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Abstract. Take a centered random walk Sn and consider the sequence of its partial sums An := ∑n
i=1 Si . Suppose S1 is in the do-

main of normal attraction of an α-stable law with 1 < α ≤ 2. Assuming that S1 is either right-exponential (i.e. P(S1 > x|S1 > 0) =
e−ax for some a > 0 and all x > 0) or right-continuous (skip free), we prove that

P{A1 > 0, . . . ,AN > 0} ∼ CαN1/(2α)−1/2

as N → ∞, where Cα > 0 depends on the distribution of the walk. We also consider a conditional version of this problem and
study positivity of integrated discrete bridges.

Résumé. Soit Sn une marche aléatoire centrée, nous considérons la suite de ses sommes partielles An := ∑n
i=1 Si . Nous supposons

que S1 est dans le domaine d’attraction normale d’une loi α-stable avec 1 < α ≤ 2. En supposant que S1 est soit exponentielle à
droite (i.e. P(S1 > x|S1 > 0) = e−ax ), soit continue à droite (i.e. P(S1 = 1|S1 > 0) = 1), nous prouvons que

P{A1 > 0, . . . ,AN > 0} ∼ CαN1/(2α)−1/2

quand N → ∞, où Cα > 0 dépend de la distribution de la marche. Nous considérons aussi une version conditionnelle de ce
problème et nous étudions la positivité de ponts discrets intégrés.

MSC: 60G50; 60F99
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1. Introduction

1.1. The problem

Consider a non-degenerate sequence of centered random variables. What is the probability that it stays positive for a
long time? Surprisingly little is known about this problem. Only one situation is well understood besides the trivial
case that the variables are independent: For a random walk Sn, the classical Sparre–Andersen theorem expresses the
generating function of

qN := P

{
min

1≤k≤N
Sk > 0

}
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in terms of the probabilities P(Sn > 0). A Tauberian theorem then implies that N1/2qN → c > 0 in the typical case
that ES1 = 0,Var(S1) < ∞; moreover, if P(Sn > 0) → γ ∈ (0,1), then N1−γ qN is slowly varying at infinity.

Consider the sequence An := ∑n
i=1 Si , which we call an integrated random walk. We are interested in the asymp-

totics of

pN := P

{
min

1≤k≤N
Ak > 0

}
as N → ∞. One may also refer to similar types of questions as to asymptotics of the tail of one-sided exit times,
unilateral small deviation probabilities, or persistence if adopting the terminology from physics.

This problem was introduced in the seminal paper by Sinai [20] who considered the specific case that Sn is a
simple random walk. Sinai studied the question in connection with the behavior of solutions of the Burgers equation
with random initial data. The author’s initial motivation comes from his study [22] of sticky particle systems with
gravitational attraction. The asymptotical behavior of pN is directly related to the characteristics of such systems with
random initial data at the critical moment of total gravitational collapse. The probabilities pN also arise in the wetting
model of random polymers with Laplacian interaction considered by Caravenna and Deuschel [5]. More generally,
the probability that a certain random function does not change sign over a large time scale is relevant to the analysis
of many physical models, Majumdar [16].

Although continuous-time versions of our question have received more attention, there are few results even in this
direction. Aurzada and Dereich [1] give a comprehensive overview of this work. A recent breakthrough [1] shows
universality of the asymptotics in the one-sided exit problem for general integrated Lévy processes.

1.2. The background

The first result on the subject is due to Sinai [20] who explained that pN � N−1/4 for an (integrated) simple random
walk. Because the continuous-time analog with an integrated Wiener process A(t) := ∫ t

0 W(s)ds exhibits the same
asymptotics and moreover,

P

{
inf

0≤t≤N
A(t) ≥ −1

}
∼ cN−1/4

(see, for example, Isozaki and Watanabe [13]), it was conjectured in [5,22] that pN � N−1/4 for any walk Sn with
ES1 = 0 and Var(S1) < ∞. This conjecture has not yet been fully proved and below we briefly explain existing
approaches.

Sinai’s method relies on the observation that if Sn is a simple random walk, then all the local extrema of An occur at
the times when Sn returns to zero, and such times form a renewal sequence. This property is based on the very specific
structure of the increments of the walk and does not hold for different distributions. However, the main message here
is to partition the trajectory of Sn with a suitable sequence of regeneration times. Vysotsky [23] explored this idea and
showed that pN � N−1/4 for any integer-valued walk (we write an � bn for two non-negative sequences an and bn if
an/bn stays bounded while an � bn means an � bn and bn � an). Unfortunately, further development of this method
required restrictive assumptions on the positive increments of the walk. Due to technical difficulties, [23] also imposed
similar constraints on the negative increments and showed that pN � N−1/4 for double-sided exponentials, symmetric
geometric, lazy simple, and two other “mixed” types of random walks. We stress that the present paper removes these
superfluous assumptions on the negative increments.

The second approach is due to Aurzada and Dereich [1] who used strong approximation by a Wiener process
assuming Eea|S1| < ∞ for some a > 0. This powerful method allowed them to prove universality of the asymptotics
for general integrated Levy processes but, because the strong approximation technique does not work well for small
values of time, [1] obtains extra factors in the estimates: N−1/4(logN)−4 � pN � N−1/4(logN)4.

The third method by Dembo et al. [6] is based on decomposition of the sequence An at its maximum. [6] proved
that pN−1 ≤ c1(E|SN |/N)1/2 for any (centered) walk with some explicit c1. For the sharp lower bound, they still
imposed some assumptions on the positive increments of the walk. However, after the current paper was accepted,
there was a significant update to [6] before it was published. The final version has c2(E|SN |/N)1/2 ≤ pN−1 for any
(centered) walks with Var(S1) < ∞ or S1 bounded from above. Thus the conjecture pN � N−1/4 is finally proved
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for all walks with finite variance, and the results of [6] cover those of [1] and [23]. Note that the first version of
Dembo et al. [6] had the lower estimate under a less restrictive assumption that, essentially, the tail P(S1 > x) decays
exponentially or super-exponentially.

1.3. Results and organization of the paper

This paper proves the sharp asymptotics for pN in certain cases. We follow the approach developed in [23] but
work under much less restrictive conditions on the increments of Sn. Presently, it seems impossible to get the sharp
asymptotics using the other methods described above.

Let us state the assumptions. A random walk Sn is right-exponential if Law(S1|S1 > 0) is an exponential distri-
bution. An integer-valued walk Sn is right-continuous (skip free) if P{S1 = 1|S1 > 0} = 1; the name comes from
the analogy with spectrally negative integrable Lévy processes, which do not have positive jumps and hit all in-
termediate values before reaching any positive horizontal level. The distributions above are well known in the re-
newal theory and have the characteristic property that all overshoots of Sn over any fixed level are identically dis-
tributed.

Suppose that S1 belongs to the domain of normal attraction (to be denoted as S1 ∈ D N (α)) of a strictly stable
law with the index 1 < α ≤ 2. If α < 2 and S1 is right-exponential or right-continuous, then such a law is spectrally
negative. By the stable central limit theorem and Eq. (2.2.30) in Zolotarev [24] for the positivity parameter, it holds
that P{Sn > 0} → 1/α. For 1 < α ≤ 2, define

Rα :=
{

S1: Sn is either right-exponential or right-continuous,ES1 = 0,

S1 ∈ D N (α), and
∞∑

n=1

1

n

(
P{Sn > 0} − 1

α

)
converges

}
.

Recall that (Theorem 2.6.6 in Ibragimov and Linnik [12]) S1 ∈ D N (2) is equivalent to Var(S1) < ∞, which ensures
the convergence of the series (Feller [10], Ch. XVIII.5). Due to Egorov [9], for 1 < α < 2 a sufficient condition for
the convergence is

∫ ∞
0 xα|d(F (−x) − Gα(−x))| < ∞, where F(x) and Gα(x) are the distribution functions of S1

and the limit stable law, respectively.
We now state the main result of the paper.

Theorem 1. Let Sn be a random walk such that S1 ∈ Rα for some 1 < α ≤ 2. Then there exists a constant Cα =
Cα(Law(S1)) > 0 such that

lim
N→∞N1/2−1/(2α)pN = Cα.

Remark. The computable bounds for C2 when S1 is upper-exponential are given below in (9).

Our proof should also work if we drop convergence of the series in the definition of Rα . Then N1/2−1/(2α)pN

becomes slowly varying at infinity instead of being convergent. We also point out that [6] proved the weak asymptotics
pN � N1/(2α)−1/2 for centered random walks with S1 ∈ D N (α) whose tail P(S1 > x) decays exponentially or super-
exponentially. This class of distributions is much wider than Rα .

We can also apply our method to a conditional version of the problem with integrated discrete bridges instead of
integrated random walks. For an integer-valued walk Sn, put

p∗
N := P

{
min

1≤k≤N
Ak > 0

∣∣SN = 0
}

for N ∈ DS1 := {n: P(Sn = 0) > 0} where this expression is well-defined.
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Proposition 1. Let Sn be an integer-valued random walk with ES1 = 0 and Var(S1) < ∞. Then p∗
N � N−1/4 and

moreover, p∗
N � N−1/4 if S1 is right-continuous, as N → ∞ along DS1 .

Although this statement covers quite a narrow class of distributions, it is the first result of such type. An open and
very challenging problem that has recently received some attention is to find the asymptotics of

P

{
min

1≤k≤N
Ak > 0

∣∣AN = 0
}

and P

{
min

1≤k≤N
Ak > 0

∣∣SN = 0,AN = 0
}
.

These probabilities are related to polymer models similar to the one of Caravenna and Deuschel [5].
This paper is organized as follows. Section 2 explains our approach of partitioning the trajectory of Sn into in-

dependent parts (so-called cycles) by the appropriate moments of regeneration. The pivotal result of the section is
Proposition 2 on bivariate random walks that stay in the right half-plane. Roughly speaking, it is a bivariate version
of the famous Sparre–Andersen theorem that qN does not depend on the distribution of the walk if S1 is symmetric
and continuous. In addition to its independent interest, Proposition 2 leads to a simple and very intuitive proof that
pN � N1/(2α)−1/2 for S1 ∈ Rα ; one may regard this proof as a rigorous version of the heuristic arguments in [23],
Section 2.1. We give the proof here to make the paper more readable and to show the advantage of our technique.
In Section 2.4 we apply Proposition 2 to get our results on the positivity of integrated bridges. Theorem 1 is proved
in Section 4. The necessary ingredients are prepared in Section 3, where we study joint tails of areas and lengths of
stable excursions, cycles and meanders. There we also discuss conditional limit theorems for bivariate random walks,
one of the main tools in Section 4.

2. Partitioning into cycles and non-sharp asymptotics of pN

2.1. Partitioning by regenerating times

The main idea of our approach is to partition the trajectory of the random walk Sn into appropriate independent parts.
Define the moments of crossing the zero level from below as

Θ0 := min{n ≥ 0: Sn+1 > 0}, Θk+1 := min{n > Θk: Sn ≤ 0, Sn+1 > 0}

for k ≥ 0. A non-degenerate centered random walk is recurrent hence the r.v.’s defined above are proper. We stress
that although the variables Θk + 1 are stopping times, the variables Θk are not. The trajectory of Sn is thus partitioned
into parts that we call cycles (except for the part until Θ0 that will be excluded from the consideration), and each cycle
starts with a positive excursion followed by a negative excursion. For k ≥ 1, let θk := Θk − Θk−1 be the length of the
kth cycle and let ψk := AΘk

− AΘk−1 be its area; also, set Ψk := AΘk
for the total area of the first k cycles so that

ψk = Ψk − Ψk−1.
Define P̃(·) := P(·|S1 > 0) as it is more convenient to assume that Sn starts with a positive excursion and so Θ0 = 0

P̃-a.s.; also put σ 2 := Var(S1). The following observation from Vysotsky [23] (see Lemmas 1, 2 and Proposition 1)
plays the crucial role for our method.

Lemma 1. Let Sn be a centered random walk that is either right-exponential or right-continuous. Then (θn,ψn)n≥1

are i.i.d. and (θ1,ψ1)
D= (θ1,−ψ1). If S1 ∈ R2, then θ1 ∈ D N (1/2), and, moreover, limn→∞ n1/2

P{θ1 ≥ n} =√
8
π

σ
E|S1| if S1 is right-exponential.

Here is an explanation of this result. The i.i.d. property follows as each cycle starts with the overshoot SΘk+1 which
is independent of the preceding part S1, . . . , SΘk

of the trajectory. The symmetry holds by

(S1, . . . , Sθ̂1
, θ̂1)

D= (−S
θ̂1

, . . . ,−S1, θ̂1) under P̃, (1)
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where θ̂1 := max{n ≤ θ1: SΘ0+n < 0}. Of course θ̂1 = θ1 for a right-exponential S1 while for a right-continuous S1,
θ̂1 equals the length of the first cycle by the last return to zero. The key observation is the duality relation

E{S2 ∈ dx2, . . . , Sk−1 ∈ dxk−1|S1 = x1, Sk = xk} = E{Sk−1 ∈ −dx2, . . . , S2 ∈ −dxk−1|S1 = −xk, Sk = −x1},

which holds for any random walk and follows from the standard duality principle that states (S2 − S1, . . . , Sk − S1)
D=

(Sk −Sk−1, . . . , Sk −S1). The duality immediately implies (1) if S1 is right-continuous, while for the right-exponential
case we use the fact that

P̃{S1 ∈ dx1, . . . , Sk ∈ dxk, θ̂1 = k}
= P(S1 > 0)exk−x1E{S2 ∈ dx2, . . . , Sk−1 ∈ dxk−1|S1 = x1, Sk = xk}dx1P{Sk − S1 ∈ dxk − x1}.

Relation (1) is extremely useful as it essentially states that the negative part of a cycle has the same distribution as

the time-reversed positive part. Hence for a right-exponential S1 we immediately get θ+
D= θ− for the lengths of the

parts that are defined as

θ+ := min{n ≥ 1: SΘ0+n ≥ 0, SΘ0+n+1 < 0}, θ− := θ1 − θ+.

To cover the right-continuous case, define

θ̂+ := max{n ≤ θ+: SΘ0+n > 0}, θ̂− := θ̂1 − θ+

to be the lengths of the parts by their last returns to zero. Then we have θ̂+
D= θ̂−, which clearly covers the first case as

θ̂+ = θ+ and θ̂− = θ− a.s. for a right-exponential S1.

Since the Sparre–Andersen theorem implies that θ+ ∈ D N (1−1/α), by θ̂+
D= θ̂− the same holds for θ−. Hence one

also expects θ1 ∈ D N (1 − 1/α) as stated in Lemma 1 for α = 2. We prove this for 1 < α < 2 in the next section. Note
that there is a significant difference in the shape of long cycles: for α = 2 the walk essentially stays either positive or
negative while for 1 < α < 2 it spends positive parts of time in both half-planes.

2.2. Bivariate walks staying in the right half-plane

We see that under the conditions of Lemma 1, (Θk,Ψk) is a bivariate (two-dimensional) random walk. Its second
component is symmetric, and the walk starts at (Θ0,Ψ0) = (0,0) under P̃. It turns out that such walks enjoy a useful
property stated below in Proposition 2. This result actually is a slight improvement of the famous Sparre–Andersen
theorem which states, in particular, that the probabilities qN that a symmetric continuous random walk stays positive
until time N do not depend on the distribution of the increments. Proposition 2 is inspired by Lemma 3 (see (5) below)
by Sinai [20]; we also refer to Feller [10], Ch. XII, for appropriate definitions and general ideas. It is worth mentioning
that Sinai’s lemma is a special case of the results by Greenwood and Shaked [11] who give a half-plane Wiener–Hopf
type factorization for bivariate distributions. This reference was pointed out to the author by Vitaliy Wachtel.

Proposition 2. Let (S
(1)
n , S

(2)
n ) be a bivariate random walk such that (S

(1)
1 , S

(2)
1 )

D= (S
(1)
1 ,−S

(2)
1 ). Then for any n ≥ 1

and x ∈ R it holds

P

{
S(1)

n ∈ dx, min
1≤i≤n

S
(2)
i ≥ 0

}
≥ P

{
S(1)

n ∈ dx
}
P

{
min

1≤i≤n
S

(2)
i > 0

}
(2)

and

P

{
S(1)

n ∈ dx, min
1≤i≤n

S
(2)
i > 0

}
≤ P

{
S(1)

n ∈ dx
}
P

{
min

1≤i≤n
S

(2)
i ≥ 0

}
. (3)

Corollary. If the distribution of S
(2)
1 is continuous, then {S(1)

n ∈ dx} and {min1≤i≤n S
(2)
i > 0} are independent.
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Proof. It is useful to consider the inequalities simultaneously for all n ≥ 1 and think that the sides of (2) define the
two measures Q(dx,n) and Q̃(dx,n) on R × N. We start by noting that the characteristic function

χ(u, t) :=
∞∑

n=1

∫ ∞

−∞
tneiux

P

{
S(1)

n ∈ dx, min
1≤i≤n

S
(2)
i ≥ 0

}
of the measure Q(dx,n) in the left-hand sides of (2) satisfies

1 + χ(u, t) = 1

1 − χU1,T1(u, t)
,

where T1 is the first weak ascending ladder epoch of the walk S(2) and U1 := S
(1)
T1

. This follows by the standard

argument of considering the equally distributed dual walk (S
(1)
n − S

(1)
n−k, S

(2)
n − S

(2)
n−k)1≤k≤n and getting

P

{
S(1)

n ∈ dx, min
1≤i≤n

S
(2)
i ≥ 0

}
= P

{
S(1)

n ∈ dx, max
1≤i≤n−1

S
(2)
i ≤ S(2)

n

}
=

∞∑
k=1

P{U1 + · · · + Uk ∈ dx,T1 + · · · + Tk = n}, (4)

where (Uk,Tk)k≥1 are i.i.d. random vectors.
Further, Lemma 3 by Sinai [20], which is just a two-dimensional version of the Sparre–Andersen theorem (see

Feller [10], Section XII.7, Theorem 1), states

log
1

1 − χU1,T1(u, t)
=

∞∑
n=1

∫ ∞

−∞
tn

n
eiux

P
{
S(1)

n ∈ dx,S(2)
n ≥ 0

}
, (5)

hence with the symmetry of S
(2)
n ,

log
1

1 − χU1,T1(u, t)
=

∞∑
n=1

tn

2n
χn

S
(1)
1

(u) +
∞∑

n=1

∫ ∞

−∞
tn

2n
eiux

P
{
S(1)

n ∈ dx,S(2)
n = 0

}
.

The second term in the right-hand side can be transformed we did in (4) and we get

log
1

1 − χU1,T1(u, t)
= 1

2
log

1

1 − tχ
S

(1)
1

(u)
+ 1

2
log

1

1 − χU∗
1 ,T ∗

1
(u, t)

,

where χU∗
1 ,T ∗

1
(u, t) is the characteristic function of the non-probability measure

Q∗(dx, k) := P
{
S

(1)
k ∈ dx,S

(2)
1 < 0, . . . , S

(2)
k−1 < 0, S

(2)
k = 0

}
on R × N which in a certain sense is the distribution of the defective random vector (U∗

1 , T ∗
1 ), where T ∗

1 is the first

moment when S
(2)
n hits zero from below and U∗

1 = S
(1)

T ∗
1

. Then

1 + χ(u, t) =
√

1

(1 − tχ
S

(1)
1

(u))(1 − χU∗
1 ,T ∗

1
(u, t))

(6)

and similarly, the characteristic function χ+(u, t) of the measure Q+(dx,n) in the left-hand sides of (3) satisfies

1 + χ+(u, t) =
√√√√1 − χU∗

1 ,T ∗
1
(u, t)

1 − tχ
S

(1)
1

(u)
. (7)
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Finally, the characteristic function of the measure Q̃(dx,n) in the right-hand sides of (2) is

χ̃(u, t) =
∞∑

n=1

tnχn

S
(1)
1

(u)P
{

min
1≤i≤n

S
(2)
i > 0

}
= χT +

1

(
tχ

S
(1)
1

(u)
)
,

where T +
1 is the first strong ascending ladder epoch of S(2), and by (6), (7) and χT +

1
(t) = χ+(0, t), we get

1 + χ(u, t) = (
1 + χ̃ (u, t)

)√ 1

(1 − χT ∗
1
(tχ

S
(1)
1

(u)))(1 − χU∗
1 ,T ∗

1
(u, t))

. (8)

Since all the coefficients of the Maclaurin series of (1 − z)−1/2 are positive, the square root factor in the right-hand
side of (8) has the form

1 +
∑

k,m≥1

ak,mχk
T ∗

1

(
tχ

S
(1)
1

(u)
)
χm

U∗
1 ,T ∗

1
(u, t) =: 1 + φ(u, t)

with some ak,m > 0. As products of characteristic functions correspond to convolutions of measures, φ(u, t) is the
characteristic function of some measure D(dx,n) on R × N. Then

Q(dx,n) = Q̃(dx,n) + D(dx,n) + Q̃(dx,n) ∗ D(dx,n) ≥ Q̃(dx,n)

implying (2). A similar argument concludes (3). �

Note that (6) and (7) actually follow from Eq. (4) by Greenwood and Shaked [11] with τ and ν from their Exam-
ple (a) on p. 568, but we have chosen to start from the Sinai lemma to go along the lines of our original proof.

2.3. Weak asymptotics of pN

The next statement is not new and follows from a result by Dembo et al. [6] that was in the original version before
the paper was updated (still available on arXiv). As explained in the Introduction, we give the proof here to show a
simple and very intuitive way to understand the asymptotics of pN and demonstrate advantage of our technique.

Proposition 3. If S1 ∈ Rα for some 1 < α ≤ 2, then pN � N1/(2α)−1/2.

Remark. If S1 is right-exponential and S1 ∈ R2, then[
lim

N→∞
pNN1/2−1/(2α), lim

N→∞pNN1/2−1/(2α)
]

⊂ 21/4

π
Γ

(
1

4

)√
σ

E|S1|P{S1 > 0} ×
[

1

2
,1

]
. (9)

Proof. The key observation is that

P

{
min

1≤k≤N
Ak > 0

}
= P

{
min

1≤k≤η(N)
AΘk

> 0,A1 > 0,AN > 0
}
, (10)

where

η(N) := max{n ≥ 0: Θn ≤ N}.
Under P̃, this quantity is just the number of up-crossing of the zero level by the walk Sn by the time N . Then

P̃

{
min

1≤k≤η(N)+1
Ψk > 0

}
≤ pN

P{S1 > 0} ≤ P̃

{
min

1≤k≤η(N)
Ψk > 0

}
.
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For the lower bound, our idea is to flip the last incomplete cycle using the conditional symmetry of ψi (Lemma 1) to
make sure it has a positive area: condition on η(N) and Θη(N) and get

P̃

{
min

1≤k≤η(N)
Ψk > 0,ψη(N)+1 ≥ 0

}
=

∑
n

∑
i≤N

P̃

{
Θn = i, θn+1 > N − i, min

1≤k≤n
Ψk > 0,ψn+1 ≥ 0

}
=

∑
n

∑
i≤N

P̃

{
Θn = i, min

1≤k≤n
Ψk > 0

}
P̃{θn+1 > N − i,ψn+1 ≥ 0}

≥ 1

2
P̃

{
min

1≤k≤η(N)
Ψk > 0

}
. (11)

Hence

1

2
P̃

{
min

1≤k≤η(N)
Ψk > 0

}
≤ pN

P{S1 > 0} ≤ P̃

{
min

1≤k≤η(N)
Ψk > 0

}
. (12)

Case 1: S1 is right-exponential. By conditioning on η(N) and using Proposition 2, we proceed as above in (11)
and get the most important relation

P̃

{
min

1≤k≤η(N)
Ψk > 0

}
=

∞∑
n=0

P̃
{
η(N) = n

}
P̃

{
min

1≤k≤n
Ψk > 0

}
. (13)

As the distribution of Φk is symmetric, the Sparre–Andersen theorem implies the existence of a positive limit

c1 := lim
n→∞n1/2

P̃

{
min

1≤k≤n
Ψk > 0

}
,

hence

P̃

{
min

1≤k≤η(N)
Ψk > 0

}
=

∞∑
k=0

P̃
{
η(N) = n

}c1 + o(1)√
n + 1

= (
c1 + o(1)

)
Ẽ

1√
η(N) + 1

+ O
(̃
P
{
η(N) < lnN

})
= c1 + o(1)

N1/2−1/(2α)
Ẽ

√
N1−1/α

η(N) + 1
, (14)

where we used that

P̃
{
η(N) < lnN

} = P̃{ΘlnN > N} ≤ lnN P̃{θ1 > N/ lnN} = o
(
N1/(2α)−1/2).

It remains to check that the expectations stay bounded away from zero and infinity. Let Θ+
k and Θ−

k be the total
length of the first k positive and k negative excursions of Sn, respectively. Under P̃ it is true that Θ+

k and Θ−
k are

random walks with the increments distributed as θ+ and θ−, respectively, and Θk = Θ+
k + Θ−

k . Define the numbers
of renewal epochs η+(N) and η−(N) analogously to η(N), then min(η+(N/2), η−(N/2)) ≤ η(N) ≤ η+(N) and it
suffices to consider the expectations in (14) with η+(N) and η−(N) instead of η(N).

As θ+, θ− ∈ D N (1 − 1/α), it follows from Feller [10], Ch. XI.5, that η+(N) and η−(N) satisfy

η+(N)

N1−1/α

D−→ τ 1/α−1,
η−(N)

N1−1/α

D−→ τ 1/α−1 under P̃, (15)
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where τ is a stable r.v. with index 1−1/α that is the weak limit of Θ+
n

nα/(1−α) . We conclude the proof if check the uniform

integrability of
√

N1−1/α

η+(N)+1 and the same for η−(N). For any 0 < x ≤ N1/2−1/(2α), we have

P̃

{√
N1−1/α

η+(N) + 1
≥ x

}
= P̃

{
η+(N) ≤ [

x−2N1−1/α
] − 1

} = P̃
{
Θ+

[x−2N1−1/α] > N
} ≤ P̃

{
Θ+

k >
(
x2k

)1/(1−1/α)}
,

with k := [x−2N1−1/α] ≥ 1. The last probability can be estimated by the following analog of the Chebyshev inequality
attributed by Nagaev [17] to Tkachuk (1977): if Xn are i.i.d. r.v.’s and X1 ∈ D N (γ ) for 0 < γ < 1, then there
exist c,K > 0 such that

P
{
X1 + · · · + Xn > Rn1/γ

} ≤ cR−γ

for all n and R ≥ K . Then the uniform integrability follows as x−2 is integrable at infinity.
Case 2: S1 is right-continuous. Denote

rN := P̃

{
min

1≤k≤η(N)
Ψk > 0

}
, r̄N := P̃

{
min

1≤k≤η(N)
Ψk ≥ 0

}
and use (2) to replace (13) by the appropriate inequality; then get an analog of (14) with “=” and c1 replaced by “≤”
and c̄1, respectively, and by the uniform integrability conclude with rN � N1/2−1/(2α). The same argument implies
N1/2−1/(2α) � r̄N , and since

r̄N ≥ rN ≥ P{ψ1 > 0}r̄N ,

we obtain r̄N � rN � N1/2−1/(2α). �

Let us prove (9) in the remark. By Lemma 1, it is true that c2 := limn→∞ n1/2
P{θ1 > n} =

√
8
π

σ
E|S1| while c1 =

√
1
π

as Ψn is continuous and symmetric. It remains to compute the limit in (14) using the uniform integrability and (15),

which gives η(N)/N1/2 D→ c−1
2

√
2
π |N | for a standard normal r.v. N .

2.4. Positivity of integrated bridges

Let us show how Proposition 2 can be used to obtain the asymptotics of

p∗
N = P

{
min

1≤k≤N
Ak > 0

∣∣SN = 0
}

as N → ∞ along DS1 . Recall we assumed that Sn is centered and integer-valued. Let d be the maximal positive
integer such that P{S1 ∈ dZ} = 1, and let h be the maximal step of S1/d , that is the maximal positive integer such that
there exists an 0 ≤ a ≤ h − 1 satisfying P{S1 ∈ d(a + hN)} = 1. Then DS1 ⊂ hN and hN \ DS1 is finite.

We need to modify the definition of the regeneration moments considered in Section 2.1. Define the moments of
leaving zero as Θ∗

0 := min{n ≥ 0: Sn+1 �= 0} and Θ∗
k+1 := min{n > Θk: Sn = 0, Sn+1 �= 0} for k ≥ 0, and introduce

θ∗
k ,ψ∗

k ,Ψ ∗
k , η∗(N) accordingly. Put P

∗(·) := P(·|S1 �= 0). The following result is completely analogous to Lemma 1
and is essentially proved in [23] while the local asymptotics are due to Kesten [15].

Lemma 1′. Let Sn be a centered random walk. Then (θ∗
n ,ψ∗

n )n≥1 are i.i.d. and (θ∗
1 ,ψ∗

1 )
D= (θ∗

1 ,−ψ∗
1 ). If Var(S1) =:

σ 2 < ∞, then P
∗{θ∗

1 = hn} ∼
√

h
2π

σ
P{S1 �=0}d n−3/2 as n → ∞.

We are ready to prove Proposition 1 from Section 1 on the asymptotics of p∗
hN . Similarly to (10), write

P

{
min

1≤k≤hN
Ak > 0, ShN = 0

}
≤ P

{
min

1≤k≤η∗(hN)
AΘ∗

k
> 0,A1 �= 0, ShN = 0

}
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(which is the equality when S1 is right-continuous) and then condition on the number of returns to zero η∗(hN) as in
(11) to get

P

{
min

1≤k≤hN
Ak > 0, ShN = 0

}/
P{S1 �= 0} ≤

∞∑
n=1

P
∗{ min

1≤k≤n
Ψ ∗

k > 0,Θ∗
n = hN

}
=: rN .

By Proposition 2 we get the following analog of (14):

rN ≤ (
c̄1 + o(1)

) ∞∑
n=1

n−1/2
P

∗{Θ∗
n = hN

}
.

Apply Lemma 1′ to use the result by Doney [8] on local large deviation probabilities that states P
∗{Θ∗

n = hN} ∼
nP

∗{θ∗
1 = hN} as N → ∞ uniformly in n = o(

√
N). Then the contribution of the terms with n = o(

√
N) is o(N−3/4),

implying

rN ≤ (
c̄1 + o(1)

)
lim

ε→0+

∞∑
n=ε

√
N

n−1/2
P

∗{Θ∗
n = hN

} + o
(
N−3/4).

Once we have bounded
√

N/n away from zero, the local limit theorem gives

lim
ε→0+ lim

N→∞N3/4
∞∑

n=ε
√

N

n−1/2
P

∗{Θ∗
n = hN

} = lim
ε→0+

1√
N

∞∑
n=ε

√
N

(
n√
N

)−5/2

n2
P

∗{Θ∗
n = hN

}

= lim
ε→0+

1√
N

∞∑
n=ε

√
N

(
n√
N

)−5/2

hg

(
hN

n2

)

= h1/4
Eτ−5/4,

where g is the density of a strictly stable r.v. τ with index 1/2 that is the weak limit of Θ∗
n/n2.

Thus rN � N−3/4 and by Gnedenko’s local limit theorem, p∗
hN � N−1/4. Now assume that S1 is right-continuous

to get the estimate in the other direction. Condition on the (hN + 1)st step of the walk to get p∗
hN ≥ (P{S1 = 1})2p̄∗

hN ,
where p̄∗

n is defined as p∗
n with “>” replaced by “≥.” Arguing as above we get p̄∗

hN � N−1/4 which implies that
p∗

hN � p̄∗
hN � N−1/4.

3. Areas and lengths of excursions of asymptotically stable random walks

This section gathers the preliminary results needed to prove Theorem 1. Section 3.1 reviews limit theorems on the
shape of the trajectories of conditionally positive asymptotically stable random walks. We explain the method of
proofs and apply it to get a two-dimensional version, which is used later in Section 4 to describe the bivariate walk
(Θk,Ψk) conditioned on its second component staying positive.

3.1. Conditional limit theorems for random walks

Results and methods. Let Sn be a random walk such that the first descending ladder moment T = min{k ≥ 1: Sk <

0} < ∞ a.s. Bolthausen [4] showed that if ES1 = 0 and Var(S1) = σ 2 < ∞, then

Law

(
S[n·]
n1/2

∣∣∣T ≥ n

)
D−→ Law

(
σW+(·)) (16)

in the Skorokhod space D[0,1] as n → ∞, where W+ is a Brownian meander on [0,1] defined below in terms of a
standard Brownian motion W .
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The proof of [4] is based on the following insightfully simple observation. For any f : [0,∞) → R define τf :=
inf{t ≥ 0: f (s + t) ≥ f (t) for 0 ≤ s ≤ 1}, where inf∅ := ∞, and Γ (f )(·) := f (· + τf ) − f (τf ) if τf < ∞ and
Γ (f ) :≡ 0 if otherwise. Then

Law(S[n·]|T ≥ n) = Law
(
Γ (S[n·])

)
. (17)

Bolthausen [4] essentially showed that P{τW < ∞} = 1 and Γ considered as a mapping C[0,∞) → C[0,1] is measur-
able and continuous P{W ∈ ·}-a.s. (Wiener measure). By the linear interpolation, (16) with W+ = Γ (W) immediately
follows from the invariance principle in C[0,∞) and the continuous mapping theorem, see Billingsley [3], Section 2.

Shimura [19] used the same method to prove weak convergence of excursions. For any f : [0,∞) → R define
δf := inf{t ≥ 0: f (t) < 0} and Λ(f )(·) := (f (· ∧ δf ), δf ). [19] proved that P{δW+ < ∞} = 1 and ΛΓ considered as
a mapping D[0,∞) → D[0,∞) × R is measurable and continuous P{W ∈ ·}-a.s.; Shimura actually checked conti-
nuity along step functions which is sufficient as they are dense in D[0,∞). Hence under assumptions ES1 = 0 and
Var(S1) = σ 2 < ∞, the continuous mapping theorem implies Shimura’s main result

Law

((
S[n·∧T ]
n1/2

,
T

n

)∣∣∣T ≥ n

)
D−→ Law

(
σW+(· ∧ δW+), δW+

)
(18)

in D[0,∞) × R. Now define rescalings Λ̂a(f )(·) := δ
−1/a
f f (·δf ), then Λ̂aΓ :D[0,∞) → D[0,∞) is continu-

ous P{W ∈ ·}-a.s. for any a > 0. As trajectories of W are continuous, Λ̂aΓ is also a.s. continuous as a mapping
D[0,∞) → D[0,1], and we restate (18) as

Law

((
S[T ·]
T 1/2

,
T

n

)∣∣∣T ≥ n

)
D−→ Law

(
σWex(·), δW+

)
, (19)

in D[0,1] × R, where Wex = Λ̂2Γ (W) is a standard Brownian excursion on [0,1]. Note that Wex is independent with
the length δW+ of the excursion of W+ = Γ (W) while P{δW+ ≥ x} = x−1/2 for x ≥ 1, see Bertoin [2], Ch. VIII.4.

A further refinement is due to Doney [7] who essentially proved that P{δS+ < ∞} = 1 and Γ :D[0,∞) → D[0,1]
and ΛΓ :D[0,∞) → D[0,∞) × R are continuous P{S ∈ ·}-a.s. for any strictly stable centered process S with index
1 < α ≤ 2. As above, it suffices to check continuity along step functions. Then Λ̂αΓ :D[0,∞) → D[0,2] is P{S ∈ ·}-
a.s. continuous as Sex = Λ̂αΓ (S) is constant for t ≥ 1.

Now assume that Sn/(n
1/αl(n))

D→ S(1) for some slowly varying function l(n). We restate the result of Doney as
we did above with Shimura’s (18) in the form

Law

((
S[T (·∧1)]
T 1/αl(T )

,
T

n

)∣∣∣T ≥ n

)
D−→ Law

(
Sex(·), δS+

)
(20)

in D[0,2] × R. Here we have used the fact that l(T )/ l(n)
P→ 1, which follows as l(cx)/ l(x) → 1 uniformly over any

interval by the Karamata theorem. As before, Sex is independent with δS+ , and P{δS+ ≥ x} = x1/α−1 for x ≥ 1, see
Bertoin [2], Ch. VIII.4.

Assume that S has negative jumps (recall that our main problem concerns spectrally negative S1). (20) is sufficient
for the further consideration in Section 4 but it is not hard to give it a slight improvement by proving convergence in
D[0,1] × R. Indeed, it is easy to check that the restriction from [0,2] on [0,1] is continuous at any point of{

f ∈ D[0,2]: f (t) ≥ 0 on [0,1), f (1−) > 0, f (t) ≡ const < 0 on [1,2]}.
It now suffices to prove that

P
{
Sex(1−) = 0

} = 0, P
{
Sex(1) = 0

} = 0 (21)

which means that the overshoot and the undershoot of an excursion are positive a.s.
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Consider the walk Sn := S(n) and write

P

{
ST

T 1/α
≤ z

∣∣∣T ≥ n

}
=

∞∑
k=n

∫ ∞

0
P

{
Sk−1

k1/α
∈ dx

∣∣∣S1 ≥ 0, . . . , Sk−1 ≥ 0

}

× P{T ≥ k − 1}P{S1 ≤ −(x + z−)k1/α}
P{T ≥ n} , (22)

where z− := −(z ∧ 0). Recall that T ∈ D N (1 − ρ), where ρ := P(S1 ≥ 0) is the positivity parameter that satisfies
(Zolotarev [24], Eq. (2.2.30)) 1 − 1/α < ρ ≤ 1/α as S1 has negative jumps. Now use the conditional local limit
Theorem 3 by Vatutin and Wachtel [21] on the weak convergence to the endpoint S+(1) of a stable meander S+
and its refined version Theorem 4 for small x combined with their Theorem 7 that claims p+(1, x) := P(S+(1) ∈
dx)/dx ∼ cxαρ as x → 0+. By (20) we already know that ST /T 1/α D→ Sex(1), hence for any point z of continuity of
Sex(1),

P
{
Sex(1) ≤ z

} = lim
n→∞

c′

n

∞∑
k=n

(
k

n

)ρ−2 ∫ ∞

0
p+(1, x)

(
x + z−)−α dx = c′

1 − ρ
E

(
S+(1) + z−)−α

.

The latter is continuous and differentiable so Sex(1) has a density. The argument above also implies P{Sex(1−) ∈
dx} = c′/(1 − ρ)x−αp+(1, x). Thus (21) is proved.

Extension to two dimensions. We stress that all the mentioned results follow from the functional stable limit the-
orems with the use of the continuous mapping theorem. Let us give a little strengthening to (16). First extend the
definitions of τf and Γ to the higher dimension: for an f = (f (1), f (2)), put τf := τf (2) and Γ (f) := f(· + τf) − f(τf).

Let Sn = (S
(1)
n , S

(2)
n ) be a bivariate random walk that satisfies(

S
(1)
[n·]

n1/α1 l1(n)
,

S
(2)
[n·]

n1/α2 l2(n)

)
D−→ S(·) (23)

in D2[0,∞) for some bivariate stochastic process S, slowly varying functions l1(n), l2(n), and 0 < α1, α2 ≤ 2. By
Resnick and Greenwood [18], (23) is equivalent to existence of the finite positive

lim
n→∞nP

{
ε1S

(1)
1 > xn1/α1 l1(n), ε2S

(2)
1 > yn1/α2 l2(n)

}
(24)

for all ε1, ε2 ∈ {−1,1} and x, y ≥ 0 such that x+y > 0. [18] also shows that (23) is equivalent to the weak convergence
of the one-dimensional distributions at t = 1. The limit random vector S(1) is sometimes called bivariate stable with
indices α1, α2 as its independent copies S′(1),S′′(1) satisfy

a1S′(1) + a2S′′(1)
D= ((

a
α1
1 + a

α1
2

)1/α1S(1)(1),
(
a

α2
1 + a

α2
2

)1/α2S(2)(1)
)

for any a1, a2 > 0. [18] gave a complete characterization of such bivariate distributions.
By the P{S ∈ ·}-a.s. continuity of Γ :D2[0,∞) → D2[0,1] we get

Law

((
S

(1)
[n·]

n1/α1 l1(n)
,

S
(2)
[n·]

n1/α2 l2(n)

)∣∣∣T (1) ≥ n

)
D−→ Law

(
S+(·)) (25)

in D2[0,1], where T (1) is the first ladder moment of S(1) and S+ := Γ (S). A simple consideration of (25) shows that
it also holds true if T (1) is replaced by the first strict ladder moment.

3.2. Areas of cycles

The first statement of this section generalizes Proposition 1 by Vysotsky [23] that covers the case α = 2. The second
statement will be used to describe the last incomplete cycle. We stress that the long cycles of a random walk from
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Rα behave very differently for α = 2 and 1 < α < 2, and the same is true for the excursions. In the first case the
whole cycle is essentially either positive or negative, while for 1 < α < 2 the walk spends positive parts of time in
both half-planes, see (26). For α = 2, a typical excursion is continuous while for α < 2, a typical excursion looks like
a meander and then it takes only one big step to change its sign, see (22).

Lemma 2. Let Sn be a random walk such that S1 ∈ Rα for some 1 < α ≤ 2. Then for any ε ∈ {−1,1} and s, t ≥ 0
such that s + t > 0 there exists a finite positive

F sign(ε)(s, t) := lim
n→∞n1−1/α

P
{
θ1 > sn, εψ1 > tn1+1/α

}
.

Thus (24) holds true and we conclude that the bivariate stable limit theorem (23) holds for the walk (Θn,Ψn).

Proof. For α = 2, this is the result of Proposition 1 from [23], which actually proves it only for a right-exponential
S1 but the right-continuous case should be considered exactly in the same way. Assume now that 1 < α < 2.

By Lemma 1, we should consider only ε = 1. S1 ∈ Rα implies T ∈ D N (1 − 1/α) and we denote

c3 := lim
n→∞n1−1/α

P̃{T > n} = lim
n→∞n1−1/α P{T > n}

P{S1 > 0} , c4 := lim
n→∞nα

P{S1 < −n}.

We first claim that

lim
ε→0+ lim

n→∞n1−1/α
P{θ1 > n,θ+ < εn} = 0. (26)

Heuristically this means that a long cycle starts with a positive excursion of comparable length. Use (1) and θ+ = T −1
under P̃ to write

lim
ε→0+ lim

n→∞n1−1/α
P{θ1 > n,θ+ < εn} ≤ lim

ε→0+ lim
n→∞n1−1/α

P
{
θ− > (1 − ε)n, θ+ < εn

}
= lim

ε→0+ lim
n→∞n1−1/α

P̃
{
T > (1 − ε)n,ST ≤ −(

ε1/2n
)1/α

, θ− < εn
}

≤ c3 lim
ε→0+ lim

n→∞ P
{
T ′((ε1/2n

)1/α)
< εn

}
= c3 lim

ε→0+ P
{
T ′′(ε1/(2α)

)
< ε

} = 0,

where T ′(u) := min{k ≥ 0: Sk > u} and T ′′(u) := inf{r ≥ 0: S(r) > u}, and we used (21) in the second line and the

self-similarity T ′′(u)
D= uαT ′′(1) in the fourth line.

Consider s �= 0, then by the obvious change of variables it suffices to take s = 1. For an ε ∈ (0,1/2), write

lim
n→∞n1−1/α

P
{
θ1 > n,ψ1 > tn1+1/α, θ+ ≥ εn

}
= lim

n→∞n1−1/α
P̃{T > εn} lim

n→∞ P
{
θ1 > n,ψ1 > tn1+1/α|T ≥ εn

}
. (27)

In the second factor, condition on the parameters of the first positive excursion and write

lim
n→∞ P

{
θ1 > n,ψ1 > tn1+1/α|T ≥ εn

}
= lim

n→∞

∫ ∞

1

∫ ∞

0

∫ ∞

0
f +

n

(
(εx)1/αz,1 − εx, t − (εx)1+1/αy

)
P (ε)

n (dx,dy,dz), (28)

where

P (ε)
n (dx,dy,dz) := P

{
T

εn
∈ dx,

AT

T 1+1/α
∈ dy,

ST

T 1/α
∈ −dz

∣∣∣T ≥ εn

}
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and

f +
n (u, v,w) := P

{
T ′(un1/α

) − 1 > nv,

T ′(un1/α)−1∑
i=1

(
Si − un1/α

)
> wn1+1/α

}
.

It clear that for any u > 0 and v,w it holds that

lim
n→∞f +

n (u, v,w) = f +(u, v,w) := P

{
T ′′(u) ≥ v,

∫ T ′′(u)

0

(
S(r) − u

)
dr ≥ w

}
.

We claim that this convergence is uniform in (u, v,w) ∈ [δ,∞) × R
2 for any δ > 0. As f +

n (u, v,w) = f +
nuα (1, u−αv,

u−α−1w) and f +(u, v,w) = f +(1, u−αv,u−α−1w) by self-similarity of S, we should check that the convergence is
uniform in (v,w) ∈ R

2 for u = 1. This statement just a little improvement of the standard fact that the distribution
functions of weakly convergent r.v.’s converge uniformly if the limit distribution is continuous. We prove the bivariate

uniformness by showing that the r.v.’s T ′′(1) and
∫ T ′′(1)

0 (S(r) − u)dr are continuous. The first clearly is, say, since
T ′′(u) is a stable subordinator with index 1/α as S does not have positive jumps. For the second, use that

∫ x

0 (S(r) −
u)dr and S(x) are jointly stable and, consequently, have a joint density for any x > 0.

Thus the integrands in (28) converge uniformly in (x, y, z) ∈ [1,∞) × [0,∞) × [δ,∞). Further, (20) ensures

P
(ε)
n

D→ P in [1,∞) × R
2+ for any fixed ε, where

P(dx,dy,dz) := d
(−x1/α−1)

P

{∫ 1

0
Sex(s)ds ∈ dy,Sex(1) ∈ −dz

}
.

As we seen in (21), Sex(1) does not have an atom at zero, so (26), (27) and (28) imply

F+(1, t) = c3 lim
ε→0+ ε1/α−1

∫ ∞

1

∫ ∞

0

∫ ∞

0
f +(

(εx)1/αz,1 − εx, t − (εx)1+1/αy
)
P(dx,dy,dz)

= c3

∫ ∫ ∫
R

3+

f +(
x1/αz,1 − x, t − x1+1/αy

)
P(dx,dy,dz). (29)

This expression is finite as by (1),

F+(1, t) ≤ lim
n→∞n1−1/α

P{θ+ + θ− > n} ≤ 2 lim
n→∞n1−1/α

P{θ+ > n/2} = 2c3.

It remains to consider s = 0, t > 0 and it suffices to take t = 1. With ψ1 ≤ AT in mind, we have

lim
ε→0+ lim

n→∞n1−1/α
P
{
θ+ < εn,ψ1 > n1+1/α

} ≤ lim
ε→0+ lim

n→∞n1−1/α
P̃
{
T < εn,AT −1 > n1+1/α

}
≤ lim

ε→0+ lim
n→∞n1−1/α

P̃

{
max

1≤k<εn
Sk > ε−1n1/α

}
= 0,

and then argue as above in (28) and (29) to get

F+(0,1) = c3

∫ ∫ ∫
R

3+

f +(
x1/αz,0,1 − x1+1/αy

)
P(dx,dy,dz).

The last expression is finite as AT ∈ D N (α−1
α+1 ) by Corollary 2 and Example 6 by Doney [7]. �
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3.3. Areas of incomplete cycles

Lemma 3. Let Sn be a random walk such that S1 ∈ Rα for some 1 < α ≤ 2. Then for any s, t > 0 there exists a finite
positive

F(s, t) := lim
n→∞n1−1/α

P̃
{
θ1 ≥ sn,Asn > −tn1+1/α

}
,

and this convergence is uniform in (s, t) ∈ [ε,∞) × [0,∞) for any ε > 0. Moreover, F(s, t) is continuous on R
2+.

Remark. For any s, t > 0 it holds that F(s, t) = c3s
1/α−1(1 + Gα(ts−1−1/α)) for some increasing function

Gα : (0,∞) → [0,1], with G2(x) equal to the distribution function of the area of a Brownian meander σW+.

Proof of Lemma 3. The remark is obvious by the change of variables and

F(s, t) = lim
n→∞n1−1/α

P̃{θ+ ≥ sn} + lim
n→∞n1−1/α

P̃
{
θ+ < sn, θ1 ≥ sn,An > −tn1+1/α

}
.

Let us put s = 1.
Case 1 < α < 2. We literally repeat the proof of Lemma 2 to get

F(1, t) = c3

∫ ∫ ∫
R

3+

f
(
x1/αz,1 − x,−t − x1+1/αy

)
P(dx,dy,dz)

with

f (u, v,w) := P

{
T ′′(u) ≥ v+,

∫ v+

0

(
S(r) − u

)
dr ≥ w

}
.

The continuity of F(1, t) follows from the same of f (u, v,w) and the theorem of dominated convergence. As F(1, t)

is bounded, continuous and monotone and the converging functions are uniformly bounded and monotone, the con-
vergence is uniform in t .

Case α = 2. The main difference with 1 < α < 2 is that (26) is no longer true.
We should prove that c3G2(t) = limn→∞ n1/2

P̃{θ+ < n,θ1 ≥ n,An > −tn3/2}, and the goal is to show that the
contribution comes only from the negative excursion:

lim
n→∞n1/2

P̃
{
θ+ < n,θ1 ≥ n,An > −tn3/2} = lim

n→∞n1/2
P̃
{
θ− ≥ n,An+θ+ − Aθ+ > −tn3/2}. (30)

Heuristically this holds as the positive part of such a long cycle with θ+ < n is negligible, according to our previous
comment on the shape of long cycles for α = 2.

Let us first find the value of the right-hand side. By (1), we get

lim
n→∞n1/2

P̃
{
θ− ≥ n,An+θ+ − Aθ+ > −tn3/2} = lim

n→∞n1/2
P̃
{
θ+ ≥ n,Aθ+ − Aθ+−n < tn3/2} (31)

as n → ∞, reducing the problem to consideration of the first positive excursion of Sn. Then we apply (19) to get

lim
n→∞n1/2

P̃
{
θ+ ≥ n,Aθ+ − Aθ+−n < tn3/2} = c3P

{
σδ

3/2
W+

∫ 1

1−δ−1
W+

Wex(s)ds < t

}

= c3P

{∫ 1

0
σδ

1/2
W+Wex

(
sδ−1

W+
)

ds < t

}
= c3G2(t), (32)

where we used δ
1/2
W+Wex(·δ−1

W+)
D= W+(·), which follows from (16) and (19). Due to Janson [14], the area of Brownian

meander has density so G2 is continuous.
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It remains to prove (30). Fix a δ ∈ (0,1/2) and write

{θ+ < n,θ1 ≥ n} = D ∪ E1, (33)

where E1 := {(1 − δ)n ≤ θ+ < n}∪ {(1 − δ)n ≤ θ− < n}∪ {θ+ ≥ δn, θ− ≥ δn} and D := {θ+ < δn, θ− ≥ n}. Note that

lim
δ→0+ lim

n→∞n1/2(̃
P{θ− ≥ n} − P̃(D)

) = 0, lim
δ→0+ lim

n→∞n1/2
P̃(E1) = 0

by continuity in s of limn→∞ n1/2
P̃{θ+/− ≥ sn} and the relation

lim
n→∞n1/2

P̃{θ+ ≥ n, θ− ≥ n} = 0,

which is Eq. (17) from [23]. Its heuristical meaning is that a long cycle is essentially either positive or negative. Thus
D gives the main contribution in (33).

Further, from (33) we have{
θ+ < n,θ1 ≥ n,An > −tn3/2} ⊂ D ∩ {

An − Aθ+ > −tn3/2} ∪ E1 ∪ E2 ∪ E3, (34)

where

E2 := {
θ+ < δn, θ− ≥ n,−(t + δ)n3/2 ≤ An − Aθ+ ≤ −tn3/2}, E3 := {

θ+ < δn,Aθ+ > δn3/2}.
Here limδ→0+ limn→∞ n1/2

P̃(E3) = limδ→0+ F+(0, δ) − F+(δ, δ) = 0 by the continuity of F+(s, t) at (0,0) given
in Proposition 1 in Vysotsky [23]. For the same relation for E2, write

E2 ⊂ {
θ− ≥ n,An+θ+ − A(1−δ)n+θ+ − (t + δ)n3/2 ≤ An+θ+ − Aθ+ ≤ −tn3/2},

use the symmetry as in (31) and then argue as in (32) to get

lim
δ→0+ lim

n→∞n1/2
P̃(E2) ≤ c3P

{
σ−1t <

∫ 1

0
W+(s)ds <

∫ 1

1−δ

W+(s)ds + σ−1(t + δ)

}
= 0.

Finally, combine{
θ+ < δn, θ− ≥ n,An+θ+ − Aθ+ > −tn3/2} ⊂ D ∩ {

An − Aθ+ > −tn3/2}
⊂ {

θ− ≥ (1 − δ)n,A(1−δ)n+θ+ − Aθ+ > −tn3/2}
with (32) and the continuity of G2 to get

lim
δ→0+ lim

n→∞n1/2(̃
P
{
θ− ≥ n,An+θ+ − Aθ+ > −tn3/2} − P̃

(
D ∩ {

An − Aθ+ > −tn3/2})) = 0.

Together with (34) and the estimates above this concludes (30). �

4. Sharp asymptotics of pN

In this section we prove the core result of the paper. Let us first explain the main ideas of the proof. When considering
the weak asymptotics of pN in Proposition 3 we used the symmetry and successfully disregarded the last incomplete
cycle obtaining (12). For the sharp asymptotics, the incomplete area AN −AΘη(N)

should be considered and compared
with the total area AΘη(N)

= Ψη(N) of the preceding cycles. For such a comparison we will condition on η(N), Θη(N)

and Ψη(N) in Step 1 in order to use that the length θη(N)+1 of the last incomplete cycle exceeds N − Θη(N) and its
incomplete area exceeds −Ψη(N). Note that the areas are of the same order since by the classical results of renewal
theory (see Feller [10], Ch. XIV.3), N − Θη(N) is of the order N . In Step 2 we essentially apply the conditional
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limit theorem (25) to describe the joint distribution of (Θη(N),Ψη(N)) conditioned that its second component stayed
positive. Step 3 is somewhat technical.

Step 1. Condition on η(N) in (10) to obtain

pN

P{S1 > 0} =
∞∑

k=0

P̃

{
η(N) = k, min

1≤i≤k
Ψi > 0,AN > 0

}

=
ε−1N1−1/α∑
k=εN1−1/α

P̃

{
Θk ≤ N,θk+1 > N − Θk, min

1≤i≤k
Ψi > 0,AN − AΘk

> −Ψk

}
+ R1(ε,N) + R2(ε,N),

where an ε ∈ (0,1/2) is fixed while R1 and R2 by definition corresponds to η(N) < εN1−1/α and η(N) > ε−1N1−1/α ,
respectively. Let S′

n be an independent copy of Sn. As θη(N)+1 has the order N , we write

pN

P{S1 > 0} =
ε−1N1−1/α∑
k=εN1−1/α

P̃

{
Θk ≤ (

1 − ε2)N,θk+1 > N − Θk, min
1≤i≤k

Ψi > 0,A′
N−Θk

> −Ψk

}
+ R(ε,N)

with R(ε,N) := R1 + R2 + R3 and R3 = R3(ε,N) by definition corresponding to (1 − ε2)N < Θk < N .
For each k, condition on (Θk,Ψk) and rewrite the last formula as

pN

P{S1 > 0} =
ε−1N1−1/α∑
k=εN1−1/α

P̃

{
min

1≤i≤k
Ψi > 0

}∫ (1−ε2)N

0

∫ ∞

0
P̃
{
θk+1 > N − x,A′

N−x > −y
}

× P̃

{
Θk ∈ dx,Ψk ∈ dy

∣∣ min
1≤i≤k

Ψi > 0
}

+ R(ε,N)

= 1

N1−1/α

ε−1N1−1/α∑
k=εN1−1/α

P̃

{
min

1≤i≤k
Ψi > 0

}

×
∫ (1−ε2)N/kα/(α−1)

0

∫ ∞

0
FN

(
1 − x

(
k

N1−1/α

)α/(α−1)

, y

(
k

N1−1/α

)(α+1)/(α−1))
× P̃

{
Θk

kα/(α−1)
∈ dx,

Ψk

k(α+1)/(α−1)
∈ dy

∣∣∣∣ min
1≤i≤k

Ψi > 0

}
+ R(ε,N)

with

Fn(u, v) := n1−1/α
P̃
{
θ1 > un,Aun > −vn1+1/α

}
corresponding to the last incomplete cycle. Let Qk(dx,dy) denote the conditional probability measure in the last
integral. Thinking of the summation as of the integration over the discretization of the Lebesgue measure λ, we
introduce

Un(dz) := n−1δ0
({zn}), Pn(dz,dx,dy) := Qzn1−1/α (dx,dy)Un1−1/α (dz)

and get

pN

P{S1 > 0} =
∫ 1/ε

ε

∫ (1−ε2)/zα/(α−1)

0

∫ ∞

0
P̃

{
min

1≤i≤zN1−1/α
Ψi > 0

}
× FN

(
1 − xzα/(α−1), yz(α+1)/(α−1)

)
PN(dz,dx,dy) + R(ε,N).
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Step 2. By Lemma 3,

pNN1/2−1/(2α)

c1P{S1 > 0} =
∫ 1/ε

ε

∫ (1−ε2)/zα/(α−1)

0

∫ ∞

0
z−1/2F

(
1 − xzα/(α−1), yz(α+1)/(α−1)

)
PN(dz,dx,dy)

+ oε(1) + R(ε,N)N1/2−1/(2α) (35)

as N → ∞. Further, Lemma 2 ensures (24) that implies (23), that is,(
Ψn

n(α+1)/(α−1)
,

Θn

nα/(α−1)

)
D−→ S(1) under P̃,

where S(1) is a bivariate stable r.v. (in the sense of Resnick and Greenwood [18]) with indices α−1
α+1 , α−1

α
. By (25), we

have Qn
D→ Law(S+(1)) implying PN

D→ λ|[ε,ε−1] ⊗ Law(S+(1)) as we are concerned with z ≥ ε. The integrand in
(35) is continuous a.s. with respect to the limit measure so

Cα := lim
N→∞

pNN1/2−1/(2α)

c1P{S1 > 0}

=
∫ ∞

0

∫ z−α/(α−1)

0

∫ ∞

0
z−1/2F

(
1 − xzα/(α−1), yz(α+1)/(α−1)

)
dzP

{
S+(1) ∈ (dx,dy)

}
if we check that

lim
ε→0+ lim

N→∞R(ε,N)N1/2−1/(2α) = 0. (36)

We simply the formula for the constant using F(1 − xzα/(α−1), yz(α+1)/(α−1)) = z−1F(z−α/(α−1) − x, y) and making
the change in the integral:

Cα =
∫ ∞

0

∫ u

0

∫ ∞

0
F(u − x, y)d

(
u(α−1)/(2α)

)
P
{
S+(1) ∈ (dx,dy)

}
. (37)

The right-hand side is finite by Proposition 3. Of course this can be checked directly using F(u − x, y) ≤ c3(u −
x)1/α−1 and the observation that S(1)

+ (1)
D= S(1)(1), which follows from Proposition 2.

Step 3. It remains to check (36) to show that the contribution of R = R1 + R2 + R3 is negligible. Use (14) in the
right-exponential case and use the analogous inequality in the right-continuous case to get

R1(ε,N) + R2(ε,N) ≤ P̃

{
min

1≤k≤η(N)
Ψk > 0,

η(N)

N1−1/α
/∈ [

ε, ε−1]}

≤ c̄1 + o(1)

N1/2−1/(2α)
Ẽ1[ε,ε−1]c

(√
N1−1/α

η(N)

)√
N1−1/α

η(N) + 1
.

Then the required estimate for R1 +R2 follows from (15) and the uniform integrability of
√

N1−1/α

η(N)+1 , which we checked
when proved Proposition 3.

For the last term we proceed as above to obtain

R3(ε,N) ≤ P̃

{
min

1≤k≤η(N)
Ψk > 0, ε ≤ η(N)

N1−1/α
≤ ε−1,1 − ε2 ≤ Θη(N)

N
≤ 1

}

≤
ε−1N1−1/α∑
k=εN1−1/α

P̃

{
min

1≤i≤k
Ψi ≥ 0

}
P̃
{(

1 − ε2)N ≤ Θk ≤ N,θk+1 > N − Θk

}
≤ c̄1 + o(1)

ε1/2N1/2−1/(2α)
P̃

{
N − Θη(N)

N
≤ ε2

}
,



Positivity of integrated random walks 213

and by Feller [10], Ch. XIV.3, the last probability converges to∫ ε2

0

sin(π(1 − 1/α))dx

πx1−1/α(1 − x)1/α
< ε2/α.

Combine the estimates above to conclude (36) and the proof of the theorem.
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