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Abstract. We introduce a new transport distance between probability measures on R
d that is built from a Lévy jump kernel. It is

defined via a non-local variant of the Benamou–Brenier formula. We study geometric and topological properties of this distance,
in particular we prove existence of geodesics. For translation invariant jump kernels we identify the semigroup generated by the
associated non-local operator as the gradient flow of the relative entropy w.r.t. the new distance and show that the entropy is convex
along geodesics.

Résumé. On considère une nouvelle distance entre les mesures de probabilité sur R
n. Elle est construite à partir d’un processus de

saut par une variante non-locale de la formule de Benamou–Brenier. Pour les processus de Lévy on démontre que le semigroupe
engendré par l’opérateur non-local associé est le flot de gradient de l’entropie par rapport à la nouvelle distance. On démontre aussi
que l’entropie est convexe le long des géodésiques dans ce cas.
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1. Introduction

In the last two decades the theory of optimal transport has found applications to many areas of mathematics such as
partial differential equations, geometry and probability. We refer the reader to the monograph [30] for an overview.
In particular, optimal transport has proved very useful in the study of diffusion processes. One of the most striking
examples is Otto’s discovery [20,26] that many diffusion equations can be interpreted as gradient flows of a suitable
free energy functional with respect to the L2-Wasserstein distance on the space of probability measures. A prominent
example is the heat equation which is the gradient flow of the Shannon entropy. By now, similar interpretations of the
heat flow have been established in a variety of settings ranging from Riemannian manifolds to abstract metric measure
spaces, see [2,15,17,19,25].

The aim of this article is to build a bridge between the theory of jump processes and non-local operators on one
hand and ideas from optimal transport on the other hand. We will give a gradient flow interpretation of the equation

∂tu = Lu, (1.1)

where L is a non-local operator given by

Lu(x) =
∫

1

2

(
u(x + z) + u(x − z) − 2u(x)

)
ν(dz),
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with a symmetric Lévy measure ν on R
d . Such operators arise naturally as the generators of pure jump Lévy pro-

cesses. The measure ν(dz) gives the intensity of jumps from x to x + z. For background on Lévy processes and their
generators we refer to the books [4,8]. A prominent example of a non-local operator that our results will apply to is
the fractional Laplacian L = −(−Δ)α/2 corresponding to the choice να(dz) = cα|z|−α−d dz with α ∈ (0,2). This is a
pseudo differential operator with symbol |ξ |α and the corresponding Lévy process is the α-stable process.

In order to give a gradient flow interpretation to equation (1.1) the Wasserstein distance is not appropriate. The main
contribution of this article is thus the construction of a new transport distance W on the space of probability measures
that is non-local in nature and allows to interpret equation (1.1) as the gradient flow of the relative entropy. We define
this distance via a non-local variant of the dynamical characterization of the Wasserstein distance by Benamou and
Brenier [7]. In fact, the construction of this distance is general and applies also to inhomogeneous jump processes
where the intensity of jumps from x to y is given by a space dependent Lévy measure J (x,dy). We will show that
any two probability measures at finite distance can be joined by a W -geodesic.

We will then focus on homogeneous jump kernels J (x,dy) = ν(dy − x) and identify the evolution equation (1.1)
as the gradient flow of the entropy w.r.t. the corresponding distance in the framework of gradient flows in metric
spaces developed in [1]. Moreover, we show that the entropy is convex along W -geodesics.

To motivate our interest in such a link between jump processes and optimal transport, let us highlight two observa-
tions.

The gradient flow approach has been used as a powerful tool in the study of many evolution partial differential
equations. Already in Otto’s original work [26] convexity properties of the entropy functional have been used to derive
explicit rates of convergence to equilibrium for the porous medium equation. This approach is also well adapted to the
study of functional inequalities, such as logarithmic Sobolev inequalities (see e.g. the famous result by Otto–Villani
[27]). Recently, it has been shown that the gradient flow characterization provides a good framework to study stability
properties of diffusion processes under changes of the driving potential or the underlying geometry [3,18].

The regularity theory for elliptic and parabolic equations involving non-local operators is under active development
including both analytic and probabilistic approaches (see e.g. [6,10] and references therein). In a local setting very
precise regularity results can be obtained using a lower bound on the Ricci curvature of the operator in the sense of the
Bakry–Émery criterion [5]. Equivalently, such curvature information can be encoded into convexity properties of the
entropy along Wasserstein geodesics. In fact, geodesic convexity of the entropy has been used as a synthetic notion
of a lower Ricci curvature bound for metric measure spaces by Lott–Villani [21] and Sturm [28,29]. In this sense the
approach presented here could be used to define an alternative notion of curvature in the spirit of Lott–Villani–Sturm
that might be more adapted to certain situations than the non-local Γ 2-calculus. In the discrete setting of finite Markov
chains, this approach has already been used in [16] to derive new functional inequalities.

Modifications of the Wasserstein distance have been considered recently by a number of authors. In [14] Dolbeault,
Nazaret and Savaré proposed a new class of transport distances based on an adaptation of the Benamou–Brenier
formula to give a gradient flow interpretation to a class of transport equations with non-linear mobilities. Very recently,
Maas [22] (see also for independent related work by Mielke [24] and Chow et al. [12]) introduced a distance between
probability measures on a discrete space equipped with a Markov kernel such that the law of the continuous time
Markov chain evolves as the gradient flow of the entropy. Our approach is very similar in spirit to the work of Maas
and generalizes it to a certain extend. On the technical side we use an adaptation of the techniques developed in [14]
to our non-local setting.

Main results

Let us now discuss the content of this article in more detail. Let (J (x, ·), x ∈ R
d) be a jump kernel. By this we mean

that for all x ∈ R
d J (x, ·) is a Radon measure on R

d \ {x} depending measurably on x. Further let m be a Radon
measure on R

d . Throughout this text J and m shall satisfy the following

Assumption 1.1. We assume that

(J1) J is reversible w.r.t. m, i.e. the measure J (x,dy)m(dx) is symmetric.
(J2) For every bounded continuous function f : Rd → R the mapping

x �→
∫

f (y)
(
1 ∧ |x − y|2)J (x,dy)
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is again bounded and continuous.
(J3) The measures J (x, ·) are uniformly integrable, i.e.

sup
x

∫
AR(x)

(
1 ∧ |x − y|2)J (x,dy) → 0 as R → ∞,

where AR(x) := {y: |x − y| < 1/R or |x − y| > R}.

We fix the shorthand notation Jm to denote the measure given by

Jm(dx,dy) = J (x,dy)m(dx).

Remark 1.2. If the jump kernel is translation invariant, i.e. J (x + z,A + z) = J (x,A) for all x, z ∈ R
d and all Borel

sets A ⊂ R
d \ {x}, we can write J (x,A) = ν(A− x), where ν = J (0, ·). Note that in this case Assumption 1.1 reduces

to the requirement that ν is a symmetric Lévy measure, i.e. it satisfies ν(A) = ν(−A) for all Borel sets A ⊂ R
d \ {0}

as well as∫ (
1 ∧ |z|2)ν(dz) < ∞.

A non-local transport distance
Let us first give a heuristic description of the new distance before we sketch the rigorous construction. The construction
is motivated by the dynamical characterisation of the L2-Wasserstein distance. The Benamou–Brenier formula [7]
asserts that for two probability densities ρ̄0, ρ̄1 on R

d we have

W 2
2 (ρ̄0, ρ̄1) = inf

ρ,ψ

∫ 1

0

∫ ∣∣∇ψt(x)
∣∣2

ρt (x)dx dt, (1.2)

where the infimum is taken over all sufficiently smooth functions ρ : [0,1] × R
d → R+ and ψ : [0,1] × R

d → R

subject to the continuity equation{
∂tρ + ∇ · (ρ∇ψ) = 0,

ρ0 = ρ̄0, ρ1 = ρ̄1.
(1.3)

Here we will define a (pseudo-) metric (i.e. possibly attaining the value +∞) on probability measures by giving a
non-local analogue of formulas (1.2) and (1.3). In order to obtain a metric with the desired properties it is necessary
to introduce a function θ : R+ × R+ → R+ satisfying Assumption 2.1 below and to consider the mean ρ̂(x, y) :=
θ(ρ(x), ρ(y)) of a given density ρ : Rd → R at different points. We will be mostly interested in the logarithmic mean

θ(s, t) = s − t

log s − log t
(1.4)

but for future use we allow for more generality in the construction. For a function ψ : Rd → R we will denote by
∇̄ψ(x, y) = ψ(y) − ψ(x) its discrete gradient. Following the approach of [22] one is led to consider the following
“distance.” Given probability measures μ̄0 = ρ̄0m and μ̄1 = ρ̄1m set

W̃ (μ̄0, μ̄1)
2 := inf

ρ,ψ

1

2

∫ 1

0

∫ ∣∣∇̄ψt(x, y)
∣∣2

ρ̂t (x, y)Jm(dx,dy)dt, (1.5)

where the infimum is now taken over all functions ρ and ψ satisfying the “continuity equation”{
∂tρ + ∇̄ · (ρ̂∇̄ψ) = 0,

ρ0 = ρ̄0, ρ1 = ρ̄1,
(1.6)
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in the sense that for every test function ϕ ∈ C∞
c (Rd) we have

d

dt

∫
ϕρt (x)m(dx) − 1

2

∫
∇̄ϕ(x, y)∇̄ψt(x, y)ρ̂t (x, y)Jm(dx,dy) = 0.

For the rigorous construction of the new transport distance we will not address the variational problem (1.5) directly.
Instead, we will adopt a measure theoretic point of view and recast it in the more natural relaxed setting of time-
dependent families of measures. Let us briefly sketch this approach.

We replace ρ by a curve t �→ μt = ρtm in the set of Borel probability measures P (Rd) and ψ by a family of signed
Radon measures νt (dx,dy) = ∇̄ψt(x, y)ρ̂t (x, y)Jm(dx,dy) on the set G = {(x, y) ∈ R

d × R
d : x 	= y}. The couple

(μ,ν) now satisfies the linear equation{
∂tμt + ∇̄ · νt = 0,

μ0 = μ̄0, μ1 = μ̄1
(1.7)

which we understand in the sense of distributions, i.e. for all test functions ϕ ∈ C∞
c ((0,1) × R

d):

∫ 1

0

∫
∂tϕ dμt dt + 1

2

∫ 1

0

∫
∇̄ϕ(x, y)νt (dx,dy)dt = 0.

The quantity to be minimized in (1.5) can now be rewritten as

1

2

∫ 1

0

∫ ∣∣∣∣ dνt

dJm
(x, y)

∣∣∣∣2

θ

(
dμt

dm
(x),

dμt

dm
(y)

)−1

Jm(dx,dy)dt.

We will define a distance W by proceeding as follows. To any μ ∈ P (Rd) we associate two Radon measures on G by
setting μ1(dx,dy) = J (x,dy)μ(dx) and μ2(dx,dy) = J (y,dx)μ(dy). Given a Radon measure ν on G we choose a
reference measure σ on G such that ν = wσ and μi = ρiσ, i = 1,2 are all absolutely continuous w.r.t. σ . Then we
define the action functional by

A(μ,ν) := 1

2

∫ ∣∣∣∣ dν

dσ

∣∣∣∣2

θ

(
dμ1

dσ
,

dμ2

dσ

)−1

dσ.

Assumptions on θ will guarantee that the map (w, s, t) �→ w2θ(s, t)−1 is homogeneous, hence the definition of A
is independent of the choice of σ . Given two measures μ̄0, μ̄1 ∈ P (Rd) we denote by C E 0,1(μ̄0, μ̄1) the set of all
sufficiently regular solutions (to be made precise in Section 3) (μt ,νt )t∈[0,1] of the continuity equation (1.7).

Definition. For μ̄0, μ̄1 ∈ P (Rd) we define

W (μ̄0, μ̄1)
2 := inf

{∫ 1

0
A(μt ,νt )dt : (μ,ν) ∈ C E 0,1(μ̄0, μ̄1)

}
.

It is unclear whether W coincides with W̃ defined in (1.5) in full generality. However, we will give a positive
answer for the more restricted case of a sufficiently regular translation invariant jump kernel (see Proposition 5.14).
We can now state the first main result of this article.

Theorem 1.3. W defines a (pseudo-) metric on P (Rd). The topology it induces is stronger than the topology of weak
convergence. For each τ ∈ P (Rd) the set Pτ := {μ ∈ P (Rd): W (μ, τ) < ∞} equipped with the distance W is a
complete geodesic space.

Gradient flow of the entropy
We now concentrate on a translation invariant jump kernel J . We assume that

J (x + z,A + z) = J (x,A) ∀x, z ∈ R
d,A ⊂ R

d \ {x}
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and that m is Lebesgue measure. In this case we have J (x,A) = ν(A − x) for a symmetric Lévy measure ν on R
d

and the underlying jump process is a Lévy process.
Let us give a short formal argument why the evolution equation (1.1) can be seen as the gradient flow of the relative

entropy w.r.t. the distance W if we choose θ to be the logarithmic mean. As usual we define the relative entropy of a
measure μ ∈ P (Rd) by

H(μ) =
∫

ρ logρ dm

if μ = ρm is absolutely continuous and H(μ) = +∞ otherwise. In the classical local setting many partial differential
equations of the form

∂tρ − ∇ · (ρ∇f ′(ρ)
) = 0

can, at least formally, be seen as the gradient flow of the integral functional F given by F (ρ) = ∫
f (ρ)dm w.r.t. the

L2-Wasserstein distance. By the same formal argument, in the new geometry determined by the distance W̃ via (1.5),
(1.6) the gradient flow of the functional F should be given by the equation

∂tρ − ∇̄ · (ρ̂∇̄f ′(ρ)
) = 0.

If we now consider the relative entropy H we have f ′(r) = 1 + log r . Taking into account (1.4) we see that the
corresponding gradient flow is given by

∂tρ − ∇̄ · (∇̄ρ) = 0,

which is a weak formulation of (1.1). In particular we see that the role of the logarithmic mean is to compensate the
lack of a chain rule for the discrete gradient.

Our second main result is a rigorous characterisation of the evolution equation (1.1) as the gradient flow of the
entropy in terms of the Evolution Variational Inequality (EVI).

We formulate our result in terms of the semigroup Pt = exp(t L) generated by the operator L. We assume that
the equation (1.1) has a fundamental solution ψ : (0,∞) × R

d → R+. The semigroup Pt then acts on P (Rd) via
convolution:

Pt [μ] := μ ∗ ψt .

Under certain further regularity assumptions on the kernel ψ (see Section 5 for a precise statement) we prove the
following

Theorem 1.4. The semigroup P generated by L is the gradient flow of the relative entropy in the sense that it satisfies
the Evolution Variational Inequality (EVI): For any μ ∈ P ∗ = {τ ∈ P (Rd): H(τ ) > −∞} and σ ∈ Pμ ∩ P ∗ we have

1

2

d+

dt
W 2(Pt [μ], σ ) + H

(
Pt [μ]) ≤ H(σ ) ∀t > 0. (1.8)

Moreover the entropy is convex along W -geodesics. More precisely, let μ0,μ1 ∈ P ∗ such that W (μ0,μ1) < ∞ and
let (μt )t∈[0,1] be a geodesic connecting μ0 and μ1. Then we have

H(μt ) ≤ (1 − t)H(μ0) + t H(μ1).

Among several ways to characterize gradient flows in metric spaces, the EVI is one of the strongest. For example
it implies geodesic convexity of the entropy (see [13]). Convexity of the entropy along W -geodesics can be seen as a
non-local analogue of McCann’s displacement convexity [23], which corresponds to convexity along geodesics of the
L2-Wasserstein distance. For the choice να(dy) = cα|y|−α−d dy with α ∈ (0,2) and a suitable constant cα we obtain
the following
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Corollary 1.5. The fractional heat equation

∂tu + (−Δ)α/2u = 0

is the gradient flow of the relative entropy w.r.t. the metric W built from the jump kernel Jα(x,dy) = cα|y −x|−α−d dy.

We expect that a similar result should also hold for semigroups associated to suitable non-homogeneous jump
kernels J . It would be desirable to find examples of kernels where the entropy is strictly geodesically convex. This
could be exploited to derive new functional inequalities and rates of convergence to equilibrium for the corresponding
evolution equation, as has been done in the discrete setting of finite Markov chains in [16]. However, establishing
a stronger EVI(κ) in concrete examples does not seem to be an easy task and we will address this question in a
forthcoming publication. Moreover, we expect that the approach presented here can be generalized in order to give a
gradient flow interpretation to evolution equations associated to Lévy-type operators with both non-local and diffusion
part.

Organization of the paper

In Section 2 we study the action functional A and establish various properties needed in the sequel. Section 3 is devoted
to an analysis of the non-local continuity equation (1.7). In Section 4 we define the metric W and prove Theorem 1.3.
Finally, we focus on translation invariant jump kernels and present the proof of Theorem 1.4 in Section 5.

2. The action functional

In this section we introduce and study an action functional on pairs of measures. Let us first introduce some notation.
We denote by P (Rd) the space of Borel probability measures on R

d equipped with the topology of weak convergence.
We let G = {(x, y) ∈ R

d × R
d |x 	= y} and denote by Mloc(G) the space of signed Radon measures on the open set G

equipped with the weak* topology in duality with continuous functions with compact support in G.
The definition of the action functional and later the metric will depend on the choice of a function θ : R+ × R+ →

R+. We will always require it to fulfill the following assumptions:

Assumption 2.1. The function θ has the following properties:

(A1) (Regularity): θ is continuous on R+ × R+ and C1 on (0,∞) × (0,∞);
(A2) (Symmetry): θ(s, t) = θ(t, s) for s, t ≥ 0;
(A3) (Positivity, normalisation): θ(s, t) > 0 for s, t > 0 and θ(1,1) = 1;
(A4) (Zero at the boundary): θ(0, t) = 0 for all t ≥ 0;
(A5) (Monotonicity): θ(r, t) ≤ θ(s, t) for all 0 ≤ r ≤ s and t ≥ 0;
(A6) (Positive homogeneity): θ(λs,λt) = λθ(s, t) for λ > 0 and s, t ≥ 0;
(A7) (Concavity): the function θ : R+ × R+ → R+ is concave.

It is easy to check that these assumptions imply

θ(s, t) ≤ s + t

2
∀s, t ≥ 0. (2.1)

In view of applications to gradient flows of the entropy we will be mostly interested in a particular choice of θ ,
namely the logarithmic mean given by

θ(s, t) =
∫ 1

0
sαt1−α dα = s − t

log s − log t
, (2.2)

the latter expression being valid for positive s 	= t . However, for future use we will allow for more generality in the
choice of θ . Given a function ρ : Rd → R+ we will often write

ρ̂(x, y) := θ
(
ρ(x), ρ(y)

)
.
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We can now define a function α : R × R+ × R+ → R+ ∪ {∞}, called the action density function, by setting

α(w, s, t) :=
⎧⎨
⎩

w2

2θ(s,t)
, θ(s, t) 	= 0,

0, θ(s, t) = 0 and w = 0,

+∞, θ(s, t) = 0 and w 	= 0.

The following observation will be useful.

Lemma 2.2. The function α is lower semicontinuous, convex and positively homogeneous, i.e.

α(λw,λs,λt) = λα(w, s, t) ∀w ∈ R, s, t ≥ 0, λ ≥ 0.

Proof. This is easily checked using (A6), (A7) and the convexity of the function (x, y) �→ x2

y
on R × (0,∞). �

We will now define an action functional on pairs of measures (μ,ν) where μ ∈ P (Rd) and ν ∈ Mloc(G). To μ we
associate two Radon measures in Mloc(G) by setting:

μ1(dx,dy) := J (x,dy)μ(dx), μ2(dx,dy) := J (y,dx)μ(dy). (2.3)

We can always choose a measure σ ∈ Mloc(G) such that μi = ρiσ, i = 1,2 and ν = wσ are all absolutely continuous
with respect to σ . For example take the sum of the total variations σ := |μ1| + |μ2| + |ν|. We can then define the
action functional by

A(μ,ν) :=
∫

α
(
w,ρ1, ρ2)dσ.

Note that this definition is independent of the choice of σ since α is positively homogeneous. Hence we can also write
the action functional as

A(μ,ν) =
∫

α

(
dλ1

d|λ| ,
dλ2

d|λ| ,
dλ3

d|λ|
)

d|λ|,

where λ is the vector valued measure given by λ = (ν,μ1,μ2).
In the case where the measure μ is absolutely continuous w.r.t. m the next lemma shows that the action takes a

more intuitive form. For this we denote by Jm ∈ Mloc(G) the measure given by Jm(dx,dy) = J (x,dy)m(dx).

Lemma 2.3. Let μ ∈ P (Rd) be absolutely continuous w.r.t. m with density ρ. Further let ν ∈ Mloc(G) such that
A(μ,ν) < ∞. Then there exist a function w :G → R such that ν = wρ̂Jm and we have

A(μ,ν) = 1

2

∫ ∣∣w(x,y)
∣∣2

ρ̂(x, y)Jm(dx,dy). (2.4)

Proof. Choose λ ∈ Mloc(G) such that Jm = hλ and ν = w̃λ are both absolutely continuous w.r.t. λ. Note that
μi = ρiJm, i = 1,2 with ρ1(x, y) = ρ(x) and ρ2(x, y) = ρ(y). Further, we denote by ρ̃i the density of μi w.r.t. λ.
Now by definition,

A(μ,ν) =
∫

α
(
w̃, ρ̃1, ρ̃2)dλ < ∞. (2.5)

Let A ⊂ G such that
∫
A

θ(ρ1, ρ2)dJm = 0. From the homogeneity of θ we conclude

0 =
∫

A

θ
(
ρ1, ρ2)dJm =

∫
A

θ
(
ρ̃1, ρ̃2)dλ,
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i.e. θ(ρ̃1, ρ̃2) = 0 λ-a.e. on A. Now the finiteness of the integral in (2.5) implies that w̃ = 0 λ-a.e. on A. In other words
ν(A) = 0 and hence ν is absolutely continuous w.r.t. the measure ρ̂Jm. Formula (2.4) now follows immediately from
the homogeneity of α. �

Lemma 2.4 (Lower semicontinuity of the action). A is lower semicontinuous w.r.t. weak convergence of measures.
More precisely, assume that μn ⇀ μ weakly in P (Rd) and νn ⇀∗ ν weakly* in Mloc(G). Then

A(μ,ν) ≤ lim inf
n

A(μn,νn).

Proof. Note that by Assumption 1.1 the weak convergence of μn to μ implies the weak* convergence of μi
n to μi

in Mloc(G) for i = 1,2. Now the claim follows immediately from a general result on integral functionals, Proposi-
tion 2.5. �

Proposition 2.5 ([9], Theorem 3.4.3). Let Ω be a locally compact Polish space and let f :Ω × R
n → [0,+∞] be a

lower semicontinuous function such that f (ω, ·) is convex and positively 1-homogeneous for every ω ∈ Ω . Then the
functional

F(λ) =
∫

Ω

f

(
ω,

dλ

d|λ| (ω)

)
|λ|(dω)

is sequentially weak* lower semicontinuous on the space of vector valued signed Radon measures Mloc(Ω,R
n).

The next estimate will be crucial for establishing compactness of families of curves with bounded action in Sec-
tion 3.

Lemma 2.6. There exists a constant C > 0 such that for all μ ∈ P (Rd) and ν ∈ Mloc(G) we have:∫
G

(
1 ∧ |x − y|)|ν|(dx,dy) ≤ C

√
A(μ,ν).

Moreover, for each compact set K ⊂ G there exists a constant C(K) > 0 such that for all μ ∈ P (Rd) and ν ∈
Mloc(G) we have:

|ν|(K) ≤ C(K)
√

A(μ,ν).

Proof. To prove the first statement we define the measure λ = |μ1| + |μ2| + |ν| and write μi = ρiλ,ν = wλ. We can
assume that A(μ,ν) < ∞ as otherwise there is nothing to prove. This implies that the set A = {(x, y)|α(w,ρ1, ρ2) =
∞} has zero measure with respect to λ. We can now estimate:∫

G

(
1 ∧ |x − y|)|ν|(dx,dy)

≤
∫

G

(
1 ∧ |x − y|)|w|dλ

=
∫

Ac

(
1 ∧ |x − y|)√2θ

(
ρ1, ρ2

)√
α
(
w,ρ1, ρ2

)
dλ

≤
(∫

G

(
1 ∧ |x − y|2)2θ

(
ρ1, ρ2)dλ

)1/2(∫
G

α
(
w,ρ1, ρ2)dλ

)1/2

≤ C
√

A(μ,ν).
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The last inequality follows, since by the estimate (2.1) and Assumption 1.1 we have:∫
G

(
1 ∧ |x − y|2)θ(

ρ1, ρ2)dλ ≤
∫

G

(
1 ∧ |x − y|2)1

2

(
ρ1 + ρ2)dλ

=
∫

G

(
1 ∧ |x − y|2)J (x,dy)μ(dx)

≤ sup
x

∫ (
1 ∧ |x − y|2)J (x,dy) < ∞.

The second statement follows immediately from the first one by noting that

a := min
{|x − y|: (x, y) ∈ K

}
> 0

and estimating

|ν|(K) ≤ 1

a

∫ (
1 ∧ |x − y|)|ν|(dx,dy). �

Lemma 2.7 (Convexity of the action). Let μj ∈ P (Rd) and νj ∈ Mloc(G) for j = 0,1. For τ ∈ [0,1] set μτ =
τμ1 + (1 − τ)μ0 and ντ = τν1 + (1 − τ)ν0. Then we have:

A
(
μτ ,ντ

) ≤ τ A
(
μ1,ν1) + (1 − τ)A

(
μ0,ν0).

Proof. Let us fix a reference measure λ ∈ Mloc(G) such that μj,i,νj for j = 0,1 and i = 1,2 are all absolutely
continuous w.r.t. λ and write μj,i = ρj,iλ and νj = wjλ. Note that μτ,i = ρτ,iλ with ρτ,i = τρ1,i + (1 − τ)ρ0,i and
ντ = wτλ with wτ = τw1 + (1 − τ)w0. From the convexity of the action density function α we obtain:

A
(
μτ ,ντ

) =
∫

α
(
wτ ,ρτ,1, ρτ,2)dλ

≤ τ

∫
α
(
w1, ρ1,1, ρ1,2)dλ + (1 − τ)

∫
α
(
w0, ρ0,1, ρ0,2)dλ

= τ A
(
μ1,ν1) + (1 − τ)A

(
μ0,ν0). �

We will now show that the action functional enjoys a monotonicity property under convolution if we assume that
the jump kernel is translation invariant in the sense that

J (x − z,A − z) = J (x,A) ∀x, z ∈ R
d ,A ∈ B

(
R

d
)
. (2.6)

For the rest of this section we also assume that m is Lebesgue measure. We first need to fix a way of convoluting
measures on R

d and on G in a consistent manner. Let k be a convolution kernel, i.e. a measurable function k : Rd →
R+ satisfying

∫
k(z)dz = 1. Given a measure μ ∈ P (Rd), its convolution is defined as usual by

(μ ∗ k)(A) :=
∫

k(z)μ(A − z)dz ∀A ∈ B
(
R

d
)
.

On the other hand, let ν ∈ Mloc(G) be a measure satisfying∫ (
1 ∧ |x − y|)|ν|(dx,dy) < ∞. (2.7)

Then we define a measure ν ∗ k ∈ Mloc(G) still satisfying (2.7) by setting for all compact sets K ⊂ G

(ν ∗ k)(K) :=
∫

k(z)ν

(
K −

(
z

z

))
dz. (2.8)
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In particular, for every continuous bounded function f :G → R with compact support in G we have:

∫
f (x, y)(ν ∗ k)(dx,dy) =

∫ ∫
k(z)f (x + z, y + z)ν(dx,dy)dz.

We now have the following monotonicity property under convolution.

Proposition 2.8. Assume that J satisfies (2.6) and let k be a convolution kernel. Then for every μ ∈ P (Rd),ν ∈
Mloc(G) with A(μ,ν) < ∞ we have

A(μ ∗ k,ν ∗ k) ≤ A(μ,ν).

Proof. Note that since A(μ,ν) is finite, ν satisfies (2.7) by Lemma 2.6 and ν ∗ k is defined. Let us introduce the maps
τz :x �→ x +z for z ∈ R

d and let us denote by μz,νz the push forward (τz)∗μ = μ(·−z), resp. (τz ×τz)∗ν = ν(·−(
z
z

)
).

Using the convexity of the action functional, Lemma 2.7, together with its lower semicontinuity, Lemma 2.4, we see
that

A(μ ∗ k,ν ∗ k) ≤
∫

A(μz,νz)k(z)dz.

Thus the proof is complete if we show that A(μz,νz) = A(μ,ν) for all z ∈ R
d . To this end recall the definition

(2.3). Using the invariance property (2.6) it is immediate to check that μi
z = (τz × τz)∗μi for i = 1,2. Now choose

λ ∈ Mloc(G) with μi = ρiλ and ν = wλ. Then for all z ∈ R
d we have (μz)

i = (μi)z = ρi(· − (
z
z

)
)λz and νz =

w(· − (
z
z

)
)λz. Hence we finally obtain

A(μz,νz) =
∫

α

(
w

(
· −

(
z

z

))
, ρ1

(
· −

(
z

z

))
, ρ2

(
· −

(
z

z

)))
dλz

=
∫

α
(
w,ρ1, ρ2)dλ = A(μ,ν). �

3. A non-local continuity equation

In this section we will consider the continuity equation

∂tμt + ∇̄ · νt = 0 on (0, T ) × R
d . (3.1)

Here (μt )t∈[0,T ] and (νt )t∈[0,T ] are Borel families of measures in P (Rd) and Mloc(G) respectively such that

∫ T

0

∫ (
1 ∧ |x − y|)|νt |(dx,dy)dt < ∞. (3.2)

We suppose that (3.1) holds in the sense of distributions. More precisely, we require that for all ϕ ∈ C∞
c ((0, T )×R

d):

∫ T

0

∫
∂tϕt (x)μt (dx)dt + 1

2

∫ T

0

∫
∇̄ϕt (x, y)νt (dx,dy)dt = 0. (3.3)

Recall that for a function ϕ : Rd → R we denote by ∇̄ϕ(x, y) = ϕ(y) − ϕ(x) the discrete gradient. Note that
|∇̄ϕ(x, y)| ≤ ‖ϕ‖C1(1 ∧ |x − y|). Hence the integrability assumption (3.2) ensures that the second term in (3.3) is
well-defined. The following is an adaptation of [1], Lemma 8.1.2.
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Lemma 3.1. Let (μt )t∈[0,T ] and (νt )t∈[0,T ] be Borel families of measures in P (Rd) and Mloc(G) satisfying (3.1)
and (3.2). Then there exists a weakly continuous curve (μ̃t )t∈[0,T ] such that μ̃t = μt for a.e. t ∈ [0, T ]. Moreover, for
every ϕ ∈ C∞

c ([0, T ] × R
d) and all 0 ≤ t0 ≤ t1 ≤ T we have:∫

ϕt1 dμ̃t1 −
∫

ϕt0 dμ̃t0 =
∫ t1

t0

∫
∂tϕ dμt dt + 1

2

∫ t1

t0

∫
∇̄ϕ dνt dt. (3.4)

Proof. Let us set

V (t) :=
∫ (

1 ∧ |x − y|)|νt |(dx,dy).

By assumption t �→ V (t) belongs to L1(0, T ). Fix ξ ∈ C∞
c (Rd). We claim that the map t �→ μt(ξ) = ∫

ξ dμt belongs
to W 1,1(0, T ). Indeed, using test functions of the form ϕ(t, x) = η(t)ξ(x) with η ∈ C∞

c (0, T ), equation (3.3) shows
that the distributional derivative of μt(ξ) is given by

μ̇t (ξ) = 1

2

∫
∇̄ξ dνt

for a.e. t ∈ (0, T ) and we can estimate

∣∣μ̇t (ξ)
∣∣ ≤ 1

2

∫
|∇̄ξ |d|νt | ≤ 1

2
‖ξ‖C1V (t). (3.5)

Based on (3.5) we can argue as in [1], Lemma 8.1.2, to obtain existence of a weakly continuous representative t �→ μ̃t .
To prove (3.4) fix ϕ ∈ C∞

c ([0, T ] × R
d) and choose ηε ∈ C∞

c (t0, t1) such that

0 ≤ ηε ≤ 1, lim
ε→0

ηε(t) = 1(t0,t1)(t) ∀t ∈ [0, T ], lim
ε→0

η′
ε = δt0 − δt1 .

Now equation (3.3) implies

−
∫ T

0
η′

ε

∫
ϕ dμ̃t dt =

∫ T

0
ηε

∫
∂tϕ dμt dt + 1

2

∫ T

0
ηε

∫
∇̄ϕ dνt dt.

Thanks to the continuity of t �→ μ̃t we can pass to limit as ε → 0 and obtain (3.4). �

In view of the previous lemma it makes sense to define solutions to the continuity equation in the following way.

Definition 3.2. We denote by C E T the set of all pairs (μ,ν) satisfying the following conditions:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(i) μ : [0, T ] → P (Rd) is weakly continuous;
(ii) (νt )t∈[0,T ] is a Borel family of measures in Mloc(G);

(iii)
∫ T

0

∫
(1 ∧ |x − y|)|νt |(dx,dy)dt < ∞;

(iv) We have in the sense of distributions:
∂tμt + ∇̄ · νt = 0.

(3.6)

Moreover, we will denote by C E T (μ̄0, μ̄1) the set of pairs (μ,ν) ∈ C E T satisfying in addition: μ0 = μ̄0,μ1 = μ̄1.

Remark 3.3. The continuity equation can also be tested against more general test functions. E.g. let (μ,ν) ∈ C E 1
and let ϕ : Rd → R be bounded and Lipschitz. Approximating ϕ with functions in C∞

c (Rd) with uniformly bounded
C1-norm and using the integrability assumption (iii) in (3.6) to pass to the limit in (3.4) we obtain∫

ϕ dμ1 −
∫

ϕ dμ0 =
∫ 1

0

∫
∇̄ϕ dνt dt.

A similar reasoning will often be used later on.
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The following result will allow us to extract subsequential limits from sequences of solutions to the continuity
equation which have bounded action.

Proposition 3.4 (Compactness of solutions to the continuity equation). Let (μn,νn) be a sequence in C E T such
that (μn

0)n is tight and

sup
n

∫ T

0
A

(
μn

t ,ν
n
t

)
dt < ∞. (3.7)

Then there exists a couple (μ,ν) ∈ C E T such that up to extraction of a subsequence

μn
t ⇀ μt weakly in P

(
R

d
)

for all t ∈ [0, T ],
νn ⇀∗ ν weakly* in Mloc

(
G × [0, T ]).

Moreover, along this subsequence we have:

∫ T

0
A(μt ,νt )dt ≤ lim inf

n

∫ T

0
A

(
μn

t ,ν
n
t

)
dt.

Proof. For each n define the measure νn ∈ Mloc(G × (0, T )) given by νn(dx,dy,dt) := νn
t (dx,dy)dt . From

Lemma 2.6 and (3.7) we infer immediately that

sup
n

∫ T

0

∫ (
1 ∧ |x − y|)∣∣νn

t

∣∣(dx,dy)dt < ∞. (3.8)

Moreover, arguing exactly as in Lemma 2.6, we obtain that for every compact set K ⊂ G and every Borel set B ⊂
[0, T ] we have

sup
n

∣∣νn
∣∣(K × B) ≤ sup

n

∫
B

∣∣νn
t

∣∣(K)dt (3.9)

≤ √
AC(K)

√
Leb(B), (3.10)

where A denotes the supremum in (3.7). In particular, νn has total variation uniformly bounded on every compact
subset of G×[0, T ]. Hence, we can extract a subsequence (still indexed by n) such that νn ⇀∗ ν in Mloc(G×[0, T ]).
The estimate (3.9) also shows that ν can be desintegrated w.r.t. Lebesgue measure on [0, T ] and we can write ν =∫ T

0 νt dt for a Borel family (νt ) still satisfying (3.2).
Let 0 ≤ t0 ≤ t1 ≤ T and ξ ∈ C∞

c (Rd). We claim that∫ t1

t0

∫
∇̄ξ dνn

t dt
n→∞−→

∫ t1

t0

∫
∇̄ξ dνt dt. (3.11)

Note, that 1(t0,t1)∇̄ξ is not continuous and not compactly supported in G × [0, T ]. In order to prove (3.11), we argue
by approximation. Let F ⊂ R

d be a compact set supporting ξ , then ∇̄ξ is supported in N := (F × R
d) ∪ (Rd × F).

For R > 0 we define the sets AR := [t0, t0 + 1
R

] ∪ [t1 − 1
R

, t1] and DR := {(x, y) ∈ G: |x − y| < R−1}. Moreover, we
define the set

MR := (
DR ∩ (F × F)

) ∪ (
Bc

R × F
) ∪ (

F × Bc
R

)
,

where BR = {x ∈ R
d : |x| < R}. For each R sufficiently large we can find a continuous compactly supported function

ϕR :G × [0, T ] → [0,1] such that

{ϕR < 1} ∩ (
N × [t0, t1]

) ⊂ (
MR × [t0, t1]

) ∪ (N × AR) =: SR.
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The convergence (3.11) holds if we replace 1(t0,t1)∇̄ξ by the continuous and compactly supported function ϕR ·
1(t0,t1)∇̄ξ . Thus, it remains to show that

sup
n

∣∣∣∣
∫ t1

t0

∫
(1 − ϕR)∇̄ξ dνn

t dt

∣∣∣∣ −→ 0,

as R → ∞. Arguing as in Lemma 2.6, we estimate∣∣∣∣
∫ t1

t0

∫
(1 − ϕR)∇̄ξ dνn

t dt

∣∣∣∣
≤ ‖ξ‖C1

∫
SR

(
1 ∧ |x − y|)d

∣∣νn
t

∣∣dt

≤ ‖ξ‖C1

√
A

(∫
SR

(
1 ∧ |x − y|2)J (x,dy)μn

t (dx)dt

)1/2

.

From Assumption 1.1 we deduce that the integral in the last line goes to zero uniformly in n as R → ∞.
After extraction of another subsequence we can assume μn

0 ⇀ μ0 weakly for some μ0 ∈ P (Rd). Using this, the
convergence (3.11) and the continuity equation in the form (3.4) for the choice ϕ(t, x) = ξ(x) and t0 = 0, t1 = t we
infer that μn

t converges weakly* to some finite non-negative measure μt ∈ M(Rd) for every t ∈ [0, T ]. We now argue
that μt is a probability measure for all t . From the above reasoning we obtain that for any ξ ∈ C∞

c (Rd) and any
t ∈ [0,1]:∫

ξ dμt =
∫

ξ dμ0 + 1

2

∫ t

0

∫
∇̄ξ dνs ds. (3.12)

For R > 0 we choose functions ξR ∈ C∞
c (Rd) with 0 ≤ ξ ≤ 1, ξ = 1 on BR and ‖ξ‖C1 ≤ 1. Since ν satisfies the

integrability assumption (3.2) we observe that as R → ∞ we have∣∣∣∣
∫ t

0

∫
∇̄ξR dνs ds

∣∣∣∣ ≤
∫ t

0

∫ (
1 ∧ |x − y|)1(BR×BR)c |νs |(dx,dy)ds → 0.

Hence we deduce from (3.12) that μt(R
d) = μ0(R

d) = 1. It is now easily checked that the couple (μ,ν) belongs to
C E T . As in Lemma 2.4 the lower semicontinuity follows from Proposition 2.5 by considering

∫ T

0 A(μt ,νt )dt as an
integral functional on the space Mloc(G × [0, T ]). �

4. A non-local transport distance

In this section we define the distance W . We will establish various properties, in particular existence of geodesics.
Moreover, we will characterize absolutely continuous curves in the metric space (P (Rd), W ).

Definition 4.1. For μ̄0, μ̄1 ∈ P (Rd) we define

W (μ̄0, μ̄1)
2 := inf

{∫ 1

0
A(μt ,νt )dt : (μ,ν) ∈ C E 1(μ̄0, μ̄1)

}
. (4.1)

Note that the definition of the distance W depends on the choice of a jump kernel J satisfying Assumption 1.1 and
a function θ satisfying Assumption 2.1. However, we will suppress this dependence in the notation.

Let us give an equivalent characterization of the infimum in (4.1).

Lemma 4.2. For any T > 0 and μ̄0, μ̄1 ∈ P (Rd) we have:

W (μ̄0, μ̄1) = inf

{∫ T

0

√
A(μt ,νt )dt : (μ,ν) ∈ C E T (μ̄0, μ̄1)

}
. (4.2)
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Proof. This follows from a standard reparametrization argument. See [1], Lemma 1.1.4, or [14], Theorem 5.4, for
details in similar situations. �

The next result shows that the infimum in the definition above is in fact a minimum.

Proposition 4.3. Let μ̄0, μ̄1 ∈ P (Rd) be such that W := W (μ̄0, μ̄1) is finite. Then the infimum in (4.1) is attained by
a curve (μ,ν) ∈ C E 1(μ̄0, μ̄1) satisfying A(μt ,νt ) = W 2 for a.e. t ∈ [0,1].

Proof. Existence of a minimizing curve (μ,ν) ∈ C E 1(μ̄0, μ̄1) follows immediately by the direct method taking into
account Proposition 3.4. Invoking Lemma 4.2 and Jensen’s inequality we see that this curve satisfies∫ 1

0

√
A(μt ,νt )dt ≥ W =

(∫ 1

0
A(μt ,νt )dt

)1/2

≥
∫ 1

0

√
A(μt ,νt )dt.

Hence we must have A(μt ,νt ) = W 2 for a.e. t ∈ [0, T ]. �

We now prove the first main result Theorem 1.3 announced in the Introduction which we recall here for conve-
nience.

Theorem 4.4. W defines a (pseudo-) metric on P (Rd). The topology it induces is stronger than the weak topology
and bounded sets w.r.t. W are weakly compact. Moreover, the map (μ0,μ1) �→ W (μ0,μ1) is lower semicontinuous
w.r.t. weak convergence. For each τ ∈ P (Rd) the set Pτ := {μ ∈ P (Rd): W (μ, τ) < ∞} equipped with the distance

W is a complete geodesic space.

Proof. Symmetry of W is obvious from the fact that α(w, ·, ·) = α(−w, ·, ·). Equation (3.4) from Lemma 3.1 shows
that two curves in C E 1 can be concatenated to obtain a curve in C E 2. Hence the triangle inequality follows easily using
Lemma 4.2. To see that W (μ̄0, μ̄1) > 0 whenever μ̄0 	= μ̄1 assume that W (μ̄0, μ̄1) = 0 and choose a minimizing
curve (μ,ν) ∈ C E 1(μ̄0, μ̄1). Then we must have A(μt ,νt ) = 0 and hence νt = 0 for a.e. t ∈ (0,1). From the continuity
equation in the form (3.4) we infer μ̄0 = μ̄1.

The compactness assertion and lower semicontinuity of W follow immediately from Proposition 3.4. These in turn
imply that the topology induced by W is stronger than the weak one.

Let us now fix τ ∈ P (Rd) and let μ̄0, μ̄1 ∈ Pτ . By the triangle inequality we have W (μ̄0, μ̄1) < ∞ and hence
Proposition 4.3 yields existence of a minimizing curve (μ,ν) ∈ C E 1(μ̄0, μ̄1). The curve t �→ μt is then a constant
speed geodesic in Pτ since it satisfies

W (μs,μt ) =
∫ t

s

√
A(μr,νr )dr = (t − s)W (μ0,μ1) ∀0 ≤ s ≤ t ≤ 1.

To show completeness let (μn)n be a Cauchy sequence in Pτ . In particular the sequence is bounded w.r.t. W and we
can find a subsequence (still indexed by n) and μ∞ ∈ P (Rd) such that μn ⇀ μ∞ weakly. Invoking lower semiconti-
nuity of W and the Cauchy condition we infer that W (μn,μ∞) → 0 as n → ∞ and that μ∞ ∈ Pτ . �

It is yet unclear when precisely the distance W is finite. However, we will see in the next section that the distance is
finite e.g. along trajectories of the semigroup associated to a translation invariant and sufficiently regular jump kernel.

The following result shows that under certain assumptions the distance W can be bounded from below by the
L1-Wasserstein distance. Let us fix a Lipschitz function f : [0,∞) → [0,∞) which is non-decreasing and concave
with f (0) = 0. Then d(x, y) := f (|x − y|) defines a metric on R

d . Recall that the L1-Wasserstein distance induced
by d is defined for μ0,μ1 ∈ P (Rd) by

W1,d (μ0,μ1) := inf
π

∫
d(x, y)π(dx,dy),

where the infimum is taken over all probability measures π ∈ P (Rd × R
d) whose first and second marginal are μ0

and μ1 respectively (see e.g. [30], Chapter 6).
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Proposition 4.5. Assume that the jump kernel J satisfies

M2
d := sup

x

∫
f

(|x − y|)2
J (x,dy) < ∞. (4.3)

Then for any μ0,μ1 ∈ P (Rd) we have the bound

W1,d (μ0,μ1) ≤ Md√
2

W (μ0,μ1).

Proof. We can assume that W (μ0,μ1) < ∞. Take a minimizing curve (μ,ν) ∈ C E 1(μ0,μ1) and let ϕ : Rd → R be a
bounded function that is 1-Lipschitz w.r.t. d . Since f is Lipschitz, ϕ is also Lipschitz w.r.t. Euclidean distance. Taking
into account Remark 3.3 and arguing as in Lemma 2.6, we estimate∣∣∣∣

∫
ϕ dμ1 −

∫
ϕ dμ0

∣∣∣∣
= 1

2

∣∣∣∣
∫ 1

0

∫
∇̄ϕ dνt dt

∣∣∣∣
≤ 1

2

∫ 1

0

∫
d(x, y)|νt |(dx,dy)dt

≤ 1√
2

(∫ 1

0
A(μt ,νt )dt

)1/2(∫ 1

0

∫
d(x, y)2J (x,dy)μt (dx)dt

)1/2

≤ Md√
2

W (μ0,μ1).

Taking the supremum over all bounded 1-Lipschitz functions ϕ yields the claim by Kantorovich–Rubinstein duality
(see [30], Theorems 5.10, 5.16). �

Remark 4.6. We highlight two special cases of the previous result.

(i) Let d∗ denote the bounded metric on R
d given by d∗(x, y) = 1 ∧ |x − y|. Then Assumption 1.1 guarantees that

Md∗ < ∞ and we can always bound W from below by W1,d∗ .
(ii) Let α ∈ (0,2) and consider the α-stable jump kernel Jα(x,dy) = |x − y|−α−d dy. Then for any β < α

2 the
corresponding distance Wα can be bounded below by W1,dβ where dβ is the metric given by dβ(x, y) =
|x − y| ∧ |x − y|β .

The convexity and monotonicity properties of the action functional established in Section 2 extend naturally to the
distance function.

Proposition 4.7 (Convexity of the squared distance). Let μ
j

0,μ
j

1 ∈ P (Rd) for j = 0,1. For τ ∈ [0,1] and k = 0,1
set μτ

k = τμ1
k + (1 − τ)μ0

k . Then we have:

W
(
μτ

0,μτ
1

)2 ≤ τ W
(
μ1

0,μ
1
1

)2 + (1 − τ)W
(
μ0

0,μ
0
1

)2
.

Proof. We can assume that W (μ
j

0,μ
j

1) is finite and choose minimizing curves (μj ,νj ) ∈ C E 1(μ
j

0,μ
j

1). Then for
t ∈ [0,1] set μτ

t = τμ1
t + (1 − τ)μ0

t and ντ
t = τν1

t + (1 − τ)ν0
t . Observe that (μτ ,ντ )t ∈ C E 1(μ

τ
0,μτ

1). From the
definition of W and the convexity of A as stated in Lemma 2.7 we infer

W
(
μτ

0,μτ
1

)2 ≤
∫ 1

0
A

(
μτ

t ,ν
τ
t

)
dt ≤

∫ 1

0

[
τ A

(
μ1

t ,ν
1
t

) + (1 − τ)A
(
μ0

t ,ν
0
t

)]
dt

= τ W
(
μ1

0,μ
1
1

)2 + (1 − τ)W
(
μ0

0,μ
0
1

)2
. �
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Proposition 4.8 (Monotonicity under convolution). Let μ0,μ1 ∈ P (Rd). Assume that J satisfies (2.6) and let m be
Lebesgue measure. Let k be a convolution kernel. Then we have

W (μ0 ∗ k,μ1 ∗ k) ≤ W (μ0,μ1).

If we set kε(x) = ε−dk(x/ε), then as ε ↘ 0 we have

W (μ0 ∗ kε,μ1 ∗ kε) −→ W (μ0,μ1).

Proof. Assume that W (μ0,μ1) is finite, as otherwise there is nothing to proof. Let (μ,ν) ∈ C E 1(μ0,μ1) be a mini-
mizing curve according to Proposition 4.3. Define μ̃t = μt ∗k, ν̃t = νt ∗k. We claim that (μ̃, ν̃) ∈ C E 1(μ0 ∗k,μ1 ∗k).
Indeed, let us show that the continuity equation (v) in (3.6) holds for (μ̃, ν̃). The other properties are equally easy to
verify. So let ϕ ∈ C∞

c ((0,1)×R
d) and set ϕ̃(t, x) = ∫

ϕ(t, x + z)k(z)dz. Using the continuity equation for (μ,ν) and
(2.8) we obtain∫

∂tϕ dμ̃t dt =
∫

∂tϕ(t, x + z)k(z)dzμt (dx)dt

=
∫

∂t ϕ̃ dμt dt = −1

2

∫
∇̄ϕ̃ dνt dt

= −1

2

∫
∇̄ϕ(t, x + z, y + z)k(z)ν t (dx,dy)dz dt

= −1

2

∫
∇̄ϕ d̃νt dt.

Now the first assertion follows immediately from Proposition 2.8. This in turn together with weak lower semicontinu-
ity of W (see Theorem 4.4) yields the second assertion. �

We now give a characterization of absolutely continuous curves with respect to W and consider a notion of tangent
bundle.

A curve (μt )t∈[0,T ] in P (Rd) is called absolutely continuous w.r.t. W if there exists g ∈ L1(0, T ) such that

W (μs,μt ) ≤
∫ t

s

g(r)dr ∀0 ≤ s ≤ t ≤ T . (4.4)

For an absolutely continuous curve the metric derivative defined by

∣∣μ′
t

∣∣ := lim
h→0

W (μt+h,μt )

|h|
exists for a.e. t ∈ [0, T ] and is the minimal g in (4.4), see [1], Theorem 1.1.2.

Proposition 4.9 (Metric velocity). A curve (μt )t∈[0,T ] is absolutely continuous with respect to W if and only if there
exists a Borel family (νt )t∈[0,T ] such that (μ,ν) ∈ C E T and

∫ T

0

√
A(μt ,νt )dt < ∞.

In this case we have |μ′
t |2 ≤ A(μt ,νt ) for a.e. t ∈ [0, T ]. Moreover, there exists a unique Borel family ν̃t with (μ, ν̃) ∈

C E T such that

∣∣μ′
t

∣∣2 = A(μt , ν̃t ) for a.e. t ∈ [0, T ]. (4.5)
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Proof. The proof follows from the very same arguments as in [14], Theorem 5.17. �

We can describe the optimal velocity measures ν̃t appearing in the preceding proposition in more detail. We define

TμP
(
R

d
) := {

ν ∈ Mloc(G): A(μ,ν) < ∞, A(μ,ν) ≤ A(μ,ν + η) ∀η: ∇̄ · η = 0
}
. (4.6)

Here ∇̄ · η = 0 is understood in a weak sense, i.e.

1

2

∫
∇̄ξ(x, y)η(dx,dy) = 0 ∀ξ ∈ C∞

c

(
R

d
)
.

Corollary 4.10. Let (μ,ν) ∈ C E T such that the curve t �→ μt is absolutely continuous w.r.t. W . Then ν satisfies (4.5)
if and only if νt ∈ Tμt P (Rd) for a.e. t ∈ [0, T ].

If μ is absolutely continuous with respect to m we can give an explicit description of TμP (Rd) as a subspace of
an L2 space.

Proposition 4.11. Let μ = ρm ∈ P (Rd). Then we have ν ∈ TμP (Rd) if and only if ν = wρ̂Jm is absolutely contin-
uous w.r.t. the measure ρ̂Jm and

w ∈ {∇̄ϕ|ϕ ∈ C∞
c

(
Rd

)}L2(ρ̂Jm) =: Tρ.

Proof. If A(μ,ν) is finite we infer from Lemma 2.3 that ν = wρ̂Jm for some density w :G → R and that A(μ,ν) =
‖w‖2

L2(ρ̂Jm)
. Now the optimality condition in (4.6) is equivalent to

‖w‖L2(ρ̂Jm) ≤ ‖w + v‖L2(ρ̂Jm) ∀v ∈ Nρ,

where Nρ := {v ∈ L2(ρ̂Jm):
∫ ∇̄ξvρ̂ dJm = 0 ∀ξ ∈ C∞

c (Rd)}. This implies the assertion of the proposition after
noting that Nρ is the orthogonal complement in L2 of Tρ . �

In the light of the formal Riemannian interpretation of the distance W it seems natural to view TμP (Rd) as the tan-
gent space to P (Rd) at the measure μ. This is reminiscent of Otto’s Riemannian interpretation of the L2-Wasserstein
space [26]. The results obtained here are in close analogy to the notion of tangent bundle to the Wasserstein space
studied in [1], Section 8.4.

5. Geodesic convexity and gradient flow of the entropy

In this section we focus on a translation invariant jump kernel J and identify the evolution equation generated by the
associated non-local operator as the gradient flow of the relative entropy with respect to the distance W .

Assumption 5.1. Throughout this section we assume that θ is the logarithmic mean.

First, we have to make precise what we mean by gradient flow. Among several possibilities to define the notion
of gradient flow in a metric space the so called “Evolution Variational Inequality” (EVI) is one of the most powerful
and restrictive concepts. We refer to [1] for a comprehensive study of gradient flows in metric spaces. We adopt the
following

Definition 5.2. Let (X,d) be a metric space and F :X → (−∞,∞] a lower semicontinuous function such that its
proper domain D(F) := {x ∈ X|F(x) < ∞} is dense in X. Further let (St )t≥0 be a strongly continuous semigroup
on (X,d) and λ ∈ R. S is called the (λ-)gradient flow of F if St (X) ⊂ D(F) for all t > 0, the map t �→ F(St (u)) is
non-increasing in (0,∞) for all u ∈ X and if for all u ∈ X,v ∈ D(F), t > 0:

1

2

d+

dt
d2(St (u), v

) + λ

2
d2(St (u), v

) + F
(
St (u)

) ≤ F(v). (5.1)
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Here and in the following we will use the notation

d+

dt
f (t) := lim sup

h↘0

f (t + h) − f (t)

h
.

We will only consider translation invariant jump kernels. More precisely, from now on we make the following

Assumption 5.3. Assume that m is Lebesgue measure on R
d and that J satisfies

J (x + z,A + z) = J (x,A) ∀x, z ∈ R
d,A ∈ B

(
R

d
)
.

Recall from Remark 1.2 that Assumption 1.1 implies that the measure ν := J (0, ·) is a symmetric Lévy measure,
i.e. it satisfies ν(A) = ν(−A) for all A ⊂ R

d \ {0} as well as

Cν :=
∫ (

1 ∧ |z|2)ν(dz) < ∞. (5.2)

The jump kernel J gives rise to a non-local operator L given by

Lu(x) = 1

2

∫ (
u(x + z) + u(x − z) − 2u(x)

)
ν(dz).

We will use the shorthand notation δu(x, z) := 1
2 (u(x + z) + u(x − z) − 2u(x)).

Note that L is also the generator of the Lévy process (Xt )t≥0 with vanishing drift and diffusion and with Lévy
measure ν (see e.g. [4] or [8] for background on Lévy processes). Let us denote by qt the law of the Lévy process X

at time t started in 0. This law qt can be given explicitly in terms of its Fourier transformation. Namely, we have∫
eix·ξ qt (dx) = E

[
exp

(
i〈ξ,Xt 〉

)] = exp
(−tη(ξ)

)
,

where η is given by the Lévy–Khintchine formula:

η(ξ) =
∫

ei〈y,ξ〉 − 1 − i〈y, ξ 〉1{|y|≤1}ν(dy).

The generator L is a pseudo differential operator with symbol η. This means that F (Lu)(ξ) = η(ξ)F (u)(ξ), where
F denotes the Fourier transform.

Given μ ∈ P (Rd) we define its relative entropy w.r.t. a measure γ by

H(μ|γ ) :=
{∫

ρ logρdγ, if μ = ργ and
∫
(ρ logρ)+ dγ < ∞,

+∞, else.

We will use the shorthand notation H(μ) := H(μ|m) for the relative entropy w.r.t. Lebesgue measure. Recall that we
denote by Jm ∈ Mloc(G) the measure given by Jm(dx,dy) = J (x,dy)m(dx). For a probability measure μ ∈ P (Rd)

we define a non-local analogue of the Fisher information by

I(μ) :=
{

1
2

∫ ∇̄ρ∇̄ logρ dJm, if μ = ρm and ρ > 0,
+∞, else.

(5.3)

The following observation will be useful

Lemma 5.4. Let μ,τ ∈ P (Rd) such that I(μ) < ∞. Then we have

I(μ ∗ τ) ≤ I(μ).
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Proof. This follows from convexity of the map (r, s) �→ (r − s)(log r − log s) by an application of Jensen’s inequal-
ity. �

Throughout this section we will make the following assumption on ν in terms of the law of the associated Lévy
process.

Assumption 5.5. For any t > 0 the measure qt is absolutely continuous w.r.t. m with density ψt , where ψ : (0,∞) ×
R

d → R+ is smooth, bounded and strictly positive. We assume that ψ is a fundamental solution to the equation
∂tu = Lu, i.e.

∂tψ = Lψ in (0,∞) × R
d,

ψ(t, ·) −→ δ0 as t → 0.

Moreover, we assume that

H(qt ) ∈ (−∞,∞), I(qt ) < ∞ ∀t > 0, (5.4)∫ t

0

√
I(qs)ds < ∞ ∀t > 0, (5.5)

∫ r

s

∫ ∫ ∣∣δψt (x, z)
∣∣ν(dz)m(dx)dt < ∞ ∀0 < s < r. (5.6)

We will also assume a control on the moment of the Lévy measure.

Assumption 5.6. There exists a constant β > 0 such that

Mβ :=
∫

1{|x|>1}|x|βν(dx) < ∞.

Remark 5.7. The assumptions on the regularity of ψ could possibly be weakened, however, we prefer to keep the
presentation simple here. In [2] similar calculations as here are performed under very mild assumptions in a local
setting. Still, Assumption 5.5 is fulfilled e.g. for the choice να(dy) = cα|y|−α−d dy for α ∈ (0,2) corresponding to
the fractional Laplacian L = −(−Δ)α/2. This can be checked using the explicit Fourier representation F (ψt )(ξ) =
exp(−t |ξ |α), which implies e.g. the following heat kernel bounds (see e.g. [11], Theorem 1.1):

1

C
·
(

t−d/α ∧ t

|x|α+d

)
≤ ψ(t, x) ≤ C ·

(
t−d/α ∧ t

|x|α+d

)
. (5.7)

Assumption 5.6 is only used in Proposition 5.8 to ensure lower semicontinuity of the entropy w.r.t. W -convergence.
For να it is satisfied for any β < α.

The Lévy process generated by the operator L gives rise to a convolution semigroup (Pt )t≥0 acting on P (Rd) via

Pt [μ] := μ ∗ qt = μ ∗ ψt =
∫

μ(· − z)ψt (z)dz.

For ν ∈ Mloc(G) we set

Pt [ν] := ν ∗ ψt,

with the convolution being understood in the sense of (2.8).
In order to characterise the semigroup Pt as the gradient flow of the entropy, we want to apply Definition 5.2 in

the case where the space X is (a subspace of) the space of probability measures P (Rd) equipped with the distance W
and the functional F is the relative entropy H. Let us denote

P ∗ := {
μ ∈ P

(
R

d
)
: H(μ) > −∞}

.
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We set X := Pτ = {μ ∈ P (Rd): W (μ, τ) < ∞} for some τ ∈ P ∗. The next two results ensure that this choice fits
well into the setting of Definition 5.2.

Proposition 5.8. Let τ ∈ P ∗. For any μ ∈ P (Rd) with W (μ, τ) < ∞ we have H(μ) > −∞, i.e. Pτ ⊂ P ∗. Moreover,
the entropy functional H :Pτ → (−∞,∞] is lower semicontinuous w.r.t. convergence in the metric W .

Proof. To prepare for the proof let us fix a measure γ (dx) := exp(−V (x))dx with V (x) := max(1, |x|β/2) + c. Here
β is the constant from Assumption 5.6 and the constant c is chosen such that γ is a probability measure. We can
assume that β < 1. Using the inequality ||y|β/2 − |x|β/2| ≤ |y − x|β/2, it is easy to check that∣∣∇̄V (x, y)

∣∣ = ∣∣V (y) − V (x)
∣∣ ≤ min

(|y − x|, |y − x|β/2). (5.8)

Now note that for any μ ∈ P (Rd) we have

H(μ) = H(μ|γ ) −
∫

V (x)μ(dx). (5.9)

Moreover, H(μ|γ ) ≥ 0 since γ is a probability measure.
Let us now show the first statement of the proposition. By (5.9) we have that the integral

∫
V dτ is finite and we

have to show that
∫

V dμ is finite as well. Let (μs,νs)s∈[0,1] be a minimising curve in C E 1(τ,μ). For n ∈ N we define
the function Vn(x) := max(V (x), n). Arguing similar as in the proof of Lemma 2.6 or Proposition 4.5 and using (5.8)
we obtain∣∣∣∣

∫
Vn dμ −

∫
Vn dτ

∣∣∣∣ ≤ W (μ, τ)√
2

·
(∫ 1

0

∫ ∣∣∇̄Vn(x, y)
∣∣2

J (x,dy)μs(dx)ds

)1/2

≤ W (μ, τ)√
2

·
(∫ 1

0

∫
min

(|z|2, |z|β)
ν(dz)μs(dx)ds

)1/2

≤ W (μ, τ) ·
√

Mβ + Cν

2
.

Here Mβ is the constant from Assumption 5.6 and Cν is given by (5.2). Letting n → ∞, monotone convergence yields

∣∣∣∣
∫

V dμ −
∫

V dτ

∣∣∣∣ ≤ W (μ, τ) ·
√

Mβ + Cν

2

and in particular finiteness of the integral
∫

V dμ.
To prove the lower semicontinuity statement, fix μ ∈ Pτ and a sequence (μn) such that W (μn,μ) → 0. By Theo-

rem 4.4 we have μn ⇀ μ weakly and it is well known that H(·|γ ) is lower semicontinuous w.r.t. weak convergence
of probability measures (see e.g. [1], Lemma 9.4.3). Furthermore, arguing as before, we obtain the estimate

∣∣∣∣
∫

V dμn −
∫

V dμ

∣∣∣∣ ≤ W (μn,μ) ·
√

Mβ + Cν

2
−→ 0.

In view of (5.9) this finishes the proof. �

Lemma 5.9. (Pt )t is a strongly continuous semigroup on Pτ , i.e. for any μ ∈ Pτ we have that Pt [μ] ∈ Pτ for all
t > 0 and W (Pt [μ],μ) → 0 as t → 0.

Proof. For s ∈ [0, t] we put μs := Ps[μ] = ρsm, where

ρs(x) =
∫

ψs(x − z)μ(dz).
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Further set νs = ∇̄ρsJm. Since by Assumption 5.5 ψ is a fundamental solution to ∂tu = Lu we easily check that
(μ,ν) ∈ C E t (μ,Pt [μ]). The action is given as

A(μs,νs) =
∫ |∇̄ρs |2

ρ̂s

dJm = I(μs).

By Lemma 5.4 we have I(μs) ≤ I(qs) and using Lemma 4.2, we estimate

W
(
Pt [μ],μ) ≤

∫ t

0

√
A(μs,νs)ds ≤

∫ t

0

√
I(qs)ds.

By (5.5) the last expression is finite and tends to 0 as t → 0. �

Let us now state a result giving the entropy production along the semigroup P .

Proposition 5.10. Let μ ∈ P ∗. For every t > 0 we have H(Pt [μ]) ∈ (−∞,∞) and I(Pt [μ]) < ∞. Moreover, we
have the energy identity

H
(
Pt [μ]) − H

(
Ps[μ]) = −

∫ t

s

I
(
Pr [μ])dr ∀t ≥ s > 0. (5.10)

In particular the map t �→ H(Pt [μ]) is non-increasing.

Proof. Since W (Pt [μ],μ) < ∞ by Lemma 5.9, Proposition 5.8 gives that Pt [μ] ∈ P∗. Note that Pt [μ] = ρtm is
absolutely continuous with density

ρt (x) =
∫

ψt(x − z)μ(dz).

Finiteness of H(Pt [μ]) and I(Pt [μ]) thus follows immediately from (5.4) and convexity of the map r �→ r log r

respectively Lemma 5.4.
We prove (5.10) by approximating H with functionals Hn. Let us set

fn(u) :=
∫ u

0
max

(
1 + log(r),−n

)
dr. (5.11)

Then we have fn(u) ↘ u log(u) and f ′
n(u) ↘ 1 + log(u) as n → ∞. For μ = ρm ∈ P (Rd) we set Hn(μ) :=∫

fn(ρ)dm. From Assumption 5.5 we deduce that ρ satisfies ∂tρ = Lρ. Now we calculate

Hn

(
Pt [μ]) − Hn

(
Ps[μ]) =

∫
fn(ρt ) − fn(ρs)dm =

∫ ∫ t

s

f ′
n(ρr)∂rρr dr dm

=
∫ ∫ t

s

f ′
n(ρr)Lρr dr dm

= −1

2

∫ t

s

∫
∇̄f ′

n(ρr)∇̄ρr dJmdr.

The interchange of integrals in the second line is justified since f ′
n(ρr) is bounded and Lρr(x) is integrable in (s, t)×

R
d . The latter follows from the fact that (5.6) holds with ψ replaced by ρ. The integration by parts in the last line can

be justified by using again (5.6) and (5.4). Letting finally n → ∞, we obtain (5.10) by monotone convergence of both
the left- and right-hand sides. �

We will now show that the semigroup (Pt ) is the gradient flow of the relative entropy with respect to the distance
W in the sense of Definition 5.2. Our strategy of proof is inspired by an argument developed in [13] and used in a
similar form in [14], Theorem 5.29. The following two results are a restatement of Theorem 1.4 from the introduction.
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Theorem 5.11. Let μ ∈ P ∗. Then H(Pt [μ]) < ∞ for all t > 0 and the map t �→ H(μt ) is non-increasing. Moreover,
for any σ ∈ Pμ the Evolution Variational Inequality holds:

1

2

d+

dt
W

(
Pt [μ], σ )2 + H

(
Pt [μ]) ≤ H(σ ) ∀t > 0. (5.12)

Proof. Finiteness and monotonicity of H(Pt [μ]) were already proved in Proposition 5.10. To prove the Evolution
Variational Inequality, it is sufficient by the semigroup property of Pt to assume H(μ) < ∞ and prove the inequality
at t = 0. So let σ ∈ Pμ with H(σ ) < ∞ and let (σs,νs)s∈[0,1] be a minimising curve connecting σ0 = σ to σ1 = μ.
We set

με
s,t = ρε

s,tm := Pst+ε[σs] and

ν̃ε
s,t = ṽε

s,t Jm := Pst+ε[νs].
The couple (με

s,t , ν̃
ε
s,t ) does not satisfy the continuity equation. Hence we make the correction

νε
s,t = vε

s,t Jm := (̃
vε
s,t − t∇̄ρε

s,t

)
Jm.

We will need the following result whose proof we postpone for the moment.

Claim 5.12. We have (με·,t ,νε·,t ) ∈ C E 1(Pε[σ ],Pt+ε[μ]) and moreover,

H
(
Pε+t [μ]) − H

(
Pε[σ ]) = −1

2

∫ 1

0

∫
∇̄ logρε

s,t dνε
s,t ds. (5.13)

From the definition of the distance W we now obtain the estimate

W
(
Pt+ε[μ],Pε[σ ])2 ≤

∫ 1

0
A

(
με

s,t ,ν
ε
s,t

)
ds. (5.14)

Recall the notation ρ̂(x, y) = θ(ρ(x), ρ(y)) with θ being the logarithmic mean here. We can further estimate

A
(
με

s,t ,ν
ε
s,t

) =
∫ |vε

s,t |2
2ρ̂ε

s,t

dJm

=
∫ (∣∣̃vε

s,t

∣∣2 − 2t∇̄ρε
s,t v

ε
s,t − t2

∣∣∇̄ρε
s,t

∣∣2) 1

2ρ̂ε
s,t

dJm

≤ A
(
με

s,t , ν̃
ε
s,t

) − t

∫
∇̄ logρε

s,t v
ε
s,t dJm

≤ A(σs,νs) − t

∫
∇̄ logρε

s,t dνε
s,t ,

where we have dropped the quadratic term in t and used the monotonicity under convolution (Proposition 2.8) in the
last inequality. Integration over s from 0 to 1 and using (5.13) gives

1

2
W

(
Pt+ε[μ],Pε[σ ])2 ≤ 1

2
W (μ,σ )2 − t · (H

(
Pt+ε[μ]) − H

(
Pε[σ ])).

By lower semicontinuity of W (see Theorem 4.4) and continuity of H along the semigroup we can take the limit
ε → 0 and obtain

1

2
W

(
Pt [μ], σ )2 ≤ 1

2
W (μ,σ )2 − t · (H

(
Pt [μ]) − H(σ )

)
.
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Finally, rearranging terms and letting t ↘ 0 yields (5.12).

Proof of Claim 5.12. For the proof we first need two estimates. First, note that∫ 1

0
I
(
με

s,t

)
ds < ∞. (5.15)

Indeed, using Lemma 5.4 and Proposition 5.10, we estimate∫ 1

0
I
(
με

s,t

)
ds ≤

∫ 1

0
I(qε+st )ds = H(qε) − H(qε+t ) < ∞.

From this we conclude that the curve (με·,t ,νε·.t ) has finite action. Indeed,

A :=
∫ 1

0

∫ |vε
s,t |2

2ρ̂ε
s,t

dJmds

≤
∫ 1

0

∫
2
|̃vε

s,t |2
2ρ̂ε

s,t

+ 2t2 |∇̄ρε
s,t |2

2ρ̂ε
s,t

dJmds

≤ 2
∫ 1

0
A(σs,νs)ds + 2t2

∫ 1

0
I
(
με

s,t

)
ds < ∞,

where we use Proposition 2.8 in the last inequality. Using Lemma 2.6 and the previous estimate we see that νε·,t
satisfies the integrability condition (iv) in Definition 3.2. The other conditions are also easily checked. Hence, we see
that (με·,t ,νε·,t ) ∈ C E 1(Pε[σ ],Pε+t [μ]).

Now let us prove (5.13). By a simple convolution argument we can assume that ρε
s,t is differentiable in s. Let fn

be the function defined by (5.11) and set f (u) = u log(u) for u ≥ 0. Now we calculate

Hn

(
Pε+t [μ]) − Hn

(
Pε[σ ]) =

∫ ∫ 1

0
f ′

n

(
ρε

s,t

)
∂sρ

ε
s,t ds dm.

Note that the map x �→ f ′
n(ρ

ε
s,t (x)) is bounded and Lipschitz uniformly in s ∈ [0,1]. Using the integrability condition

(iii) from Definition 3.2 we can approximate it by functions in C∞
c ((0,1)×R

d) and obtain by the continuity equation

Hn

(
Pε+t [μ]) − Hn

(
Pε[σ ]) = −1

2

∫ 1

0

∫
∇̄f ′

n

(
ρε

s,t

)
dνε

s,t ds. (5.16)

By monotone convergence the left-hand side of (5.16) converges to the left-hand side of (5.13). It remains to prove
convergence of the right-hand side. Using Hölder inequality, we estimate∣∣∣∣

∫ 1

0

∫
∇̄(

f ′(ρε
s,t

) − f ′
n

(
ρε

s,t

))
dνε

s,t ds

∣∣∣∣
≤

∫ 1

0

∫ ∣∣∇̄(
f ′(ρε

s,t

) − f ′
n

(
ρε

s,t

))∣∣∣∣wε
s,t

∣∣dJmds

≤ A1/2
(∫ 1

0

∫ ∣∣∇̄(
f ′(ρε

s,t

) − f ′
n

(
ρε

s,t

))∣∣22ρ̂ε
s,t dJmds

)1/2

.

The integrand in the last term is bounded as∣∣∇̄(
f ′(ρε

s,t

) − f ′
n

(
ρε

s,t

))∣∣2
ρ̂ε

s,t ≤ ∣∣∇̄f ′(ρε
s,t

)∣∣2
ρ̂ε

s,t = ∇̄ logρε
s,t ∇̄ρε

s,t .

With the help of (5.15) and dominated convergence we conclude convergence of the right-hand side of (5.16) to the
right-hand side of (5.13). �

�
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Corollary 5.13. The entropy is convex along W -geodesics. More precisely, let μ0,μ1 ∈ P ∗ such that W (μ0,μ1) <

∞ and let (μt )t∈[0,1] be a geodesic connecting μ0 and μ1. Then we have

H(μt ) ≤ (1 − t)H(μ0) + t H(μ1).

Proof. This is a direct consequence of Theorem 5.11 and the fact, proved in [13], Theorem 3.2, that in a general
setting the Evolution Variational Inequality implies geodesic convexity. �

We finish by giving an equivalent and more intuitive definition of the distance W in the present setting of a
translation invariant jump kernel J . We show that it coincides with W̃ defined in (1.5). We introduce the following
shorthand notation. Given functions ρ : Rd → R+ and ψ : Rd → R we write

A′(ρ,ψ) := 1

2

∫ ∣∣∇̄ψ(x, y)
∣∣2

ρ̂(x, y)Jm(dx,dy).

For two probability densities ρ̄0, ρ̄1 w.r.t. m and T > 0 let us denote by C E ′
T (ρ̄0, ρ̄1) the collection of pairs (ρ,ψ)

satisfying the following conditions:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(i) ρ : [0, T ] × R
d → R+ is measurable;

(ii) ρt is a probability density for all t ∈ [0, T ];
(iii) The curve t �→ μt := ρtm is weakly continuous;
(iv) ψ : [0, T ] × R

d → R is measurable;
(v) ∂tρt + ∇̄ · (ρ̂t ∇̄ψt) = 0, ρ0 = ρ̄0, ρT = ρ̄1.

(5.17)

Here the continuity equation (v) is understood in the sense that for every test function ϕ ∈ C∞
c ((0, T ) × R

d) we have

∫ 1

0

∫
∂tϕρt dmdt + 1

2

∫ 1

0

∫
∇̄ϕ(x, y)∇̄ψt(x, y)ρ̂t (x, y)Jm(dx,dy)dt = 0.

Proposition 5.14. In addition to Assumptions 5.3 and 5.5 assume that the jump kernel is given as J (x,dy) = j (y −
x)dy for a function j : Rd \ {0} → R

+ that is strictly positive. Let μ̄i = ρ̄im ∈ P (Rd) for i = 0,1. Then we have

W (μ̄0, μ̄1)
2 = inf

{∫ 1

0
A′(ρt ,ψt )dt : (ρ,ψ) ∈ C E ′

1(ρ̄0, ρ̄1)

}
.

Note that the assumptions above on the jump kernel J are satisfied by the kernel Jα associated to the fractional
Laplacian.

Proof of Proposition 5.14. The inequality ‘≤’ follows easily by noting that the infimum in the definition of W is taken
over a larger set. Indeed, given a pair (ρ,ψ) ∈ C E ′

1(ρ̄0, ρ̄1) such that
∫ 1

0 A′(ρt ,ψt )dt is finite we set μt = ρtm and
define νt ∈ Mloc(G) by setting νt (dx,dy) = ∇̄ψt(x, y)ρ̂t (x, y)J (x,dy)m(dx). Then we have A′(ρt ,ψt ) = A(μt ,νt )

and it is easily checked using Lemma 2.6 that (μ,ν) ∈ C E 1(μ̄0, μ̄1).
Let us now prove the opposite inequality ‘≥’. To this end, note that by a reparametrisation argument similar to

Lemma 4.2 the square root of the infimum on the right-hand side coincides with

inf

{∫ T

0

√
A′(ρt ,ψt )dt : (ρ,ψ) ∈ C E ′

T (ρ̄0, ρ̄1)

}
.

We set μ
i,ε
t := Pt [μ̄i] = ρ

i,ε
t m and ψ

i,ε
t = logρ

i,ε
t for i = 0,1 and t ∈ (0, ε]. It is easily checked, that the pair

(ρi,ε,ψi,ε) belongs to C E ′
ε(ρ̄i , ρ

i,ε
1 ). Using Lemma 5.4, we infer that

Li,ε :=
∫ ε

0

√
A′(ρi,ε

t ,ψ
i,ε
t

)
dt =

∫ ε

0

√
I
(
μ

i,ε
t

)
dt ≤

∫ ε

0

√
I(qt )dt.
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Now let (μ,ν) ∈ C E 1(μ̄0, μ̄1) be a minimising curve and set με
t := Pε[μt ] = ρε

t m. Proposition 4.9 and the proof of
Proposition 4.8 show that the curve t �→ με

t is absolutely continuous w.r.t. W and thus there is a family of optimal
velocity measures ν̃ε . By Proposition 4.11 we have that ν̃ε

t = wε
t ρ̂

ε
t Jm where wε

t belongs to T ε
ρt

. In particular, there
exists a sequence of functions ψn such that ∇̄ψn → wε

t almost surely w.r.t. the measure ρ̂ε
t Jm. Note that ρε

t > 0 by
Assumption 5.5 and thus ρ̂ε

t > 0 for all t ∈ (0,1) and moreover j > 0. Hence, we have ∇̄ψn → wε
t also m2-almost

surely and it is easily checked that any a.s. limit of discrete gradients coincides again a.e. with a discrete gradient.
Thus there exist a function ψε : (0,1) × R

d → R such that wε
t = ∇̄ψε

t a.e. Now observe that (ρε,ψε) ∈ C E ′
1(ρ

ε
0, ρε

1)

and

Lε :=
∫ 1

0

√
A′(ρε

t ,ψ
ε
t

)
dt =

∫ 1

0

√
A

(
με

t , ν̃
ε
t

)
dt ≤

∫ 1

0

√
A(μt ,νt )dt = W (μ̄0, μ̄1),

where we have used Proposition 2.8 in the second line. Finally we concatenate the three curves (ρ0,ε,ψ0,ε), (ρε,ψε)

and (ρ1,ε,ψ1,ε) to obtain a curve (ρ̃ε, ψ̃ε) ∈ C E ′
1+2ε(ρ̄0, ρ̄1) which satisfies

∫ 1+2ε

0

√
A′(ρ̃ε

t , ψ̃
ε
t

)
dt = L0,ε + Lε + L1,ε ≤ W (μ̄0, μ̄1) + 2

∫ ε

0

√
I(qt )dt.

By Assumption 5.5 the second term in the last line goes to zero as ε → 0 which yields the claim. �
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