a.s. (5.4)

Note that Qn-a.a.s. the union
⋃

i≥2 Ci (G) of all components of G except the largest are exactly all small compo-
nents of size smaller than C logn. From this and (5.3) it follows that |C1(Vu)| is Qn-a.a.s. bounded from below by
|C1(V̄u)| whenever |C1(V̄u)| is larger than of order logn. From (5.4) it follows that |C1(Vu)| is Qn-a.a.s. bounded from
above by |C1(V̄u ∪ X̄[0,2 log5 n])|. The respective phase transitions in V̄u and V̄u ∪ X̄[0,2 log5 n] thus immediately imply
the statements (1.3) and (1.5) of Theorem 1.1.

To prove (1.4), i.e. the uniqueness of the giant component in the supercritical phase, fix u < u� and let Ln be the
event that there are two distinct components Ca and Cb in Vu both of size strictly larger than 2C̄ log7 n, with C̄ as
defined below (5.1). We show that Qn[Ln] → 0 as n → ∞, which proves (1.4). First note that if Ln happens, then
either Ca ∩ V̄u and Cb ∩ V̄u are distinct components in V̄u or the inclusion in (5.3) does not hold, which is unlikely, so

Qn[Ln] ≤ Qn

[
Ln,Ca ∩ V̄u and Cb ∩ V̄u are distinct components in V̄u

] + o(1) as n → ∞.

But if Ca ∩ V̄u and Cb ∩ V̄u are distinct components in V̄u, at least one of Ca ∩ V̄u or Cb ∩ V̄u is subset of
⋃

i≥2 Ci (V̄u),
which is a union of components that are Qn-a.a.s. all of size smaller than C̄ logn. On the other hand by (5.4), Ca ⊂
(Ca ∩ V̄u)∪ X̄[0,2 log5 n], and as discussed before this last union cannot be larger than 2C̄ log7 n if Ca ∩ V̄u consists only
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of components of size smaller than C̄ logn. Thus

Qn[Ln] ≤ Qn

[
Ln,Ca ∩ V̄u or Cb ∩ V̄u is subset of

⋃
i≥2 Ci

(
V̄u

)] + o(1)

≤ Qn

[
at least one of the Ci

(
V̄u

)
, i ≥ 2, is larger than C̄ logn

] + o(1)

= o(1) as n → ∞.

This proves (1.4).
To see that the critical parameter u� coincides with the critical parameter u� of random interlacements on a

Poisson(ρ)–Galton–Watson tree conditioned on non-extinction, it suffices to notice that the characterizing equations
(5.1) and (2.15) of these two parameters are the same. �
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