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Abstract. We study a branching random walk on R with an absorbing barrier. The position of the barrier depends on the generation.
In each generation, only the individuals born below the barrier survive and reproduce. Given a reproduction law, Biggins et al. [Ann.
Appl. Probab. 1 (1991) 573–581] determined whether a linear barrier allows the process to survive. In this paper, we refine their
result: in the boundary case in which the speed of the barrier matches the speed of the minimal position of a particle in a given
generation, we add a second order term an1/3 to the position of the barrier for the nth generation and find an explicit critical value
ac such that the process dies when a < ac and survives when a > ac. We also obtain the rate of extinction when a < ac and a lower
bound for the population when it survives.

Résumé. Nous étudions une marche aléatoire branchante sur R avec une barrière absorbante. La position de la barrière dépend de
la génération. À chaque génération, seuls les individus nés sous la barrière survivent et se reproduisent. Étant donnée une loi de
reproduction, Biggins et al. [Ann. Appl. Probab. 1 (1991) 573–581] ont déterminé, pour une barrière linéaire, si le processus survit
ou s’éteint. Dans cet article, nous affinons ce résultat : dans le cas frontière où la vitesse de la barrière correspond à la vitesse de
la particule la plus à gauche d’une génération donnée, nous allons à l’ordre suivant en ajoutant un terme an1/3 à la position de la
barrière pour la nième génération et obtenons une valeur critique explicite ac telle que le processus s’éteint quand a < ac et survit
quand a > ac. Nous obtenons aussi le taux d’extinction lorsque a < ac et une borne inférieure sur la taille de la population lorsqu’il
survit.
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1. Introduction

We study a discrete-time branching random walk on R. The population forms a well-known Galton–Watson tree T ,
and some extra information is added: to each individual u ∈ T we attach a displacement ξu ∈ R from the position of
her parent. We set the initial ancestor � at the origin, hence the individual u has position

V (u) =
∑

�<v≤u

ξv =
|u|∑
i=1

ξui
,

where |u| is the generation of u and ui the ancestor of u in generation i. We denote by Tn := {u ∈ T : |u| = n} the
population at time n. We define an infinite path u through T as a sequence of individuals u = (ui)i∈N such that

∀i ∈ N, |ui | = i and ui < ui+1.

We denote their collection by T∞.
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Now we explain how the displacements ξu,u ∈ T , are distributed. A simple choice, with very nice properties
would be to take them i.i.d. but actually everything still works in a more general setting. All individuals still reproduce
independently and the same way, but we allow correlations in the number and displacements of the children of every
single individual. If we write Γ (u) for the set of children of u, our requirement is that the point processes {ξv, v ∈
Γ (u)} (with u running over all the potential individuals of the random tree T ) are i.i.d.

We define a barrier as a function ϕ : N → R. In the branching random walk with absorption, the individuals u such
that V (u) > ϕ(|u|), i.e. born above the barrier are removed: they are immediately killed and do not reproduce.

Kesten [12], Derrida and Simon [8,9], Harris and Harris [11] have studied the continuous analog of this process,
the branching Brownian motion with absorption. The understanding of what happens in the continuous setting, more
convenient to handle from technical point of view, greatly helps us in the discrete one. In particular, we borrow here
some ideas from Kesten [12].

Biggins et al. [7] introduced the branching random walk with an absorbing barrier in order to answer questions
about parallel simulations. Pemantle [14] and Gantert et al. [10] also studied this model.

A natural question that arises is whether the process survives. This obviously depends on the walk as well as on
the barrier. The case of the linear barriers has been solved by Biggins et al. [7].

Before stating their result, we need to introduce some notation:
We denote the intensity measure of the point process by μ, and its Laplace–Stieljes transform by Φ:

Φ(t) = E

[ ∑
|u|=1

e−tξu

]
=

∫
R

e−tzμ(dz).

We assume that the expected number of children Φ(0) is finite and that negative displacements occur, i.e. that
μ((−∞,0)) > 0.

We also define Ψ = logΦ , this is a strictly convex function that takes values in (−∞,+∞].
We call critical the case where

Φ(1) = E

[ ∑
|u|=1

e−ξu

]
= 1 and Φ ′(1) := E

[ ∑
|u|=1

ξue−ξu

]
= 0.

This can also be written Ψ (1) = 0 and Ψ ′(1) = 0.

Theorem 1.1 (Biggins et al. [7]). In the critical case, we have:

P
(∃u ∈ T∞,∀i ≥ 1,V (ui) ≤ iε

){= 0 if ε ≤ 0,
> 0 if ε > 0.

The aim of this article is to refine this result by replacing the linear barrier i 
→ iε with a more general barrier
i 
→ ϕ(i).

Given a barrier ϕ we do not know in general whether P(∃u ∈ T∞,∀i ≥ 1,V (ui) ≤ ϕ(i)) = 0 or not. We assume
from now on that we are in the critical case. It is well known that many noncritical random walks can be transformed
into critical ones by a linear modification of the displacements, so we do not loose much in generality. Theorem 1.1
leads us to focus on barriers such that ϕ(i)

i
→ 0.

We introduce the parameter

σ 2 := Φ ′′(1) = E

[ ∑
|u|=1

ξ2
ueξu

]

and assume through the following that it is finite.
Some specific technical difficulties arise in the computation of the second moment (that we use in order to give a

lower bound for the survival probability or to prove survival) when dealing with Galton–Watson trees of unbounded
degree. Actually individuals with many children may cause trouble. In order to have a sufficient control, we assume
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from now on that the number of children of a single individual is uniformly bounded or that the following condition
holds:

∃δ1 > 0, Φ(1 + δ1) < +∞ and ∃δ2 > 0, E
[
#T 1+δ2

1

]
< +∞. (1.1)

Under these assumptions, we obtain the following result:

Theorem 1.2. Let ac = 3
2 (3π2σ 2)1/3. We have:

P
(∃u ∈ T∞,∀i ≥ 1,V (ui) ≤ ai1/3){= 0 if a < ac,

> 0 if a > ac.

Unfortunately, we are not able to conclude in the case a = ac, nor to give a necessary and sufficient condition on a
general barrier for a line of descent to survive below it.

Theorem 1.2 has the following corollary:

Corollary 1.3. Under the hypothesis of Theorem 1.2, we have, almost surely, on the set of ultimate survival of the
underlying Galton–Watson process,

inf
u∈T∞

lim sup
n→∞

V (un)

n1/3
= ac.

While proving Theorem 1.2, we actually obtain stronger results. The two following propositions together imply
the theorem.

Proposition 1.4. If a > ac, then the equation a = b + 3π2σ 2

2b2 has two solutions in b, let ba be the one such that

ba > 2ac

3 . For any ε > 0, for any N ∈ N large enough, we have with positive probability:

∀k ≥ 1, #
{
u ∈ TNk : ∀i ≤ Nk, (a − ba)i

1/3 ≤ V (ui) ≤ ai1/3} ≥ exp
(
Nk/3(ba − ε)

)
.

Proposition 1.5. If a < ac, then there exists some constant c > 0 such that

1

n1/3
logP

(∃u ∈ Tn,∀i ≤ n,V (ui) ≤ ai1/3) → −c.

The constant c, which depends on a, is determined in Section 5.
When a < ac, extinction means that the total progeny Z is almost surely finite. This random variable has infinite

mean, since the expected number of surviving individuals in generation n is exp(an1/3(1 + o(1))). We can estimate
the tail of the distribution of Z:

Proposition 1.6. If a < ac, then let g be the optimal function determined in Section 5, c := g(0) and d := max[0,1] g.

P(Z > k) = k−(c/d)(1+o(1)).

Remark 1.7. In the case a ≤ 0, g is decreasing, hence d = c and the claim of Proposition 1.6 is weaker than a known
result, conjectured by Aldous and proved by Addario-Berry and Broutin [1], and improved by Aidékon [2] that for
a = 0, E[Z] < +∞ and E[Z logZ] = +∞. Exponents less than −1 are obtained (see Aidékon, Hu and Zindy [3]) for
linear barriers i 
→ −εi, which corresponds to what is often referred as the subcritical case.

Consider a general barrier ϕ : N → R. We define

a+ := lim sup
n→∞

ϕ(n)

n1/3
and a− := lim inf

n→∞
ϕ(n)

n1/3
.
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We deduce from Theorem 1.2 that there is extinction when a+ < ac and survival when a− > ac. Making some
modifications to the computations of Section 3, we can prove the following result:

Theorem 1.8. Assume a+ ≥ ac. The equation a+ = b + 3π2σ 2

2b2 admits a unique solution bac = 2ac

3 if a+ = ac, and

two solutions if a > ac. Let ba+ ≥ 2ac

3 be the larger solution.

If a− < 3π2σ 2

2b2
a+

, then there is extinction. We have a partial converse: if a+ ≥ ac and a− are reals such that a− <

3π2σ 2

2b2
a+

, then we can find a corresponding barrier ϕ such that the absorbed branching random walk survives with

positive probability.

The rest of the paper is organized as follows:
Section 2 introduces the tools we will use in the proof of our main results.
Section 3 is devoted to the proof of the upper bound in Proposition 1.5, which contains the first part of Theorem 1.2.
In Section 4, we prove Proposition 1.4 which implies the second part of Theorem 1.2.
In Section 5, we complete the proof of Proposition 1.5. We skip many details of technical arguments already

exposed in Section 4 to obtain the lower bound and go back over some results of Section 3 in order to prove that the
two bounds agree.

In Section 6, we prove Theorem 1.8, Proposition 1.6 and Corollary 1.3.

2. Some preliminaries

2.1. Many-to-one lemma

Since E[∑|u|=1 e−ξu ] = 1, we can define the law of a random variable X such that for any measurable nonnegative
function f ,

E
[
f (X)

] = E

[ ∑
|u|=1

e−ξuf (ξu)

]
.

Then E[X] = E[∑|u|=1 ξue−ξu ] so that X is centered by hypothesis.
We write N

∗ for the set of positive integers. Let (Xi)i∈N∗ be a i.i.d. sequence of copies of X. Write for any n ∈ N,
Sn := ∑

0<i≤n Xi . S is then a mean-zero random walk starting from the origin.
We can now state the many-to-one lemma (this is exactly Lemma 4.1(iii) of Biggins and Kyprianou [6]):

Lemma 2.1 (Biggins and Kyprianou [6]). For any n ≥ 1 and any measurable function F : Rn → [0,+∞),

E

[ ∑
|u|=n

e−V (u)F
(
V (ui),1 ≤ i ≤ n

)] = E
[
F(Si,1 ≤ i ≤ n)

]
.

The proof of the lower bound for the survival probability also requires the following bivariate version of the many-
to-one lemma.

Lemma 2.2 (Gantert, Hu and Shi [10]). Let (X, ν) be a random variable taking values in R × N
∗ such that for any

measurable nonnegative function f ,

E
[
f (X,ν)

] = E

[ ∑
|u|=1

e−ξuf (ξu,#T1)

]
.
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Let n ≥ 1 and (Xi, νi)1≤i≤n be i.i.d. copies of (X, ν). Write for any 0 ≤ k ≤ n, Sk := ∑
0<i≤k Xi . Then for any

measurable function F : (R × N
∗)n → [0,+∞),

E

[ ∑
|u|=n

e−V (u)F
(
V (ui),#Γ (ui−1),1 ≤ i ≤ n

)] = E
[
F(Si, νi,1 ≤ i ≤ n)

]
.

The proof, very similar to the one of Lemma 2.1, is omitted.

2.2. Mogul’skii’s estimate

Let F [0,1] (respectively C[0,1]) be the set of functions (respectively continuous functions) [0,1] 
→ R.
For any L, L̃ ∈ F [0,1], we write L < L̃ when ∀t ∈ [0,1],L(t) < L̃(t) and L ≤ L̃ when ∀t ∈ [0,1],L(t) ≤ L̃(t).

If n ≥ 1, we write L <n L̃ when ∀1 ≤ k ≤ n, L( k
n
) < L̃( k

n
) and L ≤n L̃ when ∀1 ≤ k ≤ n, L( k

n
) ≤ L̃( k

n
).

Theorem 2.3 (Mogul’skii). Let ξ1, ξ2, . . . be i.i.d. random variables such that E[ξ1] = 0 and σ 2 := E[ξ2
1 ] < ∞. Let

(xn, n ≥ 0) be a sequence of positive numbers such that

lim
n→∞xn = +∞,

lim
n→∞

xn√
n

= 0.

Define for any n ≥ 0

Sn := S0 + ξ1 + ξ2 + · · · + ξn,

where S0 = z almost surely under the probability P
z (z ∈ R).

When z = 0, write P := P
0 and define, for any t ∈ [0,1],

sn(t) := S
tn�
xn

= ξ1 + ξ2 + · · · + ξk

xn

for k/n ≤ t < (k + 1)/n.

Then, for any L1, L2 ∈ C[0,1], with

L1 < L2 and L1(0) < 0 < L2(0), (2.1)

we have, as n → ∞,

log
(
P(L1 < sn < L2)

) ∼ −CL1,L2nx−2
n ,

where

CL1,L2 := π2σ 2

2

∫ 1

0

dt

(L2(t) − L1(t))2
.

We keep the notations and assumptions of Theorem 2.3 throughout this section. For the proof, we refer to [13].
We actually need more sophisticated versions of this estimate. For the proofs of the following results, we refer

to [4]. In all this section, changing strict inequalities into weak ones in the definition of the events we are interested
(but not in (2.1)) does not change the estimate of the probability.

Lemma 2.4 (Lemma 4.4 of [4]). Set L1 and L2 like in Theorem 2.3. For any sequences (Ln
1)n and (Ln

2)n of F [0,1]
such that ‖Ln

1 − L1‖∞ → 0 and ‖Ln
2 − L2‖∞ → 0 as n → ∞, we have

log
(
P
(
Ln

1 <n sn <n Ln
2

)) ∼ log
(
P
(
Ln

1 < sn < Ln
2

)) ∼ −nx−2
n CL1,L2 .
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From now on, we set:

∀n ≥ 1, xn := n1/3. (2.2)

Proposition 2.5 (Proposition 4.7 of [4]). Set L1, L2 ∈ C[0,1], with

L1(0) ≤ 0 ≤ L2(0) and ∀t ∈ [0,1], L1(t) ≤ L2(t). (2.3)

Let (Ln
1)n and (Ln

2)n be sequences of F [0,1] such that ‖Ln
1 −L1‖∞ → 0 and ‖Ln

2 −L2‖∞ → 0 as n → ∞. We assume
B and C are mappings [0,1] × N

∗ 
→ N
∗, nondecreasing in the first component and such that, for any α ∈ [0,1], the

sequences (B(α,n) − αn)n and (C(α,n) − αn)n are bounded.
Uniformly in 0 ≤ β < γ ≤ 1, we have

lim sup
n→∞

1

n1/3
log

(
sup

z
P

z

(
Ln

1

(
k

n

)
<

Sk−B(β,n)

xn

< Ln
2

(
k

n

)
,∀B(β,n) < k ≤ C(γ,n)

))

≤ −C
β,γ

L1,L2
:= −π2σ 2

2

∫ γ

β

dt

(L2(t) − L1(t))2
,

where the supz is over the z ∈ R such that xnL
n
1(

B(β,n)
n

) ≤ z ≤ xnL
n
2(

B(β,n)
n

).

Remark 2.6. The upper bound in Theorem 2.3 and Lemma 2.4 is still valid with condition (2.1) replaced by (2.3).

In order to deal with Galton–Watson trees of infinite degree, we borrow Lemma 2.1 from [10]. Combined with the
arguments leading to Proposition 2.5, it gives us the following estimate.

Proposition 2.7. For each n ≥ 1, let X
(n)
i , 1 ≤ i ≤ n be i.i.d. real-valued random variables. We define S

(n)
i = S

(n)
0 +

X
(n)
1 + · · · + X

(n)
i for 1 ≤ i ≤ n.

Assume that there exist constants δ > 0 and σ 2 > 0 such that

sup
n≥1

E
[∣∣X(n)

1

∣∣2+δ]
< +∞, E

[
X

(n)
1

] = o
(
n−2/3) and Var

(
X

(n)
1

) → σ 2. (2.4)

Let L1, L2, (Ln
1)n and (Ln

2)n be like in Lemma 2.4. Let β and γ be real numbers such that 0 ≤ β < γ ≤ 1. Let (B(n))n
and (C(n))n be sequences of reals such that the sequences (B(n)−βn)n and (C(n)− γ n)n are bounded and ∀n ≥ 1,
1 ≤ B(n) < C(n) ≤ n.

Let u∗ and v∗ be real numbers such that L1(β) < u∗ < v∗ < L2(β). Let un and vn be sequences of real numbers
such that

un

xn

→ u∗, vn

xn

→ v∗, Ln
1

(
B(n)

n

)
xn ≤ un ≤ vn ≤ Ln

2

(
B(n)

n

)
xn ∀n ≥ 1.

We have, for any ε > 0,

lim inf
n→∞

1

n1/3
log

(
inf
z

P
z

(
∀B(n) < k ≤ C(n),Ln

1

(
k

n

)
<

S
(n)
k−B(n)

n1/3
< Ln

2

(
k

n

)
;

Ln
2

(
C(n)

n

)
− ε <

S
(n)
C(n)−B(n)

n1/3
< Ln

2

(
C(n)

n

)))
≥ −C

β,γ

L1,L2
,

where the infz is over the z ∈ R such that un ≤ z ≤ vn.
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2.3. A rough estimate

In Section 4, we need a lower bound in a particular case with L1(0) < 0 = L2(0) and L2 ≥ 0 on [0,1]. In order to
apply the results above, the following lemma will be useful:

Lemma 2.8. There are constants M ≥ 1, and ε1 > 0 such that, with k := 
ε2n
1/3�, such that the probability

Pn(M,ε1, ε2) defined as

P

(
∃u ∈ Tk,∀i < k,#Γ (ui) ≤ M,L1

(
i

n

)
≤ V (ui)

n1/3
≤ L2

(
i

n

)
;−Mε2 ≤ V (uk)

n1/3
≤ −ε1ε2

)

satisfies

lim
ε2→0

lim inf
n→∞

1

n1/3
logPn(M,ε1, ε2) = 0.

Proof. Let ε1 > 0 and such that for some M ≥ 1,

p := P
(
#T1 ≤ M; ∃u ∈ T1,−M ≤ V (u) ≤ −ε1

)
> 0.

By independence,

P
(∃u ∈ Tk,∀i < k,#Γ (ui) ≤ M,∀i ≤ k,−iM ≤ V (ui) ≤ −iε1

) ≥ pk.

Let ε2 > 0 such that Mε2 < −L1(0). For any integer n large enough, we take k := 
ε2n
1/3�. Hence, for ε2 > 0

small enough, we have

P

(
∃u ∈ Tk,∀i < k,#Γ (ui) ≤ M;L1

(
i

n

)
≤ V (ui)

n1/3
≤ L2

(
i

n

)
;−Mε2 ≤ V (uk)

n1/3
≤ −ε1ε2

)
≥ pk. �

3. Upper bound for the survival probability

3.1. Splitting the survival probability

Fix a > 0. Obviously,

P
(∃u ∈ T∞,∀i,V (ui) ≤ ai1/3) = lim

n→∞ P
(∃u ∈ Tn,∀i ≤ n,V (ui) ≤ ai1/3).

From now on, n ≥ 1 is fixed.
We set a second barrier i 
→ ai1/3 − bi,n (with bi,n > 0 for 1 ≤ i ≤ n yet to be determined) below the first one

i 
→ ai1/3: if a particle crosses it, then its descendants will be likely to stay below the first one until generation n.
Let H(u) := inf{k ≤ n: V (uk) < ak1/3 − bk,n} be the first time the line of descent of a particle u ∈ Tn crosses this

second barrier (H(u) = ∞ if the particle stays between the barriers until time n). We split the sum accordingly:

P
(∃u ∈ Tn,∀i ≤ n,V (ui) ≤ ai1/3) ≤ R∞ +

n∑
j=1

Rj , (3.1)

where

Rj = P
(∃u ∈ Tn,H(u) = j,∀i ≤ n,V (ui) ≤ ai1/3) for j = 1, . . . , n,∞.
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By Chebyshev’s inequality and then Lemma 2.1, we get

R∞ ≤ E

[∑
u∈Tn

1{∀i≤n,ai1/3−bi,n≤V (ui)≤ai1/3}
]

≤ E
[
eSn1{∀i≤n,ai1/3−bi,n≤Si≤ai1/3}

]
≤ ean1/3

P
(∀i ≤ n,ai1/3 − bi,n ≤ Si ≤ ai1/3). (3.2)

For 1 ≤ j ≤ n,

Rj ≤ E

[∑
v∈Tj

1{∀i<j,ai1/3−bi,n≤V (vi )≤ai1/3,V (v)<aj1/3−bj,n}
]

≤ E
[
eSj 1{∀i<j,ai1/3−bi,n≤Si≤ai1/3,V (Sj )<aj1/3−bj,n}

]
≤ eaj1/3−bj,nP

(∀i < j, ai1/3 − bi,n ≤ Si ≤ ai1/3). (3.3)

3.2. Asymptotics for R∞

In order to apply Lemma 2.4 (combined with Remark 2.6), we set bi,n := n1/3g( i
n
) for some continuous function

g : [0,1] 
→ [0,+∞). We take for any t ∈ [0,1], g2(t) := at1/3 and g1(t) = g2(t) − g(t). Then we have

lim sup
n→∞

logP(∀i ≤ n,ai1/3 − bi,n ≤ Si ≤ ai1/3)

n1/3
≤ −Cg1,g2 . (3.4)

Putting together equations (3.2) and (3.4), we get

lim sup
n→∞

logR∞
n1/3

≤ −s1, (3.5)

where

s1 := −a + Cg1,g2 = −a + π2σ 2

2

∫ 1

0

dt

g(t)2
. (3.6)

3.3. Asymptotics for Rj

We define B and C by B(α,n) := 0 and C(α,n) := 
αn� + 1 and write, for any α ∈ (0,1), j := C(α,n). Proposi-
tion 2.5 yields that, uniformly in α ∈ (0,1),

lim sup
n→∞

1

n1/3
logP

(
∀i < j, ai1/3 − n1/3g

(
i

n

)
≤ Si ≤ ai1/3

)
≤ −C0,α

g1,g2
. (3.7)

Putting together equations (3.3) and (3.7), we get that, uniformly in α ∈ (0,1),

lim sup
n→∞

1

n1/3
logRj ≤ aα1/3 − g(α) − C0,α

g1,g2
. (3.8)

Obviously, for any n ≥ 1,

n∑
j=1

Rj(n) ≤ n sup
1≤j≤n

Rj (n) = n sup
0<α<1

RC(α,n)(n). (3.9)



Critical barrier for killed branching random walk 997

As a consequence,

lim sup
n→∞

1

n1/3
log

n∑
j=1

Rj (n) ≤ −s2, (3.10)

where

s2 := min
0≤α≤1

{−aα1/3 + g(α) + C0,α
g1,g2

} = min
0≤α≤1

{
−aα1/3 + g(α) + π2σ 2

2

∫ α

0

dt

g(t)2

}
. (3.11)

Combining (3.10) with (3.5) and (3.1), we obtain

lim sup
n→∞

1

n1/3
logP

(∃u ∈ Tn,∀i ≤ n,V (ui) ≤ ai1/3) ≤ −s,

where s := min(s1, s2).

3.4. Choice of g for the upper bound

Set a ∈ (0, ac). We are looking for a function g such that s > 0. The existence of such a function implies extinction
and ends the proof the first part of Theorem 1.2.

We add the constraint g(1) = 0 (but assume
∫ 1

0
du

g(u)2 < ∞). Taking α = 1, we see from (3.11) and (3.6) that this
implies s2 ≤ s1 and, as a result, s = s2.

We choose g in such a way that the quantity −aα1/3 + g(α) + π2σ 2

2

∫ α

0
dt

g(t)2 which appears in (3.11) does not
depend on α. Hence g is defined as the solution of the equation:

∀t ∈ [0,1], −at1/3 + f (t) + π2σ 2

2

∫ t

0

du

f (u)2
= s, (3.12)

where s is some positive constant, the value of which is to be set later in such a way that f (1−) = 0. According to the
computations above, this value of s will give a bound for the rate of decay of the survival probability.

Equivalently, equation (3.12) may be written f (0) = s and ∀t ∈ (0,1),

f ′(t) = a

3
t−2/3 − π2σ 2

2f (t)2
. (3.13)

By the Picard–Lindelöf theorem (see for example [5]), such an ordinary differential equation admits a unique maximal
solution f defined on an interval [0, tmax) with tmax ∈ (0,+∞]. And if tmax < +∞, then f has limit 0 or +∞ when
t goes to tmax.

Remark 3.1. The fact that f ′(0) does not exist here is not troublesome at all since the proof of the theorem, using
Picard iterates, actually relies on equation (3.12).

In order to prove that there exists an initial value s such that tmax = 1 and limt→1 f (t) = 0, we get a closer look at
the differential equation.

First we state three simple results specific to this differential equation.

Proposition 3.2. Let λ > 0 and f a continuous function [0, t0) 
→ (0,+∞). Define fλ : (0, λ−1t0) 
→ (0,+∞) by

fλ(t) = λ−1/3f (λt).

Then f satisfies equation (3.13) on (0, t0) if and only if fλ does on (0, λ−1t0).
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Proof. Assume that f satisfies equation (3.13) for any 0 < t < t0. Then for any 0 < t < λ−1t0,

f ′
λ(t) = λ2/3f ′(λt)

= λ2/3
(

a

3
(λt)−2/3 − π2σ 2

2f (λt)2

)

= a

3
t−2/3 − π2σ 2

2fλ(t)2
.

This means that fλ also satisfies equation (3.13) for any 0 < t < λ−1t0.
Conversely, assume that fλ satisfies equation (3.13) on (0, λ−1t0). We notice that if λ′ > 0, then (fλ)λ′ = fλλ′ . We

take λ′ = λ−1. Hence (fλ)λ′ = f also satisfies equation (3.13) for any 0 < t < (λλ′)−1t0 = t0. �

Proposition 3.3. Set 0 < a1 < a2 and s > 0. Let f1 and f2 be functions [0, tmax) 
→ (0,+∞) such that

∀0 ≤ t < tmax,∀i ∈ {1,2}, −ait
1/3 + fi(t) + π2σ 2

2

∫ t

0

du

fi(u)2
= s.

Then, for all 0 ≤ t < tmax, f1(t) ≤ f2(t).

Proof. It suffices to prove that, if 0 ≤ tstart, 0 < a1 < a2 and 0 < x1 ≤ x2, then there exist tnext > tstart such that there
are functions f1 and f2 : [tstart, tnext) 
→ (0,+∞) such that

∀tstart ≤ t < tnext,∀i ∈ {1,2}, −ai

(
t1/3 − t

1/3
start

) + fi(t) + π2σ 2

2

∫ t

tstart

du

fi(u)2
= xi;

then, for any tstart ≤ t < tnext, f1(t) ≤ f2(t).
We choose tnext such that the Picard interates f n

i defined, for i ∈ {1,2}, by:

∀tstart ≤ t < tnext, f 0
i (t) = xi;

∀n ∈ N,∀tstart ≤ t < tnext, f n+1
i (t) = f n

i (tstart) + ai

(
t1/3 − t

1/3
start

) − π2σ 2

2

∫ t

tstart

du

f n
i (u)2

,

exist and converge on [tstart, tnext). The limits fi are solutions of the integral equations for i ∈ {1,2}.
It is easy to prove by induction on n that

∀n ∈ N,∀tstart ≤ t < tnext, f n
1 (t) ≤ f n

2 (t).

Letting n tend to infinity gives us the desired conclusion. �

Proposition 3.4. Let f be as above. Then we are in one of the following cases:

(A) tmax = +∞ and f (t) → +∞ as t → +∞;
(B) tmax < +∞ and f (t) → 0 as t → tmax.

Proof. First notice that for any 0 < t < tmax, f (t) ≤ s + at1/3. A consequence of this inequality is that if tmax < +∞,
then the limit of f when t goes to tmax can only be 0.

Now, suppose that tmax = +∞ but that f does not go to infinity. Then there are M > 0 and a sequence (tn)n ≥ 1

with limn tn = +∞ such that for any n ≥ 1, f (tn) ≤ M . We can choose n such that a
3 t

−2/3
n − π2σ 2

2M2 < 0.
Then it is easy to see that f decreases after tn. Indeed, consider

t∗ := inf

{
t ≥ tn, f

′(t) >
a

3
t
−2/3
n − π2σ 2

2M2

}
.
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We have, for tn ≤ t ≤ t∗,

f ′(t) = a

3
t−2/3 − π2σ 2

2f (t)2
≤ a

3
t
−2/3
n − π2σ 2

2M2
< 0.

If we assume t∗ < +∞, then f ′(t∗) < 0, then f decreases in a neighborhood of t∗ and the inequality f ′(t) ≤ a
3 t

−2/3
n −

π2σ 2

2M2 still holds on this neighborhood, which contradicts the definition of t∗.
We have proved that f ′(t) is less than a negative constant for t ≥ tn, which implies that f reaches zero in finite

time. �

Assume we are in the second case of Proposition 3.4. We set λ := t−1
max and define the function fλ like in Proposi-

tion 3.2 (with t0 = tmax). We choose g = fλ and set g(1) = 0 so that g is continuous over [0,1] and satisfies (3.13) for
all t ∈ (0,1).

Remark 3.5. A consequence of Proposition 3.2 is that the choice of the value s of f (0) does not matter at all. If we
replace s > 0 with another s̃ > 0, we then replace λ with λ̃ = λ( s̃

s
)3 and finally get the same g.

So we only have to prove that, when a < ac, we are in case (B) of Proposition 3.4, and we will deduce the upper
bound in Theorem 1.2. This is contained in the following:

Proposition 3.6. Let f be the solution of equation (3.13) with initial condition f (0) = 1.

(i) If a > ac, then tmax = +∞ and f (t) ∼ bt1/3 as t → +∞ with b defined by b > 2ac

3 and a = b + 3π2σ 2

2b2 .

(ii) If a = ac, then tmax = +∞ and f (t) ∼ 2ac

3 t1/3 as t → +∞.
(iii) If a < ac, then tmax < +∞ and f (t) → 0 as t → tmax.

In the proof of the proposition, we will need the following lemma.

Lemma 3.7. Assume that f is a solution on [0,+∞) of the differential equation and that:

lim sup
t→+∞

f (t)

t1/3
≤ b.

Then we have

lim sup
t→+∞

f (t)

t1/3
≤ b′ := a − 3π2σ 2

2b2
.

Proof. Let ε > 0. By hypothesis, for any t greater than some t0, we have f (t) ≤ (b + ε)t1/3. For some real constants
c0 and c′

0 and any t ≥ t0, we have, by equation (3.12):

f (t) ≤ c0 + at1/3 − π2σ 2

2(b + ε)2

∫ t

t0

du

u2/3
= c′

0 +
(

a − 3π2σ 2

2(b + ε)2

)
t1/3.

Hence

lim sup
t→+∞

f (t)

t1/3
≤

(
a − 3π2σ 2

2(b + ε)2

)
.

Letting ε tend to 0 ends the proof of the lemma. �

Iterating Lemma 3.7, we obtain:
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Lemma 3.8. Assume that f is a solution on [0,+∞) of the differential equation and let b0 be a real such that

b0 ≥ lim supt→+∞
f (t)

t1/3 . We define the sequence (bn)n∈N recursively by bn+1 := a − 3π2σ 2

2b2
n

. Then

∀n ≥ 1, lim sup
t→+∞

f (t)

t1/3
≤ bn.

Proof of Proposition 3.6.
(i) Assume a ≥ ac and let b such that a = b + 3π2σ 2

2b2 . Define, for 0 ≤ t ≤ tmax, f0(t) := bt1/3. Then f0 satisfies
equation (3.13) as f does, with initial condition f0(0) = 0 < f (0) = s. Hence

∀0 ≤ t ≤ tmax, f (t) ≥ f0(t).

This implies tmax = +∞. Now let h = f − f0. Then, by equation (3.12), we have, for t ≥ 0,

h(t) = s + (a − b)t1/3 −
∫ t

0

π2σ 2 du

2f (u)2

= s +
(

a − b − 3π2σ 2

2b2

)
t1/3 +

∫ t

0

π2σ 2 du

2

(
1

f0(u)2
− 1

f (u)2

)
.

Since a = b + 3π2σ 2

2b2 ,

h(t) = s +
∫ t

0

π2σ 2 du

2

(
1

f0(u)2
− 1

f (u)2

)
≤ s +

∫ t

0

π2σ 2

2

2h(u)du

f0(u)3
.

We apply Gronwall’s lemma and obtain, for any 0 < t0 < t ,

h(t) ≤ h(t0) exp

(∫ t

t0

π2σ 2 du

b3u

)
= h(t0)

(
t

t0

)π2σ 2/b3

. (3.14)

Notice that π2σ 2

b3 = 1
3 ( 2ac

3b
)3. Then if a > ac and b > 2ac

3 , the exponent in the right-hand side of (3.14) will be less

than 1
3 . Hence inequality (3.14) implies (i).

(ii) Assume a = ac and b = 2ac

3 . This is the same as when a > ac, except that the exponent in the right-hand side

of (3.14) is exactly 1
3 , which means that for some constant b0 > 2ac

3 ,

∀t ≥ t0, f0(t) ≤ f (t) ≤ b0t
1/3.

Apply Lemma 3.8. The result follows from that limn bn = 2ac

3 .

(iii) Assume a < ac and tmax = +∞. Then, by (ii) and Proposition 3.3, we have that any b0 > 2ac

3 , for t large
enough,

lim sup
t→+∞

f (t)

t1/3
≤ b0.

We apply Lemma 3.8. If b0 is close enough to 2ac

3 , we will have b1 < 2ac

3 and bn → −∞ as n goes to infinity, which
is absurd. We conclude that the hypothesis tmax = +∞ is false, which proves the proposition. �

4. Lower bound for the survival probability

4.1. Strategy of the estimate

The basic idea is to consider only the population between two barriers (below i 
→ ai1/3 but above i 
→ (a − b)i1/3),
estimate the first two moments of the number of individuals in generation n and then to use the Paley–Zygmund
inequality to get the lower bound.
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Unfortunately, Mogul’skii’s estimate causes the appearance of a factor eo(n1/3) in the estimates of the moments of
the surviving population at generation n, so we will not be able to prove directly that the population survives with
positive probability.

Here is how to overcome this difficulty:
Set λ > 0 such that eλ ∈ N and (vk)k≥1 a sequence of positive integers. We consider the population surviving

below the barrier i 
→ ai1/3: any individual that would be born above this barrier is removed and consequently does
not reproduce. For any k ∈ N, we pick a single individual z at position V (z) in generation eλk and consider the number
Yk(z) of descendants she eventually has in generation eλ(k+1).

We get a lower bound for Yk(z) by considering, instead of z, a virtual individual z̃ in the same generation eλk but
positioned on the barrier at V (̃z) := aeλk/3 ≥ V (z). The number and displacements of the descendants of z̃ are exactly
the same as those of z. Then the descendants of z̃ are more likely to cross the barrier and be killed, which means that
Yk(̃z) ≤ Yk(z).

In order to apply Mogul’skii’s estimate, we add a second absorbing barrier i 
→ (a − b)i1/3 for some b > 0 and kill
any descendant of z̃ that is born below it. This way, we obtain that, almost surely, Zk ≤ Yk(̃z) ≤ Yk(z), where

Zk := #
{
ũ ∈ Teλ(k+1) : ũ > z̃,∀eλk < i ≤ eλ(k+1), (a − b)i1/3 ≤ V (ũi) ≤ ai1/3}.

Clearly, Zk depends on z but its law and in particular Ak := P(Zk ≥ vk) ≤ P(Yk(z) ≥ vk) do not.
We define, for any n ≥ 1:

Pn := P
(∀1 ≤ k ≤ n,#

{
u ∈ Teλk : ∀i ≤ eλk,V (ui) ≤ ai1/3} ≥ vk−1

)
.

If 1 ≤ n0 ≤ n, then we have:

Pn+1 ≥ Pn

(
1 − (1 − An)

vn−1
)
.

By induction, we obtain:

Pn ≥ Pn0

n−1∏
k=n0

(
1 − (1 − Ak)

vk−1
) ≥ Pn0

n∏
k=n0

(
1 − e−vk−1Ak

)
.

log Pn ≥ log Pn0 +
n∑

k=n0

log
(
1 − e−vk−1Ak

)
.

With the equivalent log(1+x) ∼ x for small values of x, the previous inequality makes Proposition 1.4 a consequence
of the following lemma:

Lemma 4.1. If a > ac, we can choose (vk)k∈N such that, when λ is large enough and such that eλ ∈ N, we have

∞∑
k=0

e−vkAk+1 < +∞. (4.1)

Fix θ ∈ (0,1), for example θ = 1
2 . The Paley–Zygmund inequality, with vk := θE[Zk] will provide us with the

lower bound on Ak needed to prove Lemma 4.1:

Ak ≥ (1 − θ)2 (E[Zk])2

E[Z2
k ]

. (4.2)

We set k ≥ 0 and consider, as stated above, the descendants of an individual z̃ starting at time eλk at position aeλk/3

over �k := eλ(k+1) − eλk generations. The individuals of generation i are killed and have no descendant if they are out
of the interval:

Ii := [
(a − b)i1/3, ai1/3].
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We set, for k = 0 for example (then the equations also hold for all k ∈ N with the same functions):

g2(t) := a

((
t + eλk

�k

)1/3

−
(

eλk

�k

)1/3)
, g(t) := b

(
t + eλk

�k

)1/3

, g1(t) := g2(t) − g(t). (4.3)

4.2. Upper bound for the second moment

We split the double sum over u,v ∈ T according to the generation j of uj = u ∧ v ∈ T the lowest common ancestor
of u and v:

E
[
Z2

k

] = E

[ ∑
u>̃z,v>̃z

|u|=|v|=eλ(k+1)

1{∀eλk<i≤eλ(k+1),V (ui )∈Ii ,V (vi )∈Ii }
]

=
�k∑

j=0

Bk,j , (4.4)

where Bk,k = Zk (for each time v = u = uj ) and for j < k,

Bk,j := E

[ ∑
u>̃z,|u|=eλ(k+1)

1{∀eλk<i≤eλ(k+1),V (ui )∈Ii }
∑

v>uj ,|v|=eλ(k+1)

vj+1 �=uj+1

1{∀eλk+j<i≤eλ(k+1),V (vi )∈Ii }
]
. (4.5)

Thanks to Lemma 2.1, we have:

hk,j (x) := E

[ ∑
v≥uj ,|v|=eλ(k+1)

1{∀eλk+j<i≤eλ(k+1),V (vi )∈Ii }
∣∣∣V (uj ) = x

]

= E
[
eS�k−j 1{∀0<i≤�k−j,x+Si∈Ieλk+j+i

}
]

≤ exp
(
a
(
eλ(k+1)/3 − (

eλk + j
)1/3) + beλk+j

)
P(∀0 < i ≤ �k − j, x + Si ∈ Ieλk+j+i ). (4.6)

Actually we need u in order to define hk,j (x) but the real number obtained actually does not depend on the choice
of u.

By conditioning on the σ -algebra generated by the ξv , v ∈ Γ (ui), eλk ≤ i ≤ eλk + j − 1 for each u, equation (4.5)
gives, in the case of deterministic branching:

Bk,j ≤ sup
x∈Ieλk+j

hk,j (x)E[Zk].

In the general case, this argument fails because the number (and the displacements) of the sisters of uj+1 are
correlated with ξuj+1 (and with the fact that this individual exists). We have independence of the σ -algebra mentioned
above for the descendants of the sisters of uj+1. If we assume that each individual has almost surely at most r children,
we obtain ∑

v>uj ,|v|=eλ(k+1)

vj+1 �=uj+1

1{∀eλk+j<i≤eλ(k+1),V (vi )∈Ii } ≤ (r − 1) sup
x∈Ieλk+j+1

hk,j+1(x).

Hence

Bk,j ≤ (r − 1) sup
x∈Ieλk+j+1

hk,j+1(x)E[Zk].

In the case of an unbounded number of children, we remove all the descendants of the individuals having a number
of children greater than some number rk to be set later. This obviously gives a lower bound, and that is what we want.
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Formally, we keep the same notations and add a superscript (k) when dealing with this new process. Equation (4.4)
becomes

E
[
Z

(k)2
k

] =
�k∑

j=0

B
(k)
k,j (4.7)

and we have the upper bound

B
(k)
k,j ≤ (rk − 1) sup

x∈Ieλk+j+1

hk,j+1(x)(k)
E

[
Z

(k)
k

]

with, obviously from the definition, hk,j (x)(k) ≤ hk,j (x).
We define B and C by B(α, �) := 
α�� + 1 and C(α, �) := � and write, for any α ∈ (0,1) j := B(α, �k) − 1.

Proposition 2.5 (combined with Remark 2.6) yields that, uniformly in α ∈ (0,1) and x ∈ Ieλk+B(α,�k)
,

lim sup
k→∞

1

�
1/3
k

P
(∀0 < i ≤ �k − (j + 1), x + Si ∈ Ieλk+j+1+i

) ≤ −Cα,1
g1,g2

.

Combining with the bound (4.6) yields that, uniformly in α ∈ (0,1),

lim sup
k→∞

1

�
1/3
k

log
B

(k)
k,B(α,�k)−1

E[Z(k)
k ]

≤ g2(1) − g2(α) + g(α) − Cα,1
g1,g2

. (4.8)

4.3. Lower bound for the first moment

For any k ≥ 1, we consider i.i.d. random variables X
(k)
i , 1 ≤ i ≤ �k with the same distribution as X conditioned on

ν ≤ rk (with (X, ν) defined in Lemma 2.2) and write S
(k)
j := ∑j

i=1 X
(k)
i for any 0 ≤ j ≤ �k . Let ε > 0.

By Lemma 2.2,

E
[
Z

(k)
k

] = E

[ ∑
u>̃z,|u|=eλ(k+1)

1{∀eλk<i≤eλ(k+1),V (ui )∈Ii ,#Γ (ui−1)≤rk}
]

= E
[
eS�k 1{∀i≤�k,aeλk/3+Si∈Ieλk+i

,νi≤rk}
]

= P(ν ≤ rk)
�kE

[
e
S

(k)
�k 1{∀i≤�k,aeλk/3+S

(k)
i ∈Ieλk+i

}
]

≥ P(ν ≤ rk)
�k exp

(
l
1/3
k

(
g2(1) − ε

))
P
(
g1 ≤�k

s
(k)
�k

≤�k
g2;S(k)

�k
≥ l

1/3
k

(
g2(1) − ε

))
, (4.9)

where, for any t ∈ [0,1],

s
(k)
�k

(t) := S
(k)

t lk�
l
1/3
k

.

Let δ1 and δ2 be like in condition (1.1), and let δ3 := δ1
1+δ1

. Hölder’s inequality yields

P(ν > rk) = E

[
1{#T1>rk}

∑
|u|=1

e−ξu

]

= E

[(
#T δ3

1 1{#T1>rk}
)(

#T −δ3
1

∑
|u|=1

e−ξu

)]
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≤ E[#T11{#T1>rk}]δ3E

[(
#T −δ3

1

∑
|u|=1

e−ξu

)1+δ1
]1/(1+δ1)

. (4.10)

We begin with the second factor in the right-hand side of (4.10). The convexity of t 
→ t1+δ1 gives

#T −δ1
1

( ∑
|u|=1

e−ξu

)1+δ1

≤
∑
|u|=1

e−ξu(1+δ1).

Hence

E

[(
#T −δ3

1

∑
|u|=1

e−ξu

)1+δ1
]

≤ Φ(1 + δ1) < +∞.

For the first factor in the right-hand side of (4.10), Markov’s inequality yields

E[#T11{#T1>rk}] ≤ E[#T 1+δ2
1 ]

r
δ2
k

.

Finally, the bound (4.10) becomes

P(ν > rk) ≤ E[#T 1+δ2
1 ]δ3

r
δ2δ3
k

Φ(1 + δ1)
1/(1+δ1).

We choose rk := 
el
1/4
k �. Therefore

lim
k→∞

1

�
1/3
k

logP(ν ≤ rk)
lk = 0.

In order to apply Proposition 2.7 to the third factor of (4.9), we have to check the conditions (2.4). It is not hard to
see that these conditions are consequences of the hypothesis (1.1) (see [10] for the details).

With the notations of Lemma 2.8

P
(
g1 ≤�k

s
(k)
�k

≤�k
g2;S(k)

�k
≥ �

1/3
k

(
g2(1) − ε

))
≥ P�k

(M,ε1, ε2) inf
−Mε2�

1/3
k ≤z≤−ε1ε2�

1/3
k

Q�k
(z, ε1, ε2, g1, g2),

where

Q�k
(z, ε1, ε2, g1, g2) := P

z

(
S

(k)

�k−
ε2�
1/3
k � ≥ �

1/3
k

(
g2(1) − ε

);
∀i ≤ �k − ⌊

ε2�
1/3
k

⌋
, g1

(
ε2�
1/3
k � + i

�k

)
≤ S

(k)
i

�
1/3
k

≤ g2

(
ε2�
1/3
k � + i

�k

))
.

Proposition 2.7, with β = 0, γ = 1, B(�k) = 
ε2�
1/3
k �, C(�k) = �k , u�k

= −Mε2�
1/3
k and v�k

= −ε1ε2�
1/3
k , yields

lim inf
k→∞

1

�
1/3
k

log inf
u�k

≤z≤v�k

Q�k
(z, ε1, ε2, g1, g2) ≥ −Cg1,g2 .

Then letting ε2 → 0 in (4.11) thanks to Lemma 2.8, the bound (4.9) becomes

lim inf
k→∞

1

�
1/3
k

logE
[
Z

(k)
k

] ≥ g2(1) − ε − Cg1,g2 .
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This inequality holds for any ε > 0 small enough, hence also for ε = 0.

4.4. Proof of Proposition 1.4

Combining with (4.8) yields that, uniformly in α ∈ (0,1),

lim sup
k→∞

1

�
1/3
k

log
B

(k)
k,B(α,�k)−1

(E[Z(k)
k ])2

≤ −g2(α) + g(α) + C0,α
g1,g2

.

Consequently, in view of (4.7) and (4.2)

lim sup
k→∞

1

�
1/3
k

logA
(k)
k ≥ min

0≤α≤1
g2(α) − g(α) − C0,α

g1,g2
.

Lemma 4.1 yields

max
0≤α≤1

Gλ(α) < 0 ⇒ P
(∃u ∈ T∞,∀i ≥ 1,V (ui) ≤ ai1/3) > 0, (4.11)

where

Gλ(α) := −g2(α) + g(α) + π2σ 2

2

∫ α

0

dt

g(t)2
+ e−λ/3

[
−g2(1) + π2σ 2

2

∫ 1

0

dt

g(t)2

]
.

We denote

∀t ∈ [0,1], f (t) :=
(

t + 1

eλ − 1

)1/3

.

We have g2 = af − af (0). We choosed for the width of the pipe the function g := bf . This gives

Gλ(α) = af (0) + (b − a)f (α) + π2σ 2

2b2

∫ α

0

dt

f (t)2
+ e−λ/3

[
af (0) − af (1) + π2σ 2

2b2

∫ 1

0

dt

f (t)2

]
.

Since f (1) = eλ/3f (0) and f ′ = 1
3f −2, this becomes:

Gλ(α) =
(

b + 3π2σ 2

2b2
− a

)
f (α) + e−λ/3

[
af (0) − 3π2σ 2

2b2
f (0)

]
.

Assuming a > ac, we can choose b such that b + 3π2σ 2

2b2 < a. Since f is increasing on [0,1],

max
0≤α≤1

Gλ(α) = Gλ(0) = f (0)

[(
b + 3π2σ 2

2b2
− a

)
+ e−λ/3

(
a − 3π2σ 2

2b2

)]
.

This value is negative for sufficiently large λ (that we can choose such that we also have eλ ∈ N), which, in view
of (4.11), completes the proof.

5. The extinction rate

Throughout this section, we assume a < ac.
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5.1. Upper bound

It follows from the computations of Section 3 that, for any continuous function g : [0,1] 
→ [0,+∞) such that
g(0) = 1,

lim sup
n

1

n1/3
logP

(∃u ∈ Tn,∀i ≤ n,V (ui) ≤ ai1/3) ≤ −cg,

where

cg := min
0≤t≤1

(
g(t) + π2σ 2

2

∫ t

0

du

g(u)2
− at1/3

)
.

The best choice for g is the one described in the end of Section 3: it is the solution of the integral equation (3.12)
with s = cg such that g(1) = 0 (or equivalently, tmax = 1). We can make this choice thanks to Proposition 3.2 and
Proposition 3.6(iii).

5.2. Lower bound

For the sake of clarity, we treat only the regular case. The modifications required by the general case are the same as
above. We directly apply the Paley–Zygmund inequality to the number Wn of individuals u ∈ Tn such that

∀i ≤ n, ai1/3 − n1/3g

(
i

n

)
≥ V (u) ≤ ai1/3.

Following the computations of Section 4, we obtain

lim inf
n

1

n1/3
logP

(∃u ∈ Tn,∀i ≤ n,V (ui) ≤ ai1/3) ≥ lim inf
n

1

n1/3
log

(
P(Wn ≥ 1) ≥) ≥ −dg,

where

dg := max
0≤t≤1

(
g(t) + π2σ 2

2

∫ t

0

du

g(u)2
− at1/3

)
.

The optimal g would be exactly the same as in the upper bound, except that we are forced to take approximations

because g must be strictly positive on [0,1]. Since this optimal g is such that g(t) + π2σ 2

2

∫ t

0
du

g(u)2 − at1/3 does not
depend on t , we have proved

c := sup
g

cg = inf
g

dg.

This completes the proof of Proposition 1.5.

6. Some refinements

6.1. About more general barriers

We are going to give a sketch of the proof of Theorem 1.8. We notice that 3π2σ 2

2b2
a+

≤ 3π2σ 2

2b2
ac

= ac

3 < ac.

The main idea is to consider the function g2 defined by

∀t ∈ [0,1), g2(t) := a+t1/3; g2(1) = a−.

We compute the quantities Rj and follow the arguments of Section 3. Almost everything goes as before with a = a+,
except that R∞ is less than before. We search for the optimal g (with still g1 = g2 − g). This is a solution of (3.12)
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(with a+ instead of a) over [0,1], but the boundary condition g(1) = 0 is replaced by g(1−) = a+ − a−. If a− is

the critical value 3π2σ 2

2ba+ of Theorem 1.8, then the function g(t) = ba+ t1/3 almost works, but the factor giving the

exponential decay of the probability is 0 = g(0). If a− is smaller than the critical value, we obtain some solution
(starting with the boundary condition at 1 and solving the differential equation) with g(0) > 0, which implies that
there is extinction and that, roughly speaking, the probability decays at least like exp(−g(0)n

1/3
k (1 + o(1))) along a

subsequence nk such that ϕ(nk)/n
1/3
k is close to a−.

Conversely, when we consider the same function g2 with a− greater than the critical value, we can find a solution of
the differential equation with arbitrarily small g(0) > 0 such that g(1−) > a+ − a−, which means that the probability
to have an exponential population exp((a− − a+ + g(1−))n

1/3
k (1 + o(1))) is of order exp(−g(0)n

1/3
k (1 + o(1))).

Then we can apply the arguments of Section 4. Let a+ ≥ ac and a− > 3π2σ 2

2b2
a+

. We construct a barrier ϕ satisfying

lim supn→∞
ϕ(n)

n1/3 = a+ and lim infn→∞ ϕ(n)

n1/3 = a− such that the process survives with positive probability. It suffices

to take ϕ(n) = a−n1/3 if n ∈ {Nk: k ∈ N} and ϕ(n) = a+n1/3 otherwise, for some integer N big enough, depending
on a+ and a−. The proof of this is essentially identical to the proof of the lower bound contained in Section 4. When

a+ ≥ ac, a− > 3π2σ 2

2b2
a+

, there is not always survival. For example, if ϕ(n) equals a+n1/3 for n even and a−n1/3 for n

odd, then a+ does not matter, it is easy to see that there is extinction if a− < ac: staying below this barrier is almost
as difficult as for the barrier n 
→ a−n1/3. The trouble comes from the fact that ϕ(n)

n1/3 is too often close to a−.

6.2. Sketch of the proof of Proposition 1.6

First we give the upper bound. Let a < ac and let g be with the optimal function seen before. Let n ≥ 1. We add a
second absorbing barrier i 
→ ai1/3 − n1/3g( i

n
). We write Zi (resp. Z∗

i ) for the number of individuals in generation i

that survive below the barrier i 
→ ai1/3 (resp. between the barriers). We have

P(Z > k) ≤ P(Zn+1 > 0) +
n∑

i=0

P

(
Z∗

i >
k

n + 1

)
+ P

(
Zi > Z∗

i

)
.

The terms P(Zi > Z∗
i ) correspond to the Rj . We know that they are, like P(Zn+1 > 0), exp(−g(0)n1/3(1 + o(1))). It

is not hard to see from the integral equation satisfied by g that

E
[
Z∗
αn�

] = exp
((

g(α) − g(0)
)
n1/3(1 + o(1)

))
.

Therefore, by Markov’s inequality,

n∑
i=0

P

(
Z∗

i >
k

n + 1

)
≤ (n + 1)2

k
exp

(
(d − c)n1/3(1 + o(1)

))
.

Finally we choose a sequence n = n(k) such that k ∼ exp(dn1/3), and we obtain the upper bound by letting k → ∞.
For the lower bound, we consider the same barriers as above. For any α ∈ [0,1], the probability that at least

one individual survives between the barriers until generation 
αn� and is close to the lower barrier at time 
αn� is
exp(cn1/3(1 + o(1))). We choose α maximizing g. An individual close to the lower barrier at time 
αn� gives, with
probability at least exp((c − ε1)n

1/3), in around ε2n
1/3 generations a number of children at least exp((d − ε3)n

1/3).
Taking ε1, ε2, ε3 small and making the same choice of n as for the upper bound yield the result.

6.3. Proof of Corollary 1.3 from Theorem 1.2

Lemma 6.1. We assume that the underlying Galton–Watson process is supercritical, and we denote by q

the extinction probability. Then, conditional on survival of the Galton–Watson process, the random variable
infu∈T∞ lim supn→∞

V (un)

n1/3 is almost surely constant.
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Proof. Let f be the generating function of the underlying supercritical Galton–Watson process. We mean that for
any s ∈ [0,1], f (s) = E[s#T1 ]. It is well known that f has exactly two fixed points, 1 and q ∈ [0,1) the extinction
probability. Let a ∈ R. In order to prove the lemma, it suffices to show that the number

P

(
inf

u∈T∞
lim sup
n→∞

V (un)

n1/3
> a

)

is a fixed point of the generating function f .
We write the boundary of the tree

T∞ =
⋃

|v|=1

T v∞,

where

T v∞ = {u ∈ T∞, u > v}
is the boundary of the tree T v rooted at v. Hence

inf
u∈T∞

lim sup
n→∞

V (un)

n1/3
= inf|v|=1

inf
u∈T v∞

lim sup
n→∞

V (un)

n1/3
= inf|v|=1

inf
u∈T v∞

lim sup
n→∞

V (v) + V v(un)

n1/3
. (6.1)

For any v ∈ T1, V (v)

n1/3 → 0, hence for any u ∈ T v∞,

lim sup
n→∞

V (v) + V v(un)

n1/3
= lim sup

n→∞
V v(un)

(n − 1)1/3
.

From this last equality and the independence properties of the branching random walk, we deduce that the random
variables

inf
u∈T v∞

lim sup
n→∞

V (un)

n1/3
, v ∈ T1,

form an i.i.d. family, and are distributed like infu∈T∞ lim supn→∞
V (un)

n1/3 .
With this in mind, equation (6.1) yields, for any a ∈ R,

P

(
inf

u∈T∞
lim sup
n→∞

V (un)

n1/3
> a

)
= P

(
∀v ∈ T1, inf

u∈T v∞
lim sup
n→∞

V (un)

n1/3
> a

)

= E

[ ∏
v∈T1

P

(
inf

u∈T v∞
lim sup
n→∞

V (un)

n1/3
> a

)]

= E

[
P

(
inf

u∈T∞
lim sup
n→∞

V (un)

n1/3

)#T1
]

= f

(
P

(
inf

u∈T∞
lim sup
n→∞

V (un)

n1/3

))
.

This completes the proof of the lemma. �

Proof of Corollary 1.3. Let a > ac. By Theorem 1.2, the branching random walk absorbed by the barrier i 
→ ai1/3

survives with positive probability. Hence, with at least the same positive probability,

∃u ∈ T∞, lim sup
n→∞

V (un)

n1/3
≤ a.
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In light of the lemma, this implies that on the set of ultimate survival of the underlying Galton–Watson tree,

inf
u∈T∞

lim sup
n→∞

V (un)

n1/3
≤ a

for any a > ac, hence also for a = ac.
It remains to prove that this random variable is at least ac, almost surely (remind that it equals +∞ when there is

extinction). We reason ab absurdo. We assume that with positive probability, this random variable is less than some
positive real a < ac. We deduce the existence of an integer N such that, with positive probability,

∃u ∈ T∞,∀n ≥ N,
V (un)

n1/3
≤ a.

Focusing on the value of V (un) on this event yields that there exist some real x satisfying the following conditions:

(i) With positive probability, there exists u ∈ TN such that V (u) ≤ x;
(ii) With positive probability, there exists v ∈ T∞ such that ∀i ≥ 1, V (vi) + x ≤ a(N + i)1/3.

If condition (ii) holds for some x, then it obviously also holds for any smaller value. Hence, since (i) holds for
x = 0, we may assume x ≤ 0 (if x > 0 we take x = 0).

Actually condition (i) is equivalent to P(∃u ∈ T1: V (u) ≤ x
N

) > 0 and implies that with positive probability

∃u ∈ TN,∀n ≤ N, ξun ≤ x

N
.

Hence, with at least the same probability,

∃u ∈ TN,∀n ≤ N, V (un) ≤ xn

N
≤ 0 ≤ an1/3.

This, combined with (ii) yields that the branching random walk absorbed by the barrier i 
→ ai1/3 survives with
positive probability.

By Theorem 1.2, this implies a ≥ ac, which contradicts our assumption a < ac. �
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