
www.imstat.org/aihp

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
2012, Vol. 48, No. 4, 1217–1244
DOI: 10.1214/12-AIHP488
© Association des Publications de l’Institut Henri Poincaré, 2012

Efficient robust nonparametric estimation in a semimartingale
regression model1

Victor Koneva and Serguei Pergamenshchikovb

aDepartment of Applied Mathematics and Cybernetics, Tomsk State University, Lenin str. 36, 634050 Tomsk, Russia. E-mail: vvkonev@mail.tsu.ru
bLaboratoire de Mathématiques Raphael Salem, Avenue de l’Université, BP. 12, Université de Rouen, F76801, Saint Etienne du Rouvray, Cedex

France and Department of Mathematics and Mechanics, Tomsk State University, Lenin str. 36, 634041 Tomsk, Russia.
E-mail: Serge.Pergamenchtchikov@univ-rouen.fr

Received 17 November 2010; revised 2 February 2012; accepted 12 March 2012

Abstract. The paper considers the problem of robust estimating a periodic function in a continuous time regression model with
the dependent disturbances given by a general square integrable semimartingale with an unknown distribution. An example of such
a noise is a non-Gaussian Ornstein–Uhlenbeck process with jumps (see (J. R. Stat. Soc. Ser. B Stat. Methodol. 63 (2001) 167–241),
(Ann. Appl. Probab. 18 (2008) 879–908)). An adaptive model selection procedure, based on the weighted least square estimates, is
proposed. Under general moment conditions on the noise distribution, sharp non-asymptotic oracle inequalities for the robust risks
have been derived and the robust efficiency of the model selection procedure has been shown. It is established that, in the case of
the non-Gaussian Ornstein–Uhlenbeck noise, the sharp lower bound for the robust quadratic risk is determined by the limit value
of the noise intensity at high frequencies. An example with a martinagale noise exhibits that the risk convergence rate becomes
worse if the noise intensity is unbounded.

Résumé. Dans cette article nous considérons le problème d’estimation robuste d’une fonction périodique dans un modèle de
régression en temps continu avec un bruit dépendant décrit par une semi martingale carrée intégrable de distribution inconnue. Un
exemple de ce bruit est un processus d’Ornstein–Uhlenbeck non gaussien avec sauts (voir (J. R. Stat. Soc. Ser. B Stat. Methodol. 63
(2001) 167–241), (Ann. Appl. Probab. 18 (2008) 879–908)). Nous proposons une procédure adaptative de sélection de modèle basée
sur les estimateurs des moindres carrés pondérés. Sous des conditions générales sur les deux premiers moments de la distribution
du bruit, des inégalités d’Oracle non asymptotiques pointues pour des risques quadratiques robustes sont obtenues et l’efficacité
robuste est établie. Nous avons établi aussi que dans le cas du processus d’Ornstein–Uhlenbeck non Gaussian, la borne inférieure
pour le risque quadratique robuste est donnée par la limite de l’intensité du bruit quand la fréquence tend vers l’infini. Nous donnons
un exemple d’un modèle de régression avec un bruit martingale où la vitesse de convergence du risque quadratique devient plus
lente si l’intensité du bruit tend vers l’infini.

MSC: Primary 62G08; secondary 62G05
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1. Introduction

Consider a regression model in continuous time

dyt = S(t)dt + dξt , 0 ≤ t ≤ n, (1.1)
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where S is an unknown 1-periodic R → R function, S ∈ L2[0,1]; (ξt )t≥0 is an unobservable semimartingale noise
with the values in the Skorokhod space D[0, n] such that, for any function f from L2[0, n], the stochastic integral

In(f ) =
∫ n

0
f (s)dξs (1.2)

is well defined and has the following properties

EQIn(f ) = 0 and EQI 2
n (f ) ≤ σQ

∫ n

0
f 2(s)ds. (1.3)

Here EQ denotes the expectation with respect to the distribution Q in D[0, n] of the process (ξt )0≤t≤n, which is
assumed to belong to some probability family Qn specified below; σQ > 0 is some positive constant depending on the
distribution Q.

The problem is to estimate the unknown function S in the model (1.1) on the basis of observations (yt )0≤t≤n.
The class of the disturbances ξ satisfying conditions (1.3) is rather wide and comprises, in particular, the Lévy

processes which are used in different applied problems (see [4,16], for details). The models (1.1) with the Lévy’s type
noise naturally arise (see [18]) in the nonparametric functional statistics problems (see, for example, [8]). Moreover,
as is shown in Section 2, non-Gaussian Ornstein–Uhlenbeck-based models, introduced in [2], enter this class.

We define the error of an estimate Ŝ (any real-valued function measurable with respect to σ {yt ,0 ≤ t ≤ n}) for S

by its integral quadratic risk

RQ(Ŝ, S) := EQ,S‖Ŝ − S‖2, (1.4)

where EQ,S stands for the expectation with respect to the distribution PQ,S of the process (1.1) with a fixed distribution
Q of the noise (ξt )0≤t≤n and a given function S; ‖ · ‖ is the norm in L2[0,1], i.e.

‖f ‖2 :=
∫ 1

0
f 2(t)dt. (1.5)

Since in our case the noise distribution Q is unknown, it seems natural similar to [10] to measure the quality of an
estimate Ŝ by the robust risk defined as

R∗
n(Ŝ, S) = sup

Q∈Qn

RQ(Ŝ, S) (1.6)

which assumes taking supremum of the error (1.4) over the whole family of admissible distributions Qn.
We will treat the stated problem from the standpoint of the model selection approach. It will be noted that the

origin of this method goes back to early seventies with the pioneering papers by Akaike [1] and Mallows [22] who
proposed to introduce penalizing in a log-likelihood type criterion. The further progress has been made by Barron,
Birgé and Massart [3,23], who developed a non-asymptotic model selection method which enables one to derive non-
asymptotic oracle inequalities for nonparametric regression models with the i.i.d. Gaussian disturbances. An oracle
inequality yields the upper bound for the estimate risk via the minimal risk corresponding to a chosen family of
estimates. Galtchouk and Pergamenshchikov [9] applied the Barron–Birgé–Massart technic to the problem of estimat-
ing nonparametric drift functions in ergodic diffusion processes. Fourdrinier and Pergamenshchikov [7] extended the
Barron–Birgé–Massart method to the models with the spherically symmetric dependent observations. They proposed a
model selection procedure based on the improved least squares estimates. Lately, the authors [17] applied this method
to the nonparametric problem of estimating a periodic function in a continuous time model with a Gaussian colored
noise. In all cited papers, the non-asymptotic oracle inequalities have been derived, which enable one to establish
the optimal convergence rate for the minimax risks. In addition to the optimal convergence rate, the other important
problem is that of the efficiency of adaptive estimation procedures. In order to examine the efficiency property of a
procedure one has to obtain the sharp oracle inequalities, i.e. such in which the factor at the principal term in the
right-hand of the inequality is close to unity.

The first result on sharp inequalities is most likely due to Kneip [15] who studied a Gaussian regression model in
discrete time. It will be observed that the derivation of oracle inequalities usually rests upon the fact that the initial
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model, by applying the Fourier transformation, can be reduced to a Gaussian model with independent observations.
However, such a transform is possible only for Gaussian models with independent homogeneous observations or for
the inhomogeneous ones with the known correlation characteristics. This restriction significantly narrows the area of
application of the proposed model selection procedures and rules out a broad class of models including, in particular,
heteroscedastic regression models widely used in econometrics (see, for example, [5,14]). For constructing adaptive
procedures in the case of inhomogeneous observations one needs to modify the approach to the estimation problem.
Galtchouk and Pergamenshchikov [11–13] have developed a new estimation method intended for the heteroscedastic
regression models in discrete time. The heart of this method is to combine the Barron–Birgé–Massart non-asymptotic
penalization method [3] and the Pinsker weighted least square method which minimizes the asymptotic risk (see, for
example, [24,25]). This yields a significant improvement in the performance of the procedure (see numerical example
in [11]).

The goal of this paper is to develop the robust efficient model selection method for the model (1.1) with dependent
disturbances having unknown distribution. We follow the approach proposed by Galtchouk and Pergamenshchikov
[11] in the construction of the procedure. Unfortunately, their method of obtaining the oracle inequalities is essentially
based on the independence of observations and can not be applied here. This paper proposes the new analytical tools
which allow one to obtain the sharp non-asymptotic oracle inequalities for robust risks under general conditions on
the distribution of the noise in the model (1.1). This method enables us to treat both the cases of dependent and
independent observations from the same standpoint, it does not assume the knowledge of the noise distribution and
leads to the efficient estimation procedure with respect to the risk (1.6). The validity of the conditions, imposed on the
noise in Eq. (1.1) is verified for a non-Gaussian Ornstein–Uhlenbeck process and for a martinagale with the increasing
variance (see Section 2).

The rest of the paper is organized as follows. In Section 3 we construct the model selection procedure on the basis
of weighted least squares estimates and state the main results in the form of oracle inequalities for the quadratic risk
(1.4) and the robust risk (1.6). Here we also specify the set of admissible weight sequences in the model selection
procedure. In Section 4 we establish some properties of the stochastic integrals with respect to the non-Gaussian
Ornstein–Uhlenbeck process (2.1). Section 7 gives the proofs of the main results. In Sections 5, 6 it is shown that the
proposed model selection procedure for estimating S in (1.1) is asymptotically efficient with respect to the robust risk
(1.6). Section 7 gives the proofs of the oracle inequalities for the regression model (1.1) with the noises introduced in
Section 2. In the Appendix some auxiliary propositions are given.

2. Semimartingale noises

In this section two examples of the disturbances (ξt )t≥0 in (1.1) are given.

2.1. Non-Gaussian Ornstein–Uhlenbeck process

First we consider the disturbances (ξt )t≥0 in (1.1) given by a non-Gaussian Ornstein–Uhlenbeck process with the
Lévy subordinator. Such processes are used in the financial Black–Scholes type markets with jumps (see for example
[6] and the references therein). Let the noise process in (1.1) obey the equation

dξt = aξt dt + dut , ξ0 = 0, (2.1)

where a ≤ 0, ut = �1wt + �2zt , �1 and �2 are unknown constants, (wt )t≥0 is a standard Brownian motion, (zt )t≥0 is
a compound Poisson process defined as

zt =
Nt∑

j=1

Yj . (2.2)

Here (Nt )t≥0 is a standard homogeneous Poisson process with unknown intensity λ > 0 and (Yj )j≥1 is an i.i.d.
sequence of random variables with

EYj = 0, EY 2
j = 1 and EY 4

j < ∞. (2.3)
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Let (T )k≥1 denote the arrival times of the process (Nt )t≥0, that is,

Tk = inf{t ≥ 0: Nt = k}. (2.4)

We assume that the parameters λ, a, �1 and �2 satisfy the conditions

−amax ≤ a ≤ 0, λ ≥ λ∗, �min ≤ �2
1 + λ�2

2 ≤ �max. (2.5)

Let Qn denote the family of all distributions of process (2.1) on the space D[0, n] with the parameters a, λ, �1 and �2
satisfying the conditions (2.5) with fixed bounds λ∗ > 0, amax > 0, �min > 0 and �max > 0.

It will be observed that the process (1.1)–(2.1) may be used for modelling of the stock prices in the financial
markets of the Black–Scholes type with jumps (see, e.g., [20], p. 141). In this case the price process (Xt )0≤t≤n is
governed by the stochastic differential equation:

dXt

Xt

= S(t)dt + dξt , (2.6)

where (ξt )t≥0 is an internal random factor specified by Eq. (2.1) and S(t) is a periodic stock-apprecaition rate which
has to be estimated from the observations

yt = y0 +
∫ t

0
X−1

u dXu.

The solution to Eq. (2.6) is given by the Dolean exponent, i.e.

Xt = X0 exp

{
yt − y0 +

∫ t

0

(
S(u) − �2

1

2

)
du + Λt

}
,

where Λt = ∑
Tj ≤t (ln(1 + �2Yj ) − �2Yj ).

To use the model (2.6) for describing the stock prices dynamics one needs to require that for all j ≥ 1

1 + �2Yj > 0 a.s.

2.2. Martingale noise

Next we consider a martinagale noise obeying the equation

dξt = �1(t)dwt + �2(t)dzt , (2.7)

where �1 and �2 are continuously differentiable R+ → R nonrandom functions; the process (zt )t≥0 is defined in
(2.2)–(2.3). Assume that, there exist constants λ∗ > 0, �min > 0 and a R+ → R+ continuous function �max(·) such
that for all t ≥ 0

λ ≥ λ∗, �min ≤ �2
1(t) + λ�2

2(t) ≤ �max(t) (2.8)

and, for any δ > 0,

lim
t→∞

�max(t)

tδ
= 0. (2.9)

Moreover, we assume that the derivatives of functions �i for some positive constants �′∗ and �′′∗ satisfy the following
conditions

sup
t≥0

(t + 1) max
1≤i≤2

∣∣∣∣ d

dt
�2

i (t)

∣∣∣∣ ≤ �′∗, sup
t≥0

∣∣∣∣ d2

dt2
�2

i (t)

∣∣∣∣ ≤ �′′∗ . (2.10)

In this case we denote by Qn the family of all distributions of the process (2.7) on D[0, n] satisfying the conditions
(2.8) and (2.10) for some λ∗, �min, �max(·), �′∗ and �′′∗ .
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3. Model selection

This section gives the construction of a model selection procedure for estimating a function S in (1.1) on the basis of
weighted least square estimates and states the main results.

For estimating the unknown function S in the model (1.1), we apply its Fourier expansion in the trigonometric
basis (φj )j≥1 in L2[0,1] defined as

φ1 = 1, φj (x) = √
2 Trj

(
2π[j/2]x)

, j ≥ 2, (3.1)

where the function Trj (x) = cos(x) for even j and Trj (x) = sin(x) for odd j ; [x] denotes the integer part of x. The
corresponding Fourier coefficients

θj = (S,φj ) =
∫ 1

0
S(t)φj (t)dt (3.2)

can be estimated as

θ̂j,n = 1

n

∫ n

0
φj (t)dyt . (3.3)

In view of (1.1), one obtains

θ̂j,n = θj + 1√
n
ξj,n, ξj,n = 1√

n
In(φj ), (3.4)

where In(φj ) is given in (1.2).
For any sequence x = (xj )j≥1, we set

|x|2 =
∞∑

j=1

x2
j and #(x) =

∞∑
j=1

1{|xj |>0}. (3.5)

Now we impose some additional conditions on the family Qn of distributions of the noise (ξt )t≥0 in (1.1).

(C1) There exists a variance proxy ςQ > 0 such that for any n ≥ 1

L1,n(Q) = sup
x∈H,#(x)≤n

∣∣∣∣∣
∞∑

j=1

xj

(
EQξ2

j,n − ςQ

)∣∣∣∣∣ < ∞,

where H = [−1,1]∞.
(C2) Assume that for each n ≥ 1

L2,n(Q) = sup
|x|≤1,#(x)≤n

EQ

( ∞∑
j=1

xj ξ̃j,n

)2

< ∞,

where ξ̃j,n = ξ2
j,n − EQξ2

j,n.

As is shown in the proof of Theorem 3.5 in Section 7, both conditions (C1) and (C2) hold for the process (2.1).
Further we introduce a class of weighted least squares estimates for S(t) as

Ŝγ =
∞∑

j=1

γ (j)θ̂j,nφj , (3.6)

where γ = (γ (j))j≥1 is a sequence of weight coefficients such that

0 ≤ γ (j) ≤ 1 and 0 < #(γ ) ≤ n. (3.7)
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Let Γ denote a finite set of such weight sequences γ = (γ (j))j≥1, ν = card(Γ ) be its cardinal number and

μ = max
γ∈Γ

#(γ ). (3.8)

The model selection procedure for the unknown function S in (1.1) will be constructed on the basis of a family of
estimates (Ŝγ )γ∈Γ . The choice of a specific set of weight sequences Γ is discussed at the end of this section. To find
a proper weight sequence γ in the set Γ , one needs to specify a cost function. When choosing an appropriate cost
function one can use the following argument. The empirical squared error

Errn(γ ) = ‖Ŝγ − S‖2

can be written as

Errn(γ ) =
∞∑

j=1

γ 2(j)θ̂2
j,n − 2

∞∑
j=1

γ (j)θ̂j,nθj +
∞∑

j=1

θ2
j . (3.9)

Since the Fourier coefficients (θj )j≥1 are unknown, the weight coefficients (γj )j≥1 can not be found by minimizing
this quantity. To circumvent this difficulty one needs to replace the terms θ̂j,nθj by their estimators θ̃j,n. We set

θ̃j,n = θ̂2
j,n − σ̂n

n
, (3.10)

where σ̂n is some estimator for the variance proxy ςQ in the condition (C1).
For this change in the empirical squared error, one has to pay some penalty. Thus, one comes to the cost function

of the form

Jn(γ ) =
∞∑

j=1

γ 2(j)θ̂2
j,n − 2

∞∑
j=1

γ (j)θ̃j,n + ρP̂n(γ ), (3.11)

where ρ is some positive constant, P̂ (γ ) is the penalty term defined as

P̂n(γ ) = σ̂n|γ |2
n

. (3.12)

In the case, when the value of ςQ in (C1) is known, one can take σ̂n = ςQ and

Pn(γ ) = ςQ|γ |2
n

. (3.13)

Substituting the weight coefficients, minimizing the cost function

γ̂ = argmin
γ∈Γ

Jn(γ ), (3.14)

in (3.6) leads to the model selection procedure

Ŝ∗ = Ŝγ̂ . (3.15)

It will be noted that γ̂ exists because Γ is a finite set. If the minimizing sequence in (3.14) γ̂ is not unique, one can
take any minimizer.

First we consider the case when the proxy variance ςQ in (C1) known.

Proposition 3.1. If the conditions (C1) and (C2) hold for the distribution Q of the process ξ in (1.1), then the risk
(1.4) of estimate (3.15) for S satisfies the oracle inequality

RQ(Ŝ∗, S) ≤ 1 + 3ρ − 2ρ2

1 − 3ρ
min
γ∈Γ

RQ(Ŝγ , S) + 1

n
BQ(n,ρ), (3.16)
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where

BQ(n,ρ) = 2
ςQσQν + 2ςQL1,n(Q) + νL2,n(Q)

ςQρ(1 − 3ρ)
+ 6μRQ(̂σn, ςQ)

1 − 3ρ
.

This result can be proved along the lines of Theorem 1 in [18].
Now we specify the class Qn of admissible distributions Q in the robust risk in (1.6).
Let Qn be a set of noise distributions Q on the space D[0, n] satisfying (1.3), (C1), (C2) and the following condi-

tions.

(H0) The factor σQ in (1.3) and the proxy variance ςQ in (C1) are such that for each n ≥ 1

ς∗
n := sup

Q∈Qn

ςQ < ∞ and σ ∗
n := sup

Q∈Qn

σQ < ∞,

(3.17)
ς∗ := inf

Q∈Qn

ςQ > 0

and, moreover, for any δ > 0

lim
n→∞

ς∗
n + σ ∗

n

nδ
= 0. (3.18)

(H1) The functionals L1,n(Q) and L2,n(Q) in (C1), (C2) are uniformly bounded on the set Qn, i.e. for each Q ∈ Qn

L1,n(Q) ≤ L∗
1,n, L2,n(Q) ≤ L∗

2,n

and the numerical sequences (L∗
i,n)n≥1, i = 1,2, are such that for any δ > 0

lim
n→∞

L∗
1,n + L∗

2,n

nδ
= 0.

Theorem 3.2. Suppose that the family of admissible noise distributions Qn for the model (1.1) is defined by the
conditions (C1), (C2) and (H0), (H1). Then the robust risk (1.6) of the estimate (3.15) for S(t) satisfies for any n ≥ 1
and 0 < ρ < 1/3 the oracle inequality

R∗
n(Ŝ∗, S) ≤ 1 + 3ρ − 2ρ2

1 − 3ρ
min
γ∈Γ

R∗
n(Ŝγ , S) + 1

n
B∗(n,ρ), (3.19)

where

B∗(n,ρ) = 2
ς∗

nσ ∗
n ν + 2ς∗

n L∗
1,n + νL∗

2,n

ς∗ρ(1 − 3ρ)
+ 6μR∗

n(̂σn)

1 − 3ρ

and R∗
n(̂σn) = supQ∈Qn

RQ(̂σn, ςQ).

3.1. The case of unknown ςQ

If the variance proxy ςQ in the condition (C1) is unknown it can be estimated as

σ̂n =
n∑

j=[√n]+1

θ̂2
j,n, n ≥ 2. (3.20)

Proposition 3.3. Suppose that the conditions (C1) and (C2) hold for the model (1.1) and S(·) is a continuously
differentiable function such that

|Ṡ|1 =
∫ 1

0

∣∣Ṡ(t)
∣∣dt < +∞. (3.21)
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Then, for any n ≥ 2,

RQ(̂σn, ςQ) ≤ κn(Q,S)√
n

, (3.22)

where

κn(Q,S) = 4|Ṡ|21
(

1 +
√

σQ

n1/4

)
+ ςQ + √

L2,n(Q) + L1,n(Q)

n1/2
.

This assertion is a direct consequence of Proposition 4 in [18].
Propositions 3.1 and 3.3 allow one to obtain the following non-asymptotic oracle inequality.

Theorem 3.4. Let the distribution family Qn be as in Theorem 3.2 with unknown ςQ and S in (1.1) satisfy (3.21).
Then, for any n ≥ 1 and 0 < ρ < 1/3, the model selection procedure (3.15), (3.20) satisfies the oracle inequality

R∗
n(Ŝ∗, S) ≤ 1 + 3ρ − 2ρ2

1 − 3ρ
min
γ∈Γ

R∗
n(Ŝγ , S) + 1

n
B∗

1(n,ρ), (3.23)

where

B∗
1(n,ρ) = 2

ς∗
nσ ∗

n ν + 2ς∗
n L∗

1,n + νL∗
2,n

ς∗ρ(1 − 3ρ)
+ 6μκ∗

n(S)

(1 − 3ρ)
√

n

and

κ∗
n(S) = 4|Ṡ|21

(
1 +

√
σ ∗

n

n1/4

)
+ ς∗

n +
√

L∗
2,n + L∗

1,n

n1/2
.

Moreover, for any δ > 0,

lim
n→∞

B∗
1(n,ρ)

nδ
= 0.

Now we will obtain the oracle inequalities for the model (1.1) with the noises introduced in Section 2. We will
need the following parameter

M∗ = 116�2
max + 33�2

max
EY 4

1

λ∗
. (3.24)

Theorem 3.5. Let Qn be the distribution family for the Ornstein–Uhlenbeck process (2.1) with the parameters meet-
ing (2.5). Then, for any n ≥ 1 and 0 < ρ < 1/3, the estimator (3.15) satisfies the oracle inequality (3.23) with the
parameters σ ∗

n = 3�max, ς∗
n = �max, ς∗ = �min, L∗

1,n = 2(4a2
max + 15amax + 2)�max and L∗

2,n = 82M∗.

Proof of this theorem is given in Section 7.

Remark 3.1. It will be noted that the oracle inequality (3.23) for the model (1.1)–(2.1) holds uniformly in the stability
region of the process (2.1) including its boundary, i.e. the case when a = 0.

When considering the estimation problem for the model (1.1) with the martingale noise (2.7) we will use two
sequences

l1,n = 2(1 + λ∗)�′∗ ln(n + 1)

and

l2,n = (1 + λ∗)
(
�max(0) + 2�′∗ ln(n + 1)

)
(3.25)
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with the constants defined in (2.8), (2.10).

Theorem 3.6. Let Qn be the family of distributions of the process (2.7) with the parameters meeting (2.8)–(2.10).
Then, for any n ≥ 1 and 0 < ρ < 1/3, the estimator (3.15) satisfies the oracle inequality (3.23) with σ ∗

n = ‖�max‖∗,n,
ς∗ = �min,

ς∗
n = n−1

∫ n

0
�max(u)du, L∗

1,n = �′∗ + �′′∗/2 and

L∗
2,n = l2

1,n

n
+ 2l2

2,n + 4λ∗EY 4
1 ‖�max‖4∗,n.

Proof of this theorem is given in Section 7.

Remark 3.2. If in the model (2.7) limt→∞ �max(t) = ∞, then ς∗
n ≈ �max(n) → ∞ as n → ∞ and, by virtue of the

condition (2.9), limn→∞ ς∗
n/nδ = 0 for each δ > 0.

3.2. Specification of weights in the model selection procedure (3.15)

We will specify the weight coefficients (γ (j))j≥1 in the way proposed in [11] for a heteroscedastic regression model
in discrete time. Consider a numerical grid of the form

An = {
1, . . . , k∗} × {t1, . . . , tm}, (3.26)

where ti = iε and m = [1/ε2]. Both parameters k∗ ≥ 1 and 0 < ε ≤ 1 are assumed to be functions of n, i.e. k∗ = k∗(n)

and ε = ε(n), such that for any δ > 0{
limn→∞ k∗(n) = +∞, limn→∞ k∗(n)

lnn
= 0,

limn→∞ ς∗
n ε(n) = 0 and limn→∞ nδε(n) = +∞,

(3.27)

where ς∗
n is the least upper bound of the noise variance proxy defined in (3.17). One can take, for example,

ε(n) = 1

ln(n + 1)
and k∗(n) = √

ln(n + 1).

For each α = (β, t) ∈ An, we introduce the weight sequence γα = (γα(j))j≥1 as

γα(j) = 1{1≤j≤j0} + (
1 − (j/ωα)β

)
1{j0<j≤ωα}, (3.28)

where j0 = j0(α) = [ωα/ ln(n + 1)],

ωα = (τβ tn)1/(2β+1) and τβ = (β + 1)(2β + 1)

π2ββ
.

We set

Γ = {γα,α ∈ An}. (3.29)

It will be noted that in this case ν = k∗m.

Remark 3.3. It will be observed that the specific form of weights (3.28) was proposed by Pinsker [25] for the filtra-
tion problem with known smoothness of the regression function observed with an additive Gaussian white noise in
continuous time. Nussbaum [24] used these weights for the Gaussian regression estimation problem in discrete time.

The minimal mean square risk, called the Pinsker constant, is provided by the weight least squares estimate with
the weights where the index α depends on the smoothness order of the function S. If the smoothness order is unknown
one has to use, instead of one estimate, a whole family of estimates containing, in particular, the optimal one.
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In this case the problem is to study the properties of the whole class of estimates. Below we derive an oracle
inequality for this class which yields the best mean square risk up to a multiplicative and additive constants provided
that the smoothness of the unknown function S is not available. Moreover, it will be shown that the multiplicative
constant tends to unity and the additive one vanishes as n → ∞ with the rate higher than any minimax rate.

In view of the assumptions (3.27), for any δ > 0, one has

lim
n→∞

ν

nδ
= 0.

Moreover, by (3.28) for any α ∈ Ũn

∞∑
j=1

1{γα(j)>0} ≤ ωα.

Therefore, taking into account that Aβ ≤ A1 < 1 for β ≥ 1, we get

μ = μn ≤ (n/ε)1/3

and for any δ > 0

lim
n→∞

μn

n1/3+δ
= 0.

To study the asymptotic behaviour of the term B∗
1(n,ρ) we assume that the parameter ρ in the cost function (3.11)

depends on n, i.e. ρ = ρn such that ρn → 0 as n → ∞ and for any δ > 0

lim
n→∞nδρn = 0. (3.30)

Applying this limiting relation in the analysis of the additive term B∗
1(n,ρ) in (3.23) yields the following result.

Theorem 3.7. Assume that the family distribution Qn satisfies the condition (H0) and the unknown function S is
continuously differentiable satisfying the condition (3.21). Then, for any n ≥ 1, the model selection procedure (3.15),
(3.30), (3.20), (3.29) satisfies the oracle inequality (3.23) with the additive term B∗

1(n,ρ) obeying, for any δ > 0, the
following limiting relation

lim
n→∞

B∗
1(n,ρn)

nδ
= 0.

4. Stochastic integrals with respect to the process (2.1)

In this section we establish some properties of the stochastic integral

It (f ) =
∫ t

0
f (s)dξs, 0 ≤ t ≤ n, (4.1)

with respect to the process (2.1). We need some notations. Let us denote

εf (t) = a

∫ t

0
ea(t−v)f (v)

(
1 + e2av

)
dv, (4.2)

where f is a [0,+∞) → R function integrated on any finite interval. We introduce also the following transformation

τf,g(t) = 1

2

∫ t

0

(
2f (s)g(s) + ε∗

f,g(s)
)

ds (4.3)
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of square integrable [0,+∞) → R functions f and g. Here

ε∗
f,g(t) = f (t)εg(t) + εf (t)g(t).

It will be noted that

aτf,1(t) = 1

2
εf (t) and aτ1,1(t) = 1

2

(
e2at − 1

)
. (4.4)

Moreover, we set

τ ∗
f,g(t) = τf,g(t) + f (t)τ1,g(t) + g(t)τf,1(t) + f (t)g(t)τ1,1(t). (4.5)

We can rewrite this function as

τ ∗
f,g(t) = τf,g(t) + ε∗

f,g(t) + f (t)g(t)(e2at − 1)

2a
.

Proposition 4.1. If f and g are from L2[0, n] then

EIt (f )It (g) = �̃τf,g(t), (4.6)

where �̃ = �2
1 + λ�2

2.

Proof. Noting that the process It (f ) satisfies the stochastic equation

dIt (f ) = af (t)ξt dt + f (t)dut , I0(f ) = 0,

and applying the Ito formula (see, for example, [21]) one obtains

It (f )It (g) =
∫ t

0

(
�2

1f (s)g(s) + a
(
f (s)ζs(g) + g(s)ζs(f )

))
ds

+ �2
2

∑
l≥1

f (Tl)g(Tl)Y
2
l 1{Tl≤t} +

∫ t

0
Υs−(f, g)dus, (4.7)

where ζs(f ) = Is(f )ξs and Υs(f, g) = f (s)Is(g) + g(s)Is(f ). This yields

EIt (f )It (g) = a

∫ t

0

(
f (s)Zs(g) + g(s)Zs(f )

)
ds

+ �̃

∫ t

0
f (s)g(s)ds, (4.8)

where Zs(f ) = Eζs(f ). Putting here g = 1 and taking into account that Eξ2
s = �̃(e2as − 1)/2a, we obtain Zs(f ) =

�̃εf (s)/2a. This implies immediately (4.6). Hence Proposition 4.1. �

Further, for integrated [0,+∞) → R functions f and g, we define the [0,+∞) × [0,+∞) → R function

Df,g(x, z) =
∫ x

0
L∗

f,g(y, z)dy + f (z)g(z), (4.9)

where L∗
f,g(y, z) = g(y + z)Lf (y, z) + f (y + z)Lg(y, z);

Lf (x, z) = aeax

(
f (z) + a

∫ x

0
eavf (v + z)dv

)
.
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Proposition 4.2. Let G = σ {Tk, k ≥ 1}, be σ -algebra generated by the stopping times (2.4), f and g be bounded
left-continuous [0,∞)×Ω → R functions measurable with respect to B[0,+∞)⊗ G (the product σ -algebra created
by B[0,+∞) and G ). Then, for any k ≥ 1,

E
(
ITk−(f )|G

) = 0

and E(ITk−(f )ITk−(g)|G) = �2
1τf,g(Tk) + �2

2

∑k−1
l=1 Df,g(Tk − Tl, Tl).

Proof. Taking the conditional expectation E(·|G) in (4.7) yields

E
(
It (f )It (g)|G

) =
∫ t

0
�2

1f (s)g(s)ds + �2
2

∑
l≥1

f (Tl)g(Tl)1{Tl≤t}

+ a

∫ t

0

(
f (s)Z̃g(s) + g(s)Z̃f (s)

)
ds,

where Z̃f (s) = E(Is(f )ξs |G). By direct calculation we find

Z̃f (t) = a

∫ t

0
f (s)E(ξt ξs |G)ds + �2

1

∫ t

0
ea(t−s)f (s)ds

+ �2
2

∑
l≥1

f (Tl)e
a(t−Tl)1{Tl≤t}.

Taking into account here that for any 0 ≤ s ≤ t

E(ξt ξs |G) = ea(t−s)

(
�2

1

2a

(
e2as − 1

) + �2
2

∑
l≥1

e2a(s−Tl)1{Tl≤s}
)

,

one obtains,

aZ̃f (t) = �2
1

2
εf (t) + �2

2

∑
j≥1

Lf (t − Tj , Tj )1{Tj ≤t}.

From here one comes to the desired equality. �

Proposition 4.3. Let F , f and g be nonrandom bounded left-continuous [0,∞) → R functions. Then

E
∑
k≥1

F(Tk)ITk−(f )ITk−(g)1{Tk≤t} = λ̃�

∫ t

0
F(v)τf,g(v)dv.

Proof. We set ι(t) = E
∑

k≥1 F(Tk)ITk−(f )ITk−(g)1{Tk≤t}. By applying Proposition 4.2 one gets

ι(t) = �2
1E

∑
k≥1

F(Tk)τf,g(Tk)1{Tk≤t} + �2
2E

∑
k≥1

F(Tk)

k−1∑
l=1

Df,g(Tk − Tl, Tl)1{Tk≤t}

:= �2
1ι1(t) + �2

2ι2(t),

where

ι1(t) = λ

∫ t

0

∑
l≥1

F(z)τf,g(z)
(λz)l−1

(l − 1)!e−λz dz = λ

∫ t

0
F(z)τf,g(z)dz.
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To calculate ι2(t) we note that

ι2(t) = E
∑
l≥1

1{Tl≤t}
∑

k≥l+1

F(Tk)Df,g(Tk − Tl, Tl)1{Tk≤t}.

Taking into account that Tk − Tl is independent of Tl for any k > l we obtain

ι2(t) = λE
∑
l≥1

1{Tl≤t}
∫ t−Tl

0

∑
k≥l+1

F(z + Tl)Df,g(z, Tl)
(λz)k−l−1

(k − l − 1)!e−λz dz

= λE
∑
l≥1

1{Tl≤t}
∫ t−Tl

0
F(z + Tl)Df,g(z, Tl)dz

= λ2
∫ t

0

∫ t−x

0

(
F(z + x)Df,g(z, x)dz

)
dx = λ2

∫ t

0
F(z)τf,g(z)dz.

Hence Proposition 4.3. �

Now we set

Ĩt (f ) = I 2
t (f ) − EI 2

t (f ). (4.10)

Further we need the following correlation measures for two integrated [0,+∞) → R functions f and g

�f,g = max
0≤v≤n

max
0≤t≤n−v

∣∣∣∣∫ t

0
f (u + v)g(u)du

∣∣∣∣ (4.11)

and

� ∗
f,g = max(�f,g,�g,f ). (4.12)

For any bounded [0,∞) → R function f we introduce the following uniform norm

‖f ‖∗,n = sup
0≤t≤n

∣∣f (t)
∣∣.

To check the condition (C2) we need the following non-asymptotic upper bound

Theorem 4.4. For any left-continuous [0,∞) → R functions f , g with ‖f ‖∗,n ≤ 1 and ‖g‖∗,n ≤ 1∣∣EĨn(f )Ĩn(g)
∣∣ ≤ nMQ

(
1 + � ∗

f,g + � ∗
f,1 + � ∗

1,g

)
, (4.13)

where MQ = 116̃�2 + 33λ�4
2EY 4

1 .

Proof. Taking in (4.7)–(4.8) g = f and Vt(f ) = ζt (f ) − Zt(f ), one comes to the following stochastic equation

dĨt (f ) = 2aVt (f )f (t)dt + dMt(f ), Ĩ0(f ) = 0, (4.14)

where Mt(f ) = 2
∫ t

0 Is−(f )f (s)dus + �2
2

∫ t

0 f 2(s)dms and

mt =
∑

0≤s≤t

�z2
s − λt.
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Moreover, by the Ito formula one finds for t ≥ 0

EĨt (f )Ĩt (g) = E
[
Ĩ (f ), Ĩ (g)

]
t

+ 2
∫ t

0

(
f (s)Tf,g(s) + g(s)Tg,f (s)

)
ds, (4.15)

where Tf,g(t) = aEVt (f )Ĩt (g). To calculate the first expectation in the right-hand side of this equality we note
that continuous martingale component of the semimartingale (4.14) is Ĩ c

t (f ) = 2�1
∫ t

0 Is(f )f (s)dws . Therefore, by
Proposition 4.1

E
〈
Ĩ c(f ), Ĩ c(g)

〉
t
= 4�2

1�̃

∫ t

0
τf,g(s)f (s)g(s)ds.

Moreover, in view of Proposition 4.3, one finds

E�Ĩt (f )�Ĩt (g) = 4λ�2
2�̃

∫ t

0
τf,g(s)f (s)g(s)ds + �3

∫ t

0
f 2(s)g2(s)ds,

where �3 = λ�4
2EY 4

1 . This yields

E
[
Ĩ (f ), Ĩ (g)

]
t
=

∫ t

0
Gf,g(s)ds, (4.16)

where Gf,g(t) = 4̃�2f (t)g(t)τf,g(t) + �3f
2(t)g2(t). Lemma A.1 implies

‖Gf,g‖∗,n ≤ 16̃�2� ∗
f,g + �3. (4.17)

Further from (4.4) we obtain

G1,1(t) = 2̃�2

a

(
e2at − 1

) + �3. (4.18)

Putting in (4.7)–(4.8) g = 1, we get

dVt (f ) = aVt (f )dt + af (t )̃ξt dt + dKt(f ), (4.19)

where ξ̃t = ξ2
t − Eξ2

t , Kt(f ) = ∫ t

0 I ∗
s−(f )dus + �2

2

∫ t

0 f (s)dms and I ∗
t (f ) = Υs(f,1) = It (f ) + f (t)ξt . To calculate

the function Tf,g(t), we note that, from the Ito formula

EVt (f )Ĩt (g) = a

∫ t

0

(
EVs(f )Ĩs(g) + 2g(s)EVs(f )Vs(g)

)
ds

+ a

∫ t

0
f (s)Ẽξs Ĩs(g)ds + E

[
K(f ),M(g)

]
t
.

To calculate the last expectation we note that Proposition 4.1 yields

EIt (g)I ∗
t (f ) = �̃

(
τf,g + f (t)τg,1

)
.

Now, by applying Propositions 4.1–4.3, we find

E
[
K(f ),M(g)

]
t
=

∫ t

0
Uf,g(s)ds, (4.20)
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where Uf,g(s) = 2̃�2g(s)τf,g(s) + 2̃�2g(s)f (s)τ1,g(s) + �3f (s)g2(s). Therefore,

EVt(f )Ĩt (g) = a

∫ t

0

(
EVs(f )Ĩs(g) + 2g(s)EVs(f )Vs(g)

)
ds

+ a

∫ t

0
f (s)Ẽξs Ĩs(g)ds +

∫ t

0
Uf,g(s)ds. (4.21)

Since Ĩt (1) = Vt (1) = ξ̃t , the last equality for f = g = 1 implies

Ẽξ2
t =

∫ t

0
e4a(t−s)U1,1(s)ds = e4at 2̃�2 + a�3

4a2
− e2at �̃

2

a2
+ 2̃�2 − a�3

4a2
. (4.22)

We define the function

Af (t) =
∫ t

0
e3a(t−s)

(
f (s)a2Ẽξ2

s + κf (s)
)

ds, (4.23)

where κf (t) = �̃2(εf (t) + f (t)(e2at − 1)) + a�3f (t).
In Lemma A.2 (see the Appendix) we prove that

EVt(f )Vt (g) =
∫ t

0
e2a(t−s)Hf,g(s)ds, (4.24)

where Hf,g(s) = g(s)Af (s) + f (s)Ag(s) + �̃2τ ∗
f,g(s) + �3f (s)g(s).

Moreover, substituting f = 1 in (4.21) yields

Ẽξt Ĩt (g) =
∫ t

0
e2a(t−s)

(
g(s)H̃1,g(s) + U1,g(s)

)
ds,

where H̃f,g(t) = 2a
∫ t

0 e2a(t−s)Hf,g(s)ds. Furthermore, (4.21) implies

EVt(f )Ĩt (g) =
∫ t

0
ea(t−s)g(s)H̃f,g(s)ds +

∫ t

0
ea(t−s)f (s)Hg(s)ds

+
∫ t

0
ea(t−s)f (s)Ũ1,g(s)ds +

∫ t

0
ea(t−s)Uf,g(s)ds,

where Hg(t) = a
∫ t

0 e2a(t−s)g(s)H̃1,g(s)ds and Ũf,g(t) = a
∫ t

0 e2a(t−s)Uf,g(s)ds. Therefore,

Tf,g(t) = a

∫ t

0
ea(t−s)

(
g(s)H̃f,g(s) + f (s)Hg(s) + f (s)Ũ1,g(s)

)
ds + Ũf,g(t).

Lemmas A.5–A.8 imply

‖Tf,g‖∗,n ≤ 25̃�2� ∗
f,g + 9̃�2� ∗

1,g + 8�3 + 7̃�2.

Combining (4.15)–(4.17) yields

|EĨn(f )Ĩn(g)|
n

≤ 16̃�2� ∗
f,g + �3 + 2

(‖Tf,g‖∗,n + ‖Tg,f ‖∗,n

)
.

From here one comes to the upper bound (4.13). �
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5. Robust asymptotic efficiency

In this section we show that the model selection procedure (3.15), (3.30), (3.20), (3.29) for estimating S in the model
(1.1) is asymptotically efficient with respect to the robust risk (1.6). We assume that the unknown function S in the
model (1.1) belongs to the Sobolev ball

Wk
r =

{
f ∈ Ck

per[0,1],
k∑

j=0

∥∥f (j)
∥∥2 ≤ r

}
, (5.1)

where r > 0, k ≥ 1 are some parameters, Ck
per[0,1] is the set of k times continuously differentiable functions

f : [0,1] → R such that f (i)(0) = f (i)(1) for all 0 ≤ i ≤ k. The function class Wk
r can be written as an ellipsoid

in l2, i.e.

Wk
r =

{
f ∈ Ck

per[0,1]:
∞∑

j=1

aj θ
2
j ≤ r

}
, (5.2)

where aj = ∑k
i=0(2π[j/2])2i . We denote by Q0 the distribution of the Winer process with the scale parameter ς∗

n

defined in (3.17).

(H3) Assume that the distribution Q0 belongs to the family Qn.

In this section we will show that the Pinsker constant for the robust risk (1.6) is given by the equation

R∗
k,n = (

ς∗
n

)2k/(2k+1)
R0

k , (5.3)

where

R0
k = (

(2k + 1)r
)1/(2k+1)

(
k

(k + 1)π

)2k/(2k+1)

.

Note that R0
k is the well-known Pinsker constant obtained for the nonadaptive filtration problem in “signal + small

white noise” model (see, for example, [25]).
It is well known that the optimal (minimax) risk convergence rate for the Sobolev ball Wk

r is n2k/(2k+1) (see, for
example, [24,25]).

We will see that, asymptotically, the robust risk (1.6) normalized by this rate is bounded from below by R∗
k,n, i.e.

this bound can not be diminished if one considers the class of all admissible estimates for S. Let Πn be the set of all
estimators Ŝn measurable with respect to the sigma-algebra σ {yt ,0 ≤ t ≤ n} generated by the process (1.1).

Theorem 5.1. Under the condition (H3)

lim inf
n→∞

n2k/(2k+1)

R∗
k,n

inf
Ŝn∈Πn

sup
S∈Wk

r

R∗
n(Ŝn, S) ≥ 1. (5.4)

Proof of this theorem is similar to that of Theorem 3.2 in [19].
Now we show that, under some conditions, the normalized robust risk for the model selection procedure is bounded

from above by the same constant R∗
k,n.

Theorem 5.2. Assume that, in model (1.1), for each n ≥ 1 the distribution of (ξt )0≤t≤n belongs to the family Qn

satisfying the conditions (H0), (H1). Then the robust risk (1.6) of the model selection procedure Ŝ∗, defined in (3.30),
(3.20), (3.29), has the following asymptotic upper bound

lim sup
n→∞

n2k/(2k+1)

R∗
k,n

sup
S∈Wk

r

R∗
n(Ŝ∗, S) ≤ 1. (5.5)



Efficient robust nonparametric estimation 1233

Theorem 5.1 and Theorem 5.2 imply the following result

Corollary 5.3. Under the conditions (H0)–(H2)

lim
n→∞

n2k/(2k+1)

R∗
k,n

inf
Ŝn∈Πn

sup
S∈Wk

r

R∗
n(Ŝn, S) = 1. (5.6)

Remark 5.1. Equation (5.6) means that the parameter R∗
k,n defined in (5.3) is the Pinsker constant (see, for example,

[25]) for the model (1.1) and that the model selection procedure (3.30), (3.20), (3.29) is asymptotically robust efficient.

Remark 5.2. Note that R∗
k,n coincides in the form with the well-known Pinsker constant in a nonparametric fitration

problem of signal observed with white Gaussian noise [25]. In the case of white noise model (i.e. ξt = wt in (1.1))
the intensity of noise in (3.4) remains constant in the whole range of frequencies, i.e. Eξ2

j,n = 1 for all j ≥ 1. For the
model (1.1), (2.1), the noise intensity of ξj,n stabilizes, in view of (2.1), only in the range of high frequencies, i.e. for
each n ≥ 1

Eξ2
j,n = ρ∗ + O

(
1

j2

)
as j → ∞.

When the distribution of the noise (ξt )t≥0 is known (the class Qn in (2.1) consists of a single distribution), the quantity
R∗

k,n is given by (5.3) with ς∗
n = ρ∗. It means that the lower bound for the quadratic risk, in the case of the colored

noise, is determined by the noise intensity only at high frequencies. When the noise distribution is unknown, one should
use ς∗

n defined in (3.17) which equals the supremum of ρ∗ over the set of all admissible distributions. In other words,
the quadratic risk lower bound is determined by the maximum of the noise intensity at high frequencies taken over the
whole class of admissible distributions.

Remark 5.3. It will be observed that the standard optimal convergence rate of the robust risk of the model selection
procedure (3.15) for the model (1.1) essentially rests an the assumptions providing stabilization of the maximal noise
intensity ς∗

n as n → ∞. Less stringent assumptions on the noise process may result in worsening the convergence
rate. As an example of this phenomenon, we consider the model (1.1) with the noise (2.7) and assume that �max → ∞
in such a way that ς∗

n tends to infinity more slowly than any power function nδ, δ > 0 as n → ∞. Then, in virtue of
(5.3), (5.4), the risk convergence rate becomes worse, namely, (n/ς∗

n )2k/(2k+1).

6. Upper bound

6.1. Known smoothness

First we suppose that the parameters k ≥ 1, r > 0 in (5.1) and ς∗
n in (3.17) are known. Let the family of admissible

weighted least squares estimates (Ŝγ )γ∈Γ for the unknown function S ∈ Wk
r be given by (3.29). Consider the pair

α0 = (k, t0),

where t0 = [r/ε]ε, r = r/ς∗
n and ε satisfies the conditions (3.27). Denote the corresponding weight sequence in Γ as

γ0 = γα0 . (6.1)

Note that for sufficiently large n the pair α0 belongs to the set (3.26).

Theorem 6.1. The estimator Ŝγ0 has the following asymptotic upper bound

lim sup
n→∞

n2k/(2k+1)

R∗
k,n

sup
S∈Wk

r

R∗
n(Ŝγ0 , S) ≤ 1. (6.2)
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Proof. Substituting (3.4) in (3.6) and using the weight sequence (6.1) one gets

‖Ŝγ0 − S‖2 =
∞∑

j=1

(
1 − γ0(j)

)2
θ2
j − 2Mn + 1

n

∞∑
j=1

γ 2
0 (j)ξ2

j,n,

where

Mn = 1√
n

∞∑
j=1

(
1 − γ0(j)

)
γ0(j)θj ξj,n.

It should be observed that EQ,SMn = 0 for any Q ∈ Q∗
n. Moreover, by the condition (C1)

EQ,S

∞∑
j=1

γ 2
0 (j)ξ2

j,n ≤ ςQ

∞∑
j=1

γ 2
0 (j) + L1,n(Q)

and, in view of the condition (H0), this implies

sup
Q∈Qn

EQ,S

∞∑
j=1

γ 2
0 (j)ξ2

j,n ≤ ς∗
n

∞∑
j=1

γ 2
0 (j) + ln.

Thus,

R∗
n(Ŝγ0 , S) ≤

∞∑
j=ι0

(
1 − γ0(j)

)2
θ2
j + ς∗

n

n

∞∑
j=1

γ 2
0 (j) + ln

n
, (6.3)

where ι0 = j0(α0). Setting

υn = n2k/(2k+1) sup
j≥ι0

(
1 − γ0(j)

)2
/aj ,

we estimate the first summand in the right-hand of (6.3) as

n2k/(2k+1)

∞∑
j=ι0

(
1 − γ0(j)

)2
θ2
j ≤ υn

∑
j≥1

aj θ
2
j .

From here and (5.2), we obtain that for each S ∈ Wk
r

Υ1,n(S) = n2k/(2k+1)

∞∑
j=ι0

(
1 − γ0(j)

)2
θ2
j ≤ υnr.

Further we note that

lim sup
n→∞

(t0)
2k/(2k+1)υn ≤ 1

π2k(τk)2k/(2k+1)
,

where τk is given in (3.28). Moreover, by the condition (3.27), limn→∞ t0/r = 1. Therefore,

lim sup
n→∞

1

(ς∗
n )2k/(2k+1)

sup
S∈Wk

r

Υ1,n(S) ≤ r1/(2k+1)

π2k(τk)2k/(2k+1)
:= Υ ∗

1 .
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To examine the second summand in the right-hand of (6.3), we set

Υ2,n = (ς∗
n )1/(2k+1)

n1/(2k+1)

n∑
j=1

γ 2
0 (j).

It is easy to check that

lim sup
n→∞

Υ2,n ≤ 2(rτk)
1/(2k+1)k2

(k + 1)(2k + 1)
:= Υ ∗

2 .

Therefore, taking into account that by the definition of the Pinsker constant in (5.3) Υ ∗
1 + Υ ∗

2 = R0
k , we arrive at the

inequality

lim
n→∞

n2k/(2k+1)

R∗
k,n

sup
S∈Wk

r

R∗
n(Ŝγ0 , S) ≤ 1.

Hence Theorem 6.1. �

6.2. Unknown smoothness

Combining Theorem 6.1 and Theorem 3.7 yields Theorem 5.2.

7. Proofs

7.1. Proof of Theorem 3.5

Applying the Proposition 4.1 we find that the inequality (1.3) for the process (2.1) holds with σQ = 3̃�. This, in view
of (2.5), yields σ ∗

n = 3�max. Now we verify conditions (C1) and (C2) for the family of processes (2.1) satisfying (2.5).
First we note that

EQ,Sξ2
j,n = �̃(1 + bj,n), (7.1)

where bj,n = n−1a
∫ n

0 eavΥj (v)dv and

Υj (v) =
∫ n−v

0
φj (t + v)φj (t)

(
1 + e2at

)
dt.

If j = 1, one has∣∣EQ,Sξ2
1,n − �̃

∣∣ ≤ 2̃�. (7.2)

Since for the trigonometric basis (3.1) for j ≥ 2

φj (t + v)φj (t) = cos(γj v) + (−1)j cos
(
γj (2t + v)

)
,

where γj = 2π[j/2], therefore,

Υj (v) = cos(γj v)F (v) + (−1)jΥ0,j (v), F (v) =
∫ n−v

0

(
1 + e2at

)
dt

and

Υ0,j (v) =
∫ n−v

0
cos

(
γj (2t + v)

)(
1 + e2at

)
dt.
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Integrating by parts one finds

Υ0,j (v) = −2 + e2a(n−v)

2γj

sin(vγj ) + a

2γ 2
j

Υ1,j (v),

where

Υ1,j (v) = cos(vγj )
(
e2a(n−v) − 1

) − 2a

∫ n−v

0
e2at cos

(
(2t + v)γj

)
dt.

It is obvious that |Υ1,j (v)| ≤ 2. Further we calculate

bj,n = a

n

∫ n

0
eavF (v) cos(vγj )dv + a

n
(−1)j

∫ n

0
eavΥ0,j (v)dv

:= aD1,j + a(−1)jD2,j .

Integrating by parts two times yields

D1,j = 1

nγ 2
j

(
eanḞ (n) − Ḟ (0) − aF(0) −

∫ n

0
eavF1(v)dv

)
,

where F1(v) = a2F(v) + 2aḞ (v) + F̈ (v). Since γj ≥ j for j ≥ 2, we obtain

|D1,j | ≤ 1

j2

(
4|a| + 10

)
.

Similarly, one gets |D2,j | ≤ 5/j2. Substituting these estimates in (7.1) and using the upper bound (7.2), we obtain for
all j ≥ 1

∣∣EQ,Sξ2
j,n − �̃

∣∣ ≤ �̃
(4a2 + 15|a| + 2)

j2
. (7.3)

Thus we arrive at the inequality

L1,n(Q) ≤ 2̃�
(
4a2 + 15|a| + 2

)
,

which implies that

L1,n(Q) ≤ L∗
1, (7.4)

where L∗
1 is defined in (3.24). Therefore the condition (C1) holds with ςQ = �̃. Applying the conditions (2.5) we find

ς∗
n = �max and ς∗ = �min. To check (C2) we represent the sum as

∞∑
j=1

xj ξ̃j,n = 1

n
J1,n + 1

n
J2,n,

where J1,n = x1Ĩn(φ1) + x2Ĩn(φ2) and J2,n = ∑∞
j≥3 xj Ĩn(φj ). From here we have

EQ,S

( ∞∑
j=1

xj ξ̃j,n

)2

≤ 2

n2

(
EQ,SJ 2

1,n + EQ,SJ 2
2,n

)
. (7.5)

By applying the Cauchy–Schwarz–Bounyakovskii inequality and noting that x2
1 + x2

2 ≤ 1, one gets

EQ,SJ 2
1,n ≤ EQ,S Ĩ 2

n (φ1) + EQ,SĨ 2
n (φ2).
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By Theorem 4.4 this implies

EQ,SJ 2
1,n ≤ 2nMQ

(
1 + 3� ∗

1,1 + 2� ∗
1,2 + � ∗

2,2

)
,

where � ∗
i,j = � ∗

φi,φj
. We note that each � ∗

i,j can be estimated as

� ∗
i,j ≤

√∫ n

0
φ2

i (u)du

√∫ n

0
φ2

j (u)du = n.

Therefore

EQ,SJ 2
1,n ≤ 14MQn2. (7.6)

Applying Theorem 4.4 and taking into account that ‖φj‖∗,n ≤ √
2, one gets

EQ,SJ 2
2,n ≤ 4nMQ

∑
i,j≥3

|xi ||xj |̃κi,j , (7.7)

where κ̃i,j = 1 + � ∗
i,j + � ∗

1,j + � ∗
1,i . To estimate the coefficient � ∗

i,j we note, that for any i ≥ 3,

φi(v + u) = κ1,i (v)φi−1(u) + κ2,i (v)φi(u) + κ3,i (v)φi+1(u),

where κi,j (·) are bounded functions. From here in view of the orthonormality and the periodicity of the functions
(φj )j≥1, it follows that for 0 ≤ t ≤ n and |i − j | ≥ 2∣∣∣∣∫ t

0
φi(u + v)φj (u)du

∣∣∣∣ =
∣∣∣∣∫ {t}

0
φi(u + v)φj (u)du

∣∣∣∣
≤

√∫ 1

0
φ2

i (u + v)du = 1,

where {t} is the fractional part of t . Therefore � ∗
i,j ≤ 1 if |i − j | ≥ 2. Thus, � ∗

i,j ≤ n1{|i−j |≤1} + 1{|i−j |≥2}. Note now
that

∑
i,j≥1

|xi ||xj | =
(∑

i≥1

|xi |
)2

≤ #(x)

(∑
i≥1

x2
i

)
≤ n.

Moreover,∑
i,j≥3

1{|i−j |≤1}|xi ||xj | =
∑
i≥1

x2
i + 2

∑
i≥3

|xi ||xi−1|

≤
∑
i≥1

x2
i + 2

(∑
i≥1

x2
i

)2

≤ 3.

By making use of these estimates in (7.7) one gets∑
i,j≥3

|xi ||xj |̃κi,j ≤
∑
i,j≥3

|xi ||xj |
(
3 + � ∗

i,j

) ≤ 7n.

From here and the inequalities (7.5)–(7.7), it follows that L2,n(Q) ≤ 84MQ. By the definition of the distribution
family in (2.5) MQ ≤ M∗, where M∗ is given in (3.24). Hence Theorem 3.5.
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7.2. Proof of Theorem 3.6

By making use of (2.7), (4.1) and applying Ito’s formula one obtains that for any square integrable R+ → R functions
f and g

EIt (f )It (g) =
∫ t

0
f (u)g(u)̃�(u)du, (7.8)

where �̃(u) = �2
1(u) + λ�2

2(u). Therefore condition (1.3) holds with σQ = ‖�2
1 + λ�2

2‖∗,n. Further we will show that
the proxy variance ςQ in (C1) can be defined as

ςQ = 1

n

∫ n

0
�̃(u)du. (7.9)

From (3.4) and (7.8) it follows that Eξ2
1,n = ςQ, and for j ≥ 2,

Eξ2
j,n = ςQ + (−1)j

n

∫ n

0
cos(2γju)̃�(u)du.

Integrating by parts and taking into account (2.10) one comes to the estimate∣∣Eξ2
j,n − ςQ

∣∣ ≤ 1

4γ 2
j

(
2�′∗ + �′′∗

) ≤ 1

4j2

(
2�′∗ + �′′∗

)
.

Therefore, L1,n(Q) ≤ �′∗ + �′′∗/2 = L∗
1,n and the condition (C1) holds. Moreover, in view of (2.10), the quantity (7.9)

satisfies also the condition (H0) with the sequences ς∗, σ ∗
n and ς∗

n given in the theorem. It remains to verify the
conditions (C2) and (H1). We have

E
(∑

j≤1

xj ξ̃j,n

)2

= 1

n

∑
i≤1

∑
j≤1

xixj EĨn(φi)Ĩn(φj ), (7.10)

where Ĩn(f ) is defined in (4.10). By Ito’s formula one can calculate that for any bounded R+ → R functions f and g

EĨn(f )Ĩn(g) = 2τ̃ 2
f,g(n) + λEY 4

1

∫ n

0
f 2(t)g2(t)�4

2(t)dt, (7.11)

where τ̃f,g(t) = ∫ t

0 f (u)g(u)̃�(u)du. Integrating by parts yelds

τ̃f,g(n) = �̃(0)

∫ n

0
f (u)g(u)du +

∫ n

0

d̃�(u)

du

(∫ n

u

f (s)g(s)ds

)
du.

Therefore, for i 
= j

τ̃φi ,φj
(n) = −

∫ n

0

d̃�(u)

du

(∫ {u}

0
φi(s)φj (s)ds

)
du,

where {u} is the fractional part of u. By the condition (2.10) |̃τφi ,φj
(n)| ≤ l1,n, where the l1,n is defined in (3.25). If

i = j , one has

τ̃φi ,φi
(n) = �̃(0)n +

∫ n

0

d̃�(u)

du

(∫ n

u

φ2
i (s)ds

)
du.

This, in view of (2.10), implies that |̃τφi ,φi
(n)| ≤ l2,nn, where l2,n is given in (3.25). Substituting (7.11) in (7.10) and

using these estimates for τ̃φi ,φi
(n) one comes to the inequality L2,n(Q) ≤ L∗

2,n, where L∗
2,n is given in the theorem.

Hence Theorem 3.6.
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Appendix

A.1. Technical lemmas

Lemma A.1. For any bounded left-continuous [0,∞) → ∞ functions f and g and −∞ < a ≤ 0

‖τf,g‖∗,n ≤ 4� ∗
f,g. (A.1)

Proof. First, we note that∫ t

0
f (s)εg(s)ds = a

∫ t

0
eav

(∫ t−v

0
f (s + v)g(s)

(
1 + e2as

)
ds

)
dv,

where εg(s) is defined in (4.2). Integrating by parts yields∫ t−v

0
f (s + v)g(s)

(
1 + e2as

)
ds = (

1 + e2a(t−v)
)∫ t−v

0
f (s + v)g(s)ds

− 2a

∫ t−v

0
e2as

(∫ s

0
f (z + v)g(z)dz

)
ds.

Taking into account the definition (4.11), this integral can be estimated as∣∣∣∣∫ t−v

0
f (s + v)g(s)

(
1 + e2as

)
ds

∣∣∣∣ ≤ 3� ∗
f,g.

Therefore,∣∣∣∣∫ t

0
f (s)εg(s)ds

∣∣∣∣ ≤ 3� ∗
f,g and

∣∣∣∣∫ t

0
ε∗
f,g(s)ds

∣∣∣∣ ≤ 6� ∗
f,g.

This implies the inequality (A.1). Hence Lemma A.1. �

Lemma A.2. For any bounded left-continuous [0,+∞) → R functions f and g the equality (4.24) holds.

Proof. Similarly, we find

E
[
K(f ),K(g)

]
t
=

∫ t

0

(̃
�2τ ∗

f,g(s) + �3f (s)g(s)
)

ds, (A.2)

where the function τ ∗
f,g(s) is defined in (4.5). Taking into account (4.17) and applying the Ito’s formula one gets

dEVt(f )Vt (g) = 2aEVt(f )Vt (g)dt + (̃
�2τ ∗

f,g(t) + �3f (t)g(t)
)

dt

+ a
(
g(t)EVt (f )̃ξt + f (t)EVt (g)̃ξt

)
dt.

To calculate EVt (f )̃ξt , we put g = 1 in this equality. Since according to (4.23) a�̃2τ ∗
f,1(t)+a�3f (t) = κf (t), therefore

one gets

aEVt(f )̃ξt =
∫ t

0
e3a(t−s)

(
f (s)a2Ẽξ2

s + κf (s)
)

ds = Af (t). (A.3)

Thus

EVt(f )Vt (g) =
∫ t

0
e2a(t−s)

(
g(s)Af (s) + f (s)Ag(s)

)
ds

+
∫ t

0
e2a(t−s)

(̃
�2τ ∗

f,g(s) + �3f (s)g(s)
)

ds.
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Hence Lemma A.2. �

Further we will need the following result.

Lemma A.3. Let υ be a continuously differentiable R → R function. Then, for n ≥ 1, α > 0 and any integrated
R → R function Ψ ,

sup
0≤t≤n

∣∣∣∣∫ t

0
e−α(t−s)Ψ (s)υ(s)ds

∣∣∣∣ ≤ �1,Ψ

(
2‖υ‖∗,n + ‖υ̇‖∗,n

α

)
.

Proof. One obtains this inequality integrating by parts. �

Lemma A.4. For any mesurable [0,+∞) → R functions f and g with ‖f ‖∗,n ≤ 1 and ‖g‖∗,n ≤ 1, for −∞ < a ≤ 0
and n ≥ 1

sup
0≤t≤n

∣∣∣∣a ∫ t

0
e2a(t−s)g(s)Af (s)ds

∣∣∣∣ ≤ 3̃�2� ∗
f,g + �3.

Proof. One can represent the function Af (t) as

Af (t) =
∫ t

0
e3a(t−s)f (s)υ(s)ds + �̃2

∫ t

0
e3a(t−s)εf (s)ds, (A.4)

where υ(s) = a2Ẽξ2
s + �̃2(e2as − 1) + a�3. From here and (4.22) we have

υ(s) = aυ1(s) + υ2(s) (A.5)

with

υ1(s) = �3

4

(
e4at + 3

)
and υ2(s) = �̃2

2
e4at − �̃2

2
.

It will be noted that ‖υ1‖∗,n ≤ �3 and

sup
−∞<a≤0

(
2‖υ2‖∗,n + ‖υ̇2‖∗,n

2|a|
)

≤ 2̃�2. (A.6)

Further we have

a

∫ t

0
e2a(t−s)g(s)Af (s)ds = J1(t) + J2(t) + �̃2J3(t),

where

J1(t) = a2
∫ t

0
e2a(t−s)g(s)

(∫ s

0
e3a(s−u)f (u)υ1(u)du

)
ds,

J2(t) = a

∫ t

0
e2a(t−s)g(s)

(∫ s

0
e3a(s−u)f (u)υ2(u)du

)
ds,

J3(t) = a

∫ t

0
e2a(t−s)g(s)

(∫ s

0
e3a(s−u)εf (u)du

)
ds.

From here it follows that

‖J1‖∗,n ≤ ‖υ1‖∗,n ≤ �3.
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The second integral J2(t) can be rewritten as

J2(t) = a

∫ t

0
e3au

(∫ t−u

0
e2a(t−u−s)g(s + u)f (s)υ2(s)ds

)
du.

By Lemma A.3 and (A.6) we obtain that for any 0 ≤ z ≤ n and 0 ≤ u ≤ n − z∣∣∣∣∫ z

0
e2a(z−s)υ2(s)g(s + u)f (s)ds

∣∣∣∣ ≤ 2̃�2� ∗
f,g.

Therefore, ‖J2‖∗,n ≤ 2̃�2� ∗
f,g/3. Similarly, one gets ‖J3‖∗,n ≤ 2� ∗

g,εf
/3. To estimate the quantity �g,εf

defined in
(4.11), we note that for 0 ≤ v ≤ n and 0 ≤ t ≤ n − v∫ t

0
g(s + v)εf (s)ds = a

∫ t

0
eaxΘg,f (t − x, v + x)dx, (A.7)

where Θg,f (t, v) = ∫ t

0 g(s + v)f (s)(1 + e2as)ds. Denoting

Υg,f (s, u) =
∫ s

0
g(r + u)f (r)dr, (A.8)

we represent the function Θg,f (t, v) as

Θg,f (t, v) = (
1 + e2at

)
Υg,f (t, v) − 2a

∫ t

0
e2asΥg,f (s, v)ds.

Therefore

max
0≤v≤n

max
0≤t≤n−v

∣∣Θg,f (t, v)
∣∣ ≤ 3� ∗

f,g.

In view of (A.7), one gets �g,εf
≤ 3� ∗

f,g and ‖J3‖∗,n ≤ 2� ∗
f,g . Hence Lemma A.4. �

Lemma A.5. For any mesurable [0,+∞) → R functions f and g with ‖f ‖∗,n ≤ 1 and ‖g‖∗,n ≤ 1, for −∞ < a ≤ 0
and n ≥ 1

‖H̃f,g‖∗,n ≤ 16̃�2� ∗
f,g + 5�4, (A.9)

where �4 = �3 + �̃2.

Proof. First we represent the function H̃f,g as

H̃f,g(t) = H̃
(1)
f,g(t) + �̃2H̃

(2)
f,g(t) + �3H̃

(3)
f,g(t),

where H̃
(1)
f,g(t) = 2a

∫ t

0 e2a(t−s)(g(s)Af (s) + f (s)Ag(s))ds, H̃
(2)
f,g(t) = 2a

∫ t

0 e2a(t−s)τ ∗
f,g(s)ds and H̃

(3)
f,g(t) =

2a
∫ t

0 e2a(t−s)f (s)g(s)ds. Lemma A.4 implies directly∥∥H̃
(1)
f,g

∥∥∗,n
≤ 12̃�2� ∗

f,g + 4�3‖f ‖∗,n‖g‖∗,n.

The next summand can be represented as

H̃
(2)
f,g(t) = τ̃f,g(t) + ε̃f,g(t) + 2a

∫ t

0
e2a(t−s)f (s)g(s)

(
e2as − 1

)
ds,
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where τ̃f,g(t) = 2a
∫ t

0 e2a(t−s)τf,g(s)ds and ε̃f,g(t) = 2a
∫ t

0 e2a(t−s)ε∗
f,g(s)ds. From (A.1) it follows that ‖τ̃f,g‖∗,n ≤

4� ∗
f,g . Now taking into account that ‖ε∗

f ‖∗,n ≤ 2‖f ‖∗,n, we obtain that ‖̃εf,g‖∗,n ≤ 4‖f ‖∗,n‖g‖∗,n. Therefore,

‖H̃ (2)
f,g‖∗,n ≤ 4� ∗

f,g + 5‖f ‖∗,n‖g‖∗,n and ‖H̃ (3)
f,g‖∗,n ≤ ‖f ‖∗,n‖g‖∗,n. Hence Lemma A.5. �

Lemma A.6. For any mesurable [0,+∞) → R functions f and g with ‖f ‖∗,n ≤ 1 and ‖g‖∗,n ≤ 1, for −∞ < a ≤ 0
and n ≥ 1

sup
0≤t≤n

∣∣∣∣a ∫ t

0
ea(t−s)f (s)Hg(s)ds

∣∣∣∣ ≤ 8̃�2� ∗
1,g + 2�4. (A.10)

Proof. It is obviously, that for 0 ≤ t ≤ n∣∣∣∣a ∫ t

0
ea(t−s)f (s)Hg(s)ds

∣∣∣∣ ≤ ‖f ‖∗,n‖Hg‖∗,n ≤ ‖H̃1,g‖∗,n/2.

Now applying Lemma A.5 one comes to the inequality (A.10). Hence Lemma A.6. �

Lemma A.7. For any mesurable [0,+∞) → R functions f and g with ‖f ‖∗,n ≤ 1 and ‖g‖∗,n ≤ 1, for −∞ < a ≤ 0
and n ≥ 1

sup
0≤t≤n

∣∣∣∣a ∫ t

0
ea(t−s)f (s)Ũ1,g(s)ds

∣∣∣∣ ≤ 8̃�2� ∗
f,g + �3/2.

Proof. The function U1,g(t) can be represented as

U1,g(t) = 2̃�2

a
g(t)εg(t) + �3g

2(t).

From here one obtains

a

∫ t

0
ea(t−s)f (s)Ũ1,g(s)ds = 2a�̃2I1(t) + �3a

2I2(t),

where

I1(t) =
∫ t

0
ea(t−s)f (s)

(∫ s

0
e2a(s−r)g(r)εg(r)dr

)
ds,

I2(t) =
∫ t

0
ea(t−s)f (s)

(∫ s

0
e2a(s−r)g2(r)dr

)
ds.

Denoting Γf,g(t, v) = ∫ t

0 ea(t−s)f (s + v)g(s)εg(s)ds, one has

I1(t) =
∫ t

0
e2avΓf,g(t − v, v)dv.

Since |εg(t)| ≤ 2‖g‖∗,n ≤ 2 and

ε̇g(t) = aεg(t) + af (t)
(
1 + e2at

)
,

Lemma A.3 one can apply to estimate the function Γf,g(t, x) as

sup
0≤t≤n

sup
0≤v≤t

∣∣Γf,g(t − v, v)
∣∣ ≤ 8� ∗

f,g.

Therefore, ‖aI1‖∗,n ≤ 4� ∗
f,g and a2‖I2‖∗,n ≤ ‖f ‖∗,n‖g‖2∗/2 ≤ 1/2. Hence Lemma A.7. �
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Lemma A.8. For any mesurable [0,+∞) → R functions f and g with ‖f ‖∗,n ≤ 1 and ‖g‖∗,n ≤ 1, for −∞ < a ≤ 0
and n ≥ 1

‖Ũf,g‖∗,n ≤ �̃2(� ∗
f,g + � ∗

1,g

) + �3/2. (A.11)

Proof. This result follows from the estimate

‖Ũf,g‖∗,n ≤ ‖Uf,g‖∗,n/2 ≤ �̃2(‖τf,g‖∗,n + ‖τ1,g‖∗,n

) + �3/2,

and Lemma A.1. �

A.2. Property of the Fourier coefficients

Lemma A.9. Suppose that the function S in (1.1) is differentiable and satisfies the condition (3.21). Then the Fourier
coefficients (3.2) satisfy the inequality

sup
l≥2

l

∞∑
j=l

θ2
j ≤ 4|Ṡ|21.

Proof. In view of (3.1), one has

θ2p = − 1√
2πp

∫ 1

0
Ṡ(t) sin(2πpt)dt

and

θ2p+1 = 1√
2πp

∫ 1

0
Ṡ(t)

(
cos(2πpt) − 1

)
dt

= −
√

2

πp

∫ 1

0
Ṡ(t) sin2(πpt)dt, p ≥ 1.

From here, it follows that θ2
j ≤ 2|Ṡ|21/j2 for any j ≥ 2. Therefore, taking into account that supl≥2 l

∑
j≥l j

−2 ≤ 2, we
arrive at the desired result. �
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