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Abstract. We consider a random walk on a homogeneous Poisson point process with energy marks. The jump rates decay ex-
ponentially in the α-power of the jump length and depend on the energy marks via a Boltzmann-like factor. The case α = 1
corresponds to the phonon-induced Mott variable range hopping in disordered solids in the regime of strong Anderson localization.
We prove that for almost every realization of the marked process, the diffusively rescaled random walk, with an arbitrary start
point, converges to a Brownian motion whose diffusion matrix is positive definite and independent of the environment. Finally, we
extend the above result to other point processes including diluted lattices.

Résumé. On considère une marche aléatoire sur les points d’un processus de Poisson marqué. Les taux de saut ont une décrois-
sance exponentielle en fonction de la longueur du saut, généralisant le modèle de sauts à portée variable de Mott pour les systèmes
désordonnés en regime de localisation forte d’Anderson. On montre que pour presque toute réalisation du processus ponctuel mar-
qué, la marche aléatoire de point de départ arbitraire satisfait un principe d’invariance avec matrice de diffusion limite déterministe
définie positive. On montre que ce resultat s’étend à d’autres processus ponctuels incluant les réseaux dilués.
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1. Introduction and results

Random walks on random point processes such as Mott variable range hopping have been proposed in the physics
literature as effective models for the analysis of the conductivity of disordered systems; see e.g. [1,33]. They pro-
vide natural models of reversible random walks in random environments, which generalize in several ways the well
known random conductance lattice model. Recently, several aspects of random walks on random point processes have
been analyzed with mathematical rigor: diffusivity [13,18,19]; isoperimetry and mixing times [12]; and transience vs.
recurrence [14].

1.1. The model

Let ξ denote the realization of a simple point process on Rd , d ≥ 1, and identify ξ with the countable collection of
its points. For example, one can take ξ to be a homogeneous Poisson point process, or a Bernoulli process on Zd .
To each point x of ξ we associate an energy mark Ex , such that the family of energy marks is independent from the
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point process and is given by i.i.d. random variables taking values in the interval [−1,1]. We write P for the law of
the resulting marked simple point process ω = (ξ, {Ex}x∈ξ ), which plays the role of the random environment. Then,
we consider the discrete-time random walk (Xn,n≥ 0) on ξ jumping, at each time step, from a point x to a point y

with probability

p(x, y)= r(x, y)e−u(Ex,Ey)

w(x)
, w(x)=

∑
z∈ξ

r(x, z)e−u(Ex,Ez), (1.1)

where the functions u and r satisfy the following properties for some constants c,α > 0:

(i) u : [−1,1]2 →R+ is a bounded nonnegative symmetric function:

0≤ u(Ex,Ey)= u(Ey,Ex)≤ c, (1.2)

(ii) r is symmetric and translation invariant, i.e. r(x, y)= r(y, x)= r(y − x), and

c−1 exp
(−c|x|α)≤ r(x)= r(−x)≤ c exp

(−c−1|x|α)
, x ∈Rd . (1.3)

Here and below | · | denotes Euclidean distance. For this model to be well defined it suffices to assume that w(x) <∞
for all x ∈ ξ and almost all realizations of the environment (see Lemma B.3). Below, we write Xt := X�t�, t ≥ 0,
and consider the associated distribution on the space D = D([0,∞),Rd) of right-continuous paths with left limits,
equipped with the Skorohod topology.

Similarly, consider the continuous-time version of the above random walk, with state space ξ and infinitesimal
generator

Lf (x)=
∑
y∈ξ

r(x, y)e−u(Ex,Ey)
(
f (y)− f (x)

)
, x ∈ ξ, (1.4)

for bounded functions f : ξ → R. With some abuse of notation, the resulting random process on D is again denoted
by (Xt : t ≥ 0). To avoid confusion we shall refer to the two processes as the DTRW (discrete-time random walk) and
the CTRW (continuous-time random walk). In words, the CTRW behaves as follows: having arrived at a point x ∈ ξ ,
it waits an exponential time with parameter w(x), after which it jumps to a point y ∈ ξ with probability p(x, y). In
Lemma B.3 we give some sufficient conditions ensuring that the CTRW is well defined, i.e. no explosion takes place.

An important special case of the model introduced above is Mott variable range hopping, obtained by choosing

r(v)= e−|v|, u(Ex,Ey)= β
(|Ex | + |Ey | + |Ey −Ex |

)
, (1.5)

where β is a positive constant proportional to the inverse temperature. Here the underlying point process is often
taken as the homogeneous Poisson process or the diluted lattice Zd , the common law ν of the energy marks is as-
sumed to be of the form ν(dE)= c|E|γ dE on [−1,1] for some constants c > 0 and γ ≥ 0, and the relevant issue is
the asymptotic behavior as β →∞. Mott variable range hopping is a mean field dynamics describing low temperature
phonon-assisted electron transport in disordered solids, in which the Fermi level (which is 0 above) lies in a region
of strong Anderson localization. The points of ξ correspond to the impurities of the disordered solid and the electron
Hamiltonian has exponentially localized quantum eigenstates with localization centers x ∈ ξ and corresponding en-
ergy Ex . The rate of transitions between the localized eigenstates can be calculated from first principles by means of
the Fermi golden rule [2,33]. Due to localization, one can approximate the above quantum system by an exclusion
process, where the hard-core interaction comes from the Pauli blocking induced by the Fermi statistics. If, however,
the blocking is treated in a mean field approximation, one obtains a family of independent random walks with rates
described by (1.5) in the limit β →∞ [1,2]. Mott’s law represents a fundamental principle describing the decay of the
DC conductivity at low temperature [28–31,33]. In view of Einstein’s relation [34], this law can be restated in terms
of the diffusivity of Mott variable range hopping.
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1.2. Invariance principle

When we need to emphasize the dependence on the environment ω and the starting point x0, we write Xt(x0,ω) for
the two processes defined above and Px0,ω for the associated laws on D. Asymptotic diffusive behavior of both DTRW
and CTRW is studied via the rescaled process

X(ε)(t) := εXt/ε2, (1.6)

and the associated laws P
(ε)
x0,ω on D.

Definition 1.1. We say that the strong invariance principle (SIP) holds if there exists a positive definite d×d matrix D

such that P almost surely, for every x0 ∈ ξ , P
(ε)
x0,ω converges weakly to d-dimensional Browninan motion with diffusion

matrix D. We say that the weak invariance principle (WIP) holds if the above convergence takes place in P-probability.

The terms quenched and annealed are sometimes used to replace strong and weak, respectively, in the above
definition. Diffusive behavior of the CTRW has been rigorously investigated in [19]. Under suitable assumptions on
the law of the point process the authors prove the WIP. Moreover, [19] proves lower bounds on the diffusion coefficient
D in agreement with Mott’s law for the special case (1.5), as β →∞. The corresponding upper bound is proven in
[18]. In [13], the authors consider the case d = 1, where they obtain the SIP, and analyze the large β behavior of
various generalizations of the model (1.5) at the edge of subdiffusivity.

The aim of the present work is to prove the strong invariance principle in dimension d ≥ 2. To state our main result
we need to introduce some more notation. We write ξ(A) for the number of points of ξ in a bounded Borel set A⊂Rd .
Let E denote the expectation associated to the law P of the environment ω. Set ρk = E(ξ([0,1)d)k), so that ρ1 is the
density and ρ2 stands for the second moment of the point process. If ξ is a stationary simple point process with finite
density, then we can consider the associated Palm distribution. If ξ is a homogeneous Poisson point process (from
now on, PPP), then its Palm distribution is simply the law of the point process obtained from ξ by adding a point at
the origin. In general, if P is the law of ω = (ξ, {Ex}), then we let P0 denote the associated Palm distribution (see
Section 2 for the definition) and we write E0 for the expectation with respect to P0. As explained in Lemma B.3 in
the Appendix, if ρ2 <∞, then P-a.s. the law Px0,ω on D is well defined for both DTRW and CTRW, for all x0 ∈ ξ .
Moreover, under the same assumption, the law P0,ω on D with starting point 0 is well defined P0-a.s.

Our main result applies to several examples of point processes. These include homogeneous PPP, as well as
Bernoulli fields on a lattice, referred to as the diluted lattice case below. In Section 2.3 we describe conditions on
the point process, under which all our arguments apply. Below we restrict to d ≥ 2 since the one dimensional case is
already treated in [12].

Theorem 1.2. Let d ≥ 2, α > 0, and fix an arbitrary law ν on [−1,1]. Let ξ be the realization of a homogeneous
PPP, or a diluted lattice, or else any stationary simple point process with ρ2 <∞, and satisfying the assumptions
listed in Section 2.3. Then, the following holds for both the DTRW and the CTRW: P0 almost surely, as ε→ 0, P

(ε)
0,ω

converges weakly to d-dimensional Brownian motion with positive diffusion matrix DDTRW and DCTRW respectively.
Moreover, the diffusion coefficients are related by

DCTRW = E0w(0)DDTRW. (1.7)

The desired result is then a consequence of Theorem 1.2 together with standard properties of the Palm distribution:

Corollary 1.3. Under the assumptions of Theorem 1.2, the strong invariance principle holds for both DTRW and
CTRW, with the same diffusion matrices appearing in Theorem 1.2.

As a consequence of the above result, for the model (1.5) the quenched diffusion matrix DCTRW satisfies stretched
exponential estimates as β →∞, in agreement with Mott’s law. This follows from the bounds of [19] and [18] on the
annealed diffusion matrix and the fact that the quenched and annealed diffusion matrices must coincide.
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1.3. Background and discussion

To illustrate the kind of difficulties encountered in the proof of Theorem 1.2, let us briefly recall the standard approach
(see [16,22,23] and references therein) for the invariance principle in the case of reversible random walks in random
environment. The main idea is to consider the environment as seen from the moving particle, and to use this new
Markov process to define a displacement field χ(x) = χ(ω,x) that compensates the local drift felt by the random
walk Xt in such a way that the process Mt :=Xt + χ(Xt ) defines a martingale. The displacement field χ is usually
referred to as the corrector. A strong invariance principle for the martingale Mt can be obtained in a rather standard
way, so that what remains is to show that the corrector’s contribution is negligible. In particular, one needs that for
every t > 0:

lim
ε→0

εχ(Xt/ε2,ω)= 0 in Px0,ω-probability. (1.8)

Roughly speaking, the L2-theory developed in [16,22] allows to obtain the statement (1.8) in probability with respect
to the random environment. This approach can then be used to prove the WIP, as detailed in [19]. Moreover, this
approach provides an expression for the limiting diffusion matrix in terms of a variational principle. However, to have
the strong invariance principle, (1.8) must hold almost surely with respect to the environment. This turns out to be
related to a highly nontrivial ergodic property of the field χ .

The same difficulty appears in analogous investigations for the random conductance model in Zd . In this model,
one has i.i.d. nonnegative weights r(x, y) on the nearest neighbor edges {x, y} of Zd , so that the random walk with
generator (1.4) becomes a reversible nearest neighbor lattice walk. When the weights r(x, y) are uniformly positive
and bounded, the SIP for this model has been proved in [32]; see also [10,11,23]. In the case of super-critical Bernoulli
weights, [32] proved the SIP for d ≥ 4. Later, [7,26] proved the SIP for all d ≥ 2. These results were recently extended
in [9,25] to the general case of bounded but possibly vanishing weights, under the only assumption that positive
weights percolate. More recent developments include the case of unbounded weights [6]. All these works prove the
SIP using the approach outlined above, although the techniques used may differ. Following [7,26,32], an important
ingredient for the proof of estimate (1.8) is represented by suitable heat kernel and isoperimetric estimates. However,
it is known that such estimates cannot hold if the system lacks ellipticity, i.e. if arbitrarily small weights are allowed;
see [8,20]. An important idea of [9,25] to overcome this problem was then to consider the random walk embedded in
an elliptic cluster and to control the corrector for this restricted process.

Our random walk on random point process has several features in common with the random conductance model.
The lack of ellipticity corresponds to the existence in the point process of regions of isolated points, where the walk
can be trapped. For instance, it was shown in [12] that the existence of these traps is responsible for the loss of diffusive
isoperimetric and Poincaré inequalities, as soon as the power α in (1.3) is larger than the dimension d .

On the other hand, there are some important differences with respect to previous work on the random conductance
model: the long-range nature of the jumps, the existence of overcrowded regions (i.e. regions with atypically high
density of points) and the intrinsically nondeterministic nature of the state space, that is the lack of a natural lattice
structure for the point process. As we will see, these are the source of new technical difficulties.

As in [9,25], we are forced to work with a suitable cluster of good points. In our setting this good set has to
be defined in such a way that: (i) good points x must have uniformly bounded weights w(x), (ii) given two good
points x, y there must exist a path from x to y visiting only good points with uniformly bounded jump lengths.
The requirement (ii) alone could be achieved by a simple local construction as in [9,25]. On the other hand, due
to long jumps, nonnegligible contributions to the weights w(x) may come from arbitrarily far overcrowded regions.
Therefore, requirement (i) forces a nonlocal construction of the family of good points, making harder any quantitative
control on its geometry. For the homogeneous PPP, this problem is solved by showing that a suitable discretized
{0,1}-random field with infinite-range spatial correlations stochastically dominates a supercritical Bernoulli field on
Zd ; see Section 2.

In addition, the ability of the walk to take long jumps has led us to the development of an extended version of
the analysis of “holes” in the cluster of good points needed in [9,25]. In particular, a suitable enlargement of holes is
required in Section 4.1 to gain some control on the number of jumps and the distance traveled by the walk between
successive visits to the cluster of good points.
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A convenient way to deal with the lack of a lattice structure, and to obtain statements valid for every starting
point x0 ∈ ξ , is to work with the Palm distribution of the point process, as in the statement of Theorem 1.2. On the
other hand, the method developed in [7] to establish sublinearity of the corrector is intrinsically based on a lattice
structure and, at a first analysis, the Palm distribution and the lattice strategy of [7] seem to collide. To overcome
this conceptual obstacle, in several steps of the proof, we have introduced intermediate “bridge” distributions (cf.
Sections 7.2, 7.3, and 7.6). These distributions are probability measures on the space of the environments, having
both a lattice structure and an absolutely continuous Radon–Nykodim derivative with respect to the Palm distribution
(or other related distributions that appear along the proof). An alternative option would be to follow [25,26] rather
than [7,9] to establish (1.8). This approach is more naturally adapted to the continuum setting. However, it is more
demanding in terms of heat kernel and tightness estimates and more extra work would be needed to establish the
bounds used there.

It is worthy of note that similar problems are encountered when analyzing random walks on Voronoı̆ tessellations
or random walks on the infinite cluster of the supercritical continuous percolation for Poisson processes. Some of the
methods developed here are likely to find applications in the analysis of these other models.

1.4. Outline of the paper

As we mentioned, the proof of Theorem 1.2 is entirely based on a suitable control of the corrector field. Since the
energy marks play a very minor role in such an estimate, for the sake of simplicity we set u(Ex,Ey)= 0, throughout
most of the paper, and we identify the environment ω with the point process ξ . The extension to nontrivial energy
marks will be discussed only in Section 8. Another simplification which causes very little loss of generality is obtained
by setting r(x)= e−|x|α , for some α > 0, throughout the rest of the paper.

In Section 2 we take a close look at the random environment, state our main assumptions and define the cluster
of good points. In particular, in Section 2.4 we verify that the homogeneous PPP satisfies the main assumptions. The
corrector field is introduced in Section 3. The main sublinearity estimate for the corrector is stated in Section 3.3,
cf. Theorem 3.6. There, this estimate is shown to imply Theorem 1.2 and Corollary 1.3. The rest of the paper is then
devoted to the proof of the sublinearity estimate. Section 4 introduces the restricted random walk, i.e. the random walk
Xn embedded in the cluster of good points. In particular, we state two crucial estimates: the heat kernel bound and
the expected distance bound. This section also contains the analysis of “holes” in the cluster of good points. The heat
kernel bound is proved in Section 5, while the expected distance bound is proved in Section 6. Section 7 is entirely
devoted to the proof of the sublinearity estimate. Finally, Section 8 deals with the slight modifications needed in the
presence of energy marks. The Appendix collects several technical results used in the main text.

2. The random environment

Since we have set u(·, ·) = 0, we may disregard the energy marks, and the random environment coincides with the
state space ξ of the random walk, i.e. the point process.

2.1. Stationary, ergodic simple point process and Palm measure

We denote by N the family of locally finite subsets ξ of Rd endowed with the σ -algebra generated by the sets
{ξ(A1) = n1, . . . , ξ(Ak) = nk}, A1, . . . ,Ak being disjoint bounded Borel subsets of Rd , n1, . . . , nk varying in N =
{0,1, . . .} and ξ(A) := |ξ ∩ A|. Elements ξ ∈ N are usually identified with the counting measure on ξ . Moreover,
given ξ ∈ N and x ∈Rd , we denote by τxξ the translated set ξ − x. A simple point process is a measurable map from
a probability space to the measurable space N .

Fix a simple point process on Rd with law P, ergodic and stationary w.r.t. the group of space translations, having
finite density ρ = ρ1 = E(ξ([0,1)d)). Due to stationarity ρ can also be expressed as E(ξ(A))/
(A) for any bounded
Borel subset A⊂Rd having positive Lebesgue measure 
(A). We denote by P0 the Palm distribution associated to P.
Considering the measurable subset N0 = {ξ ∈ N : 0 ∈ ξ}, P0 is a probability law on N0 coinciding, roughly speaking,
with “P(· | 0 ∈ ξ)” (cf. Theorem 12.3.V in [15]). A key relation between P and P0 is given by the Campbell identity
[15]: for any nonnegative measurable function f on Rd × N0∫

Rd

dx

∫
N0

P0(dξ)f (x, ξ)= 1

ρ

∫
N

P(dξ)

∫
Rd

ξ(dx)f (x, τxξ). (2.1)
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2.2. Black and white boxes

For any K > 0 we write BK = [0,K)d for the cube of side K in Rd . Boxes B(z) := BK +Kz, z ∈ Zd , are generically
called K-boxes. We also use the notation Bz = B(z), for the K-box at z ∈ Zd . A K-box B(z) is called occupied if
ξ ∩B(z) �=∅. We encode this information in the field σ = (σz: z ∈ Zd) defined on N by

σz(ξ)=
{

1 if B(z) is occupied,
0 otherwise.

(2.2)

Let us now introduce another parameter T0 > 0. A K-box B(z) is called overcrowded if the number of points of ξ

in B(z), nz := ξ(B(z)), satisfies nz ≥ T0. We define

Rz(ξ)=
{

(lognz)
2/α if B(z) is overcrowded,

0 otherwise.
(2.3)

Next, we define G =⋃
z∈Zd Q(z,Rz), where Q(z, r) = {z′ ∈ Zd : |z− z′|∞ < r}. Note that Q(z,0)=∅. Of course,

G contains all points z such that B(z) is overcrowded. The interest in the set G comes from the following simple
estimate.

Lemma 2.1. There exists a positive constant T = T (α,K,T0) such that w(x) ≤ T , for all x ∈ ξ ∩ B(z) with z ∈
Zd \ G .

Proof. Note that if x ∈ B(z) and y ∈ B(v) then |x−y|∞ ≥K|z−v|∞−2K . Therefore we can find positive constants
c1, c2 (depending on α,K,T0) such that, for any x ∈ B(z)∩ ξ we have

w(x)≤ c1

∑
v∈Zd

nve−c2|z−v|α∞ . (2.4)

Since z ∈ Zd \ G , it must be that all points v ∈ Zd satisfy |z− v|∞ ≥ (lognv)
2/α . Therefore nv ≤ exp{|z− v|α/2∞ } and

using this in (2.4) one has w(x)≤ c3 for some new constant c3 = c3(α,K,T0). �

We call a point z ∈ Zd black if z belongs to G or if the box B(z) is unoccupied. If z is not black, we call it white.
From Lemma 2.1, if z is white then w(x)≤ T , for every x ∈ ξ ∩B(z), for some constant T . Finally, we introduce the
field ϑ = (ϑz: z ∈ Zd) defined on N as

ϑz(ξ)=
{0 if z is black,

1 if z is white.
(2.5)

The random fields σ(ξ) and ϑ(ξ), where ξ is sampled with law P, are often denoted simply σ,ϑ . We shall write
σK , ϑK,T0 , when the dependence on the parameters K,T0 needs to be emphasized. Clearly, these random fields are
stationary w.r.t. Zd -translations due to the stationarity of P.

2.3. Main assumptions on the point process

Given a stationary, ergodic point process with finite density ρ and law P, we shall make the following assumptions:

(H1) For each p ∈ (0,1) there exist K,T0 > 0 such that the random field of white points ϑK,T0 stochastically domi-
nates the independent Bernoulli process Z(p) on Zd with parameter p.

(H2) For each K > 0 and for each vector e ∈ Zd with |e|1 = 1, consider the product probability space Θ := N ×
([0,K)d ∪ {∂})Z whose elements (ξ, (ai : i ∈ Z)) are sampled as follows: choose ξ with law P, and then choose
independently for each index i a point bi ∈ ξ ∩B(ie) with uniform probability and set ai := bi− iKe ∈ [0,K)d .
If ξ ∩B(ie)=∅, set ai = ∂ . We assume that the resulting law P (K,e) on N × ([0,K)d ∪ {∂})Z is ergodic w.r.t.
the transformation

τ :
(
ξ, (ai : i ∈ Z)

)→ (
τKeξ, (ai+1: i ∈ Z)

)
. (2.6)
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2.3.1. Remarks
Since ϑz = 1 implies σz = 1, it is clear that assumption (H1) implies the following statement, which we shall refer to
as property (A):

(A) For all p ∈ (0,1), there exists K > 0 such that the random field σK stochastically dominates the independent
Bernoulli process Z(p) on Zd with parameter p.

Also, it is not hard to check that if p(K) is the largest p such that σK stochastically dominates Z(p), then p(mK)≥
(1− (1− p(K))m

d
), and therefore p(mK)→ 1 as m→∞.

Observe that the law P (K,e) is invariant w.r.t. the transformation τ (due to the stationarity of P). Assumption (H2)
means that, for each K > 0 and for each vector e ∈ Zd with |e|1 = 1, any measurable subset A ⊂Θ such that τ A = A
must have P (K,e)-probability 0 or 1. We point out that assumption (H2) alone implies that P is ergodic.

When working with the energy marks, assumption (H2) will be slightly modified as discussed in Section 8.

2.4. The homogeneous PPP satisfies (H1)–(H2)

The homogeneous PPP with density ρ is plainly an ergodic, stationary simple point process with finite moments of
any order. In order to prove assumption (H2), we fix A ⊂ Θ such that τ A = A and set P = P (K,e). If A depends
only on ξ restricted to [−
K,
K] and on {ai : |i| ≤ 
 − 1} for some integer 
, then A and τm
A are independent
for m large and therefore P(A) = P(A ∩ τm
A) = P(A)P (τm
A) = P(A)2. This implies that P(A) ∈ {0,1}. The
general case can be treated by a standard approximation argument. The rest of this section is concerned with the proof
of assumption (H1), which we reformulate as follows.

Theorem 2.2. For every p ∈ (0,1) and ρ > 0, there exist constants K,T0, depending on p and ρ, such that, for the
homogeneous PPP with density ρ, the random field ϑ = ϑK,T0 defined in (2.5) stochastically dominates the Bernoulli
field Z(p) with parameter p.

2.4.1. Preliminary estimates
Before we start the proof of Theorem 2.2 we shall establish a few preliminary facts.

Lemma 2.3. A Poisson variable N with mean λ satisfies

P(N > t)≤ exp
{−t (log t − logλ)+ t − λ

}≤ exp{−t} ∀t ≥ e2λ.

Proof. Take s = log(t/λ) in the following expression, valid for all s ≥ 0:

P(N > t)= P
(
esN > est

)≤ e−stE
(
esN

)= exp
{−st + λes − λ

}
. �

Next, recall the definition (2.3) of the set G . The random variables nz are i.i.d. Poisson variables with mean ρKd ,
and using Lemma 2.3, the variables Rz satisfy

P(Rz > r)= P
(
nz ≥ exp

(
rα/2), nz ≥ T0

)≤ exp
(− exp

(
rα/2)) (2.7)

whenever exp(rα/2)≥ e2ρKd .
Set γm = exp(− exp(mα/4)), m ∈ N, and consider the Bernoulli random field Z(γm) on Zd with parameter γm.

Next, let {Z(γm),m ∈N} denote an independent sequence of the random fields Z(γm) on some probability space with
law P and set

R̃z := sup
{
m≥m0: Z(γm)z = 1

}
,

with the convention that the supremum of the emptyset is 0. Here and below m0 is a constant related to T0 by

T0 = exp
(
m

α/2
0

)
. (2.8)
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Note that the random variables R̃z, z ∈ Zd , are independent. Moreover, R̃z is finite P -a.s. since

E

( ∞∑
m=m0

Z(γm)z

)
=

∞∑
m=m0

γm <∞.

Lemma 2.4. For all ρ,K > 0, there exists a constant T0 such that, for all z ∈ Zd :

P(R̃z < t)≤ P(Rz < t) ∀t > 0. (2.9)

Proof. For every t > 0,

P(R̃z < t)=
∏

k≥�t�∨m0

(1− γk)≤ exp

{
−

∑
k≥�t�∨m0

γk

}
.

If t ≤m0, then P(R̃z < t)= P(R̃z = 0)=∏∞
k=m0

(1− γk) which can be bounded by e−γm0 . Now, take m0, T0 as in
(2.8) and assume T0 ≥ e2ρKd . In particular, Rz < m0 is equivalent to Rz = 0, cf. (2.3), and (2.7) holds for all r ≥m0.
Therefore, for all t ≤m0 one has

P(Rz < t)= P(Rz = 0)= 1− P(Rz ≥m0)≥ 1− exp
(− exp

(
m

α/2
0

))
.

Using that e−2x ≤ 1−x for x ∈ [0, 1
2 ], and that exp(− exp(m

α/2
0 ))≤ γm0/2 for m0 sufficiently large, we conclude that

P(Rz < t)≥ 1− γm0/2≥ e−γm0 for all t ≤m0. This concludes the proof of (2.9) for 0 < t ≤m0.
Suppose now that m0 ≤m− 1 < t ≤m. Then P(R̃z < t)=∏∞

k=m(1− γk)≤ e−γm . On the other hand, reasoning
as above we see that P(Rz ≥m− 1)≤ 1

2γm and therefore

P(Rz < t)≥ P(Rz ≤m− 1)= 1− P(Rz ≥m− 1)≥ 1− 1

2
γm ≥ e−γm.

This ends the proof of the lemma. �

Lemma 2.4 implies that the random field R = (Rz: z ∈ Zd) is stochastically dominated by the random field R̃ =
(R̃z: z ∈ Zd). Taking a coupling between R and R̃ on an enlarged probability space such that Rz ≤ R̃z for all z ∈ Zd

a.s. we get that

G =
⋃

a∈Zd

Q(a,Ra)⊂ G̃ :=
⋃

a∈Zd

Q(a, R̃a). (2.10)

The random set G̃ can be described by the random field Y = (Yz: z ∈ Zd) (in the sense that z ∈ G̃ if and only if Yz = 1)
where

Yz :=max
{
Y (m)

z : m≥m0
}
,

and, for each m,

Y (m)
z :=

{
1 if ∃a ∈ Zd : Z(γm)a = 1, z ∈Q(a,m),
0 otherwise.

Lemma 2.5. For every K,ρ > 0, there exist a constant T0 such that for each m ≥ m0, the random field Y (m) is
stochastically dominated by the Bernoulli random field Z(qm) with parameter qm := 2−m+1.

Proof. We apply a result of [24] on stochastic domination, in the form which appears in Theorem (7.65) in [21].
Namely, set 
= 2(m+ 1)+ 1, so that Y (m) is a 
-dependent field taking values in {0,1}. Note that

P
(
Y

(m)
0 = 1

)≤ 
dγm. (2.11)
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Suppose that there exist two parameters u,v > 0 such that

(1− u)(1− v)

d ≥ 
dγm,

(1− u)u
d ≥ 
dγm.

Then, by Eqs (7.114)–(7.115) in [21], we know that Y (m) is stochastically dominated by an independent Bernoulli
random field with parameter 1−uv. Therefore, we have to prove that u and v can be taken in such a way that 1−uv ≤
2−m+1. This can be achieved by the choice u= 1− γm
d2m
d

and v = 1− 2−m. Indeed, (1−u)(1− v)

d = 
dγm and

(1−u)u
d ≥ γm
d if m is large enough (using that 1−x ≤ e−x ). Moreover, by definition 1−uv ≤ γm
d2m
d +2−m ≤
2−m+1 if m is large enough. This concludes the proof. �

Since all random fields Y (m) are independent, thanks to the above lemma we can build, on a suitable probability
space, the random fields (Y (m),Z(qm)), m≥m0, such that they are all independent and

Y (m)
z ≤Z(qm)z ∀z ∈ Zd , a.s.

In particular we have that Y = max{Y (m): m ≥ m0} is stochastically dominated by the random field Z :=
max{Z(qm): m≥m0}. Note that Z is a Bernoulli random field, with parameter

q = P(Z0 = 1)≤
∞∑

m=m0

qm =
∞∑

m=m0

2−m+1 = 2−m0+2. (2.12)

2.4.2. Proof of Theorem 2.2
The results discussed above can be summarized as follows.

Proposition 2.6. For every K,ρ > 0, and ε > 0, there exists T0 such that, for the homogeneous PPP with intensity ρ,
the random set G = G(K,T0) is stochastically dominated by the Bernoulli field Z(ε) with parameter ε.

Proof. From Eq. (2.10), Lemma 2.5 and Eq. (2.12), it suffices to take T0 (and therefore, by (2.8), m0) so large that
q ≤ ε. �

We can now conclude the proof of Theorem 2.2. Let us fix p ∈ (0,1) and ε = 1−√p. Then fix K =K(ρ) such
that P(ξ(B(0))= 0)≤ ε/2. Also, let t0 > 0 be so large that P(ξ(B(0))= 0 | ξ(B(0)) < t)≤ ε for all t ≥ t0.

Next, choose T0 = T0(K,ρ) so large that G is stochastically dominated by Z(ε) as in Proposition 2.6. Let ωz = 1 if
z ∈ Zd \G and ωz = 0 otherwise. For fixed z, let Az ⊂ {0,1}Zd

be an arbitrary measurable set such that Az ⊂ {ωz = 1}.
If T0 ≥ t0 then, by independence of the Poisson field, one has

P
(
ξ
(
B(z)

)
> 0 | ω ∈Az

)= P
(
ξ
(
B(z)

)
> 0 | ξ(

B(z)
)
< T0

)≥ 1− ε.

Since this bound is uniform over all possible values of ωz′ , z′ �= z, it follows that the set of white boxes ϑ , i.e.
ϑz = ωzσz, z ∈ Zd , stochastically dominates the Bernoulli field with parameter (1− ε)2 = p. This ends the proof.

3. The corrector field χ

Let μ be the measure on N0 ×Rd such that the scalar product in L2(N0 ×Rd,μ) is given by

(u, v)μ = E0

[∑
x∈ξ

r(x)u(ξ, x)v(ξ, x)

]
. (3.1)

Since P has a finite second moment, by Lemma B.1 in the Appendix

(1,1)μ = E0

[∑
x∈ξ

r(x)

]
= E0

[
w(0)

]
<∞.



Invariance principle for random walk on point processes 663

3.1. Potential vs. solenoidal forms

We call u ∈ L2(μ) a square integrable form. In what follows we shall study this space in some detail. In general, we
will call a form any measurable function u : N0 ×Rd →R.

Given ψ : N0 →R we define the gradient form ∇ψ as

∇ψ(ξ, x) :=ψ(τxξ)−ψ(ξ). (3.2)

Hence, ∇ψ ∈ L2(μ) whenever ψ is bounded (written ψ ∈ B(N0)).
The space H∇ ⊂ L2(μ) of potential forms is defined as the closure of the subspace given by the gradient forms

∇ψ with ψ ∈ B(N0). Its orthogonal complement H⊥∇ is the space of solenoidal forms.
A form u : N0 ×Rd →R is called curl-free if for any ξ ∈ N0, n≥ 1 and any family of n points x0, x1, . . . , xn ∈ ξ

with x0 = xn, we have

n−1∑
j=0

u(τxj
ξ, xj+1 − xj )= 0. (3.3)

A square integrable form u ∈L2(μ) is called curl-free if this holds for P0-a.e. ξ .

Lemma 3.1. Each potential form u ∈ H∇ is curl-free.

Proof. This is trivial to check for u=∇ψ , ψ ∈ B(N0). In the general case, let ψn be a sequence in B(N0) such that
∇ψn converges to u in L2(μ). By taking a subsequence we can assume that the convergence holds also μ-a.s. Since
each ∇ψn satisfies (3.3) P0-a.s. by taking the limit in (3.3) we conclude that the same identity holds for u. �

A form u is called shift-covariant if

u(ξ, x)= u(ξ, y)+ u(τyξ, x − y) ∀x, y ∈ ξ. (3.4)

If u is a square integrable form, we call it shift-covariant if the above property holds for P0-a.a. ξ .

Lemma 3.2. Each curl-free form is shift-covariant.

Proof. Let u : N0 ×Rd →R be a curl-free form. Taking in (3.3) n= 3, x0 = x3 = 0 (recall that ξ ∈ N0), x1 = y and
x2 = x, we get that

u(ξ, y)+ u(τyξ, x − y)+ u(τxξ,−x)= 0. (3.5)

On the other hand, taking in (3.3) n= 2, x0 = x2 = 0 and x1 = x, we obtain

u(ξ, x)+ u(τxξ,−x)= 0 (3.6)

for any ξ . From (3.5) and (3.6) one obtains (3.4). �

Given u ∈ L2(μ) we define the divergence as divu(ξ) =∑
x∈ξ r(x)u(ξ, x). Since E0|divu| ≤ (u,u)

1/2
μ (1,1)

1/2
μ ,

we have that divu ∈ L1(μ). By these definitions, we have a key relation between the gradient and divergence.

Lemma 3.3. For each ψ ∈ B(N0) and each curl-free u ∈ L2(μ)

(u,∇ψ)μ =−2E0[ψ divu]. (3.7)

In particular, a form u ∈L2(μ) is solenoidal (that is, u ∈ H⊥∇ ) if and only if divu= 0, P0-a.s.
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Proof. We only need to prove (3.7), since the last statement is then obvious. Due to (3.6) (which holds for all x ∈ ξ ,
P0-a.s.) we can rewrite the l.h.s. of (3.7) as

(u,∇ψ)μ =−E0

[∑
x∈ξ

r(x)u(τxξ,−x)ψ(τxξ)

]
−E0

[∑
x∈ξ

r(x)u(ξ, x)ψ(ξ)

]
. (3.8)

We define the function f on N0 ×Rd as f (ξ, x)= r(x)u(ξ, x)ψ(ξ). Then it holds f (τxξ,−x)= r(x)u(τxξ,−x)×
ψ(τxξ). In addition,

E0

[∑
x∈ξ

f (ξ, x)

]
≤ ‖ψ‖∞E0

[
w(0)

]1/2
(u,u)1/2

μ <∞.

This allows us to apply Lemma B.1(i) in the Appendix to the function f and to conclude that

E0

[∑
x∈ξ

r(x)u(ξ, x)ψ(ξ)

]
= E0

[∑
x∈ξ

r(x)u(τxξ,−x)ψ(τxξ)

]
(3.9)

(by Lemma B.1(i) we know that the integrand in the r.h.s. belongs to L1(P0)). The above identity allows then to
rewrite the r.h.s. of (3.8) as

−2E0

[∑
x∈ξ

r(x)u(ξ, x)ψ(ξ)

]
=−2E0[ψ divu].

�

Lemma 3.4. Let u ∈ H⊥∇ . Then for P0-a.a. ξ∑
y∈ξ

r(y)
∣∣u(ξ, y)

∣∣ <∞,
∑
y∈ξ

r(y)u(ξ, y)= 0. (3.10)

In particular, for P-a.a. ξ and for all x ∈ ξ∑
y∈ξ

r(y − x)
∣∣u(τxξ, y − x)

∣∣ <∞,
∑
y∈ξ

r(y − x)u(τxξ, y − x)= 0. (3.11)

Proof. The second statement (3.11) follows from the first one (3.10) by Lemma B.2 in the Appendix. In order to
prove (3.10), we first observe that∫

P0(dξ)
∑
y∈ξ

r(y)
∣∣u(y)

∣∣≤ E0
[
w(0)

]1/2
{∫

P0(dξ)
∑
y∈ξ

r(y)
∣∣u(ξ, y)

∣∣2
}1/2

= C(u,u)1/2
μ ,

and the last member is finite. This implies the upper bound in (3.10). The identity in (3.10) is equivalent to divu= 0
P0-a.s., which follows from the previous lemma. �

3.2. Corrector field

We can now define the corrector field χ following the construction of [26]. Consider the form ui : N0 × Rd → Rd ,
i = 1, . . . , d , defined by ui(ξ, x) = xi (the ith coordinate of x ∈ Rd ). Note that, since P has finite second moment,
Lemma B.1 assures us that ui ∈ L2(μ). Let π :L2(μ) → H∇ be the orthogonal projection on potential forms and
define

χi := π(−ui), i = 1, . . . , d.

Setting Φi := xi + χi ∈ H⊥∇ , from Lemma 3.4 we see that Φi is harmonic, i.e. for P0-a.a. ξ , Φi ∈ L1(P0,ξ ) and
E0,ξΦi = 0, for all i = 1, . . . , d . The vector form χ = (χ1, . . . , χd) is the so called corrector field.
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Up to now χ has been defined as element of L2(μ)d , hence as a pointwise function it is defined modulo a set of
zero μ-measure. It is convenient to work with a special representative of χ , which is everywhere defined on N0 ×Rd

and has good properties:

Lemma 3.5. There exists a representative χ̄ : N0 ×Rd →Rd of the corrector χ ∈L2(μ)d such that

χ̄(ξ, x)= χ̄ (ξ, y)+ χ̄ (τyξ, x − y) ∀ξ ∈ N0, ∀x, y ∈ ξ. (3.12)

In particular, χ̄ (ξ,0)= 0 for all ξ ∈ N0.

Proof. The conclusion of the Lemma follows from (3.12) by taking x = y = 0. Let us therefore concentrate on (3.12).
Due to Lemma 3.1, χi is a curl-free square integrable form. We fix a representative χ̂i of χi as pointwise function on
N0×Rd and call Bi ⊂ N0 the set of ξ satisfying (3.3) w.r.t. the form χ̂i , for any family of n points x0, x1, . . . , xn in ξ .
By definition, it must be P0(Bi )= 1.

We claim that if ξ /∈ Bi then τxξ /∈ Bi for all x ∈ ξ . Suppose for the sake of contradiction that τxξ ∈ Bi and fix
a family of n points x0, x1, . . . , xn in ξ . Then the points y0, y1, . . . , yn defined as yk = xk − x lie in τxξ . Because
τxξ ∈ Bi , we conclude that

0=
n−1∑
j=0

χ̂i

(
τyj

(τxξ), yj+1 − yy

)= n−1∑
j=0

χ̂i (τxj
ξ, xj+1 − xj ),

thus implying that ξ ∈ Bi , which is a contradiction. This concludes the proof of our claim.
At this point we define B =⋂d

i=1 Bi and

χ̄i (ξ, x) :=
{

χ̂i (ξ, x) if ξ ∈ B,
0 otherwise.

Let us check (3.12). If ξ ∈ B and x ∈ ξ , then also τyξ must belong to B (if it was not in Bi for some i, since −y ∈ τyξ

we would conclude that ξ = τ−y(τyξ) does not belong to Bi ⊃ B). In particular, the identity (3.12) can be rewritten as

χ̂i (ξ, x)= χ̂i (ξ, y)+ χ̂i (τyξ, x − y) ∀i = 1, . . . , d,

which is trivially true by definition of B and Bi . Take now ξ /∈ B and x, y ∈ ξ . By definition of χ̄ we get χ̄ (ξ, x)=
χ̄ (ξ, y)= 0. Since for some i it must be ξ /∈ Bi , we know that also τyξ does not belong to Bi ⊃ B. As consequence,
it must be χ̄(τyξ, x − y)= 0 and the identity in (3.12) reduces to 0= 0+ 0. �

From now on, when working with the corrector field χ we will always refer to the pointwise function χ̃ : N0 ×
Rd →Rd of the above lemma.

3.3. Sublinearity and the proofs of Theorem 1.2 and Corollary 1.3

The core of the proof of Theorem 1.2 lies in the following result:

Theorem 3.6. Under the assumptions of Theorem 1.2: for P0-a.a. ξ

lim
n→∞

1

n
max
x∈ξ :
|x|∞≤n

∣∣χ(ξ, x)
∣∣= 0. (3.13)

The proof of Theorem 3.6 is completed in Section 7. Here, we show how Theorem 1.2 follows from Theorem 3.6.
The argument is standard; see [6,7,9,32] for very similar arguments. We only sketch the main steps.
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3.3.1. Proof of Theorem 1.2
Let us start with the discrete parameter case. Set Φ(ξ, x) := x+χ(ξ, x), so that Mn =Φ(ξ,Xn), n ∈N, is a martingale
(see Lemma 3.4). Also, define Mv

n := v ·Mn, for v ∈Rd , and, for every K ≥ 0:

FK(ξ)=E0,ξ

(∣∣Mv
1

∣∣2; ∣∣Mv
1

∣∣≥K
)
.

Let P̃0 denote the probability on N0 with density w(0)
E0w(0)

with respect to P0, and let Ẽ0 denote the associated expecta-
tion. Recall that the Markov chain on environments, n �→ τXnξ , is ergodic with reversible invariant distribution given
by P̃0; see [19], Proposition 2. Therefore, by the Ergodic theorem, for every K ≥ 0:

1

n

n∑
k=0

FK ◦ τXk
ξ → Ẽ0FK, (3.14)

P0,ξ -a.s., for P0-a.a. ξ , as n→∞. As in [7], Section 6.1 and [9], Section 5, using the above convergence together
with the monotonicity of K �→ FK , allows us to verify the assumptions of the Lindeberg–Feller Martingale Functional
CLT (as in, e.g., [17], Theorem 7.7.3). It follows that, for every v ∈ Rd , P0-a.s. t �→ εMv

�t/ε2� converges weakly, as
ε→ 0, to one-dimensional Brownian motion with diffusion coefficient

〈v,DDTRWv〉 = Ẽ0E0,ξ

(∣∣Mv
1

∣∣2)
. (3.15)

In particular, with the notation (3.1), it holds [DDTRW]i,j = (Φi,Φj )μ/(1,1)μ, where Φi = xi + χi , i, j = 1, . . . , d .
That DDTRW is positive definite follows from the fact that if (3.15) is zero for some coordinate axis v = ej , j =
1, . . . , d , then xj =−χj (ξ, x), P0-a.s. for every x ∈ ξ , and this is not compatible with Theorem 3.6.

To conclude the proof we argue as in [7], Section 6.2. Namely, from Theorem 3.6 we have that P0-a.s. for δ ∈
(0,1/2), there exists κ(ξ) <∞ such that for all x ∈ ξ it holds |χ(ξ, x)| ≤ κ(ξ)+ δ|x|. Writing x =Φ(ξ, x)−χ(ξ, x),
one has

max
k≤n

∣∣χ(ξ,Xk)
∣∣≤ 2κ(ξ)+ 2δ max

k≤n
|Mk|,

which implies, by the arbitrariness of δ, that maxk≤n |χ(ξ,Xn)| = o(
√

n) in P0,ξ probability, for P0-a.a. ξ . This ends
the proof of Theorem 1.2 for the DTRW. It is worth noting that a separate tightness argument is not needed for this
proof, since one uses the strong sublinearity given by Theorem 3.6.

To treat the CTRW, observe that it consists of a time change of the DTRW. Indeed, the CTRW waits at site x an
exponential time of parameter w(x) and then jumps to y ∈ ξ with probability p(x, y) (it could be y = x). With this
notion of “jump,” if n∗(t) denotes the number of jumps of the CTRW up to time t , then the CTRW at time t coincides
with the DTRW at n∗(t). Therefore, arguing as in [16], Theorem 4.5, it is sufficient to show that the limit

lim
t→∞n∗(t)/t = E0w(0), (3.16)

holds P0,ξ -a.s., for P0-a.a. ξ . Let σi , i = 0,1,2, . . . denote an independent family of i.i.d. exponentials of parameter
1 and write Ti := σi/w(Xi) for the waiting time after the ith jump of the discrete-time chain. Then, setting R0 = 0,
and Rn = Tn−1 + · · · + T0, we have that n∗(t)= n if and only if Rn−1 ≤ t < Rn. Observing that w(x)= w(x, ξ)=
w(0, τxξ) for every x ∈ ξ , and invoking the ergodicity of the environment process n �→ τXnξ as in (3.14) above, we
see that P0-a.s. and P0,ξ -a.s.

lim
n→∞Rn/n= Ẽ0

(
1/w(0)

)= 1/E0w(0).

This implies (3.16). Moreover, this also shows that [DCTRW]i,j = (Φi,Φj )μ, and the relation (1.7) must hold. �

3.3.2. Proof of Corollary 1.3
This corollary is a direct consequence of Theorem 1.2 and Lemma B.2 in the Appendix, taking in Lemma B.2 A0
as the set of configurations ξ ∈ N0 such that both the DTRW and the CTRW starting at the origin converge under
diffusive rescaling to the Brownian motions described in Thereom 1.2.
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4. Restricted random walk

Recall the definition of occupied boxes and white boxes, as in Section 2. As consequence of (H1), see also property
(A), once p is taken large enough, P-a.s. the random sets {x ∈ Zd : σx = 1} and {x ∈ Zd : ϑx = 1} have a unique infinite
connected component, the infinite cluster; see e.g. [21]. Here points x, y are thought of as connected if there exist
points x0, x1, . . . , xn in the above random sets such that x0 = x, xn = y and |xi − xi+1|1 = 1 for all i = 0, . . . , n− 1.
We call C∞ the infinite clusters in {x ∈ Zd : σx = 1}, and C∗∞ the infinite clusters in {x ∈ Zd : ϑx = 1}. By taking p

large, from the domination assumptions (H1) we also know that there exists c <∞ such that P-a.s. the holes of C∞
and C∗∞ intersecting the box [−n,n]d have diameter at most c logn [9], Prop. 2.3 (in particular, all holes have finite
cardinality). Finally, we define

C∞ =
⋃

x∈C∞
B(x), C∗∞ =

⋃
x∈C∗∞

B(x).

The dependence on the parameters K,T0 is understood. The set C∗∞ is often referred to as the cluster of white boxes,
while C∞ is called the cluster of occupied boxes. Clearly, C∞ ⊃ C∗∞. The points ξ ∩C∗∞ are sometimes referred to as
the good points.

Given a starting point in ξ ∩ C∗∞, the random walk Yn is the discrete-time random walk made by the consecutive
visits of Xn to the set ξ ∩ C∗∞: setting

T1 :=min
{
n≥ 1: Xn ∈ ξ ∩ C∗∞

}
, (4.1)

the transition probability from x to y of Y is given by

ωx,y(ξ) := Px,ξ (XT1 = y). (4.2)

Thus Yn = XTn , where Tn is the time of the nth visit to ξ ∩ C∗∞. The continuous-time random walk Ỹt is defined as
YN(t), where N(t) is the Poisson process with intensity 1. Equivalently, Ỹt is the continuous-time Markov chain on
ξ ∩ C∗∞ whose infinitesimal generator is given by

L∗f (x)=
∑

y∈ξ∩C∗∞

ωx,y(ξ)
(
f (y)− f (x)

)
. (4.3)

In order to simplify the notation, we simply write Yt instead of Ỹt when no confusion can be generated. It is simple to
check that (w(x): x ∈ ξ ∩ C∗∞) is a reversible measure both for Yn and for Yt .

Following [9], a crucial step towards the proof of Theorem 3.6 consists in establishing the following bounds on the
distance and heat kernel of the restricted walk.

Proposition 4.1. For a suitable deterministic sequence bn = o(n2) and for P-a.a. ξ :

lim sup
n→∞

max
x∈ξ∩C∗∞:
|x|∞≤n

sup
y∈ξ∩C∗∞

sup
t≥n

td/2Px,ξ (Yt = y) <∞, (4.4)

lim sup
n→∞

max
x∈ξ∩C∗∞:
|x|∞≤n

sup
t≥bn

Ex,ξ |Yt − x|√
t

<∞. (4.5)

Before going to the proof of Proposition 4.1, which is given in Section 5 and Section 6, we start by developing
some tools that will be repeatedly used in the sequel.

4.1. Enlargement of holes

Connected components in the complement of C∗∞ and in the complement of C∗∞ are called discrete holes and holes,
respectively. A generic discrete hole C is thus a finite set, while a subset C′ ⊂ Rd is a hole if and only if it can be
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written as C′ = B(z1)∪ · · · ∪B(zm), where {z1, . . . , zm} is a discrete hole. For the moment we restrict our analysis to
discrete holes.

Given z ∈ Zd , we use G(z) to denote the unique discrete hole C such that z ∈ C. For a vertex z ∈ C∗∞, we set
G(z) = ∅. Let d1(z, z

′) = |z − z′|1, z, z′ ∈ Zd , denote the 
1 distance, i.e. the graph distance in Zd . Also, we use
d2(z, z

′) = |z − z′| for the usual 
2 distance. Given an arbitrary D ⊂ Zd and i = 1,2, we write di(z,D) for the
point-to-set 
i distance and diami (D)= supz,z′∈D di(z, z

′) for the 
i diameter of D. We write |D| for the cardinality
of D.

The enlargement of a discrete hole C is given by the set

C̃ = {
z ∈ Zd : d2(z,C)≤ diam2(C)

}
. (4.6)

Note that an enlarged discrete hole C̃ will in general contain some vertices z ∈ C∗∞, and a vertex z ∈ C∗∞ can be

covered by several enlarged holes. When z /∈ C∗∞, we use the notation G̃(z) := G̃(z) for the enlargement of G(z).
When z ∈ C∗∞, we set G̃(z)=∅.

Two vertices z, z′ ∈ Zd are said to be related if they both belong to some enlarged discrete hole C̃. This notion
induces in an obvious way an equivalence relation between vertices: two vertices z, z′ are equivalent (written z∼ z′)
if and only if there exist vertices z0, . . . , zn such that z0 = z, zn = z′, and zi, zi+1 are related for all i = 0, . . . , n− 1.
Consider now the graph obtained from Zd by identifying all equivalent vertices. Call d̄(z, z′) the associated graph
distance (each vertex is at distance 0 from any member of its equivalence class). Note that according to this definition,
two distinct vertices z, z′ ∈ C∗∞ may well have distance 0 (if there exists a nearest neighbor path γ connecting z, z′
such that γ is fully contained in the union of all enlarged holes).

Clearly, d̄(z, z′)≤ d1(z, z
′) for any pair of vertices. Our assumptions allow us to compare the two distances in the

opposite direction as well.

Proposition 4.2. For all a > 0, there exist K,T0 such that for all z ∈ Zd :

P

(
d̄(0, z)≤ 1

2
d1(0, z)

)
≤ e−ad1(0,z). (4.7)

Proof. Due to assumption (H1) we can find K,T0 such that the field of white points ϑ dominates a supercritical
Bernoulli field Z(p) with parameter p. Therefore, the probability appearing in (4.7) is smaller than Pp(d̄(0, z) ≤
1
2d1(0, z)), where Pp is the law of the Bernoulli random field Z(p) (and d̄(0, z) is accordingly defined as a function
of Z(p) and its unique infinite cluster instead of ϑ and C∞∗ , respectively).

Let us first observe that if d̄(0, z)= 0 then there exist discrete holes C1, . . . ,Cm such that the union of the enlarged
discrete holes C̃1, . . . , C̃m contains a nearest neighbor path from 0 to z. In particular, there must exists a nearest
neighbor path (z0 = 0, . . . , zn = z) in Zd of length n≥ d1(0, z) such that

n≤
n∑

i=0

diam1
(
G̃(zi)

)
1{zi /∈G(zj ),∀j<i}.

More generally, by pasting together different paths as in the example above, one obtains that the event d̄(0, z) ≤
1
2d1(0, z) is contained in the event: there exist n≥ d1(0, z) and a nearest neighbor path γn = (z0 = 0, . . . , zn = z) in
Zd such that

n

2
≤X(γn) :=

n∑
i=0

diam1
(
G̃(zi)

)
1{zi /∈G(zj ),∀j<i}.

Therefore, using the exponential Chebyshev estimate and a union bound, for any λ > 0:

Pp

(
d̄(0, z)≤ 1

2
d1(0, z)

)
≤

∑
n≥d1(0,z)

∑
γn

e−λn/2Ep

[
eλX(γn)

]
,
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where Ep denotes expectation w.r.t. Pp . We claim that for every λ > 0 there exists p ∈ (0,1) such that

Ep

[
eλX(γn)

]≤ 2n (4.8)

for all nearest neighbor paths γn of length n. Once (4.8) is proved, estimating by (2d)n the total number of paths γn

connecting 0 and z, one obtains that for all a > 0, there exist suitable constants λ > 0 and p ∈ (0,1) such that

Pp

(
d̄(0, z)≤ 1

2
d1(0, z)

)
≤

∑
n≥d1(0,z)

(4d)ne−λn/2 ≤ e−ad1(0,z),

and the proposition follows.
We turn to the proof of (4.8). Let the path γn = (z0 = 0, . . . , zn = z) be fixed. Let Fi denote the σ -algebra generated

by the random variables G(z0), . . . ,G(zi). To prove (4.8), it is sufficient to establish the uniform estimate: For any
λ > 0 there exists p ∈ (0,1) such that

Ep

[
exp

{
λdiam1

(
G̃(zi)

)
1{zi /∈G(zj ),∀j<i}

}|Fi−1
]≤ 2. (4.9)

Note that the definition (4.6) implies that diam1 G̃(0)≤ c diam1 G(0), for some finite constant c= c(d). Therefore, it
suffices to show that for any λ > 0 there exists p ∈ (0,1) such that (4.9) holds with G̃(zi) replaced by G(zi). At this
point the conclusion follows from a standard Peierls argument, as in [9], Lemma 3.1; proof of Eq. (3.12). �

We extend the definition of d̄ to all points in the process ξ using the corresponding K-boxes. Namely, for any
x ∈ ξ , let z(x) denote the unique point of Zd such that x ∈ B(z(x)). Then, we set

d̄(x, y) := d̄
(
z(x), z(y)

)
, x, y ∈ ξ. (4.10)

The next estimate is a useful corollary of Proposition 4.2.

Corollary 4.3. Take K,T0 satisfying (4.7) for some a > 0. Then, P-a.s. there exists κ = κ(ξ,K) <∞ such that for
all x, y ∈ ξ :

|x − y| ≤ κ
(
1+ log

(
1+ |x|)+ d̄(x, y)

)
. (4.11)

Proof. From the definition (4.10), and the fact that

K
∣∣z(x)− z(y)

∣∣− c1(K)≤ |x − y| ≤K
∣∣z(x)− z(y)

∣∣+ c1(K)

for some constant c1(K), we see that it suffices to prove for Zd an estimate similar to (4.11): P-a.s. there exists
κ = κ(ξ) <∞ such that for all z, z′ ∈ Zd :∣∣z− z′

∣∣≤ κ
(
1+ log

(
1+ |z|)+ d̄

(
z, z′

))
. (4.12)

Combining the estimate of Proposition 4.2 and the Borel–Cantelli argument shows that P-a.s. there exists n0 =
n0(ξ) <∞ such that whenever n≥ n0, |z| ≤ n, then∣∣z− z′

∣∣≤ 1

2
d̄
(
z, z′

)
for all

∣∣z− z′
∣∣≥ logn. (4.13)

Let us verify that this implies (4.12). We may suppose first that |z − z′| ≥ log(1 + |z|). If |z| ≥ n0 then we may
take n = �|z|� and the claim follows from (4.13). Thus, assume that |z| ≤ n0. Clearly, we may further assume that
|z′|> n0, since otherwise |z− z′| ≤ 2n0. Therefore, if |z− z′| ≥ log(1+ |z′|) the claim follows from (4.13) by taking
n= �|z′|� and exchanging the roles of z and z′. In conclusion, the only case remaining is when |z| ≤ n0, |z′|> n0 and
|z− z′|< log(1+ |z′|). But if t0 is such that log(1+ t)≤ t/2 for all t ≥ t0, then we must have either |z′| ≤ t0 (and in
this case |z− z′| ≤ n0 + t0) or∣∣z′∣∣≤ |z| + ∣∣z− z′

∣∣≤ |z| + log
(
1+ ∣∣z′∣∣)≤ |z| + ∣∣z′∣∣/2,

which implies |z′| ≤ 2n0. Therefore, |z− z′| ≤ |z| + |z′| ≤ 3n0. This concludes the proof of (4.12). �
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4.2. Some uniform estimates

The enlarged discrete holes allow us to obtain some useful estimates that we collect here. It is first convenient to
extend our notation. Consider the map Ψ (A) defined on finite subsets A⊂ Zd as Ψ (A)=⋃

z∈A B(z). Then, given a

hole C = Ψ (C′) (C′ ⊂ Zd being a discrete hole), its enlargement C̃ is defined as Ψ (C̃′), where C̃′ is defined by (4.6).
Note that we use the same notation C̃ for the enlargement of a hole and of a discrete hole C (see Section 4.1). The
kind of hole (discrete or not) we are handling will be clear from the contest. In this section we use a slightly different
definition of the hole G(x) with respect to the previous section. Namely, given x /∈ C∗∞ we write now G(x) for the
unique hole C containing x. If x ∈ C∗∞, we set G(x)=∅.

Given a hole C we call [C] – the class of C – the union of all holes C′ such that d̄(C,C′)= 0, i.e. such that there
exists a chain of holes C = C0, . . . ,Cm = C′ such that C̃i ∩ C̃i+1 �=∅. We stress that [C] is not the family of points
x ∈ ξ such that d̄(x,C)= 0, in particular [C] ∩ C∗∞ =∅.

Finally, we define

Γn =
n∑

i=1

I{Xi /∈C∗∞∪[G(Xi−1)]}.

Γn represents the number of jumps into a new class of holes up to time n (to be distinguished from the number of
different classes of holes visited up to time n). As an example, suppose X0 ∈ C∗∞,X1 /∈ C∗∞ and X2 ∈ C∗∞. In this
case, Γ2 = Γ1 = 1.

Let

T1 = inf
{
n≥ 1: Xn ∈ C∗∞

}
, (4.14)

and call Γ = ΓT1 the number of jumps into new classes before the return to C∗∞.

Lemma 4.4. There exists δ > 0 such that uniformly in ξ ∈ N , x ∈ ξ :

Px,ξ (Γ ≥ k)≤ (1− δ)k, k ∈N. (4.15)

Proof. Define the times at which the walk jumps out of a class of holes:

τi = inf
{
n > τi−1: Xn /∈ [

G(Xτi−1)
]}

, τ0 = 0. (4.16)

Note that jumps within the cluster are included. From the strong Markov property applied to the stopping times τi , the
claim (4.15) follows if one has the estimate: for some δ > 0, for all i, uniformly in ξ it holds PXτi

,ξ (Xτi+1 ∈ C∗∞)≥ δ.
Thus, it suffices to show that for some δ > 0, uniformly in ξ and x ∈ ξ :

Px,ξ

(
X1 ∈ C∗∞ |X1 /∈ [

G(X0)
])≥ δ. (4.17)

If x =X0 ∈ C∗∞ the bound (4.17) is easy: here [G(X0)] =∅ and all we have to show is that Px,ξ (X1 ∈ C∗∞)≥ δ; this
follows from the fact that w(x) ≤ T (K,T0) (see Lemma 2.1) and r(x, y) ≥ δ1 = δ1(K) for some y ∈ C∗∞, so that,
with e.g. δ = δ1/T .

Px,ξ

(
X1 ∈ C∗∞

)≥ p(x, y)= r(x, y)

w(x)
≥ δ.

If x =X0 /∈ C∗∞, then x ∈ C for some hole C =G(X0). Then

Px,ξ

(
X1 ∈ C∗∞ |X1 /∈ [

G(X0)
])= Px,ξ (X1 ∈ C∗∞)

Px,ξ (X1 ∈ C∗∞)+ Px,ξ (X1 /∈ C∗∞ ∪ [C]) .

It is sufficient to prove that uniformly, for some δ > 0:

Px,ξ

(
X1 /∈ C∗∞ ∪ [C])≤ δ−1Px,ξ

(
X1 ∈ C∗∞

)
. (4.18)
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To prove (4.18) we write

Px,ξ

(
X1 /∈ C∗∞ ∪ [C])= ∑

C′:C′ /∈[C]

∑
z′∈Zd :B(z′)⊂C′

Px,ξ

(
X1 ∈ B

(
z′

))
, (4.19)

where the sum is over holes C′ in a different class than C. Let y denote the closest point y ∈ ξ ∩ C∗∞ to x. Note that
Px,ξ (X1 ∈ C∗∞)≥ p(x, y)= r(y − x)/w(x).

If z, ζ ∈ Zd denote the vertices such that x ∈ B(z) and y ∈ B(ζ ), then |x−y| ≥K|z−ζ |−c1(K). By construction,
if x′ ∈ B(z′) with z′ ∈ C′ for some hole C′ /∈ [C], then |x − x′| ≥K|z− z′| − c1(K) and |z− z′| ≥ 2|z− ζ | − 2. To
justify the last inequality, let C = Ψ (C), C being a discrete hole in Zd . The definition of ζ implies |z−ζ | ≤ diam2(C).
Since C′ /∈ [C] and therefore z′ /∈ C̃,∣∣z− z′

∣∣≥ |z− ζ | + diam2(C)− 2≥ 2|z− ζ | − 2. (4.20)

Next, observe that

nz′ ≤ e|z−z′|α/2
, (4.21)

since otherwise z ∈Q(z′,Rz′), cf. (2.3), which contradicts the fact that z, z′ belong to distinct classes of holes. Note
indeed that, since x =X0 /∈ C∗∞ and x ∈ B(z), it must be nz ≥ T0.

Define the function ϕ : (0,∞)×N→ (0,∞) as ϕ(a,m)=∑
v∈Zd :|v|≥m e−a|v|α . It is not hard to check that, for all

fixed a > 0, α > 0, as m→∞:

ϕ(a,m)=O
(
e−amα

md−α
)
. (4.22)

To bound (4.19) we write, for all ε > 0:

w(x)Px,ξ

(
X1 /∈ C∗∞ ∪ [C]) ≤ c(K)

∑
z′∈Zd :|z−z′|≥2|z−ζ |−2

nz′e
−Kα |z−z′|α

≤ c′(ε,K)
∑

v∈Zd :|v|≥2|z−ζ |−2

e−(1−ε)Kα |v|α

= c′(ε,K)ϕ
(
(1− ε)Kα,2|z− ζ | − 2

)
, (4.23)

where we have used (4.21). On the other hand

w(x)Px,ξ

(
X1 ∈ C∗∞

)≥ r(y − x)≥ c′′(K)e−Kα |z−ζ |α . (4.24)

From (4.22), for all α,K > 0, taking e.g. ε > 0 such that (1− ε)2α > 1, the ratio

ϕ((1− ε)Kα,2|z− ζ | − 2)

e−Kα |z−ζ |α

is uniformly bounded in z, ζ ∈ Zd . Using (4.23) and (4.24), this proves the uniform bound (4.17). �

Lemma 4.5. For c, γ ≥ 1, set uγ,c(t)= tγ exp[c(log(t + 1))α]. Uniformly in ξ and x ∈ ξ :

Ex,ξ

[
sup

1≤j≤T1

uγ,c

(
d̄(x,Xj )

)]
<∞. (4.25)

Proof. With the definition (4.16) we have that Γ =max{n≥ 0: τn < T1} and

sup
1≤j≤T1

d̄(x,Xj )≤
Γ∑

i=0

d̄(Xτi
,Xτi+1), (4.26)
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where Γ is defined as in Lemma 4.4 and X0 = x.
Let us first suppose that α > 1. In this case it is sufficient to show the claim with uγ,c(t) replaced by exp[c(log(t +

1))α], which is a convex function. Since, for every N ∈N:

log

[
1+

N∑
i=0

d̄(Xτi
,Xτi+1)

]
≤ log(N + 1)+ log

[
1

N + 1

N∑
i=0

(
1+ d̄(Xτi

,Xτi+1)
)]

,

simple estimates yield

exp

{
2c

(
log

[
1+

N∑
i=0

d̄(Xτi
,Xτi+1)

])α}

≤ exp
{
c1

(
log(N + 1)

)α} 1

N + 1

N∑
i=0

exp
{
c1

(
log

[
1+ d̄(Xτi

,Xτi+1)
])α}

(4.27)

for some constant c1 = c1(α, c). Suppose that, for some constant c2, uniformly in ξ and x ∈ ξ and i ∈N

Ex,ξ exp
{
c1

(
log

[
1+ d̄(Xτi

,Xτi+1)
])α}≤ c2. (4.28)

Then, taking expectation in (4.27), using Schwarz’ inequality:

Ex,ξ

[
exp

{
c

(
log

[
1+

Γ∑
i=0

d̄(Xτi
,Xτi+1)

])α}]

≤
∞∑

N=0

Px,ξ (Γ =N)1/2Ex,ξ

[
exp

{
2c

(
log

[
1+

N∑
i=0

d̄(Xτi
,Xτi+1)

])α}]1/2

≤√c2

∞∑
N=0

Px,ξ (Γ =N)1/2 exp
{
c1

(
log(N + 1)

)α}
.

The last sum above is uniformly finite by Lemma 4.4. It remains to show the validity of (4.28). To this end, it suffices
to show that, for some constant c2, uniformly in ξ and x ∈ ξ :

Ex,ξ exp
{
c1

(
log

[
1+ d̄(x,Xτ1)

])α}≤ c2. (4.29)

By summing over all possible ways of jumping out of the starting class of holes [G(x)] one obtains that (4.29) follows
from

Ex,ξ

[
exp

{
c1

(
log

[
1+ d̄(x,X1)

])α} |X1 /∈ [
G(x)

]]≤ c2. (4.30)

Let x, y and z, ζ be as in the proof of Lemma 4.4, i.e. x ∈ B(z), y ∈ B(ζ ) and y is the closest point y ∈ ξ ∩ C∗∞ to x.
As in (4.24) we have

Px,ξ

(
X1 /∈ [

G(x)
])≥ Px,ξ (X1 ∈ C∞)≥ c3

e−Kα |z−ζ |α

w(x)
(4.31)

for some constant c3. Let z′ ∈ Zd be such that X1 is in the K-box B(z′). Note that d̄(x,X1)= 0 for all z′ such that
|z − z′| ≤ 2|z − ζ | − 2. For other values of X1 we simply bound d̄(x,X1) ≤ c4|z − z′|, for some c4 = c4(d,K,α).
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Reasoning as in (4.23), to bound (4.30) we write, for all ε > 0:

wα(x)Ex,ξ

[
exp

{
c1

(
log

[
1+ d̄(x,X1)

])α};X1 /∈ [
G(x)

]]
≤ 1+ c(K)

∑
z′∈Zd :

|z−z′|≥2|z−ζ |−2

nz′e
−Kα |z−z′|α ec5(log[1+|z−z′|])α

≤ 1+ c′(ε,K)
∑

v∈Zd :
|v|≥2|z−ζ |−2

e−(1−ε)Kα |v|α

= 1+ c′(ε,K)ϕ
(
(1− ε)Kα,2|z− ζ | − 2

)
, (4.32)

where we have used (4.21). From (4.32) and (4.31) we can conclude, as in the proof of Lemma 4.4, that the left hand
side of (4.30) is uniformly bounded. This ends the proof of the case α > 1.

To prove the claim for α ≤ 1, observe that it is sufficient to prove the estimate (4.25) with uγ,c(t) replaced by tγ .
Here γ ≥ 1 and tγ is convex. Thus,

Ex,ξ

[(
Γ∑

i=0

d̄(Xτi
,Xτi+1)

)γ ]
≤

∞∑
N=0

Px,ξ (Γ =N)1/2Nγ

[
1

N

N∑
i=0

Ex,ξ

(
d̄(Xτi

,Xτi+1)
2γ

)]1/2

.

A uniform estimate of the expectation in the right hand side above can be obtained exactly as in the proof of (4.28).
This ends the proof. �

We turn to a simple corollary of our previous results.

Lemma 4.6. For every p ≥ 1, there exists c > 0 such that uniformly in ξ and x ∈ ξ , and for all n:

Ex,ξ

[
sup

1≤j≤Tn

d̄(x,Xj )
p
]
≤ cnp. (4.33)

Proof. Setting Δi := sup1≤j≤Ti−Ti−1
d̄(XTi−1 ,XTi−1+j ), we have

sup
1≤j≤Tn

d̄(x,Xj )
p ≤ np−1

n∑
i=1

Δ
p
i .

The strong Markov property at time Ti−1 together with the uniform estimate of Lemma 4.5 imply that for some c > 0,
for all x and i one has Ex,ξ [Δp

i ] ≤ c. �

4.3. Some almost sure estimates

We describe some more consequences of the estimates derived above.

Lemma 4.7. P-a.s., for every p ≥ 1, there exists κ = κ(p, ξ) <∞ such that for all x ∈ ξ , and for all n ∈N:

Ex,ξ

[
sup

1≤j≤Tn

|Xj − x|p
]
≤ κ

[
1+ log

(
1+ |x|)]pnp. (4.34)

Proof. Using Corollary 4.3, we can write

|Xj − x|p ≤ κ
[
1+ log

(
1+ |x|)]p + κd̄(Xj , x)p.

The conclusion then follows from Lemma 4.6. �



674 P. Caputo, A. Faggionato and T. Prescott

Lemma 4.8. Take K,T0 as in Proposition 4.2. Then, P-almost surely, for all x ∈ ξ Px,ξ (T1 <∞)= 1.

Proof. For every m,n, write

Px,ξ (T1 > m)= Px,ξ (T1 > m,Sn > m)+ Px,ξ (T1 > m,Sn ≤m),

where Sn denotes the first time k ≥ 1 such that |Xk|∞ ≥ n.
Given y ∈ ξ , let z(y) ∈ Zd be the unique point such that y ∈ B(z). Fix v ∈ ξ \C∗∞ such that |z(v)| ≤ n. Then z(v) is

in a discrete hole (i.e. z /∈ C∗∞). We know that ϑ dominates a supercritical Bernoulli field with large parameter p, and
for the latter it is well known that a.s. holes intersecting [−n,n]d have diameter at most O(logn) (see [9], Prop. 2.3).
By the stochastic domination, the same property still holds for the the discrete holes, which are the holes in ϑ . We
claim that w(v)≤ c′ec(logn)α/2

. To prove our claim, we write

w(v)=
∑
y∈ξ :

|z(y)−z(v)|≤n

r(y − v)+
∑
y∈ξ :

|z(y)−z(v)|>n

r(y − x).

For every z ∈ Zd such that |z − z(v)| ≤ n, if nz ≥ T0 (i.e. if B(z) is overcrowded) then it must be nz ≤ ec(logn)α/2

because any hole intersecting [−n,n]d has diameter O(logn). Taking n large enough that T0 ≤ ec(logn)α/2
we have∑

y∈ξ :
|z(y)−z(v)|≤n

r(y − v)≤
∑

z∈Zd :
|z−z(v)|≤n

ec(logn)α/2
e−c1(K)|z−z(x)|α ≤ c2ec(logn)α/2

.

On the other hand, if |z(y) − z(v)| > n, then z(y) cannot belong to the same hole of z(v), and therefore nz ≤
e|z(y)−z(v)|α/2

whenever nz ≥ T0. It follows that∑
y∈ξ :

|z(y)−z(v)|>n

r(y − v)≤
∑

z∈Zd :
|z−z(v)|>n

T0e|z−z(v)|α/2
e−c1(K)|z−z(v)|α ≤ c3.

The above estimates trivially imply our claim.
Due to this claim and using again the fact that the hole containing v has diameter at most O(logn) we can estimate

Pv,ξ

(
X1 ∈ C∗∞

)≥ e−c4(logn)α

w(v)
≥ e−c5(logn)α .

From this observation we infer that

Px,ξ (T1 > m,Sn > m)≤ (
1− e−c5(logn)α

)m ≤ exp
[−me−c5(logn)α

]
. (4.35)

On the other hand, by Markov’s inequality

Px,ξ (T1 > m,Sn ≤m)≤ Px,ξ

(
sup

1≤j≤T1

|Xj |> n
)
≤ n−1Ex,ξ

(
sup

1≤j≤T1

|Xj |
)
. (4.36)

By Lemma 4.7 we conclude that

Px,ξ (T1 > m,Sn ≤m)≤ cx(ξ)n−1 (4.37)

for some P-a.s. finite constant cx(ξ). Taking m,n= n(m) such that n(m)→∞ and m exp[−(logn(m))α] →∞, as
m→∞, (4.35) and (4.37) imply the conclusion. �
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4.4. Harmonicity with respect to the restricted random walk

Proposition 4.9. Let Φ(ξ, x)= x + χ(ξ, x). Then for P-a.a. ξ and for any x ∈ ξ ∩ C∗∞:

Φ(τxξ,XT1 − x) ∈ L1(Px,ξ ), Ex,ξ

(
Φ(τxξ,XT1 − x)

)= 0. (4.38)

Proof. We recall that xi + χi(ξ, x) ∈ H⊥∇ , for each coordinate i. Hence, by Lemma 3.4, there exists a Borel subset A
having P-probability 1 such that for all ξ ∈ A and for all z ∈ ξ ,∑

y∈ξ

r(y − z)
∣∣Φ(τzξ, y − z)

∣∣ <∞,
∑
y∈ξ

r(y − z)Φ(τzξ, y − z)= 0.

This implies that the process (M
ξ
n )n≥0 defined in terms of (Xn)n≥0 as

M
ξ
0 = 0, Mξ

n =
n−1∑
j=0

Φ(τXj
ξ,Xj+1 −Xj) for n≥ 1

is a martingale w.r.t. Px,ξ . By shift covariance we have M
ξ
n = Φ(τX0ξ,Xn − X0) for all n ≥ 0. In particular, given

m ∈N and ξ ∈ A, from the Optional Stopping Theorem, for any m ∈N, we have that Φ(τxξ,XT1∧m − x) ∈L1(Px,ξ )

and

Ex,ξΦ(τxξ,XT1∧m − x)= 0, x ∈ ξ. (4.39)

Since T1 is a.s. finite (see Lemma 4.8), we have

lim
m→∞Φ(τxξ,XT1∧m − x)=Φ(τxξ,XT1 − x), Px,ξ -a.s.

In addition, using Lemma 7.2 below, we know that a.s. |Φ(ξ, y)| ≤ c(ξ)uγ,c(|y|) for suitable constants c, γ > 0 and
c(ξ) <∞. We have∣∣Φ(τxξ,XT1∧m − x)

∣∣≤ cx(ξ)uγ,c

(
max

1≤j≤T1
|Xj − x|

)
, m≥ 1. (4.40)

Therefore, Corollary 4.3 and Lemma 4.5 allow us to use the Dominated Convergence Theorem to conclude. �

Proposition 4.9 shows that Φ(τxξ,Yn − x), with Yn =XTn , is a martingale for every x ∈ ξ ∩ C∗∞. Since Yt =XTNt

for an independent Poisson process with mean 1, Proposition 4.9 also implies

Corollary 4.10. For P-a.a. ξ , the process (Φ(τzξ,Yt − z): t ≥ 0) is a continuous-time martingale w.r.t. to the law of
the restricted random walk Yt starting at z ∈ ξ ∩ C∗∞.

5. Heat kernel bound

In this section we prove the heat kernel bound (4.4). In order to avoid confusion, in this section we restore the
convention to write Yn for the discrete-time restricted RW and Ỹt for the continuous-time restricted RW. The proof of
the heat kernel bound (4.4) is divided in two parts: in the first one we derive a similar bound for a cut-off restricted
random walk (see Proposition 5.1) by applying together the isoperimetric estimates of [12] and the method developed
in [27]. In the second part (see the proof of Proposition 5.3), we show that the above cut-off gives an approximation
which is good enough to maintain the diffusive heat kernel bound. In particular, (4.4) follows immediately from
Proposition 5.3.
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5.1. Cut-off of the restricted random walk

We fix L > 0 and introduce the discrete-time RW (X
(L)
n : n ≥ 0) on ξL := ξ ∩ [−L,L]d jumping from x to y in ξL

with probability

p(L)(x, y)= r(y − x)

w(L)(x)
, w(L)(x)=

∑
z∈ξL

r(z− x). (5.1)

We call CL ⊂ Zd the largest connected component of the field ϑ (defined in (2.5)) inside [−L,L]d . Then, we set
CL =⋃

z∈CL
B(z) and ζL = ξ ∩CL. Let Y

(L)
n be the restricted random walk associated to X

(L)
n when visiting the good

points ζL (similarly to the definition of Yn as the restricted random walk associated to Xn when visiting the good
points C∗∞). We define Ỹ

(L)
t = Y

(L)
Nt

where Nt is a Poisson process of parameter 1, independent of the random walk

Y
(L)
n . The following heat kernel bound holds:

Proposition 5.1. Take L= L(t)= tu with u > 1/2. Then for P-a.a. ξ

lim sup
t→∞

max
x,y∈ζL

td/2Px,ξ

(
Ỹ

(L)
t = y

)
<∞. (5.2)

The fact that L(t) is polynomial in t in the above heat kernel estimate is essential. Indeed, because of the maxx,y∈ζL
,

one cannot expect the result to be true for functions L(t) with an exponential growth in t , since it would contradict
well known phenomena for the simple random walk on the supercritical percolation cluster [5].

Proof of Proposition 5.1. Clearly, (w(L)(x), x ∈ ξL) is a reversible measure for the random walk X
(L)
n . Let

ω(L)
x,y = Px,ξ

(
Y

(L)
1 = y

)
, x, y ∈ ζL.

Note that w(L)(x)ω
(L)
x,y = w(L)(y)ω

(L)
y,x for all x, y ∈ ζL, i.e. (w(L)(x), x ∈ ζL) is a reversible measure both for Y

(L)
n

and for Ỹ
(L)
t (recall that ω

(L)
x,y coincides also with the probability rate of a jump of Ỹ (L) from x to y).

Let us denote by πL the measure w(L)(x) on ζL and call ϕL(t), t > 0, the isoperimetric profile of the RW Ỹ (L)

w.r.t. πL:

ϕL(t) := inf

{
IU : U ⊂ ζL,πL(U)≤

(
t ∧ 1

2

)
πL(ζL)

}
,

where IU := πL(U)−1 ∑
x∈U,y∈ζL\U πL(x)ω

(L)
x,y . Note that due to the definition of ζL it holds

1≤ πL(x)≤ c, x ∈ ζL (5.3)

for some positive constant c independent of ξ and L (the upper bound follows from Lemma 2.1, the lower bound is
trivial: w(L)(x)≥ r(0)).

In order to estimate Px,ξ (Ỹ
(L)
t = y), x, y ∈ ζL, we apply Theorem 13 in [27] which states that, given ε, t > 0, if

t ≥
∫ 4/ε

4[πL(x)∧πL(y)]/πL(ζL)

8 du

uϕ2
L(u)

(5.4)

then

Px,ξ

(
Ỹ

(L)
t = y

)≤ πL(y)

πL(ζL)
(1+ ε). (5.5)

To get a bound from below of the isoperimetric profile ϕL we observe that, given x �= y in ζL,

πL(x)ω(L)
x,y ≥ πL(x)Px,ξ

(
X

(L)
1 = y

)= r(y − x)=mL(x)
r(y − x)

mL(x)
, (5.6)
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where mL(x) = ∑
y∈ζL

r(y − x). Since mL(x) ≤ w(L)(x), mL(x) satisfies a bound of the same form of (5.3). In
particular,

mL(U)

mL(ζL)
≤ κ

πL(U)

πL(ζL)
∀U ⊂ ζL. (5.7)

We stress that κ is a positive constant that does not depend on ξ,L.
Due to (5.6) and (5.7) we conclude that

ϕL(t)≥ψL(κt) ∀t ∈ (0,1/2): κt ∈ (0,1/2), (5.8)

where ψL denotes the isoperimetric profile of the continuous-time random walk on ζL with generator

Lf (x)=
∑
y∈ζL

r(y − x)

mL(x)

(
f (y)− f (x)

)
, x ∈ ζL,

with reversible measure mL. We take γ > 0. The value will be fixed at the end. Due to assumption (H1) and [12],
Lemma 2.1, there exists a constant δ > 0 such that P-a.s. it holds

ψL(u)≥ δ min

{
1

Lγ
,

1

u1/dL

}
, 0 < u≤ 1/2,L≥ L0(ξ) (5.9)

for a suitable ξ -dependent constant L0(ξ). Since L diverges with t , we have L ≥ L0(ξ) eventually in t . Let us
choose ε = Ld/td/2. Due to our assumption 4/ε goes to 0 as t →∞. In particular, we can take t large enough that
4/ε ∈ (0,1/2) and 4κ/ε ∈ (0,1/2). This together with (5.8) implies that ϕL(u)≥ψL(κu) for u as in the r.h.s. of (5.4).
In addition, note that

4πL(z)/πL(ζL)d ≥ c̃L−d , z ∈ ζL (5.10)

for some new constant c̃ > 0. Since the bound (5.9) reads

ψL(u)≥
{

δ
Lγ if 0 < u≤L−d(1−γ ),

δ

u1/dL
if u≥L−d(1−γ ),

taking γ small enough we can assume that 4td/2 ! Ldγ , thus implying that (see (5.10))

r.h.s. of (5.4) ≤
∫ 4td/2L−d

c̃L−d

8 du

uψ2
L(κu)

=
∫ 4κtd/2L−d

κc̃L−d

8 ds

sψ2
L(s)

≤ 8L2γ

δ2

∫ L−d+dγ

κc̃L−d

s−1 ds + 8L2

δ2

∫ 4κtd/2L−d

L−d+dγ

s2/d−1 ds = c
(
L2γ + t

)
. (5.11)

Taking γ small, we get L2γ < t . At the cost of changing the definition of ε by setting ε = c′Ld/td/2 with c′ small
enough, we can assume that the last expression in (5.11) is smaller than t , thus implying (5.4) and therefore that

Px,ξ

(
Ỹ

(L)
t = y

)≤ c

|ζL|
(
1+Ldt−d/2), x, y ∈ ζL.

At this point the claim follows from the fact that P-a.s. |ζL| ≥ c1L
d for some positive constant c1 and for all L. Indeed,

defining C∗
L as the maximal connected component in [−L,L]d ∩Zd for the Bernoulli field Z(p), it is known e.g. that

if p is large enough, then a.s. |C∗
L| ≥ 1

2Ld for all L sufficiently large. Due to the stochastic domination assumption
(H1), the same holds for CL as well. Since ξ , and therefore ζL, has at least one point in each box B(z) with z ∈ CL, it
must be |ζL| ≥ c1L

d for some c1 = c1(K). This concludes the proof. �
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5.2. Comparison between Ỹt and Ỹ
(L)
t

We first define a coupling Px between the random walks X
(L)
n and Xn, starting at the same point x in ζL, as follows.

We realize (Xn: n ≥ 0) starting at x, and call τ = inf{n≥ 1: Xn /∈ ξL}. Then we set X
(L)
n = Xn for n < τ , while on

[τ,∞) the random walk X
(L)
n evolves independently from Xn with jump probabilities p(L)(·, ·). To check the validity

of the coupling, let A be the event that Xn = X
(L)
n for n ≤ N (i.e. A = {N < τ }). Note that, given y, z ∈ ζL, the

probability Px(X
(L)
N+1 = z|X(L)

N = y,A) can be written as

Px(XN+1 = z|XN = y,A)+ Px(XN+1 /∈ ζL|XN = y,A)p(L)(y, z)

= r(z− y)

w(y)
+ w(y)−w(L)(y)

w(y)

r(y − z)

w(L)(y)
= r(y − z)

w(L)(y)
= p(L)(y, z).

Introduce a Poisson process Nt of parameter 1 independent from X
(L)
n and Xn, and therefore also from Y

(L)
n and

Yn. Recall the continuous-time random walks Ỹ
(L)
t = Y

(L)
Nt

, Ỹt = YNt . We denote again by Px the probability measure
of the space where all the above processes are defined, and we write Ex for the associated expectation. An important
consequence of this coupling is the following observation. There exists ε = ε(d) > 0 such that, for m ∈N:

Px

(∃n≤m: Yn �= Y (L)
n

)≤ Px

(
max

1≤j≤Tm

|Xj |> εL
)
. (5.12)

Here Tm is, as usual, the time of the mth visit to C∗∞ for the walk Xn. The above claim, in turn, is an immediate
consequence of the following

Lemma 5.2. There exists ε = ε(d) > 0 such that P-a.s., for all sufficiently large L, it holds ζL ∩ [−εL, εL]d =
ξ ∩ C∗∞ ∩ [−εL, εL]d .

Proof. Let us prove the equivalent statement for the corresponding white K-boxes. Namely, setting 
 = L/K , we
want to prove

CL ∩ [−ε
, ε
]d = C∗∞ ∩ [−ε
, ε
]d . (5.13)

By the stochastic domination assumption, and well known facts about Bernoulli percolation with large p (see e.g.
[12], Proposition B.2), we may assume that CL coincides with the largest connected component of [−
, 
]d ∩ C∗∞.
Thus, the only thing that can go wrong in checking (5.13) is that there exist two vertices x, y ∈ [−ε
, ε
]d ∩C∗∞ that
are not connected within [−
, 
]d . Call F
 this event. Using the stochastic domination assumption, and the fact that
p is large, one can check that this event has exponentially (in 
) small probability for a suitable ε > 0. To see this,
let dC(x, y) denote the graph distance of two vertices x, y ∈ C∗∞ in the graph C∗∞ (this is often called the chemical
distance). From known estimates [3], for γ > 0, if p is large, there exists a > 0 such that

P
(
dC(x, y)≥ (1+ γ )d1(x, y) | x, y ∈ C∗∞

)≤ a−1e−ad1(x,y). (5.14)

Let x, y be two vertices as in the event F
. Note the bounds d1(x, y)≤ dε
 and dC(x, y)≥ 2(1− ε)
. Moreover, one
can find y′ such that |y′|∞ ≤ 3ε
, 4dε
 ≥ d1(x, y′) ≥ ε
, and dC(x, y′) ≥ 2(1− 2ε)
 ≥ 2(1− 2ε)(4dε)−1d1(x, y′).
Therefore, taking ε small enough, a union bound and (5.14) imply, for some constant c, the exponential bound

P(F
)≤
∑
|x|≤ε


∑
|y′|≤3ε


a−1e−aε
 ≤ ce−c−1ε
.

The identity (5.13) then follows from the Borel–Cantelli lemma. �

We can finally prove (4.4), an immediate consequence of
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Proposition 5.3. For P-a.a. ξ ,

lim sup
t→∞

max
x∈ξ∩C∗∞:
|x|∞≤t

sup
y∈ξ∩C∗∞

td/2Px(Ỹt = y) <∞. (5.15)

Proof. Since Px(|Nt − t | ≥ t/2)≤ e−ct for some positive constant c, we can write∣∣∣∣∣Px(Ỹt = y)−
�3t/2�∑

n=�t/2�
Px(Yn = y)P (Nt = n)

∣∣∣∣∣≤ e−ct . (5.16)

We take L(t)= tu with u > 1. If x ∈ ξ ∩ C∗∞ and |x|∞ ≤ t then, for t large enough (independently from x), it holds
x ∈ ζL (L := L(t)) by Lemma 5.2. We then consider the random walks Ỹ

(L)
t and Y

(L)
n starting at x. Reasoning as

above we get that an expression similar to (5.16) holds also for Ỹ
(L)
t and Y

(L)
n . On the other hand, thanks to (5.12) we

can use (for n≤ �3t/2�)
Px(Yn = y)≤ Px

(
Y (L)

n = y
)+ Px

(
max

1≤j≤T�3t/2�
|Xj |> εL

)
.

Together with the above observations, this gives:

Px(Ỹt = y) ≤ e−ct +
�3t/2�∑

n=�t/2�
Px(Yn = y)P (Nt = n)

≤ 2e−ct + Px

(
Ỹ

(L)
t = y

)+ Px

(
max

1≤j≤T�3t/2�
|Xj |> εL

)
. (5.17)

To bound the last expression, we use Markov inequality and Lemma 4.7:

Px

(
max

1≤j≤T�3t/2�
|Xj |> εL

)
≤ (εL)−1Ex

(
max

1≤j≤T�3t/2�
|Xj |

)
≤ κε−1L−1(|x| + [

1+ log
(
1+ |x|)])�3t/2�. (5.18)

If L= tu, and u > 1, then we can assume t ≤ εL, and collecting (5.17), (5.18) and invoking Proposition 5.1 (using
again Lemma 5.2) we get for P-a.a. ξ that td/2Px(Ỹt = y)≤ c(1+ td/2−u+2) for all x, y ∈ ξ ∩C∗∞ such that |x|∞ ≤ t ,
for some finite constant c= c(ξ). Taking e.g. u= 2+ d/2 concludes the proof. �

6. Expected distance bound

In this section we prove the distance estimate (4.5). Given x, y ∈ ξ ∩C∗∞ define the heat kernel by qt (x, y)= Px,ξ (Yt =
y)/w(y). Given δ > 0, define also

D = sup
ξ∈N

sup
x∈ξ∩C∗∞

max
1≤j≤T1

Ex,ξ

[
d̄(x,Xj )

2], (6.1)

M(x, t)=Ex,ξ

[
d̄(x,Yt )

]= ∑
y∈ξ∩C∗∞

d̄(x, y)qt (x, y)w(y), (6.2)

Q(x, t)=−Ex,ξ

[
logqt (x,Yt )

]=− ∑
y∈ξ∩C∗∞

qt (x, y)w(y) logqt (x, y), (6.3)

Cvol(x, δ)= sup
0<s<δ

{
sd

∑
y∈ξ∩C∗∞

w(y)e−d̄(x,y)s

}
. (6.4)

(By continuity, Q(x,0)= logw(x).) By Lemma 4.6, we know that D <∞.
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Lemma 6.1. For all x,

M ′(x, t)2 ≤DQ′(x, t) ∀t ≥ 0, (6.5)

M(x, t)d ≥ exp
{−1−Cvol(x, δ)+Q(x, t)

}
if M(x, t) > δ−1. (6.6)

Proof. The proof of (6.6) is an adaptation of [5], Lemma 3.3; see also [9], Lemma 6.3(a) for a similar argument. To
prove (6.5), recall that ωx,y denotes the jump rate of the restricted random walk (cf. (4.2)). For (6.5), following [5],
Proposition 3.4 almost exactly, we use the triangle inequality for d̄ and then Schwarz’ inequality to arrive at:

M ′(x, t)2 ≤ 1

2

(∑
y,z

qt (x, y)ωy,zd̄(y, z)2
)

×
(∑

y,z

ωy,z

(
qt (x, y)− qt (x, z)

)(
logqt (x, y)− logqt (x, z)

))
, (6.7)

where
∑

y,z corresponds to
∑

y∈ξ∩C∗∞
∑

z∈ξ∩C∗∞ .

The conclusion is now very different from [5] and the use of the distance d̄ instead of the Euclidean distance
becomes crucial. We observe that by Lemma 4.6∑

y,z

qt (x, y)ωy,zd̄(y, z)2 =
∑
y

qt (x, y)
∑

z

Py,ξ (XT1 = z)d̄(y, z)2

=
∑
y

Px,ξ (Yt = y)Ey,ξ

[
d̄(y,XT1)

2]≤D,

so that the first factor inside the brackets in the last member of (6.7) is bounded by D. Exactly as in [5], Proposition 3.4,
the second factor is equal to 2Q′(x, t). We therefore have M ′(x, t)2 ≤DQ′(x, t), as desired. �

Lemma 6.2. Take K,T0 satisfying (4.7) for some a > 0. For P-a.a. ξ ,

Cvol(x, δ)≤C(ξ)δd
[
1+ log

(
1+ |x|)]d +C(ξ)eC(ξ)δ, x ∈ ξ ∩ C∗∞, (6.8)

for some positive constant C(ξ). In particular, for P-a.a. ξ ,

max
n≥1

max
x∈ξ∩C∗∞:
|x|∞≤n

sup
t≥n

Cvol
(
x,1/

√
t
) := C1(ξ) <∞. (6.9)

Proof. The last bound (6.9) trivially follows from (6.8). Therefore, we concentrate on (6.8). Due to Lemma 2.1 and
the definition of the random field ϑ , we know that w(y)≤ c= c(K,T0) for all y ∈ ξ ∩C∗∞. Moreover, we know that all
K-boxes B(z) with z ∈ C∗∞ are not overcrowded, i.e. ξ(B(z)) < T0. In particular, we can bound

∑
y∈ξ∩B(z) e−s|x−y|

from above by T0e−sK(|v−z|−c(d)) if x ∈ B(v). Let κ = κ(ξ,K) be the positive constant appearing in Corollary 4.3.
We define

W(x)= {
y ∈ ξ ∩ C∗∞: |x − y|/κ ≤ 2

[
1+ log

(
1+ |x|)]}.

Then, applying also Corollary 4.3, we conclude that

Cvol(x, δ) ≤ c sup
0<s<δ

{
sd

∣∣W(x)
∣∣+ sd

∑
y∈C∗∞\W(x)

e−s|x−y|/(2κ)

}

≤ Cδd
[
1+ log

(
1+ |x|)]d +CeCδ sup

0<s<δ

{
sd

∑
z∈Zd

e−sK|z|/(2κ)

}
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for a positive constant C independent from x. The last term can be estimated by

c(d)C′
∫ ∞

1
sde−sKr/(2κ)rd−1 dr = c(d)C′

∫ ∞

s

e−yyd−1 dy ≤ c′(d)C′′,

thus concluding the proof of (6.8). �

Let us now come back to the heat kernel estimate of Proposition 5.3. We know that td/2P
ξ
x(Yt = y) is bounded

from above uniformly as t ≥ 1, x, y ∈ ξ ∩ C∗∞ and |x| ≤ t , for P-a.a. ξ . Since w(y) ≥ r(0) = 1 and qt (x, y) =
P

ξ
x(Yt = y)/w(y), this implies that there exists a (finite) positive constant A=A(ξ) (that we take larger than 1) such

that

sup
t≥|x|∨1

sup
y∈ξ∩C∗∞

td/2qt (x, y)≤A ∀x ∈ ξ ∩ C∞∗ . (6.10)

Proposition 6.3. Let t (x) = |x| ∨ e and set T (x) = t (x) log t (x) ∨ c2

dD
, where the positive constant c = c(ξ) is the

same appearing in (4.33) of Lemma 4.6 with n= p = 1. Then for P-a.a. ξ there exists a constant C0(ξ)≥ 1 such that

M(x, t)≤C0(ξ)
√

t ∀x ∈ ξ ∩ C∗∞,∀t ≥ T (x). (6.11)

Proof. We will follow [5], Proposition 3.4. Since C0(ξ) ≥ 1, we can assume that M(x, t) ≥√t otherwise we have
nothing to prove. In this case, since t ≥ T (x)≥ |x|, by (6.6) and (6.9) we can estimate

M(x, t)d ≥ exp
{−1−C1(ξ)+Q(x, t)

}
. (6.12)

We will use this key lower bound at the end.
Following [5], we define L(t) = 1

d
(Q(x, t) + logA− d

2 log t) (recall (6.10)). Note that L(t) ≥ 0 on t ≥ t (x) by
(6.10). Then, we define

t0 :=
{

1 if L(t)≥ 0 on
(
0, t (x)

]
,

sup
{
t ∈ (

0, t (x)
]
: L(t) < 0

}
otherwise.

(6.13)

Note that in the second case, it must be L(t0)= 0, i.e. Q(x, t0)=− logA+ d
2 log t0.

We claim that M(x, t0) ≤√dDT (x). To this aim, let us first assume that L(t) ≥ 0 for all t > 0. Then t0 = 1 and
from the definition of T (x) and Lemma 4.6 we deduce that

M(x, t0)=Ex,ξ

(
d̄
(
x,Y c.t.

1

))=Ex,ξ

[
Ex,ξ

(
d̄
(
x,Y d.t.

N1

)|N1
)]≤ cE(N1)= c ≤√

dDT (x),

where (Nt )t≥0 is a Poisson process of parameter 1 independent from the discrete-time restricted random walk and were
“c.t.” and “d.t.” mean continuous-time and discrete-time, respectively (to avoid ambiguity). Let us now assume that
L(t) < 0 for some t (the second case of (6.13)). Since L(t)≥ 0 for t ≥ t (x) as already observed, it must be t0 ≤ t (x).
By (6.5) in Lemma 6.1 and Schwarz’ inequality, M(x, t0) can be bounded from above by

√
t0D(

∫ t0
0 Q′(x, s)ds)1/2.

By continuity at both endpoints and using that L(t0)= 0, this last expression is bounded from above by

√
t0D

(
d

2
log t0 − logA− logw(x)

)1/2

≤√
t0Dd log t0 ≤

√
DdT (x) (6.14)

(recall that A≥ 1 and w(x)≥ r(0)= 1). This concludes the proof of our claim.
Since Q′(x, t)= dL′(t)− d/(2t) and using (6.5), by the same computations as in [5] we get for all t ≥ t0

M(x, t)−M(x, t0)≤
√

dD

∫ t

t0

(
1

2s
+L′(s)

)1/2

ds ≤√2dDt +L(t)
√

dDt. (6.15)
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Using now the bound M(x, t0)≤√dDT (x) and t ≥ T (x) we conclude that

M(x, t)≤√
dDT (x)+√2dDt +L(t)

√
dDt ≤ (

1+√2
)√

dDt +L(t)
√

dDt. (6.16)

Conversely, because
√

t ≤M(x, t), we can apply (6.12) to find that

M(x, t)≥C2(ξ)eL(t)
√

t (6.17)

for some positive constant C2 depending on ξ . Combining these last two Eqs (6.16), (6.17), and eliminating the
common

√
t , we see that

eL(t) ≤ [√
dD/C2(ξ)

](
1+√2+L(t)

)
. (6.18)

Since ey ≥ 1+y+ 1
2y2 for all y ≥ 0, the above formula implies that L(t)2 ≤ a+bL(t) for suitable constants a = a(ξ),

b= b(ξ). This last bound implies that L(t)≤ C3(ξ). Coming back to (6.16) we get (6.11). �

6.1. Proof of (4.5)

We have now all the tools to prove (4.5). We take K,T0 satisfying Corollary 4.3 and we define bn = nγ with γ ∈
(1,2). If t ≥ bn with n large enough, then t ≥ T (x) for all x ∈ ξ ∩ C∗∞ such that |x|∞ ≤ n. In particular, applying
Proposition 6.3 we conclude that for P-a.a. ξ ,

lim sup
n↑∞

max
x∈ξ∩C∗∞:
|x|∞≤n

sup
t≥bn

Ex,ξ [d̄(Yt , x)]√
t

<∞. (6.19)

We now apply Corollary 4.3, to estimate

|Yt − x|√
t

≤ κn−γ /2[1+ log(1+ n)
]+ κ

d̄(x,Yt )√
t

.

The above bound together with (6.19) trivially implies (4.5). �

7. Sublinearity of the corrector

This section is devoted to the proof of Theorem 3.6.

7.1. Preliminary bounds

We start with a polynomial estimate on the size of the corrector for points within the cluster C∞. Note that we are now
working with the cluster of occupied boxes C∞ and not with the (smaller) cluster of white boxes C∗∞. We will come
back to the latter towards the end of this section.

Lemma 7.1. For θ > d + 1,

lim
n→∞n−θ max

x,y∈ξ∩C∞
|x|∞,|y|∞≤n

∣∣χ(τxξ, y − x)
∣∣= 0, P-a.s. (7.1)

Proof. For any x, y ∈ ξ ∩ C∞ with |x|∞, |y|∞ ≤ n there exists a path x = x0, . . . , xm = y ∈ ξ , with xi and xi+1

belonging to adjacent K-boxes Bi,Bi+1 on C∞. For a fixed λ < ∞, let Eλ,n ⊂ N , denote the event that, for any
x, y ∈ ξ ∩ C∞ with |x|∞, |y|∞ ≤ n, there exists such a path with the additional property that maxi |xi |∞ ≤ λn.
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Note that there exists δ = δ(K) > 0 such that r(xi+1 − xi) ≥ δ for every i (cf. (1.3)). Therefore, using the shift-
covariance property we get

∣∣χ(τxξ, y − x)
∣∣≤ δ−1

m−1∑
i=0

r(xi+1 − xi)
∣∣χ(τxi

ξ, xi+1 − xi)
∣∣. (7.2)

We shall write B ⊂ B(
) when a K-box B is contained in the | · |∞-box in Rd centered at the origin, of size 
. Thus
on Eλ,n we can estimate

Rn(ξ) := max
x,y∈ξ∩C∞
|x|∞,|y|∞≤n

∣∣χ(τxξ, y − x)
∣∣≤ δ−1

∑
B⊂B(λn)

∑
x∈ξ∩B

∑
y∈ξ

r(y − x)
∣∣χ(τxξ, y − x)

∣∣
= δ−1

∑
x∈ξ :

|x|∞≤λn

∑
y∈ξ

r(y − x)
∣∣χ(τxξ, y − x)

∣∣= δ−1
∑
x∈ξ :

|x|∞≤λn

g(τxξ), (7.3)

where the function g : N0 →[0,∞) is defined as g(ξ)=∑
z∈ξ r(z)|χ(ξ, z)|. Thus,

P
[

Rn1{Eλ,n} ≥ nθ
]≤ n−θE[Rn;Eλ,n] ≤ δ−1n−θE

[ ∑
x∈ξ :

|x|∞≤λn

g(τxξ)

]
. (7.4)

Applying now the Campbell identity (2.1), with the notation (3.1) we can write the last expectation as

ρ(2λn)dE0
(
g(ξ)

)≤ ρ(2λn)dE0
(
w(0)

)1/2‖χ‖L2(μ) <∞. (7.5)

Using this bound in (7.4) we obtain P[Rn1{Eλ,n} ≥ nθ ] ≤ Cnd−θ , for some finite constant C = C(λ,ρ, δ). In conclu-
sion,

P
[

Rn ≥ nθ
]≤ P

[
Rn1{Eλ,n} ≥ nθ

]+ P
[
Ec

λ,n

]≤ Cnd−θ + P
[
Ec

λ,n

]
.

If λ is sufficiently large, the same argument used in the proof of Lemma 5.2 shows that P[Ec
λ,n] is exponentially

decaying in n. Taking θ > d + 1, the Borel–Cantelli lemma implies that n−θ Rn → 0, P-almost surely. �

Recall the definition of the positive exponent α (cf. (1.3)). The next lemma extends the estimate of Lemma 7.1 to
the case where y /∈ C∞. For α ≤ 1 this remains polynomial. When α > 1 the bound is of the form exp((logn)α). To
unify the notation we use the function

uγ,c(t)= tγ exp
[
c
(
log(t + 1)

)α]
introduced in Lemma 4.5.

Lemma 7.2. There exist constants γ, c such that for P-a.a. ξ and for all n≥ n0(ξ),

max
x∈ξ∩C∞,|x|≤n

y∈ξ,|y|≤n

∣∣χ(τxξ, y − x)
∣∣≤ uγ,c(n). (7.6)

Proof. As in the proof of Proposition 7.1, we get

E

[ ∑
x∈ξ :|x|≤n

∑
y∈ξ

∣∣χ(τxξ, y − x)
∣∣r(y − x)

]
≤ cnd (7.7)
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for some constant c. From (7.7) and Markov’s inequality, the Borel–Cantelli lemma shows that P-a.s. for all n large
enough:

max
x∈ξ :|x|≤n

∑
y∈ξ

∣∣χ(τxξ, y − x)
∣∣r(y − x)≤ nd+2. (7.8)

Now, take x, y ∈ ξ such that |x|, |y| ≤ n with n large. If x ∈ ξ ∩C∞, from Lemma 7.1, |χ(τxξ, z− x)| ≤ nθ for all z ∈
ξ ∩C∞, |z| ≤ n. However, a.s. there exists z ∈ ξ ∩C∞, |z| ≤ n, such that |z− y| ≤C logn (the distance of y from C∞
cannot be larger than C logn). Thus, the claim follows by writing |χ(τxξ, y − x)| ≤ |χ(τxξ, z− x)| + |χ(τzξ, y − z)|
and using (7.8) on the obvious bound∣∣χ(τzξ, y − z)

∣∣≤ sup
x∈ξ :|x|≤n

e(C logn)α
∑
y′∈ξ

∣∣χ(
τxξ, y′ − x

)∣∣r(y′ − x
)
.

�

7.2. Sublinearity along a given direction in C∞

Let us fix a coordinate vector e (i.e. e ∈ Zd , |e|1 = 1). Recall the notation Bz = B(z), for the K-box at z ∈ Zd .
Omitting the dependence on e, we set n0(ξ)= 0 and define inductively

ni+1(ξ)=min
{
j > ni(ξ): Bje ⊂ C∞

}
.

By property (A) in Section 2.3.1, for K large, the above maps are well-defined P-a.s.
We introduce the space Ω = {ξ : B0 ⊂ C∞(ξ)}×BN

0 . A generic element of this space is denoted by ω= (ξ, (vi : i ∈
N)). On the space Ω we define a probability measure P∗ (depending on the coordinate vector e) as follows: the
marginal distribution of ξ is given by P(·|B0 ⊂ C∞) while, conditioned to ξ , the sequence (vi : i ∈ N) is determined
by choosing independently for each index i a point wi with uniform probability in Bni(ξ)e ∩ ξ and then setting

vi =wi − ni(ξ)Ke, (7.9)

so that vi ∈ B0. Trivially, by (7.9), knowing ω = (ξ, (vi : i ∈ N)) the points wi are univocally determined, hence we
write wi = wi(ω). Below we write E∗ for the expectation w.r.t. P∗. We point out that the space Ω is an example of
the bridge spaces mentioned in the Introduction. The following key result is a consequence of assumption (H2):

Lemma 7.3. Consider the map T :Ω →Ω defined as

T
(
ξ, (vi : i ∈N)

)= (
τn1(ξ)Keξ, (vi+1: i ∈N)

)
.

Then P∗ is ergodic and stationary w.r.t. the transformation T .

Proof. Consider the space Θ with probability measure P := P (K,e) involved in assumption (H2). Define the subset
W ⊂Θ as

W := {(
ξ, (ai : i ∈ Z)

) ∈Θ: B0 ⊂ C∞
}
.

Then P(W )= P(B0 ⊂ C∞) > 0.
Recall the transformation τ :Θ → Θ introduced in assumption (H2). It is invertible and ergodic w.r.t. P (by as-

sumption (H2)). It is simple to check that it is measure preserving (using the stationarity of P).
Let F :Θ →N∪ {∞} be defined as

F(ϑ)=min
{
k ≥ 1: τ kϑ ∈ W

}= n1(ξ), ϑ = (
ξ, (ai : i ∈ Z)

) ∈Θ

and set S(ϑ) = τF(ϑ)(ϑ) if F(ϑ) <∞ (define S arbitrarily on the event {F(ϑ) =∞}, having zero P -probability).
By the above observations all the conditions of Lemma 3.3 in [7] are satisfied. In particular, we get that S (restricted
to W ) is a measure preserving and ergodic transformation with respect to P(·|W ).
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Consider now the map π : W →Ω mapping (ξ, (ai : i ∈ Z)) to (ξ, (ani(ξ): i ∈N)). Note that

T
(
π(ϑ)

)= π
(

S(ϑ)
) ∀ϑ ∈ W . (7.10)

Take A⊂Ω measurable such that T (A)= A. Due to (7.10), S(π−1(A))= π−1(A) and therefore P(π−1(A)|W ) ∈
{0,1} by the ergodicity of S w.r.t. P(·|W ). Since P∗(A)= P(π−1(A)|W ), we conclude that P∗(A) ∈ {0,1}. �

We define the vector function χ̃ :Ω ×Rd →Rd as

χ̃(ω, x)= χ(τv0ξ, x − v0), ω= (
ξ, (vi : i ∈N)

)
. (7.11)

Note that from the shift-covariance property of χ (cf. Lemma 3.5)

χ̃(ω, x)− χ̃ (ω, y)= χ(τyξ, x − y) ∀ξ ∈ N ,∀x, y ∈ ξ. (7.12)

Lemma 7.4. E∗(|χ̃ (ω,w1)|) <∞ and E∗(χ̃(ω,w1))= 0, where w1 is defined as in (7.9).

Proof. Let us first show that E∗(|χ̃ (ω,w1)|) <∞. For ξ ∈ {B0 ⊂ C∞}, we define d(ξ) as the length of the minimal
path in the cluster C∞(ξ)⊂ Zd from 0 to n1(ξ)e. Note that d(ξ)≥ n1(ξ). Then, setting gk(ξ)=∑

y∈ξ r(y)|χ(ξ, y)|k ,
by the same arguments leading to (7.4) and applying twice Schwarz’ inequality, we get

E∗
(∣∣χ̃ (ω,w1)

∣∣) = ∞∑
j=1

E∗
(∣∣χ̃ (ω,w1)

∣∣;d(ξ)= j
)

≤ 1

δ

∞∑
j=1

E

[ ∑
x∈ξ :|x|∞≤Kj

g1(τxξ);d(ξ)= j

∣∣∣ B0 ⊂ C∞
]

≤ 1

δP(B0 ⊂ C∞)1/2

×
∞∑

j=1

P
[
d(ξ)= j | B0 ⊂ C∞

]1/2
E

[ ∑
x∈ξ :|x|∞≤Kj

g0(τxξ)

]1/4

E

[ ∑
x∈ξ :|x|∞≤Kj

g2(τxξ)

]1/4

.

Using the Campbell identity as in (7.5), we get that the last two expectations are bounded by C(K,d)jd‖χ‖L2(μ) and
C(K,d)jd , respectively. Finally, due to property (A) in Section 2.3.1 and standard facts in percolation theory (see for
example Lemma 4.4 in [7]), P[d(ξ) ≥ j | B0 ⊂ C∞] ≤ e−aj for some positive constant a = a(K,d). Collecting the
above bounds we get that E∗(|χ̃ (ω,w1)|) <∞.

We know that χ is the L2(μ)-limit of a sequence χn of functions of the form χn(ξ, x)=Gn(τxξ)−Gn(ξ), where
Gn : N0 →Rd is bounded and measurable. Since (1,1)μ <∞, we derive that χn ∈L1(μ) and that ‖χn−χ‖L1(μ) goes
to zero as n→∞. Repeating the above computations with χ̃ replaced by χ̃ − χ̃n we conclude that E∗(|χ̃ (ω,w1)−
χ̃n(ω,w1)|) goes to zero as n→∞. In particular, limn→∞E∗(χ̃n(ω,w1)) = E∗(χ̃(ω,w1)). On the other hand, we
can write

E∗
(
χ̃n(ω,w1)

)= E∗
(
χn(τv0ξ,w1 − v0)

)= E∗
(
Gn(τw1ξ)

)−E∗
(
Gn(τv0ξ)

)
.

Setting ω= (ξ, (vi : i ∈N)) and Fn(ω)=Gn(τv0ξ), we can write Gn(τw1ξ)= Fn(T ω). Hence, the conclusion follows
from Lemma 7.3. �

Lemma 7.5. With the notation of Eq. (7.9), one has

lim
k→∞

χ̃(ω,wk)

k
= 0, P∗-a.s. (7.13)
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Proof. Let ω= (ξ, (vi : i ∈N)). Since v0 =w0, it holds χ̃ (ω,w0)= χ(τv0ξ,0)= 0. Hence, we can write χ̃ (ω,wk)=∑k−1
j=0(χ̃(ω,wj+1)− χ̃(ω,wj )). Applying now (7.12), we get χ̃ (ω,wk)=∑k−1

j=0 χ(τwj
ξ,wj+1 −wj). On the other

hand, since T jω= (τnj (ξ)Keξ, (vj+i : i ∈N)), we can write

χ(τwj
ξ,wj+1 −wj)

= χ
(
τvj

(τnj (ξ)Keξ), vj+1 + n1(τnj (ξ)Keξ)Ke− vj

)= χ̃
(

T jω,w1
(

T jω
))

. (7.14)

Hence, χ̃(ω,wk)=∑k−1
j=0 χ̃(T jω,w1(T jω)). The conclusion follows from the ergodicity stated in Lemma 7.3 and

the results of Lemma 7.4. �

Next, we state a simple corollary of the above lemma, which is the starting point of our further investigations. In
order to stress the dependence of the map ni(·) from the vector e we write n

(e)
i . Below, N+ = {1,2, . . .}.

Corollary 7.6. Given a vector e ∈ Zd with |e|1 = 1, for P(· | B0 ⊂ C∞)-a.a. ξ there exists a random sequence of
points (w

(e)
k : k ∈N+) such that w

(e)
k ∈ ξ ∩B(n

(e)
k (ξ)e), k ∈N+ and

lim
k→∞ max

x0∈ξ∩B0

|χ(τx0ξ,w
(e)
k − x0)|

k
= 0. (7.15)

7.3. Sublinearity on average in C∞

In this section we derive from Corollary 7.6 the sublinearity on average of the corrector field on ξ ∩ C∞. A similar
problem is attacked by Berger and Biskup in Section 5.2 in [7] for the random walk on the supercritical percolation
cluster. Their method cannot be applied directly to our context, and the adaptation of the geometric construction in [7]
would lead to a tremendous technical effort. We propose here a different construction, based on a two-scale argument,
which allows us to give a self-contained treatment of the problem. The two scales refer to the fact that below the
cluster C∞ is considered at scale K (i.e. CK∞) and at scale mK (i.e. CmK∞ ), where the key point is that the cluster CmK∞
can be made arbitrarily dense in Zd by taking m large. Our target is to prove the following result:

Proposition 7.7. For each ε0 > 0, for P(· | B0 ⊂ C∞)-a.a. ξ ∈ N and for all x0 ∈ ξ ∩B0, it holds

lim
n→∞

1

nd

∑
x∈ξ∩C∞:|x|∞≤n

I
{∣∣χ(τx0ξ, x − x0)

∣∣≥ ε0n
}= 0. (7.16)

For the reader’s convenience, we isolate from the proof some technical lemmata.
Call B := {e ∈ Zd : |e|1 = 1} and Λs := [−s, s]d . Recall the definition of the random field σK . In order to stress

the dependence on K , we write here BK
x , CK∞ and CK∞.

Given positive numbers C,ε and m ∈ N+, we consider the Borel subsets AC,ε,m and AC,m in N defined as the
family of ξ ∈ N satisfying properties (P1) and (P2), respectively:

(P1) For all e ∈ B and N ∈ N+, if j ∈ N+ satisfies BmK
je ⊂ CmK∞ ∩ΛmKN (i.e. je ∈ CmK∞ ∩ΛN ) then there exists a

point x ∈ BmK
je ∩ ξ such that

max
x0∈ξ∩BmK

0

∣∣χ(τx0ξ, x − x0)
∣∣≤ C + εN.

(P2) For any x, x′ ∈ ξ ∩BmK
0 one has∣∣χ(

τxξ, x′ − x
)∣∣≤ C.
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Let us fix ε, δ ∈ (0,1). Thanks to property (A) (see Section 2.3.1), we can fix once for all m so large that

P
(
0 ∈ CmK∞

)≥ 1− δ. (7.17)

We have stated Corollary 7.6 working with the K-partition of Rd , but trivially the conclusion remains valid if we
work with the mK-partition (recall property (A)). In particular, having fixed ε and m, we can find C large enough that
P(AC,ε,m | 0 ∈ CmK∞ )≥ 1− δ. Taking C large we also have P(AC,m | 0 ∈ CmK∞ )≥ 1− δ. In particular,

P
(

AC,ε,m ∩ AC,m | 0 ∈ CmK∞
)≥ 1− 2δ. (7.18)

Given an integer ν with 1≤ ν ≤ d , we call

Λν
n :=Λn ∩

{
x ∈Rd : xi = 0 ∀i > ν

}
.

Lemma 7.8. For P-a.a. ξ there exists n0 = n0(ξ), depending also on C,m,ε, δ, such that for all ν: 1 ≤ ν ≤ d and
for all n≥ n0 one has

1

|Λν
n ∩Zd |

∑
x∈Λν

n∩CmK∞

I(τmKxξ ∈ AC,ε,m ∩ AC,m)≥ 1− 3δ. (7.19)

Proof. By the ergodicity assumption (H2) and the bounds (7.17) and (7.18), we have P-a.s. that

lim
n→∞

1

|Λν
n ∩Zd |

∑
x∈Λν

n∩CmK∞

I(τmKxξ ∈ AC,ε,m ∩ AC,m)

= lim
n→∞

1

|Λν
n ∩Zd |

∑
x∈Λν

n∩Zd

I
(
τmKxξ ∈ AC,ε,m ∩ AC,m ∩

{
0 ∈CmK∞

})
= P

(
AC,ε,m ∩ AC,m | 0 ∈ CmK∞

)
P
(
0 ∈CmK∞

)≥ (1− 2δ)(1− δ) > 1− 3δ. �

Suppose now that ξ satisfies (7.19) for all n≥ n0(ξ) (below we take n≥ n0(ξ)). Call

Gν
n :=

{
x ∈Λν

n ∩CmK∞ : τmKxξ ∈ AC,ε,m ∩ AC,m

}⊂ Zd .

By (7.19), one has∣∣Gν
n

∣∣/∣∣Λν
n ∩Zd

∣∣≥ 1− 3δ. (7.20)

Given a ∈ Zd and 1≤ ν ≤ d , we set aν = (a1, a2, . . . , aν,0, . . . ,0). Then we define

Gν
n =

{
x ∈Λn ∩Zd : xν ∈Gν

n

}
,

Gn =
{
x ∈Λn ∩Zd : xν ∈Gν

n ∀ν: 1≤ ν ≤ d
}
.

Trivially, Gn =⋂d
ν=1 Gν

n. Moreover, by (7.20) it holds |Gν
n|/|Λn∩Zd | ≥ 1−3δ and therefore, applying De Morgan’s

law,

|Gn|/
∣∣Λn ∩Zd

∣∣≥ 1− 3dδ. (7.21)

Lemma 7.9. Suppose that ξ satisfies (7.19) and take n ≥ n0(ξ). If x ∈ ξ ∩ BmK
a with a ∈ Gn, then there exists

x(1) ∈ ξ ∩BmK
a1 such that |χ(τxξ, x(1) − x)| ≤ Cd + εdn.
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Proof. Since a ∈Gd
n and ad−1 ∈Gd−1

n ⊂ CmK∞ , by property (P1) applied to τmKaξ with N = n we know that there
exists x(d−1) ∈ ξ ∩BmK

ad−1 such that∣∣χ(
τxξ, x(d−1) − x

)∣∣≤C + εn.

Repeating the above argument, we obtain that there exist points x(i), 2≤ i ≤ d , such that: x(d) = x, x(i) ∈ ∩BmK
ai and

|χ(τx(i) ξ, x(i−1) − x(i))| ≤C + εn. In particular, by the shift covariance property,

∣∣χ(
τxξ, x(1) − x

)∣∣≤ d∑
i=2

∣∣χ(
τx(i) ξ, x(i−1) − x(i)

)∣∣≤ dC + dεn.
�

Lemma 7.10. Suppose that ξ satisfies (7.19) and take n ≥ n0(ξ). Then, for all x, y ∈ ξ ∩ (
⋃

a∈Gn
BKm

a ), it holds
|χ(τxξ, y − x)| ≤ 4dC + 3dεn.

Proof. Suppose that x ∈ ξ ∩ BmK
a with a ∈Gn and y ∈ ξ ∩ BmK

b with b ∈Gn. Take x(1), y(1) as in Lemma 7.9. By
shift covariance,

χ(τxξ, y − x) = χ
(
τxξ, x(1) − x

)+ χ
(
τx(1) ξ, y − x(1)

)
= χ

(
τxξ, x(1) − x

)+ χ
(
τx(1) ξ, y(1) − x(1)

)+ χ
(
τy(1) ξ, y − y(1)

)
.

Again by the shift covariance (see (3.6)), it holds χ(τy(1) ξ, y − y(1)) = −χ(τyξ, y(1) − y). Hence, by the bound in

Lemma 7.9 and the analogous estimate for y and y(1),∣∣χ(τxξ, y − x)
∣∣≤ 2dC + 2dεn+ ∣∣χ(

τx(1) ξ, y(1) − x(1)
)∣∣. (7.22)

On the other hand, a1 ∈G1
n and b1 ∈CmK∞ . By property (P1) applied to τmKa1ξ , we conclude that there exists ȳ ∈ BmK

b1

such that |χ(τx(1) ξ, ȳ− x(1))| ≤ C+ εn, while by property (P2) applied to τmKb1ξ we get that |χ(τȳξ, y(1)− ȳ)| ≤ C.
The thesis then follows observing that the shift covariance implies the identity

χ
(
τx(1) ξ, y(1) − x(1)

)= χ
(
τx(1) ξ, ȳ − x(1)

)+ χ
(
τȳξ, y(1) − ȳ

)
. �

We are finally able to conclude:

Proof of Proposition 7.7. We need to show that, given ε0, δ0 > 0, for P(· | B0 ⊂ C∞)-a.a. ξ ∈ N and for all x0 ∈
ξ ∩B0,

lim
s→∞

1

|Λs ∩Zd |
∑

x∈ξ∩C∞:
|x|≤s

I
{∣∣χ(τx0ξ, x − x0)

∣∣≥ ε0s
}≤ δ0. (7.23)

Fix L such that

K−dE
(
ξ
(
BK

0

); ξ(
BK

0

)≥ L
)≤ δ0/2. (7.24)

Take ε := ε0/(8d) and take δ > 0 small enough that

δ <
P(0 ∈ CK∞)

6d
∧ δ0K

d

6dL
. (7.25)

Set r := �s/K� and n := �r/m�. Then choose first m and after that C as in the above construction, i.e. choose m large
enough to assure (7.17), after that choose C large enough to assure (7.18). Finally, take s large enough that r ≥mn0(ξ),
where n0(ξ) is as in Lemma 7.8 (this is meaningfull for P-a.a. ξ , and in particular for P(· | B0 ⊂ C∞)-a.a. ξ ).
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By ergodicity, |Λ1
r |−1 ∑

j∈Λ1
r
I(je1 ∈ CK∞) converges to p := P(0 ∈ CK∞) as r →∞. In particular, for r large

enough (we write r ≥ r1(ξ)) the above average is larger than p/2. Hence, at the cost of losing a set of zero P-
probability and taking r ≥ r1(ξ)∨mn0(ξ), we can assume that∣∣{j ∈Λ1

r , je1 ∈ CK∞
}∣∣≥ (2r + 1)p/2. (7.26)

Call π the projection of Zd on its first coordinate axis Ze1, namely π(x)= x1 = (x1,0, . . . ,0). Note that π(Gn)⊂Gn

and, due to (7.21),∣∣π(Gn)
∣∣≥ |Gn|/(2n+ 1)d−1 ≥ (1− 3dδ)(2n+ 1).

In particular,∣∣{j ∈Λ1
r : �j/m�e1 ∈Gn

}∣∣≥ (1− 3dδ)(2n+ 1)m≥ (1− 3dδ)(2r + 1). (7.27)

Since by (7.25)

(1− 3dδ)(2r + 1)+ (2r + 1)p/2= (2r + 1)(1− 3dδ+ p/2) > 2r + 1,

we get that the set in the l.h.s. of (7.26) and the set in the l.h.s. of (7.27) must intersect. Hence, there exists j ∈Λ1
r

such that BK
je1
⊂ CK∞ and BK

je1
⊂ BmK

a for some a ∈Gn.

Thanks to Corollary 7.6 on scale K , P(· | B0 ⊂ C∞)-a.s. there exists x ∈ ξ in the above box BK
je1

such that∣∣χ(τx0ξ, x − x0)
∣∣≤ C(ξ)+ εr ∀x0 ∈ ξ ∩B0. (7.28)

Note that x ∈ ξ ∩ (
⋃

a∈Gn
BmK

a ). For all other points y ∈ ξ ∩ (
⋃

a∈Gn
BmK

a ), by (7.28), Lemma 7.10 and the choice
ε = ε0/8d we have∣∣χ(τx0ξ, y − x0)

∣∣ ≤ ∣∣χ(τx0ξ, x − x0)
∣∣+ ∣∣χ(τxξ, y − x)

∣∣≤ (
C(ξ)+ εr

)+ (
4dC + 3drm−1ε

)
≤ C′(ξ)+ 4drε ≤ C′(ξ)+ ε0r/2≤C′(ξ)+ ε0s/2. (7.29)

In particular, for s large enough (7.29) is smaller than ε0s.
Then we can bound∑

y∈ξ∩CK∞:
|y|∞≤s

I
{∣∣χ(τx0ξ, y − x0)

∣∣≥ ε0s
}

≤
∑

z∈Λr∩Zd

ξ
(
BK

z

)
I
(
ξ
(
BK

z

)≥ L
)+ ∑

a∈Λn∩Zd :
a /∈Gn

∑
z∈Zd :

BK
z ⊂BmK

a

ξ
(
BK

z

)
I
(
ξ
(
BK

z

)≤ L
)

=: ∣∣Λs ∩Zd
∣∣(A1(s)+A2(s)

)
. (7.30)

Using (7.24) and the ergodicity in assumption (H2), at the cost of removing a set of zero P-probability, we have

lim
s→∞A1(s)=K−dE

(
ξ
(
BK

0

); ξ(
BK

0

)≥ L
)≤ δ0/2. (7.31)

On the other hand,

A2(s)≤ 1

|Λs ∩Zd |
∑

a∈Λn∩Zd :
a /∈Gn

∑
z∈Zd :

BK
z ⊂BmK

a

L≤ Lmd

|Λs ∩Zd |
(∣∣Λn ∩Zd

∣∣− |Gn|
)
.

Since s ∼ nKm, by (7.21) we have that lims→∞A2(s) ≤ LK−d3dδ, which is smaller than δ0/2 by our choice of δ

(cf. (7.25)). Coming back to (7.30), we get the thesis. �
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7.4. Sublinearity on average in C∗∞

We now need to come back to the set of good points ξ ∩ C∗∞.

Lemma 7.11. If A ⊂ N is a measurable set such that P(A | B0 ⊂ C∞)= 1, then P(A | B0 ⊂ C∗∞)= 1.

Proof. Since C∗∞ ⊂ C∞, the set B := {B0 ⊂ C∗∞} \A is contained by the set D := {B0 ⊂ C∞} \A. Therefore we have
the following sequence of implications

P
(

A | B0 ⊂ C∗∞
)
< 1 ⇒ P

(
B | B0 ⊂ C∗∞

)
> 0 ⇒ P(B) > 0 ⇒ P(D) > 0

⇒ P(D | B0 ⊂ C∞) > 0 ⇒ P(A | B0 ⊂ C∞) < 1, (7.32)

showing the contrapositive. �

From Proposition 7.7 and Lemma 7.11 we easily obtain the following

Corollary 7.12. Given ε > 0, for P(· | B0 ⊂ C∗∞)-a.a. ξ ∈ N and for all x0 ∈ ξ ∩B0,

lim
n→∞

1

nd

∑
x∈ξ∩C∗∞:|x|≤n

I
{∣∣χ(τx0ξ, x − x0)

∣∣≥ εn
}= 0. (7.33)

7.5. Strong sublinearity in C∗∞

Lemma 7.13. For each ε > 0, for P(· | B0 ⊂ C∗∞)-a.a. ξ and for all x0 ∈ ξ ∩B0,

lim
n→∞

1

n
max

x∈ξ∩C∗∞:
|x|∞≤n

∣∣χ(τx0ξ, x − x0)
∣∣= 0. (7.34)

Proof. Let us define

Rn(ξ)= max
x0∈ξ∩B0

max
z∈ξ∩C∗∞:
|z|∞≤n

∣∣χ(τx0ξ, z− x0)
∣∣. (7.35)

Due to Lemma 7.1 and Lemma 7.11, for θ > d + 1

lim
n→∞n−θRn = 0, P

(· | B0 ⊂ C∗∞
)
-a.s. (7.36)

Following an idea of Y. Peres, we only need to prove a recursive bound of the form: for each ε, δ > 0, there exists an
a.s. finite random variable n0 = n0(ξ, ε, δ) such that

Rn ≤ εn+ δR5n, n≥ n0. (7.37)

From (7.37), using the input (7.36), it is easy to conclude; see the explanation after [9], Lemma 5.1.
We turn to the proof of (7.37). We take ξ ∈ N such that {B0 ⊂ C∗∞} and satisfying (7.36). Moreover, assume ξ and

bn = o(n2) satisfy (4.5) and (4.4) of Proposition 4.1. Take x0, z such that Rn(ξ) = |χ(τx0ξ, z − x0)|, x0 ∈ ξ ∩ B0,
z ∈ ξ ∩ C∗∞, |z|∞ ≤ n. Similarly to [9], take t = t (n) ≥ b4n ∨ n (we will specify the function t (n) at the end).
Fix positive constants C1,C2 such that the expressions maxx supt in (4.5) and (4.4) are bounded by C1 and C2,
respectively, if n is large enough, that is n≥ n∗(ξ) for a suitable constant n∗(ξ). Take n≥K ∨ n∗(ξ). Finally, define
the stopping time

Sn := inf
{
t ≥ 0: |Yt − z|∞ ≥ 2n

}
.
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Due to Corollary 4.10 and the Optional Stopping Theorem we can write

Ez,ξ

[
χ(τzξ,Yt∧Sn − z)+ Yt∧Sn − z

]= χ(τzξ,0)= 0. (7.38)

By the shift-covariance property we can write

χ(τx0ξ, z− x0)= χ(τx0ξ,Yt∧Sn − x0)− χ(τzξ,Yt∧Sn − z). (7.39)

Combining (7.38) and (7.39) we get

χ(τx0ξ, z− x0)=Ez,ξ

[
χ(τx0ξ,Yt∧Sn − x0)+ Yt∧Sn − z

]
, (7.40)

thus implying that Rn(ξ)≤Ez,ξ [|F(ξ,Yt∧Sn)|] where

F(ξ,Yt∧Sn) := χ(τx0ξ,Yt∧Sn − x0)+ Yt∧Sn − z. (7.41)

Let us introduce the event A= {Sn < t, |YSn − z|∞ > 4n}. Using (7.36) we can bound

Ez,ξ

[∣∣F(ξ,Yt∧Sn)
∣∣;A] ≤ ∞∑

k=4

Ez,ξ

[∣∣F(ξ,Yt∧Sn)
∣∣;A; |YSn − z|∞ ∈ [

kn, (k + 1)n
)]

≤
∞∑

k=4

{
C(ξ)kθnθ + (k + 1)n

}
Pz,ξ

[|YSn − z|∞ ∈ [
kn, (k + 1)n

)
, Sn < t

]
≤ C′nθ

∞∑
k=4

kθPz,ξ

[|YSn − z|∞ ∈ [
kn, (k+ 1)n

)
, Sn < t

]
. (7.42)

Recall that Yt is the continuous-time version of the discrete time walk n �→XTn . If |YSn − z|∞ ≥ kn, then up to time
t > Sn there must have been a jump of size at least (k − 2)n starting from some point x such that |x|∞ ≤ 3n. Taking
t = ϑn2, with ϑ > 0, and using Lemma 4.7, we can estimate for any k ≥ 4, p ≥ 1:

Pz,ξ

[|YSn − z|∞ ∈ [
kn, (k + 1)n

)
, Sn < t

]
≤

∞∑
j=1

P(Nt = j)Pz,ξ

[
max

1≤i≤j
|XTi

−XTi−1 |∞ ≥ (k − 2)n; |XTi−1 |∞ ≤ 3n
]

≤
∞∑

j=1

P(Nt = j)j
(
(k − 2)n

)−p max
1≤i≤j

Ez,ξ

[|XTi
−XTi−1 |p∞; |XTi−1 |∞ ≤ 3n

]
≤ ϑn2((k − 2)n

)−p max
|x|∞≤3n

Ex,ξ

[|XT1 − x|p∞
]

≤ ϑCk−pn−p+2(logn)p,

where C = C(ξ) is a constant. Coming back to (7.42) and taking p > 2+ θ , we get

Ez,ξ

[∣∣F(ξ,Yt∧Sn)
∣∣;A]≤ ϑCnθ+2−p(logn)p

∞∑
k=4

kθ−p ≤ (ε/2)n (7.43)

for all n large enough.
The above expectation, coming from the presence of long jumps, does not appear in [9]. On the other hand, using

Proposition 4.1 and taking t = ϑn2 with ϑ > 0, the control of Ez,ξ [|F(ξ,Yt∧Sn)|;Ac] can be obtained by the same
computations in the proof of Lemma 5.1 in [9]. As a final result, one gets (7.37). �
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7.6. Proof of Theorem 3.6

We now have most of the tools needed to prove the sublinearity of the corrector field stated in Theorem 3.6. First, we
need to link the Palm distribution to the probability measures used above. To this end we introduce a bridge probability
space. We call Q0 the distribution on N0 of the point process ξ defined in this way: pick a configuration ξ̃ ∈ N with
law P(· | ξ̃ (B0)≥ 1), pick a point v0 ∈ ξ̃ ∩B0 with uniform probability, and set ξ = τv0 ξ̃ .

Lemma 7.14. Let A ⊂ N0 be a measurable subset. Then Q0(A)= 0,1 if and only if P0(A)= 0,1, respectively.

Proof. By taking the complements, it is enough to prove that Q0(A) = 1 if and only if P0(A) = 1. Consider the
measurable set B := {ξ ∈ N : τxξ ∈ A ∀x ∈ ξ ∩B0}. By the Campbell identity (2.1) with f (x, ξ)= I(x ∈ B0; ξ ∈ A}
we have

P0(A) = 1

ρKd

∫
N

P(dξ)

∫
B0

ξ(dx)I(τxξ ∈ A)

≤ 1

ρKd

∫
N

P(dξ)

∫
B0

ξ(dx)1= 1,

which implies that P0(A)= 1 if and only if P(B)= 1.
Similarly, by definition of Q0 we have

Q0(A) = 1

P(ξ(B0)≥ 1)

∫
{ξ :ξ(B0)≥1}

P(dξ)

∫
B0

ξ(dx)I(τxξ ∈ A)

ξ(B0)

≤ 1

P(ξ(B0)≥ 1)

∫
{ξ :ξ(B0)≥1}

P(dξ)

∫
B0

ξ(dx)1

ξ(B0)
= 1,

which implies that Q0(A)= 1 if and only if P(B)= 1. �

Thanks to the above lemma, to prove Theorem 3.6 it suffices to show that for P(· | ξ(B0)≥ 1)-a.a. ξ ,

lim
n→∞

1

n
max

x0∈ξ∩B0
max
x∈ξ :
|x|∞≤n

∣∣χ(τx0ξ, x − x0)
∣∣= 0. (7.44)

The plan of the proof is the following: we first improve Lemma 7.13 by passing from P(· | B0 ⊂ C∗∞) to
P(· | ξ(B0)≥ 1) (see Lemma 7.16); after that we remove the restriction x ∈ C∗∞ which appears in Lemma 7.16 by
applying the Optional Stopping Theorem.

We fix a coordinate vector e and define the map n∗ : N →N+ := {1,2, . . .} as follows:

n∗(ξ)=min
{
n ∈N+: Bne ⊂ C∗∞

}
. (7.45)

By assumption (H1), the map is well defined P-a.s.

Lemma 7.15. Call P the law on N of the point process τn∗(ξ)Keξ , where ξ ∈ N is sampled with probability P(· |
ξ(B0)≥ 1). Then, for any measurable subset A ⊂ N ,

P
(

A | B0 ⊂ C∗∞
)= 1 ⇒ P(A)= 1.

Proof. Given a bounded measurable function f : N →R we can write

EP (f )=
∫

P
(
dξ | ξ(B0)≥ 1

)
f (τn∗(ξ)Keξ)= E[f (τn∗(ξ)Keξ); ξ(B0)≥ 1]

P(ξ(B0)≥ 1)
.
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Moreover,

E
[
f (τn∗(ξ)Keξ); ξ(B0)≥ 1

]
=

∞∑
m=1

E
[
f (τmKeξ); ξ(B0)≥ 1;n∗(ξ)=m

]
=

∞∑
m=1

E
[
f (τmKeξ); ξ(B0)≥ 1;Bke �⊂ C∗∞ ∀k: 1≤ k ≤m− 1,Bme ⊂ C∗∞

]
. (7.46)

Due to the stationarity of P the last expression can be written as

∞∑
m=1

E
[
f (ξ); ξ(B−me)≥ 1;Bke �⊂ C∗∞ ∀k: 1−m≤ k ≤−1;B0 ⊂ C∗∞

]
= E

[
f (ξ)n̂(ξ);B0 ⊂ C∗∞

]
, (7.47)

where we define

n−(ξ)=max
{
j ≤−1: Bje ⊂ C∗∞

}
,

n̂(ξ)= �
{
j : n−(ξ)≤ j ≤−1, ξ(Bje)≥ 1

}
.

Collecting the above observations we get

EP (f )= E[f (ξ)n̂(ξ);B0 ⊂ C∗∞]
P(ξ(B0)≥ 1)

= E
[
f (ξ)n̂(ξ);B0 ⊂ C∗∞ | ξ(B0)≥ 1

]
. (7.48)

This proves that

P(dξ)= n̂(ξ)I
(
B0 ⊂ C∗∞

)
P
(
dξ | ξ(B0)≥ 1

)= n̂(ξ)
I(B0 ⊂ C∗∞)

P(ξ(B0)≥ 1)
P(dξ). (7.49)

Since P is a probability measure it must hold 1 = E[n̂(ξ);B0 ⊂ C∗∞]/P[ξ(B0) ≥ 1]. Take A ⊂ N measurable and
satisfying P(A | B0 ⊂ C∗∞)= 1. This implies that I(ξ ∈ A)I(B0 ⊂ C∗∞)= I(B0 ⊂ C∗∞) P-a.s. In particular, we have

P(A)= E[n̂(ξ)I(B0 ⊂ C∗∞)I(ξ ∈ A)]
P(ξ(B0)≥ 1)

= E[n̂(ξ)I(B0 ⊂ C∗∞)]
P(ξ(B0)≥ 1)

,

while we have already shown that the last member equals 1. �

Recall the definition (7.35) of Rn.

Lemma 7.16. For P(· | ξ(B0)≥ 1)-a.a. ξ , it holds limn→∞Rn/n= 0.

Proof. Recall the definition of the function n∗(ξ) given in (7.45). As a byproduct of Lemma 7.13 and Lemma 7.15,
we get for P(· | ξ(B0)≥ 1)-a.a. ξ that, for any x′ ∈ ξ ∩Bn∗(ξ)e , it holds

lim
n→∞

1

n
max

y∈ξ∩C∗∞
|y−n∗(ξ)Ke|∞≤2n

∣∣χ(
τx′ξ, y − x′

)∣∣= 0 (7.50)

(the above choice of 2n instead of n is due to later applications). On the other hand, by the shift covariance, given
x0 ∈ ξ ∩B0, x ∈ ξ ∩ C∗∞ and x′ ∈ ξ ∩Bn∗(ξ)e , we can write

χ(τx0ξ, x − x0)= χ
(
τx0ξ, x′ − x0

)+ χ
(
τx′ξ, x − x′

)
. (7.51)
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Since, given ξ and x ∈ ξ ∩C∗∞ with |x|∞ ≤ n, it holds |n∗(ξ)Ke− x|∞ ≤ 2n for n large enough, one can apply (7.50)
with y = x. From (7.50) and (7.51) we then obtain

lim
n→∞

1

n
max

x0∈ξ∩B0
max

x∈ξ∩C∗∞
|x|∞≤n

∣∣χ(τx0ξ, x − x0)
∣∣= 0, (7.52)

which corresponds to the thesis. �

Let us finally conclude. Take x0 ∈ B0 ∩ ξ and x ∈ ξ with |x|∞ ≤ n. From the Optional Stopping Theorem (cf.
Proposition 4.9) we know that

x + χ(τx0ξ, x − x0)=Ex,ξ

[
XT1 + χ(τx0ξ,XT1 − x0)

]
. (7.53)

Take ε < 1 and let Sk = {(k − 1)nε ≤ |XT1 − x|< knε}, k = 1,2, . . . . Recalling (7.35), we can estimate

∣∣χ(τx0ξ, x − x0)
∣∣≤ nε +R2n +

∞∑
k=2

(
knε +Rn+knε

)
Px,ξ (Sk). (7.54)

Lemma 7.16 gives us the estimate Rn = o(n), and therefore we see that the desired conclusion follows if we can show
that a.s.

∑∞
k=2(n+ knε)Px,ξ (Sk)= o(n). This, in turn, follows from Lemma 4.7 and the fact that |x|∞ ≤ n. Indeed,

for every k ≥ 1, and p ≥ 1:

Px,ξ (Sk+1)≤ Px,ξ

(|XT1 − x| ≥ knε
)≤ κ

(
knε

)−p
(logn)p.

Taking p > 3 we get the desired bound.

8. Proof of Theorem 1.2 in the presence of energy marks

Let us suppose now that the function u(Ex,Ey) is nontrivial. In this case, the environment of the random walk is given
by ω = {(x,Ex): x ∈ ξ} and corresponds to a marked simple point process. We refer to [19], Section 2 for detailed
definitions and references. Here we simply recall that stationarity and ergodicity of the point process ξ automatically
extend to P. Moreover, the Campbell identity remains valid in the marked case (with suitable changes).

We fix some notation. We write Ñ for the state space of the marked point process ω and, given v ∈Rd , we define
the translation τvω as

τvω :=
{
(x − v,Ex): x ∈ ξ

}
, ω= {

(x,Ex): x ∈ ξ
}
.

Let us suppose that P is an ergodic stationary marked simple point process with finite second moment. As already
mentioned assumption (H1) is the same, while assumption (H2) has to be slightly modified as follows:

(H2) for each K > 0 and for each vector e ∈ Zd with |e|1 = 1, consider the product probability space Θ := Ñ ×
[([0,K)d × R) ∪ {∂}]Z whose elements (ω, (ai : i ∈ Z)) are sampled as follows: choose ω = {(x,Ex): x ∈ ξ}
with law P, afterwards choose independently for each index i a point bi ∈ ξ ∩ B(ie) with uniform probability
and set ai := (bi − iKe,Ebi

) (if ξ ∩ B(ie) = ∅, set ai = ∂). We assume that the resulting law P (K,e) on
Ñ × [([0,K)d ×R)∪ {∂})]Z is ergodic w.r.t. the transformation

τ :
(
ω, (ai : i ∈ Z)

)→ (
τKeω, (ai+1: i ∈ Z)

)
. (8.1)

The proof that the marked PPP satisfies the new assumption (H2) is similar to the non-marked case. The proof
of Theorem 1.2 in the presence of the energy marks can be obtained by a straightforward extension of the proof
presented in the non-marked case. Indeed, the presence of the energy marks is rather painless since the weights
e−u(Ex,Ey) are uniformly bounded from above and from below by some positive constants. Furthermore, the following
covariant property, implicitly used in the non-marked case, holds: writing pω(x, y) for the jump probability of Xn in
the environment ω, then pω(x, y)= pτvω(x − v, y − v) for all v ∈ ξ .
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Appendix A: Strong invariance principle for Mott random walk on diluted lattices

In this appendix we discuss the quenched invariance principle for diluted lattices. The proof differs from the one of
Theorem 1.2 in few points (mainly related to ergodicity) that we comment below. In order to simplify the notation,
we disregard the energy marks (all the arguments can be easily adapted to the marked case).

We start with a lattice Γ (or crystal, cf. [4]): Γ is a locally finite set Γ ⊂ Rd such that for a suitable basis
v1, v2, . . . , vd of Rd , it holds

Γ − x = Γ ∀x ∈G := {
z1v1 + z2v2 + · · · + zdvd : zi ∈ Z2 ∀i}. (A.1)

Let Δ be the elementary cell defined as {t1v1 + t2v2 + · · · + tdvd : 0≤ ti < 1 ∀i}. (Note that both the group G and the
cell Δ depend on the basis v1, v2, . . . , vd .)

Let ω = (ωx : x ∈ Γ ) be a site Bernoulli percolation on Γ with parameter p ∈ (0,1]. For each u ∈ Γ ∩ Δ we
call Pu the law on N0 of the random point process given by {0} ∪ {x − u: x ∈ Γ,ωx = 1} and we consider P0 =

1
|Δ∩Γ |

∑
u∈Δ∩Γ Pu. As proved in [18], P0 does not depend on the basis v1, . . . , vd and on the fundamental cell Δ,

moreover P0 is indeed the Palm distribution of the stationary point process with law P realized as {x − V : x ∈
Γ,ωx = 1} where V is a random vector uniformly distributed in the fundamental cell Δ, independent from the field ω.
Finally, we call P the law of the point process {x ∈ Γ : ωx = 1}.

It is simple to check that both the discrete-time and the continuous-time Mott random walks are well defined P0-
a.s., P-a.s. and P -a.s. Moreover, as in Theorem 1.2 and Corollary 1.3, proving the invariance principle for P0-a.a. ξ

with starting point x0 = 0, one automatically gets the strong invariance principle.
The corrector field is defined as in Section 3. By applying a linear isomorphism, we can assume that the basis

v1, . . . , vd coincides with the coordinate basis of Zd and therefore that Δ = [0,1)d . We restrict to K ∈ N+. Then
under P , the point processes BK(z) ∩ τKzξ with z ∈ Zd are i.i.d. In particular, P is stationary and ergodic w.r.t. the
translation τKvi

. Moreover, sampling ξ with law P , the random field σK(ξ) is a Bernoulli random field, supercritical
if K is taken large enough. Define C∞ as its unique infinite cluster and define C∞ as before. In the definition of the
law P∗ on the space Ω given in Section 7.2, replace P with P . With this trick, P∗ remains ergodic and stationary w.r.t.
to the map T defined in Section 7.2 and one can prove the sublinearity of the corrector field along a given direction.
At this point, substituting P with P , the proof of the quenched invariance principle follows the same main steps of the
proof of Theorem 1.2, even with huge simplications. Indeed, working with diluted lattices overcrowded regions are
absent. In particular, taking T0 large enough, the field ϑK,T0 coincides with σK .

Appendix B: Miscellanea

We start with a key technical lemma:

Lemma B.1. Let P0 be the Palm distribution associated to a stationary simple point process P with finite density.

(i) Suppose that ρ2 = E(ξ([0,1)d)k) < ∞, and let f : Rd × N0 → R be a measurable function satisfying
E0[∑x∈ξ |f (x, ξ)|]<∞. Then E[∑x∈ξ |f (−x, τxξ)|]<∞ and

E0

[∑
x∈ξ

f (x, ξ)

]
= E

[∑
x∈ξ

f (−x, τxξ)

]
. (B.1)

(ii) Let n be a nonnegative integer such that ρn+1 <∞. Then

E0

[(∑
x∈ξ

e−γ |x|α
)n]

<∞ ∀α,γ > 0. (B.2)

Proof. Part (ii) can be derived generalizing the proof of Lemma 2 of [19]. The proof of part (i) uses some arguments
taken from the proof of Lemma 1(i) in [19]. We give some more details. Without loss of generality we can assume
that f ≥ 0. We define F(ξ)=∑

x∈ξ f (x, ξ) and G(ξ)=∑
x∈ξ f (−x, τxξ). Note that, given u ∈ ξ , it holds F(τuξ)=
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y∈ξ f (y− u, τuξ) and G(τuξ)=∑

y∈ξ f (u− y, τyξ). In particular, taking L > 0 and setting ΛL = [−L/2,L/2]d ,
by the Campbell identity we can write E0[F ] =A(L)+B(L) and E0[G] =A(L)+C(L) where

A(L)= 1

ρLd
E

[ ∑
u∈ξ∩ΛL

∑
y∈ξ∩ΛL

f (y − u, τuξ)

]
= 1

ρLd
E

[ ∑
y∈ξ∩ΛL

∑
u∈ξ∩ΛL

f (u− y, τyξ)

]
,

B(L)= 1

ρLd
E

[ ∑
u∈ξ∩ΛL

∑
y∈ξ\ΛL

f (y − u, τuξ)

]
,

C(L)= 1

ρLd
E

[ ∑
u∈ξ∩ΛL

∑
y∈ξ\ΛL

f (u− y, τyξ)

]
.

Since ∑
u∈ξ∩ΛL

∑
y∈ξ\ΛL

f (y − u, τuξ)≤
∑

u∈ξ∩ΛL

∑
x∈τuξ\Λ2L

f (x, τuξ), (B.3)

∑
u∈ξ∩ΛL

∑
y∈ξ\ΛL

f (u− y, τyξ)≤
∑

u∈ξ∩ΛL

∑
x∈τuξ\Λ2L

f (−x, τxτuξ), (B.4)

by Campbell’s identity we can bound B(L) and C(L) from above by E0[∑x∈ξ\Λ2L
f (x, ξ)] and E0[∑x∈ξ\Λ2L

f (−x,

τxξ)], respectively. Suppose for the moment that f (x, ξ) is bounded and f (x, ξ) = 0 if |x|∞ ≥ 
 for some positive

. This assures that all the above expectations are bounded (we invoke part (ii) and the assumption ρ2 < ∞). In
particular, by the Dominated Convergence Theorem, we conclude that B(L) and C(L) go to zero as L →∞. As
a consequence, it holds E0[F ] = E0[G], which is simply the thesis in point (i). On the other hand, given a general
nonnegative function f and a constant 
 > 0, we can define the cut-off

f
(x, ξ)=
{

f (x, ξ) if |x|∞ ≤ 
,f (x, ξ)≤ 
,
0 otherwise.

Then the thesis holds for f
 (by what was proved above) and extends to f by the Monotone Convergence Theorem. �

Lemma B.2. Given a measurable subset A0 ⊂ N0, define A ⊂ N as

A = {ξ ∈ N : τxξ ∈ A0 ∀x ∈ ξ}.
Then P0(A0)= 1 if and only if P(A)= 1.

Proof. Given L > 0 we set ΛL = [−L,L]d and we apply the Campbell identity (2.1) to the function f (x, ξ) := I(x ∈
ΛL; ξ ∈ A0):

(2L)d = (2L)dP0(A0)= ρ−1E

[ ∑
x∈ξ∩ΛL

I(τxξ ∈ A0)

]
≤ ρ−1E

[
ξ(ΛL)

]= (2L)d.

Hence, all members in the above expression must be equal. In particular, P-a.s. it holds τxξ ∈ A0 for all x ∈ ξ ∩ΛL.
Using the arbitrariness of L, we conclude. �

Lemma B.3. Suppose that P is the law of a stationary ergodic marked simple point process with finite second moment,
or a marked diluted lattice. Then, both for P and for P0-a.a. ω, the DTRW and the CTRW are well defined for any
starting point x0 ∈ ξ .

Proof. First, we point out that Lemma B.2 holds also in the marked case and the proof is very similar. By the assump-
tion of finite second moment (recall that diluted lattices have finite moments of all orders) it holds E0[w(0)]<∞. This
implies that for P0-a.a. ω and for all x ∈ ξ it holds w(x) <∞. By Lemma B.2, the same property is fulfilled P-a.e.
As a consequence, the DTRW is well defined. The claim for the CTRW follows from [19], Prop. 10 and Lemma B.2
(diluted lattices can be treated apart since due to the uniform density bounds the proof becomes trivial). �
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