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Abstract. We consider excited random walks (ERWs) on Z with a bounded number of i.i.d. cookies per site without the non-
negativity assumption on the drifts induced by the cookies. Kosygina and Zerner [15] have shown that when the total expected
drift per site, δ, is larger than 1 then ERW is transient to the right and, moreover, for δ > 4 under the averaged measure it obeys
the Central Limit Theorem. We show that when δ ∈ (2,4] the limiting behavior of an appropriately centered and scaled excited
random walk under the averaged measure is described by a strictly stable law with parameter δ/2. Our method also extends the
results obtained by Basdevant and Singh [2] for δ ∈ (1,2] under the non-negativity assumption to the setting which allows both
positive and negative cookies.

Résumé. On considère des marches aléatoires excitées sur Z avec un nombre borné de cookies i.i.d. à chaque site, ceci sans
l’hypothèse de positivité. Auparavent, Kosygina et Zerner [15] ont établi que si la dérive totale moyenne par site, δ, est strictement
superieur à 1, alors la marche est transiente (vers la droite) et, de plus, pour δ > 4 il y a un théorème central limite pour la position
de la marche. Ici, on démontre que pour δ ∈ (2,4] cette position, convenablement centrée et réduite, converge vers une loi stable
de paramètre δ/2. L’approche permet également d’étendre les résultats de Basdevant et Singh [2] pour δ ∈ (1,2] à notre cadre plus
général.

MSC: Primary: 60K37; 60F05; 60J80; secondary: 60J60
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1. Introduction and main results

Excited random walk (ERW) on Z
d was introduced by Benjamini and Wilson in [3]. They proposed to modify the

nearest neighbor simple symmetric random walk by giving it a positive drift (“excitation”) in the first coordinate
direction upon reaching a previously unvisited site. If the site had been visited before, then the walk made unbiased
jumps to one of its nearest neighbor sites. See [4,13,17] and references therein for further results about this particular
model.

Zerner [19,20] generalized excited random walks by allowing to modify the transition probabilities at each site
not just once but any number of times and, moreover, choosing them according to some probability distribution. He
obtained the criteria for recurrence and transience and the law of large numbers for i.i.d. environments on Z

d and strips
and also for general stationary ergodic environments on Z. It turned out that this generalized model had interesting
behavior even for d = 1, and this case was further studied in [1,2,18].
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Results obtained in all these works rely on the assumption that projections of all possible drifts on some fixed
direction are non-negative. In fact, the branching processes framework introduced in [14] for random walks in random
environment (d = 1) and employed in [1,2] for excited random walks, does not depend on the positivity assumption,
and it seems natural to use this approach for extending the analysis to environments which allow both positive and
negative drifts. This was done in [15], where the authors discussed recurrence and transience, laws of large numbers,
positive speed, and the averaged central limit theorem for multi-excited random walks on Z in i.i.d. environments with
bounded number of “excitations” per site. We postpone further discussion of known results for d = 1 and turn to a
precise description of the model considered in this paper.

Given an arbitrary positive integer M let

�M := {((
ωz(i)

)
i∈N

)
z∈Z

| ωz(i) ∈ [0,1], for i ∈ {1,2, . . . ,M} and ωz(i) = 1/2, for i > M,z ∈ Z
}
.

An element of �M is called a cookie environment. For each z ∈ Z, the sequence {ωz(i)}i∈N can be thought of as a
pile of cookies at site z, and ωz(i) is referred to as “the ith cookie at z”. The number ωz(i) is equal to the transition
probability from z to z + 1 of a nearest-neighbor random walk upon the ith visit to z. If ωz(i) > 1/2 (resp., ωz(i) <

1/2) the corresponding cookie will be called positive (resp. negative), ωz(i) = 1/2 will correspond to a “placebo”
cookie or, equivalently, the absence of an effective ith cookie at site z.

Let P be a probability measure on �M , which satisfies the following two conditions:

(A1) Independence: the sequence (ωz(·))z∈Z is i.i.d. under P.
(A2) Non-degeneracy:

E

[
M∏
i=1

ω0(i)

]
> 0 and E

[
M∏
i=1

(
1 − ω0(i)

)]
> 0.

Notice that we do not make any independence assumptions on the cookies at the same site.
It will be convenient to define our ERW model using a coin-toss construction. Let (�, F ) be some measurable

space equipped with a family of probability measures Px,ω, x ∈ Z,ω ∈ �M , such that for each choice of x ∈ Z and
ω ∈ �M we have ±1-valued random variables B

(z)
i , z ∈ Z, i ≥ 1, which are independent under Px,ω with distribution

given by

Px,ω

(
B

(z)
i = 1

)= ωz(i) and Px,ω

(
B

(z)
i = −1

)= 1 − ωz(i). (1.1)

Let X0 be a random variable on (�, F ,Px,ω) such that Px,ω(X0 = x) = 1. Then an ERW starting at x ∈ Z in the
environment ω, X := {Xn}n≥0, can be defined on the probability space (�, F ,Px,ω) by the relation

Xn+1 := Xn + B
(Xn)
#{r≤n|Xr=Xn}, n ≥ 0. (1.2)

Informally speaking, upon each visit to a site the walker eats a cookie and makes one step to the right or to the left
with probabilities prescribed by this cookie. Since ωz(i) = 1/2 for all i > M , the walker will make unbiased steps
from z starting from the (M + 1)th visit to z.

Events {B(z)
i = 1}, i ∈ N, z ∈ Z, will be referred to as “successes” and events {B(z)

i = −1} will be called “failures”.
The consumption of a cookie ωz(i) induces a drift of size 2ωz(i) − 1 with respect to Px,ω . Summing up over all

cookies at one site and taking the expectation with respect to P gives the parameter

δ := E

[∑
i≥1

(
2ω0(i) − 1

)]= E

[
M∑
i=1

(
2ω0(i) − 1

)]
, (1.3)

which we call the average total drift per site. It plays a key role in the classification of the asymptotic behavior of the
walk.
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We notice that there is an obvious symmetry between positive and negative cookies: if the environment (ωz)z∈Z is
replaced by (ω′

z)z∈Z where ω′
z(i) = 1 −ωz(i), for all i ∈ N, z ∈ Z, then X′ := {X′

n}n≥0, the ERW corresponding to the
new environment, satisfies

X′ D= −X, (1.4)

where
D= denotes the equality in distribution. Thus, it is sufficient to consider, say, only non-negative δ (this, of course,

allows both negative and positive cookies), and we shall always assume this to be the case.
Define the averaged measure Px by setting Px(·) = E(Px,ω(·)). Below we summarize known results about this

model.

Theorem 1.1 ([15]). Assume (A1) and (A2).

(i) If δ ∈ [0,1] then X is recurrent, i.e. for P-a.a. ω it returns P0,ω-a.s. infinitely many times to its starting point. If
δ > 1 then X is transient to the right, i.e. for P-a.a. ω, Xn → ∞ as n → ∞ P0,ω-a.s.

(ii) There is a deterministic v ∈ [0,1] such that X satisfies for P-a.a. ω the strong law of large numbers,

lim
n→∞

Xn

n
= v, P0,ω-a.s. (1.5)

Moreover, v = 0 for δ ∈ [0,2] and v > 0 for δ > 2.
(iii) If δ > 4 then the sequence

Bn
t := X[tn] − [tn]v√

n
, t ≥ 0,

converges weakly under P0 to a non-degenerate Brownian motion with respect to the Skorohod topology on the
space of cádlág functions.

This theorem does not discuss the rate of growth of the ERW when it is transient but has zero linear speed (1 < δ ≤
2). It also leaves open the question about fluctuations when δ ≤ 4.

The rate of growth of the transient cookie walk with zero linear speed was studied in [2] for the case of determin-
istic spatially homogeneous non-negative cookie environments. For further discussion we need some notation for the
limiting stable distributions that appear below. Given α ∈ (0,2] and b > 0, denote by Zα,b a random variable (on some
probability space) whose characteristic function is determined by the relation

logEeiuZα,b =
{−b|u|α(1 − i u

|u| tan
(

πα
2

))
, if α 	= 1,

−b|u|(1 + 2i
π

u
|u| log |u|), if α = 1.

(1.6)

Observe that Z2,b is a centered normal random variable with variance 2b. The weak convergence with respect to P0
will be denoted by ⇒.

Theorem 1.2 ([2]). Let ωz(i) = pi ∈ [1/2,1), i ∈ N for all z ∈ Z, where pi = 1/2 for i > M , and δ be as in (1.3),
that is δ =∑M

i=1(2pi − 1).

(i) If δ ∈ (1,2) then there is a positive constant b such that as n → ∞
Xn

nδ/2
⇒ (Zδ/2,b)

−δ/2.

(ii) If δ = 2 then (Xn logn)/n converges in probability to some constant c > 0.

The above results also hold if Xn is replaced by supi≤n Xi or infi≥n Xi .

The proof of Theorem 1.2 used the non-negativity of cookies, though this assumption does not seem to be essential
for most parts of the proof. It is certainly possible that the approach presented in [2] could yield the same results
without the non-negativity assumption.
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The functional central limit theorem for ERWs with δ ∈ [0,1) in stationary ergodic non-negative cookie envi-
ronments was obtained in [7]. The limiting process is shown to be Brownian motion perturbed at extrema (see, for
example, [5,6]).

The main results of this paper deal with the case when δ ∈ (2,4], though they apply also to δ ∈ (1,2]. Moreover, our
approach provides an alternative proof of Theorem 1.2 for general cookie environments that satisfy conditions (A1)
and (A2) (see Remark 9.2).

We establish the following theorem.

Theorem 1.3. Let Tn = inf{j ≥ 0|Xj = n} and v be the speed of the ERW (see (1.5)). The following statements hold
under the averaged measure P0.

(i) If δ ∈ (2,4) then there is a constant b > 0 such that as n → ∞
Tn − v−1n

n2/δ
⇒ Zδ/2,b and (1.7)

Xn − vn

n2/δ
⇒ −v1+2/δZδ/2,b. (1.8)

(ii) If δ = 4 then there is a constant b > 0 such that as n → ∞
Tn − v−1n√

n logn
⇒ Z2,b and (1.9)

Xn − vn√
n logn

⇒ −v3/2Z2,b. (1.10)

Moreover, (1.8) and (1.10) hold if Xn is replaced by supi≤n Xi or infi≥n Xi .

The paper is organized as follows. In Section 2 we recall the branching processes framework and formulate two
statements (Theorems 2.1 and 2.2), from which we later infer Theorem 1.3. Section 3 explains the idea of the proof
of Theorem 2.2 and studies properties of the approximating diffusion process. In Section 4 we determine sufficient
conditions for the validity of Theorem 2.2. Section 5 contains the main technical lemma (Lemma 5.3). It is followed
by three sections, where we use the results of Section 5 to verify the sufficient conditions of Section 4 and prove
Theorem 2.1. The proof of Theorem 1.3 is given in Section 9. The Appendix contains proofs of several technical
results.

2. Reduction to branching processes

Suppose that the random walk {Xn}n≥0 starts at 0. Since δ ≥ 0, Lemma 5 of [15] implies that P0(Tn < ∞) = 1 for all
n ∈ N. At first, we recall the framework used in [1,2,15]. The main ideas go back at least to [16] and [14].

For n ∈ N and k ≤ n define

Dn,k =
Tn−1∑
j=0

1{Xj =k,Xj+1=k−1},

the number of jumps from k to k − 1 before time Tn. Then

Tn = n + 2
∑
k≤n

Dn,k = n + 2
∑

0≤k≤n

Dn,k + 2
∑
k<0

Dn,k. (2.1)

The last sum is bounded above by the total time spent by Xn below 0. When δ > 1, i.e. Xn is transient to the right, the
time spent below 0 is P0-a.s. finite, and, therefore, for any α > 0

lim
n→∞

∑
k<0 Dn,k

nα
= 0, P0-a.s. (2.2)
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This will allow us to conclude that for transient ERWs fluctuations of Tn are determined by those of
∑

0≤k≤n Dn,k ,
once we have shown that the latter are of order n2/δ .

We now consider the “reversed” process (Dn,n,Dn,n−1, . . . ,Dn,0). Obviously, Dn,n = 0 for every n ∈ N. Moreover,
given Dn,n,Dn,n−1, . . . ,Dn,k+1, we can write

Dn,k =
Dn,k+1+1∑

j=1

(
# of jumps from k to k − 1 between the (j − 1)th

and j th jump from k to k + 1 before time Tn

)
, k = 0,1, . . . , n − 1.

Here we used the observation that the number of jumps from k to k + 1 before time Tn is equal to Dn,k+1 + 1 for all
k ≤ n − 1. The expression “between the 0th and the 1st jump” above should be understood as “prior to the 1st jump”.

Fix an ω ∈ �M and denote by F
(k)
m the number of “failures” in the sequence B(k) (see (1.1) with z replaced by k)

before the mth “success”. Then, given Dn,k+1,

Dn,k = F
(k)
Dn,k+1+1.

Since the sequences B(k), k ∈ Z, are i.i.d. under P0, we have that F
(k)
m

D= F
(n−k−1)
m and can conclude that the

distribution of (Dn,n,Dn,n−1, . . . ,Dn,0) coincides with that of (V0,V1, . . . , Vn), where V = {Vk}k≥0 is a Markov
chain defined by

V0 = 0, Vk+1 = F
(k)
Vk+1, k ≥ 0.

For x ≥ 0 we shall denote by [x] the integer part of x and by P V
x the measure associated to the process V , which

starts with [x] individuals in the 0th generation. Observe that V is a branching process with the following properties:

(i) V has exactly 1 immigrant in each generation (the immigration occurs before the reproduction) and, therefore,
does not get absorbed at 0.

(ii) The number of offspring of the mth individual in generation k is given by the number of failures between
the (m − 1)th and mth success in the sequence B(k). In particular, if Vk ≥ M then the offspring distribution of each
individual after the M th one is Geom(1/2) (i.e., geometric on {0} ∪ N with parameter 1/2).

Therefore (here and throughout taking any sum from k to � for k > � to be zero) we can write

Vk+1 =
M∧(Vk+1)∑

m=1

ζ (k)
m +

Vk−M+1∑
m=1

ξ (k)
m , k ≥ 0, (2.3)

where {ξ (k)
m ; k ≥ 0,m ≥ 1} are i.i.d. Geom(1/2) random variables, vectors (ζ

(k)
1 , ζ

(k)
2 , . . . , ζ

(k)
M ), k ≥ 0, are i.i.d. under

P V
x and independent of {ξ (k)

m ; k ≥ 0,m ≥ 1}. For each k ≥ 0 the random variables {ζ (k)
m }Mm=1 are neither independent

nor identically distributed, but, given that for some j < M

j∑
m=1

ζ (k)
m ≥ M,

that is all cookies at site k have been eaten before the j th jump from k to (k + 1), we are left with {ζ (k)
m }Mm=j+1 that

are independent Geom(1/2) random variables. Define

σV
0 = inf{j > 0 | Vj = 0}, SV =

σV
0 −1∑
j=0

Vj . (2.4)
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Detailed information about the tails of σV
0 and SV will enable us to use the renewal structure and characterize the

behavior of
∑

0≤k≤n Dn,k , and, therefore, of Tn as n → ∞ for transient ERWs. We shall show in Section 9 that the
following two statements imply Theorem 1.3.

Theorem 2.1. Let δ > 0. Then

lim
n→∞nδP V

0

(
σV

0 > n
)= C1 ∈ (0,∞). (2.5)

Theorem 2.2. Let δ > 0. Then

lim
n→∞nδ/2P V

0

(
SV > n

)= C2 ∈ (0,∞). (2.6)

Remark 2.3. In fact, a weaker result than (2.5) is sufficient for our purpose: there is a constant B such that
nδP V

0 (σV
0 > n) ≤ B for all n ∈ N (see condition (A) in Lemma 4.1). We also would like to point out that the lim-

its in (2.5) and (2.6) exist for every starting point x ∈ N ∪ {0} with C1 and C2 depending on x. The proofs simply
repeat those for x = 0.

For the model described in Theorem 1.2, the convergence (2.5) starting from x ∈ N is shown in [2], Proposition 3.1,
(for δ ∈ (1,2)), and (2.6) for δ ∈ (1,2] is the content of [2], Proposition 4.1. Theorem 2.1 can also be derived from the
construction in [15] (see Lemma 17) and [12]. We use a different approach and obtain both results directly without
using the Laplace transform and Tauberian theorems.

We close this section by introducing some additional notation. For x ≥ 0 we set

τV
x = inf{j > 0 | Vj ≥ x}, (2.7)

σV
x = inf{j > 0 | Vj ≤ x}. (2.8)

We shall drop the superscript whenever there is no possibility of confusion.
When the random walk X is transient to the right, P V

y (σV
0 < ∞) = 1 for every y ≥ 0. This implies that P V

y (σV
x <

∞) = 1 for every x ∈ [0, y).
Let us remark that when we later deal with a continuous process on [0,∞) we shall simply use the first hitting time

of x to record the entrance time in [x,∞) (or [0, x]), given that the process starts outside of the mentioned interval.
We hope that denoting the hitting time of x for such processes also by τx will not result in ambiguity.

3. The approximating diffusion process and its properties

The bottom-line of our approach is that the main features of branching process V killed upon reaching 0 are reasonably
well described by a simple diffusion process.

The parameters of such diffusion processes can be easily computed at the heuristic level. For Vk ≥ M , (2.3) implies
that

Vk+1 − Vk =
M∑

m=1

ζ (k)
m − M + 1 +

Vk−M+1∑
m=1

(
ξ (k)
m − 1

)
. (3.1)

By conditioning on the number of successes in the first M tosses it is easy to compute (see Lemma 3.3 in [1] or
Lemma 17 in [15] for details) that for all x ≥ 0

EV
x

(
M∑

m=1

ζ (k)
m − M + 1

)
= 1 − δ. (3.2)

The term
∑M

m=1 ζ
(k)
m − M + 1 is independent of

∑Vk−M+1
m=1 (ξ

(k)
m − 1). When Vk is large, the latter is approximately

normal with mean 0 and variance essentially equal to 2Vk .
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Therefore, the relevant diffusion should be given by the following stochastic differential equation:

dYt = (1 − δ)dt +√
2Yt dBt , Y0 = y > 0, t ∈ [0, τ Y

0

]
, (3.3)

where for x ≥ 0 we set

τY
x = inf{t ≥ 0 | Yt = x}. (3.4)

Throughout the rest of the paper, unless stated otherwise, we shall assume that δ > 0. Observe that τY
0 < ∞ a.s.,

since 2Yt is a squared Bessel process of dimension 2(1 − δ) < 2 (for a proof, set a = 0 and let b → ∞ in part (ii) of
Lemma 3.2).

The above heuristics are justified by the next lemma.

Lemma 3.1. Let Y = {Yt }t≥0 be the solution of (3.3). Fix an arbitrary ε > 0. For y ∈ (ε,∞) let V0 = [ny], and define

Y
ε,n
t = V[nt]∧σV

εn

n
, t ∈ [0,∞),

where σV
x is given by (2.8). Then the sequence of processes Y ε,n = {Y ε,n

t }t≥0 converges in distribution as n → ∞ with
respect to the Skorohod topology on the space of càdlàg functions to the stopped diffusion Y ε = {Yt∧τY

ε
}t≥0, Y0 = y.

Proof. We simply apply the (much more general) results of [10]. We first note that our convergence result considers
the processes up to the first entry into (−∞, ε] for ε > 0 fixed. So we can choose to modify the rules of evolution for
V when Vk ≤ εn: we consider the process (V

n,ε
k )k≥0 where, with the existing notation,

V
n,ε
0 = [ny], V

n,ε
k+1 =

M∑
m=1

ζ (k)
m +

V
n,ε
k ∨(εn)−M+1∑

m=1

ξ (k)
m , k ≥ 0. (3.5)

Then (given the regularity of points for the limit process) it will suffice to show the convergence of processes

Ỹ
ε,n
t = V

n,ε
[nt]
n

, t ∈ [0,∞),

to the solution of the stochastic integral equation

dYt = (1 − δ)dt +√
2(Yt ∨ ε)dBt , Y0 = y > 0, t ∈ [0,∞). (3.6)

We can now apply Theorem 4.1 of Chapter 7 of [10] with Xn(t) = Ỹ
ε,n
t . The needed uniqueness of the martingale

problem corresponding to operator

Gf = (x ∨ ε)f ′′ + (1 − δ)f ′ (3.7)

follows from [10], Chapter 5, Section 3 (Theorems 3.6 and 3.7 imply the distributional uniqueness for solutions of
the corresponding stochastic integral equation, and Proposition 3.1 shows that this implies the uniqueness for the
martingale problem). �

We shall see in a moment that this diffusion has the desired behavior of the extinction time and of the total area
under the path before the extinction (see Lemmas 3.3 and 3.5). Unfortunately, these properties in conjunction with
Lemma 3.1 do not automatically imply Theorems 2.1 and 2.2, and work needs to be done to “transfer” these results
to the corresponding quantities of the process V . Nevertheless, Lemma 3.1 is very helpful when V stays large as we
shall see later.

In the rest of this section we state and prove several facts about Y . When we need to specify that the process Y

starts at y at time 0 we shall write Yy . Again, whenever there is no ambiguity about which process is being considered
we shall drop the superscript in τY

x defined in (3.4).
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Lemma 3.2. Fix y > 0.

(i) (Scaling) Let Ỹ = {Ỹt }t≥0, where Ỹt = Y
y
ty

y
. Then Ỹ

D= Y 1.
(ii) (Hitting probabilities) Let 0 ≤ a < y < b. Then

P Y
y (τa < τb) = bδ − yδ

bδ − aδ
.

Proof. Part (i) can be easily checked by Itô’s formula applied to Ỹt or seen from scaling properties of the generator.
The proof of part (ii) is standard once we notice that the process (Y

y
t )δ stopped upon reaching the boundary of [a, b]

is a martingale. We omit the details. �

Lemma 3.3. Let Y be the diffusion process defined by (3.3). Then

lim
x→∞xδP Y

1 (τ0 > x) = C3 ∈ (0,∞).

Proof. For every ε > 0 and for all x > 1/ε we have by Lemma 3.2

xδP Y
1 (τ0 > x) ≥ xδP Y

1 (τ0 > x|τεx < τ0)P
Y
1 (τεx < τ0)

≥ xδP Y
εx(τ0 > x)(εx)−δ = ε−δP Y

1

(
τ0 > ε−1)> 0.

This implies that for each ε > 0

lim inf
x→∞ xδP Y

1 (τ0 > x) ≥ ε−δP Y
1

(
τ0 > ε−1)> 0.

Taking the lim supε→0 in the right-hand side we get

lim inf
x→∞ xδP Y

1 (τ0 > x) ≥ lim sup
ε→0

ε−δP Y
1

(
τ0 > ε−1)= lim sup

x→∞
xδP Y

1 (τ0 > x).

This would immediately imply the existence of a finite non-zero limit if we could show that

lim sup
x→∞

xδP Y
1 (τ0 > x) < ∞.

This is the content of the next lemma.

Lemma 3.4. Let Y be the diffusion process defined by (3.3). Then

lim sup
x→∞

xδP Y
1 (τ0 > x) < ∞.

The proof is very similar to the proof of the discrete version (see (A) in Lemma 4.1 and its proof in Section 6) and,
thus, is omitted. �

The final result of this section can be viewed as the “continuous counterpart” of Theorem 2.2. It concerns the area
under the path of Y .

Lemma 3.5. Let Y be the diffusion process defined by (3.3). Then

lim
y→∞yδP Y

1

(∫ τ0

0
Yt dt > y2

)
= C4 ∈ (0,∞).
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Proof. The proof uses scaling and follows the same steps as the proof of Lemma 3.3. For every ε > 0 and y > 1/ε

we have

yδP Y
1

(∫ τ0

0
Yt dt > y2

)
≥ yδP Y

1

(∫ τ0

0
Yt dt > y2|τεy < τ0

)
P Y

1 (τεy < τ0)

≥ yδP Y
εy

(∫ τ0

0
Yt dt > y2

)
(εy)−δ = ε−δP Y

εy

(∫ τ0/(εy)

0
Yεys ds >

y

ε

)

= ε−δP Y
εy

(∫ τ0/(εy)

0

Yεys

εy
ds > ε−2

)
= ε−δP Y

1

(∫ τ0

0
Ys ds > ε−2

)
> 0.

This calculation, in fact, just shows that

yδP Y
1

(∫ τ0

0
Yt dt > y2

)
is a non-decreasing positive function of y. Therefore, we only need to prove that it is bounded as y → ∞. But for
y > 1

yδP Y
1

(∫ τ0

0
Yt dt > y2

)
= P Y

1

(∫ τ0

0
Yt dt > y2

∣∣τy < τ0

)
+ yδP Y

1

(∫ τ0

0
Yt dt > y2, τy > τ0

)
≤ 1 + yδP Y

1 (τ0 > y, τy > τ0) ≤ 1 + yδP Y
1 (τ0 > y).

An application of Lemma 3.4 finishes the proof. �

4. Conditions which imply Theorem 2.2

We have shown that the diffusion process Y has the desired asymptotic behavior of the area under the path up to the
exit time τY

0 . In this section we give sufficient conditions under which we can “transfer” this result to the process V

and obtain Theorem 2.2.

Lemma 4.1. Suppose that:

(A) There is a constant B such that nδP V
0 (σ0 > n) ≤ B for all n ∈ N.

(B) For every ε > 0

lim
n→∞P V

εn

(
σ0−1∑
i=0

Vi > n2

)
= P Y

1

(∫ τ0

0
Yt dt > ε−2

)
.

(C) limn→∞ nδP V
0 (τn < σ0) = C5.

Then

lim
n→∞nδP V

0

(
σ0−1∑
i=0

Vi > n2

)
= C4C5,

where C4 is the constant from Lemma 3.5.

Proof. Fix an ε ∈ (0,1) and split the path-space of V into two parts, the event Hn,ε := {τV
εn < σV

0 } and its complement,
Hc

n,ε .
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First, consider the behavior of the total progeny on the event Hc
n,ε . On Hc

n,ε , the process V stays below εn until the
time σ0. Estimating each Vi from above by εn and using (A) we get for all n ∈ N

nδP V
0

(
σ0−1∑
i=0

Vi > n2,Hc
n,ε

)
≤ nδP V

0 (σ0 > n/ε) ≤ (2ε)δB.

Therefore, for all n ∈ N

0 ≤ nδP V
0

(
σ0−1∑
i=0

Vi > n2

)
− nδP V

0

(
σ0−1∑
i=0

Vi > n2,Hn,ε

)
≤ (2ε)δB.

Hence, we only need to deal with the total progeny on the event Hn,ε . The rough idea is that, on Hn,ε , it is not unnatural
for the total progeny to be of order n2. This means that the decay of the probability that the total progeny is over n2

comes from the decay of the probability of Hn,ε , which is essentially given by condition (C). This would suffice if
we could let ε = 1 but we need ε to be small, thus, some scaling is necessary to proceed with the argument, and this
brings into play condition (B) and the result of Lemma 3.5.

To get a lower bound on Fn := nδP V
0 (
∑σ0−1

i=0 Vi > n2,Hn,ε) we use monotonicity of V with respect to the initial
number of particles, conditions (B) and (C), and Lemma 3.5:

lim
ε→0

lim inf
n→∞ Fn ≥ lim

ε→0
lim

n→∞nδP V
0 (Hn,ε)P

V
εn

(
σ0−1∑
i=0

Vi > n2

)

= C5 lim
ε→0

ε−δP Y
1

(∫ τ0

0
Yt dt > ε−2

)
= C4C5.

For an upper bound on Fn we shall need two more parameters, K ∈ (1,1/ε) and R > 1. At the end, after taking
the limits as n → ∞ and then ε → 0 we shall let K → ∞ and R → 1.

n−δFn = P V
0

(
τεn−1∑
i=0

Vi +
σ0−1∑
i=τεn

Vi > n2,Hn,ε

)

≤ P V
0

(
σ0−1∑
i=τεn

Vi > n2(1 − Kε),

τεn−1∑
i=0

Vi ≤ Kεn2,Hn,ε

)

+ P V
0

(
τεn−1∑
i=0

Vi > Kεn2,Hn,ε

)
.

We bound the first term on the right-hand side by the following sum:

P V
0

(
σ0−1∑
i=τεn

Vi > n2(1 − Kε),Vτεn ≤ Rεn,Hn,ε

)
+ P V

0

(
σ0−1∑
i=τεn

Vi > n2(1 − Kε),Vτεn > Rεn,Hn,ε

)
.

Estimating these terms in an obvious way and putting everything back together we get

n−δFn ≤ P V
Rεn

(
σ0−1∑
i=0

Vi > n2(1 − Kε)

)
P V

0 (Hn,ε)

+ P V
0 (Vτεn > Rεn,Hn,ε) + P V

0

(
τεn−1∑
i=0

Vi > Kεn2,Hn,ε

)
= (I ) + (II) + (III).
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It only remains to multiply everything by nδ and consider the upper limits.
Term nδ(I ) gives the upper bound C4C5 in the same way as we got a lower bound by sending n → ∞, ε → 0, and

then R → 1 and using easily verified continuity properties of the relevant distributions. Parameter K disappears when
we let ε → 0.

Term (II) is exponentially small in n for fixed ε and R (see Lemma 5.1), thus nδ(II) goes to zero as n → ∞.
Finally, since Vi ≤ εn for all i < τεn, we get

nδP V
0

(
τεn−1∑
i=0

Vi > Kεn2,Hn,ε

)
≤ nδP V

0 (τεn > Kn,Hn,ε)

≤ nδP V
0 (σ0 > Kn,Hn,ε) ≤ nδP V

0 (σ0 > Kn) ≤ 2δB

Kδ
. �

5. Main tools

The main result of this section is Lemma 5.3, which is a discrete analog of Lemma 3.2(ii).
We start with two technical lemmas. The first one will be used many times throughout the paper.

Lemma 5.1. There are constants c1, c2 > 0 and N ∈ N such that for every x ≥ N and y ≥ 0,

sup
0≤z<x

P V
z (Vτx > x + y | τx < σ0) ≤ c1

(
e−c2y

2/x + e−c2y
)
, (5.1)

sup
x<z<4x

P V
z (Vσx∧τ4x

< x − y) ≤ c1e−c2y
2/x. (5.2)

This statement is a consequence of the fact that the offspring distribution of V is essentially geometric. The proof
is given in the Appendix.

Lemma 5.2. Fix a ∈ (1,2]. Consider the process V with |V0 − an| ≤ a2n/3 and let γ = inf{k ≥ 0|Vk /∈ (an−1, an+1)}.
Then for all sufficiently large n

(i) P V
(
dist

(
Vγ ,

(
an−1, an+1))≥ a2(n−1)/3)≤ exp

(−an/4);
(ii)

∣∣∣∣P V
(
Vγ ≤ an−1)− aδ

aδ + 1

∣∣∣∣≤ a−n/4.

Part (i) is an immediate consequence of Lemma 5.1. The proof of part (ii) is basic but technical and is given in the
Appendix.

Lemma 5.3 (Main lemma). For each a ∈ (1,2] there is an �0 ∈ N such that if �,m,u, x ∈ N satisfy �0 ≤ � < m < u

and |x − am| ≤ a2m/3 then

h−
a (m) − 1

h−
a (u) − 1

≤ P V
x (σa� > τau) ≤ h+

a (m) − 1

h+
a (u) − 1

,

where

h±
a (i) =

i∏
r=�+1

(
aδ ∓ a−λr

)
, i > �,

and λ is some small positive number not depending on �.
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Remark 5.4. It is to be noted that for fixed � there are K1(�) and K2(�) such that

K1(�) ≤ h±
a (i)

a(i−�)δ
≤ K2(�) for all i > �

and Kj(�) → 1 as � → ∞, j = 1,2.

Proof of Lemma 5.3. We will show the upper bound by comparing the process V with another process Ṽ , whose
exit probabilities can be estimated by further reduction to an exit problem for a birth-and-death-like Markov chain.

For i ∈ N set xi = [ai + a2i/3]. By monotonicity, it is enough to prove the upper bound when the starting point x

is equal to xm. Thus, we set V0 = xm. The comparison will be done in two steps.
Step 1. We shall construct a sequence of stopping times γi , i ≥ 0, and a comparison process Ṽ = (Ṽk)k≥0 with x�

as an absorbing point so that Ṽk ≥ Vk for all k before the absorption. Let γ0 = 0,

γ1 = inf
{
k > 0 | Vk /∈ (am−1, am+1)}, Ṽk = Vk for k = 0,1, . . . , γ1 − 1,

and at time γ1 add to Vγ1 the necessary number of particles to get

Ṽγ1 =
{

xm−1, if Vγ1 ≤ am−1,
xm+j , if xm+j−1 < Vγ1 ≤ xm+j , j ∈ N.

Clearly, Ṽγ1 ≥ Vγ1 . By construction, Ṽγ1 = xn for some n ≥ m − 1, n 	= m. If Ṽγ1 = x�, then we stop the process.
Assume that we have already defined stopping times γr , r = 0,1, . . . , i, and the process Ṽk for all k ≤ γi so that

Ṽγi
= xn for some n > �. We define Ṽk for k > γi by applying to it the same branching mechanism as for V , namely,

(2.3) with V replaced by Ṽ , k ≥ γi . Denote by γi+1 the first time after γi when Ṽ exits the interval (an−1, an+1).
At time γi+1, if the process exited through the lower end of the interval then we set Ṽγi+1 = xn−1, if the process
exited the through the upper end we add to Ṽ the minimal number of particles needed to get Ṽγi+1 = xs for some
s > n. If Ṽγi+1 = x�, then we stop the process. Thus, we obtain a sequence of stopping times γi , i ≥ 0, and the desired
dominating process Ṽ absorbed at x� such that Ṽγi

∈ {x�, x�+1, . . .}, i ≥ 0.
Step 2. Define a Markov chain R = (Rj )j≥0 on {�, � + 1, . . .} by setting

Rj = n if Ṽγj
= xn, j ≥ 0.

The state � is absorbing. Let σR
� = inf{j ≥ 0|Rj = �} and τR

u = inf{j ≥ 0|Rj ≥ u}. By construction,

P V
xm

(
σV

a� > τV
au

)≤ P Ṽ
xm

(
σ Ṽ

x�
> τ Ṽ

xu

)= P R
m

(
σR

� > τR
u

)
.

We shall show that (h+
a (Rj ))j≥0 is a supermartingale with respect to the natural filtration. (We set h+

a (�) = 1.) The
optional stopping theorem and monotonicity of function h+

a will immediately imply the upper bound in the statement
of the lemma.

For i > � we have

ER
i

(
h+

a (R1)
)= h+

a (i − 1)P R
i (R1 = i − 1) + h+

a (i + 1)P R
i (R1 = i + 1) +

∞∑
n=i+2

h+
a (n)P R

i (R1 = n).

By the definition of h+
a this is less or equal than

h+
a (i)

[(
aδ − a−λi

)−1
P R

i (R1 = i − 1) + (
aδ − a−λ(i+1)

)
P R

i (R1 = i + 1) +
∞∑

n=i+2

aδ(n−i)P R
i (R1 = n)

]
. (5.3)

By Lemma 5.2 and Lemma 5.1 we have that for all i > �, where � is chosen sufficiently large,

P R
i (R1 = i − 1) = aδ

aδ + 1
+ O

(
a−i/4),

P R
i (R1 = i + 1) = 1

aδ + 1
+ O

(
a−i/4),
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and

P R
i (R1 ≥ n) ≤ P R

n−2(R1 ≥ n) = O
(
exp(−an/4)

)
for all n ≥ i + 2.

Substituting this into (5.3) and performing elementary computations we obtain

ER
i

(
h+

a (R1)
)≤ h+

a (i)

[
1 − a−λi

aδ + 1

(
a−λ − a−δ

)+ O
(
a−2λi

)]≤ h+
a (i),

provided that λ < min{1/8, δ} and � (therefore i) is sufficiently large.
For the lower bound we argue in a similar manner, except that now we choose xm = [am − a2m/3] + 1, assume

that V0 = xm, and construct a comparison process Ṽ = (Ṽk)k≥0 absorbed at x� so that Ṽ0 = V0 and Ṽk ≤ Vk for all k

before the absorption.
More precisely, we let γ0 = 0 and assume that we have already defined stopping times γr , r = 0,1, . . . , i, and the

process Ṽk for all k ≤ γi so that Ṽγi
= xn for some n 	= �. We define Ṽk for k > γi by (2.3) with V replaced by Ṽ ,

k ≥ γi . Denote by γi+1 the first time after γi when Ṽ exits the interval (an−1, an+1). At time γi+1, if the process
exited through the upper end of the interval we set Ṽγi+1 = xn+1, if the process exited through the lower end we
reduce the number of particles by removing the minimal number of particles to ensure that Ṽγi+1 = xs for some s < n.
If Ṽγi+1 ≤ x�, then we stop the process and redefine Ṽγi+1 to be x�. This procedure allows us to obtain a sequence of
stopping times γi , i ≥ 0, and the desired comparison process Ṽ absorbed at x� such that Vγi

∈ {x�, x�+1, . . .}, i ≥ 0.
Next, just as in the proof of the upper bound, we construct a Markov chain R = (Rj )j≥0 and show that (h−

a (Rj ))j≥0

is a submartingale (with h−
a (�) defined to be 1). The optional stopping theorem and monotonicity of function h−

a imply
the lower bound. �

Corollary 5.5. For each non-negative integer x there exists a constant C6 = C6(x) such that for every n ∈ N

nδP V
x (τn < σ0) ≤ C6. (5.4)

Moreover, for each ε > 0 there is a constant c3 = c3(ε) such that for all n ∈ N

P V
n (σ0 > τc3n) < ε. (5.5)

Remark 5.6. In fact, (5.4) will be substantially improved by Lemma 8.1.

Proof of Corollary 5.5. We choose arbitrarily a ∈ (1,2] and an � ≥ �0 as in Lemma 5.3 but also such that a� > x.
We note that it is sufficient to prove the statement for n of the form [au]. We define stopping times βi , i ∈ N, by

β1 = inf
{
k > 0|Vk ≥ a�+1},

βi+1 = inf
{
k > βi : Vk ≥ a�+1 and ∃s ∈ (βi, k)|Vs ≤ a�

}
.

Lemma 5.1 and the monotonicity of V with respect to its starting point imply that

P V
x

(∃r ∈ [βi,βi+1)
∣∣Vr ≥ au|βi < σ0

)
≤ h+

a (� + 1) − 1

h+
a (u) − 1

+
∞∑

k=�+1

P V
x

(
Vβi

≥ ak + a2k/3|βi < σ0
)h+

a (k + 1) − 1

h+
a (u) − 1

= h+
a (� + 1) − 1

h+
a (u) − 1

(
1 +

∞∑
k=�+1

P V
x

(
Vβi

≥ ak + a2k/3|βi < σ0
)h+

a (k + 1) − 1

h+
a (� + 1) − 1

)

≤ 2(h+
a (� + 1) − 1)

h+
a (u) − 1
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supposing, as we may, that � was fixed sufficiently large. Thus,

auδP V
x (σ0 > τau) ≤ 2auδ (h+

a (� + 1) − 1)

h+
a (u) − 1

∞∑
i=1

P V
x (βi < σ0).

The bound (5.4) now follows from noting that P V
x (βi < σ0) decays geometrically fast to zero (with a rate which may

depend on � but does not depend on u) and that auδ(h+
a (u) − 1)−1 is bounded in u (see Remark 5.4).

To prove (5.5) we notice that by Lemma 5.3 and (5.4) for all n > a�

P V
n (σ0 > τc3n) ≤ P V

n (σ0 > τc3n, σa� > τc3n) + P V
n (σ0 > τc3n, σa� < τc3n)

≤ P V
n (σa� > τc3n) + C6(a

�)

(c3n)δ
= O

(
c−δ

3

)
.

The constant c3 can be chosen large enough to get (5.5) for all n ∈ N. �

6. Proof of (A)

Proposition 6.1. There is a constant c4 > 0 such that for all k, x ∈ N and y ≥ 0

P V
y

(
σ0∑

r=1

1{Vr∈[x,2x)} > 2xk

)
≤ P V

y (ρ0 < σ0)(1 − c4)
k, (6.1)

where ρ0 = inf{j ≥ 0|Vj ∈ [x,2x)}.

Proof. First, observe that there is a constant c > 0 such that for all x ∈ N

(i) P V
2x(σx/2 < x) > c; (ii) P V

x/2(σ0 < τx) > c.

The inequality (i) is an immediate consequence of Lemma 3.1. To prove the second inequality, we fix x0 ∈ N and let
x > 2x0 + 1. Then by Corollary 5.5

P V
x/2(σ0 < τx) = P V

x/2(σ0 < τx |σx0 < τx)P
V
x/2(σx0 < τx) ≥ (

1 − C6(x0)x
−δ
)
P V

x/2(σx0 < τx).

Choosing x0 large enough and applying Lemma 5.3 to the last term in the right-hand side we obtain (ii) for all
sufficiently large x. Adjusting the constant c if necessary we can extend (ii) to all x ∈ N.

Next, we show that (i) and (ii) imply (6.1) with c4 = c2. Denote by ρ0 ≥ 0 the first entrance time of V in [x,2x)

and set

ρj = inf
{
r ≥ ρj−1 + 2x | Vr ∈ [x,2x)

}
, j ≥ 1.

Notice that for each j ≥ 1, the time spent by V in [x,2x) during the time interval [ρj−1, ρj ) is at most 2x. If V spends
more than 2xk units of time in [x,2x) before time σ0 then ρk < σV

0 . Thus,

P V
y

(
σ0∑

r=1

1{Vr∈[x,2x)} > 2xk

)
≤ P V

y (ρk < σ0) = P V
y (ρk < σ0|ρk−1 < σ0)P

V
y (ρk−1 < σ0).

Using the strong Markov property, monotonicity with respect to the starting point, and inequalities (i) and (ii) we get

P V
y (ρk < σ0|ρk−1 < σ0) ≤ max

x≤z<2x
P V

z (ρ1 < σ0)

≤ max
x≤z<2x

(
P V

z (ρ1 < σ0, σx/2 < x) + P V
z (ρ1 < σ0, σx/2 ≥ x)

)
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≤ max
x≤z<2x

(
P V

z (ρ1 < σ0|σx/2 < x)P V
z (σx/2 < x) + 1 − P V

z (σx/2 < x)
)

≤ max
x≤z<2x

(
1 − P V

z (σx/2 < x)
(
1 − P V

z (ρ1 < σ0|σx/2 < x)
))

≤ 1 − P V
2x(σx/2 < x)

(
1 − P V

x/2(ρ0 < σ0)
)

≤ 1 − P V
2x(σx/2 < x)P V

x/2(τx > σ0) ≤ 1 − c2.

Substituting this in (6.2) and iterating in k gives (6.1). �

Proposition 6.2. For every h > 0

lim
ε→0

lim sup
n→∞

nδP V
0

(
σ0∑
i=1

1{Vi<εn} > nh

)
= 0.

Proof. Fix ε ∈ (0,1) and let k = k(n, ε) be the smallest integer such that 2k ≥ εn. Define intervals Ii = [2k−i ,2k−i+1),
i ∈ N, and events

Ai =
{

σ0∑
r=1

1{Vr∈Ii } >
h2i−1

εi(i + 1)
|Ii |

}
.

Intervals Ii and events Ai depend on n but this is not reflected in our notation. Since 2k−1 < εn and
∑k

i=1(i(i +
1))−1 < 1, we have{

σ0∑
i=1

1{Vi<εn} > nh

}
⊂

k⋃
i=1

Ai,

and, therefore,

P V
0

(
σ0∑
i=1

1{Vi<εn} > nh

)
≤

k∑
i=1

P(Ai).

Using (5.4) and (6.1) we get

nδP V
0

(
σ0∑
i=1

1{Vi<εn} > nh

)
≤ nδ

k∑
i=1

(1 − c4)
[h2i−2/(εi(i+1))]P V

0 (τ2k−i < σ0)

≤ C6(0)ε−δ
∑
i≥1

(1 − c4)
[h2i−2/(εi(i+1))]2iδ,

and this quantity vanishes as ε → 0. �

Proof of (A). To obtain (A) we apply (5.4) and Proposition 6.2 to the right-hand side of the following inequality:

nδP V
0 (σ0 > n) ≤ nδP V

0 (τεn < σ0) + nδP V
0 (σ0 > n,τεn > σ0)

≤ ε−δ(εn)δP V
0 (τεn < σ0) + nδP V

0

(
σ0∑
i=1

1{Vi<εn} > n

)
.

�

7. Proof of (B)

We shall need the following fact.
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Proposition 7.1. For each ε > 0, there is a constant C7 = C7(ε) > 0 such that

P V
n (σ0 > C7n) < ε for all n ∈ N.

Proof. We have

P V
n (σ0 > C7n) ≤ P V

n (σ0 > τc3n) + P V
n (σ0 > C7n,σ0 < τc3n).

Using (5.5) we can choose c3 > 1 so that P V
n (σ0 > τc3n) < ε/2 for all n ∈ N. Thus, we only need to estimate the

last term. Notice that it is bounded above by the probability that the occupation time of the interval (0, c3n) up to the
moment σ0 exceeds C7n. The latter can be estimated by Markov inequality:

P V
n

(
σ0∑

r=1

1{Vr<c3n} > C7n

)
≤ (C7n)−1EV

n

(
σ0∑

r=1

1{Vr<c3n}

)
.

We claim that the last expectation does not exceed 4nc3/c4 and so we can take C7 > 8c3/(εc4). Indeed, let m be the
smallest positive integer such that 2m ≥ c3n. Then writing the expectation of our non-negative integer-valued random
variable as the sum of the probabilities of its tails and using (6.1) to estimate the tails we get

EV
n

( σV
0∑

r=1

1{Vr<c3n}

)
≤

m∑
j=1

EV
n

( σV
0∑

r=1

1{Vr∈[2j−1,2j )}

)
≤

m∑
j=1

2j

c4
≤ 2m+1

c4
≤ 4nc3

c4
.

�

Proof of (B). For every α ∈ (0, ε) and β ∈ (0,1) we have

P V
εn

(
σαn−1∑
j=0

Vj > n2

)
≤ P V

εn

(
σ0−1∑
j=0

Vj > n2

)
≤ P V

εn

(
σαn−1∑
j=0

Vj > (1 − β)n2

)
+ P V

εn

(
σ0−1∑
j=σαn

Vj > βn2

)
. (7.1)

By Lemma 3.1 for every R > 0

lim
n→∞P V

εn

(
σαn−1∑
j=0

Vj > Rn2

)
= P Y

ε

(∫ σα

0
Ys ds > R

)
, (7.2)

since, as is easily verified, under law P Y
ε the law of

∫ σα

0 Ys ds has no atoms. Next, we notice that for all x,β > 0

P Y
ε

(∫ σ0

0
Ys ds > (1 + β)x

)
− P Y

ε

(∫ σ0

σα

Ys ds > βx

)
≤ P Y

ε

(∫ σα

0
Ys ds > x

)
≤ P Y

ε

(∫ σ0

0
Ys ds > x

)
. (7.3)

By the strong Markov property and scaling,

P Y
ε

(∫ σ0

σα

Ys ds > βx

)
= P Y

α

(∫ σ0

0
Ys ds > βx

)
= P Y

1

(∫ σ0

0
Ys ds > βxα−2

)
→ 0 as α → 0. (7.4)

Letting n → ∞, then α → 0, and finally β → 0 we obtain from (7.1)–(7.4) that

lim inf
n→∞ P V

εn

(
σ0−1∑
j=0

Vj > n2

)
≥ P Y

1

(∫ σ0

0
Ys ds > ε−2

)
.

To get the matching upper bound it is enough to show that for every ν > 0 and β ∈ (0,1) there is an α ∈ (0, ε) such
that for all sufficiently large n

P V
εn

(
σ0−1∑
j=σαn

Vj > βn2

)
< 2ν. (7.5)
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The left-hand side of (7.5) does not exceed

P V
αn(τc3nα < σ0) + P V

αn

(
σ0−1∑
j=0

Vj > βn2, τc3nα > σ0

)
.

Given ν, define c3(ν) and C7(ν) as in (5.5) and Proposition 7.1 respectively. Let α <
√

β/(c3C7). By (5.5) the first
term above is less than ν for all n > 1/α. On the set {τc3nα > σ0} the process V is below c3nα and, thus, the second
term is bounded above by P V

αn(σ0 > (βn)/(c3α)). By Proposition 7.1 and our choice of α the latter probability does
not exceed ν. Using relations (7.1)–(7.4) and, again, the absence of atoms for the distribution of

∫ σx

0 Ys ds under P Y
1

for each x ≥ 0, we get the desired upper bound. �

8. Proofs of (C) and Theorem 2.1

First we prove (C) of Lemma 4.1. Then using the approach of Lemma 4.1 we show the convergence claimed in
Theorem 2.1.

The next lemma includes (C) as a special case (k = 0, C5 = f (0)).

Lemma 8.1. There is a function f : N ∪ {0} → (0,∞), such that

lim
n→∞nδP V

k (σ0 > τn) = f (k) for each integer k ≥ 0.

We shall need the following proposition.

Proposition 8.2. For each a ∈ (1,2] and k ≥ 0

∞∑
j=1

∣∣aδP V
k (σ0 > τaj |σ0 > τaj−1) − 1

∣∣< ∞. (8.1)

Proof. By the monotonicity in the initial number of particles we get a lower bound: for all sufficiently large j

P V
k (σ0 > τaj |σ0 > τaj−1) ≥ P V

aj−1(σ0 > τaj ).

For an upper bound we need to take into account the possibility of a large “overshoot”. Let x = aj−1 +a2(j−1)/3, then

P V
k (σ0 > τaj |σ0 > τaj−1) ≤ P V

x (σ0 > τaj )

+ P V
k (σ0 > τaj |σ0 > τaj−1,Vτ

aj−1 > x)P V
k (Vτ

aj−1 > x|σ0 > τaj−1)

≤ P V
x (σ0 > τaj ) + P V

k (Vτ
aj−1 > x|σ0 > τaj−1).

The last probability decays faster than any power of a−j as j → ∞ by Lemma 5.1. Therefore, it is enough to show
the convergence of the series

∞∑
j=1

∣∣aδP V
xj−1

(σ0 > τaj ) − 1
∣∣,

where xj = aj + εj and 0 ≤ εj ≤ a2j/3. We have for all sufficiently large j (with � chosen appropriately for a as in
Lemma 5.3),∣∣P V

xj−1
(σ0 > τaj ) − a−δ

∣∣
≤ ∣∣P V

xj−1
(σa� > τaj ) − a−δ

∣∣+ P V
xj−1

(σ0 > τaj > σa�)
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≤ ∣∣P V
xj−1

(σa� > τaj ) − a−δ
∣∣+ P V

xj−1
(σ0 > τaj |τaj > σa�)

≤ ∣∣P V
xj−1

(σa� > τaj ) − a−δ
∣∣+ P V

a�(σ0 > τaj ).

By Lemma 5.3

∞∑
j=1

∣∣P V
xj−1

(σa� > τaj ) − a−δ
∣∣< ∞,

and to complete the proof of (8.1) we invoke the bound provided by (5.4) for x = [a�]. �

Proof of Lemma 8.1. Fix an arbitrary non-negative integer k and a ∈ (1,2]. For each n > a there is an m ∈ N such
that am ≤ n < am+1. We have

amδP V
k (σ0 > τam+1) ≤ nδP V

k (σ0 > τn) ≤ a(m+1)δP V
k (σ0 > τam).

If we can show that

lim
m→∞amδP V

k (σ0 > τam) = g(a, k) > 0 (8.2)

for some g(a, k), then

0 < a−δg(a, k) ≤ lim inf
n→∞ nδP V

k (σ0 > τn) ≤ lim sup
n→∞

nδP V
k (σ0 > τn) ≤ aδg(a, k).

This implies

1 ≤ lim supn→∞ nδP V
k (σ0 > τn)

lim infn→∞ nδP V
k (σ0 > τn)

≤ a2δ,

and we obtain the claimed result by letting a go to 1.
To show (8.2) we set � = min{j ∈ N|aj > k} and notice that for m > �

amδP V
k (σ0 > τam) = aδP V

k (σ0 > τam |σ0 > τam−1) × a(m−1)δP V
k (σ0 > τam−1)

= · · · = a�δP V
k (σ0 > τa�)

m∏
j=�+1

aδP V
k (σ0 > τaj |σ0 > τaj−1).

Since all terms in the last product are strictly positive and a�δP V
k (σ0 > τa�) does not depend on m, the convergence

(8.2) follows from (8.1). �

Proof of Theorem 2.1. We will show that limn→∞ nδP V
0 (σ0 > n) = C3C5, where C3 and C5 are the same as in

Lemma 3.3 and condition (C).
We begin with a lower bound. Fix positive ε and β � ε. We have

P V
0 (σ0 > n) ≥ P V

0 (τnε < σ0)P
V
εn(σ0 > n) ≥ P V

0 (τεn < σ0)P
V
εn(σβn > n).

By (C), Lemma 3.1, and scaling (Lemma 3.2 (i))

lim inf
n→∞ nδP V

0 (σ0 > n) ≥ C5ε
−δP Y

1

(
τY
β/ε > ε−1).

Letting β → 0 and then ε → 0 we obtain via Lemma 3.3 that

lim inf
n→∞ nδP V

0 (σ0 > n) ≥ C3C5.
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The upper bound is slightly more complicated. First, notice that

nδP V
0 (σ0 > n,τεn > σ0) ≤ nδP V

0

(
σ0∑
i=1

1{Vi<εn} > n

)
.

By Proposition 6.2 the right-hand side becomes negligible as n → ∞ and then ε → 0. Thus, it is enough to estimate
nδP V

0 (σ0 > n,τεn < σ0). Let R ∈ (1,3/2). Then

nδP V
0 (σ0 > n,τεn < σ0) ≤ nδP V

0

(
σ0 > τεn > (R − 1)n

)
+ nδP V

0 (Vτεn > Rεn, τεn < σ0)

+ nδP V
0

(
σ0 − τεn > (2 − R)n,Vτεn ≤ Rεn

)
.

By Proposition 6.2 the first term on the right-hand side vanishes for every fixed R > 1 when we let n → ∞ and then
ε → 0. By Lemma 5.1 the lim supn→∞ of the second term is zero. Thus it will be sufficient to bound the last term. For
β � ε let us define σεn

βn to be the first time after τεn that V falls below βn. Then the last term is bounded above by

nδ
(
P V

0

(
σ0 − σεn

βn > (R − 1)n
)+ P V

0

(
σεn

βn − τεn > (3 − 2R)n,Vτεn ≤ Rεn
))

≤ (
P V

βn

(
σ0 > (R − 1)n

)+ P V
Rεn

(
σβn > (3 − 2R)n

))
nδP V

0 (τεn < σ0).

Taking lim supn→∞ and then letting β → 0 we obtain (by Proposition 7.1, Lemma 3.1 and (C)) the following upper
bound for lim supn→∞ nδP V

0 (σ0 − τεn > (2 − R)n,Vτεn ≤ Rεn),

C5ε
−δP Y

Rε

(
τ0 > (3 − 2R)

)= C5ε
−δP Y

1

(
τ0 > ε−1(3 − 2R)/R

)
.

As ε → 0 and then R → 1, the latter expression converges by Lemma 3.3 to C5C3. This completes the proof. �

9. Proof of Theorem 1.3

Let δ > 2. By (2.1) and (2.2), it is enough to show that as n → ∞

2
∑n

k=0 Dn,k − (v−1 − 1)n

n2/δ

D= 2
∑n

j=0 Vj − (v−1 − 1)n

n2/δ
(9.1)

converges in distribution to Zδ/2,b for some b > 0. Define the consecutive times when Vj = 0,

σ0,0 = 0, σ0,i = inf{j > σ0,i−1|Vj = 0}, i ∈ N,

the total progeny of V over each lifetime, Si =∑σ0,i−1
j=σ0,i−1

Vj , i ∈ N, and the number of renewals up to time n, Nn =
max{i ≥ 0|σ0,i ≤ n}. Then (σ0,i − σ0,i−1, Si)i≥1 are i.i.d. under P V

0 . Moreover, σ0,i − σ0,i−1
D= σV

0 and Si
D= SV ,

i ∈ N. By Theorem 2.2 the distribution of SV is in the domain of attraction of the law of Zδ/2,̃b for some b̃ > 0 (see,
for example, [8], Chapter 2, Theorem 7.7). Since by Theorem 2.1 (in fact, the upper bound (A) is sufficient) the second
moment of σV

0 is finite, it follows from standard renewal theory (see, for example, [9], Theorems II.5.1 and II.5.2)
that

Nn

n

a.s.−→ λ := (EV
0 σ0)

−1,

and for each ε > 0 there is c5 > 0 such that P V
0 (|Nn − λn| > c5

√
n) < ε for all sufficiently large n. Using the fact that

Tn/n → v−1 a.s. as n → ∞ and relations (2.1) and (9.1) we get that EV
0 Si = (v−1 − 1)/(2λ).
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Proof of part (i). Let δ ∈ (2,4). We have∑n
j=0 Vj − (v−1 − 1)n/2

n2/δ
=
∑Nn

i=1(Si − EV
0 Si)

n2/δ
+ EV

0 S1
Nn − λn

n2/δ
+
∑n

j=σ0,Nn
Vj

n2/δ
.

By Theorem I.3.2 [9], the first term converges in distribution to Zδ/2,̃b . The second term converges to zero in probabil-

ity by the above mentioned facts from renewal theory. The last term is bounded above by SNn+1/n2/δ , which converges
to zero in probability. This finishes the proof of (1.7), which immediately gives (1.8) with Xn replaced by supi≤n Xi ,
since {supi≤n Xi < m} = {Tm > n}.

Next we show (1.8) with Xn replaced by infi≥n Xi . The proof is the same as in, for example, [2], p. 849. We observe
that for all m,n,p ∈ N{

sup
i≤n

Xi < m
}

⊂
{

inf
i≥n

Xi < m
}

⊂
{

sup
i≤n

Xi < m + p
}

∪
{

inf
i≥Tm+p

Xi < m
}
.

The following lemma completes the proof of part (i).

Lemma 9.1.

lim
k→∞ sup

n≥1
P0

(
inf

i≥Tn

Xi < n − k
)

= 0.

We postpone the proof of this lemma until the end of the section.

Proof of part (ii). Let δ = 4. Theorem 2.2 implies that the distribution of SV is in the domain of attraction of the
normal distribution ([11], Chapter XVII.5). Norming constants are easily computed to be (see [11], Chapter XVII.5,
formula (5.23) with C = 1)

√
C2n logn. The constant b, which appears in the statement is equal to C2/2. Relations

(1.9) and (1.10) follow in the same way as for part (i). �

Proof of Lemma 9.1. Let Pn,k := P0(infi≥Tn Xi < n − k).

Step 1. The supremum over n ≥ 1 can be reduced to the maximum over n ∈ {1,2, . . . , k}: supn≥1 Pn,k =
max1≤n≤k Pn,k.

Indeed, consider Pk,k and Pm+k,k for m ≥ 1. The corresponding events {infi≥Tk
Xi < 0} and {infi≥Tk+m

Xi < m}
depend on the behavior of the process only at times when Xi is in [0,∞) and [m,∞), respectively. But at times T0
and Tm the walk is at 0 and m, respectively, and the distributions of the environments starting from the current point
to the right of it are the same under P0. We conclude that Pk,k = Pm+k,k . This is essentially the content of Lemma 10
from [19]. The proof does not use the positivity of cookies so it can be applied here.

Step 2. We list four elementary properties of {Pn,k}, n, k ≥ 1:

(a) Pn,k ≥ Pn,k+m for all 1 ≤ n ≤ k and m ≥ 0;
(b) Pn,k+m converges to 0 as m → ∞ for each k ≥ n ≥ 1;
(c) Pn,k ≥ Pn+m,k+m for all n ≤ k and m ≥ 0;
(d) Pn+m,k+m converges to 0 as m → ∞ for each k ≥ n ≥ 1.

Inequality (a) is obvious. Part (b) follows from the transience of X. Namely, infi≥Tn Xi > −∞ a.s. but n− (k +m) →
−∞ as m → ∞. Inequality (c) is also obvious: since Tn < Tm+n we have{

inf
i≥Tn

Xi < n − k
}

⊃
{

inf
i≥Tn+m

Xi < n − k
}

=
{

inf
i≥Tn+m

Xi < (n + m) − (k + m)
}
.

The convergence in (d) again follows from the transience: Xi → ∞ as i → ∞ a.s. implies that infi≥Tm+n Xi → ∞ as
m → ∞ a.s. but (k + m) − (n + m) stays constant.

Step 3. Take any ε > 0 and using (d) choose an m so that Pm,m < ε. Properties (a) and (c) imply that Pn,n+i < ε for
all i ≥ 0 and n ≥ m. Using (b), for n = 1,2, . . . ,m − 1 choose kn so that Pn,kn < ε. Let K = max1≤n≤m kn (naturally,
we set km = m). Then Pn,k < ε for all n ≤ k and k ≥ K that is max1≤n≤k Pn,k < ε for all k ≥ K . �
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Remark 9.2. Theorems 2.1 and 2.2 imply Theorem 1.2 for general cookie environments satisfying conditions (A1)
and (A2). The proof is the same as in Section 6 of [2] and uses Lemma 9.1.

Appendix: Proofs of technical results

We shall need the following simple lemma.

Lemma A.1. Let (ξi)i∈N be i.i.d. Geom(1/2) random variables. There exists a constant c6 > 0 such that for all
x, y ∈ N

P

(
x∑

i=1

(ξi − 1) ≥ y

)
≤ e−c6y

2/x ∨ e−c6y.

Proof. Let ϕ(t) = logEet(ξ1−1) = −t − log(2 − et ), t ∈ [0, log 2). Then ϕ′(0) = 0 and there is a constant C > 0 such
that ϕ(t) ≤ Ct2 for all t ∈ [0, (log 2)/2]. By Chebyshev’s inequality, for each t ∈ [0, (log 2)/2]

logP

(
x∑

i=1

(ξi − 1) ≥ y

)
≤ xϕ(t) − yt ≤ Cxt2 − yt,

and, therefore,

logP

(
x∑

i=1

(ξi − 1) ≥ y

)
≤ − max

t∈[0,(log 2)/2]
(
yt − Cxt2)≤ −1

4
min

{
y2

Cx
,y log 2

}
.

This gives the desired inequality with c6 = 1
4 min{C−1, log 2}. �

Proof of Lemma 5.1. We shall prove part (i). The proof of part (ii) is very similar and is omitted.
To prove part (i) it is enough to show the existence of c1, c2 > 0 such that (5.1) holds for all x ≥ 2M + 1 and

y ≥ 6M . The extension to all y ≥ 0 is done simply by replacing the constant c1 with

max
{
c1,

(
e−c2(6M)2/(2M+1) + e−6Mc2

)−1}
,

since the left-hand side of (5.1) is at most 1 and the right-hand side of (5.1) is increasing in x and decreasing in y. We
have

Pz(Vτx > x + y, τx < σ0) =
∞∑

n=1

Pz(Vτx > x + y, τx = n, τx < σ0)

=
∞∑

n=1

Pz

(
Vn > x + y,Vn ≥ x, τx = n, τx < σ0

)

=
∞∑

n=1

x−1∑
r=1

Pz

(
Vn > x + y,Vn ≥ x,Vn−1 = r,0 < Vj < x, j ∈ {1, . . . , n − 2})

=
∞∑

n=1

x−1∑
r=1

Pz(Vn > x + y|Vn ≥ x,Vn−1 = r)

× Pz

(
Vn ≥ x,Vn−1 = r,0 < Vj < x, j ∈ {1, . . . , n − 2})
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=
∞∑

n=1

x−1∑
r=1

Pz(Vn > x + y|Vn−1 = r)

Pz(Vn ≥ x|Vn−1 = r)
Pz(τx < σ0, τx = n,Vn−1 = r)

=
∞∑

n=1

x−1∑
r=1

Pr(V1 > x + y)

Pr(V1 ≥ x)
Pz(τx < σ0, τx = n,Vn−1 = r)

≤ max
0≤r<x

Pr(V1 > x + y)

Pr(V1 ≥ x)

∞∑
n=1

x−1∑
r=1

Pz(τx < σ0, τx = n,Vn−1 = r)

= max
0≤r<x

Pr(V1 > x + y)

Pr(V1 ≥ x)
Pz(τx < σ0).

Thus,

max
0≤z<x

Pz(Vτx > x + y|τx < σ0) ≤ max
0≤z<x

Pz(V1 > x + y)

Pz(V1 ≥ x)
.

To estimate the last ratio we recall that V1 is the sum of the number of offspring produced by each of z particles and by
the immigrant particle. The offspring distribution of at most M particles can be affected by the cookies. For notational
convenience we shall use ξj , j = 1,2, . . . , z + 1, to denote the number of offspring of the j th particle. All that was

said in Section 2 about ζ
(k)
m applies now to ξm, m = 1,2, . . . ,M , and ξm, m > M , are just i.i.d. Geom(1/2) random

variables. Abbreviate ξj − 1 by ξ ′
j , j ∈ N. With this notation, V1 = z + 1 +∑z+1

m=1 ξ ′
m. Let G0 = {∅,�}, Gn, n ∈ N, be

the σ -algebra generated by (ξm)m≤n, and

Nx = inf

{
n ≥ 1

∣∣∣ z + 1 +
n∑

m=1

ξ ′
m ≥ x

}
.

Then {V1 > x + y} ⊂ {V1 ≥ x} ⊂ {Nx ≤ z + 1} and

Pz(V1 > x + y)

Pz(V1 ≥ x)
= Pz(V1 > x + y)

Ez(1{Nx≤z+1}Pz(V1 ≥ x|GNx ))
.

The proof of part (i) will be complete as soon as we show that:

(a) the is a constant c7 > 0 such that Pz(V1 ≥ x|GNx ) ≥ c7 for all 0 ≤ z < x and x ≥ 2M + 1;
(b) there is a constant c8 > 0 such that for all x ≥ 2M + 1 and y ≥ 6M

Pz(V1 > x + y|Nx ≤ z + 1) ≤ (
e−c8y ∨ e−c8y

2/x
)
. (A.1)

Proof of (a). Consider two cases: (i) z ≥ M and (ii) x − z ≥ M + 1. In case (i) at least one of ξm, 1 ≤ m ≤ z + 1,
has a Geom(1/2) distribution. The distribution of each ξm is supported on the non-negative integers, and, trivially,∑M

m=1 ξ ′
m ≥ −M . Therefore, on the event {Nx ≤ z + 1}

Pz(V1 ≥ x|GNx ) ≥ Pz

(
z+1∑

m=Nx+1

ξ ′
m ≥ 0

∣∣∣ GNx

)
≥ min

n≥M+1
P

(
n∑

m=M+1

ξ ′
m ≥ M

)
≥ c7 > 0, (A.2)

since for all n ≥ M +1 the probabilities under the minimum sign are strictly positive and by the Central Limit Theorem

lim
n→∞P

(
n∑

m=M+1

ξ ′
m ≥ M

)
= 1

2
.

We recall that when Nx = z + 1 the first sum in (A.2) is empty and the probability above is equal to 1, so the lower
bond holds for this case as well.
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Case (ii) is even simpler. We have x − z ≥ M + 1. This implies that all cookies at site 0 have already been used
for offspring of the first Nx particles. Therefore, the sum

∑z+1
m=Nx+1 ξ ′

m (when it is not zero) is equal to the non-trivial
sum of centered Geom(1/2) random variables. Therefore, in case (ii) we again get (A.2) where the rightmost M is
replaced by 0.

Proof of (b). Observe that

{V1 > x + y} ⊂
{

z+1∑
m=Nx+1

ξ ′
m ≥ y/2

}
∪
{

z + 1 +
Nx∑

m=1

ξ ′
m − x ≥ y/2

}
.

Using the assumption y ≥ 6M and Lemma A.1 we get

Pz

(
z+1∑

m=Nx+1

ξ ′
m ≥ y/2,Nx ≤ z + 1

)
= Ez

(
1{Nx≤z+1}Pz

(
z+1∑

m=Nx+1

ξ ′
m ≥ y/2

∣∣∣ GNx

))

≤ max
1≤n≤x

Pz

(
M+n∑

m=M+1

ξ ′
m ≥ y/2 − M

)
Pz(Nx ≤ z + 1)

≤ max
1≤n≤x

Pz

(
M+n∑

m=M+1

ξ ′
m ≥ y/3

)
Pz(Nx ≤ z + 1)

≤ (
e−c6y

2/(9x) ∨ e−c6y/3)Pz(Nx ≤ z + 1).

Finally, we estimate the probability of the second set:

Pz

(
z + 1 +

Nx∑
m=1

ξ ′
m − x ≥ y/2,Nx ≤ z + 1

)

=
z+1∑
n=1

Pz

(
Nx∑

m=1

ξ ′
m ≥ y/2 + x − z − 1,Nx = n

)

=
z+1∑
n=1

x−z−2∑
�=1−n

Pz

(
n∑

m=1

ξ ′
m ≥ y/2 + x − z − 1,Nx = n,

n−1∑
m=1

ξ ′
m = �

)

=
z+1∑
n=1

x−z−2∑
�=1−n

Pz

(
ξ ′
n ≥ y/2 + x − z − 1 − �

∣∣∣Nx = n,

n−1∑
m=1

ξ ′
m = �

)
Pz

(
Nx = n,

n−1∑
m=1

ξ ′
m = �

)

=
z+1∑
n=1

x−z−2∑
�=1−n

Pz

(
ξn ≥ y/2 + x − z − �

∣∣∣ ξn ≥ x − z − �,Nx = n,

n−1∑
m=1

ξ ′
m = �

)
Pz

(
Nx = n,

n−1∑
m=1

ξ ′
m = �

)

≤ Pz(ξM+1 ≥ y/2 − M)

z+1∑
n=1

x−z−2∑
�=1−n

Pz

(
Nx = n,

n−1∑
m=1

ξ ′
m = �

)

≤ 2−y/3Pz(Nx ≤ z + 1).

This finishes the proof. �



598 E. Kosygina and T. Mountford

Proof of part (ii) of Lemma 5.2. Let s ∈ C∞
0 ([0,∞)) be a non-negative function such that s(x) = xδ on

(2/(3a),3a/2). Fix an n such that an−1 > M and define the process Un := (Un
k )k≥0 by

Un
k = s

(
Vk∧γ

an

)
.

We shall show that when n is large Un is close to being a martingale (with respect to its natural filtration (Fk)k≥0).
Un is just a discrete version of the martingale used in the proof of Lemma 3.2.

On the event {γ > k} we have

E
(
Un

k+1|Fk

)= E

(
s

(
Vk+1

an

)∣∣∣Fk

)
= E

(
s

(
Vk

an
+ Vk+1 − Vk

an

)∣∣∣Fk

)
,

and

E
(
Un

k+1|Fk

)− Un
k = E

[
s′
(

Vk

an

)
Vk+1 − Vk

an

∣∣∣Fk

]
+ 1

2
E

[
s′′
(

Vk

an

)
(Vk+1 − Vk)

2

a2n

∣∣∣Fk

]
+ rn

k

= −δ − 1

an
s′
(

Vk

an

)
+ 1

2
E

[
s′′
(

Vk

an

)
(Vk+1 − Vk)

2

a2n

∣∣∣Fk

]
+ rn

k ,

where rn
k is the error, which we shall estimate later. By (3.1), the second term on the right-hand side of the above

equality is equal to

1

2a2n
s′′
(

Vk

an

)
E

[(
1 +

M∑
m=1

ζ (k)′
m +

Vk−M+1∑
m=1

ξ (k)′
m

)2∣∣∣Fk

]
,

where ζ
(k)′
m = ζ

(k)
m − 1 and ξ

(k)′
m = ξ

(k)
m − 1. Since

∑M
m=1 ζ

(k)′
m is independent from all ξ

(k)′
m , m ≥ 1, and Vk , the last

formula reduces to

1

2a2n
s′′
(

Vk

an

)(
2(Vk − M + 1) + E

[(
1 +

M∑
m=1

ζ (k)′
m

)2])
.

Using the fact that xs′′(x) + (1 − δ)s′(x) = 0 for x ∈ (2/(3a),3a/2) we get that on the event {γ > k}

E
(
Un

k+1|Fk

)− Un
k = 1

a2n
s′′
(

Vk

an

)(
1 − M + 1

2
E

[(
1 +

M∑
m=1

ζ (k)′
m

)2])
+ rn

k .

The first term on the right-hand side is bounded in absolute value by K1/a
2n for some constant K1. Thus it remains

to estimate rn
k . By Taylor’s expansion rn

k is bounded by

1

6

∥∥s′′′∥∥∞E

[( |Vk+1 − Vk|
an

)3∣∣∣Fk

]
≤ 1

6

∥∥s′′′∥∥∞

(
E

[(
Vk+1 − Vk

an

)4∣∣∣Fk

])3/4

.

Writing again the difference Vk+1 − Vk in terms of geometric random variables, using independence of
∑M

m=1 ζ
(k)′
m

from all ξ
(k)′
m , m ≥ 1, and the fact that Vk < an+1 on {γ > k} we find that

E

[(
Vk+1 − Vk

an

)4∣∣∣Fk

]
≤ K2

a2n
,



Limit laws of transient excited random walks on integers 599

and, therefore, |rn
k | ≤ K3/a

3n/2. Let Rn
0 = 0 and for k ≥ 1 set

Rn
k =

k∧γ∑
j=1

[
1

a2n
s′′
(

Vj

an

)(
1 − M + 1

2
E

[(
1 +

M∑
m=1

ζ
(j)′
m

)2])
+ rn

j

]
.

Then Un
k − Rn

k is a martingale with the initial value Un
0 . Our bounds on the increments of the process (Rn

k )k≥0 and
Proposition A.2 below imply that

E
∣∣Rn

γ

∣∣≤ K4

a3n/2
Eγ ≤ K5

an/2
.

This allows us to pass to the limit as k → ∞ and conclude that Un
0 = EUn

γ − ERn
γ . Thus,

Un
0 − K5

an/2
≤ EUn

γ ≤ P
(
Vγ ∈ [an+1, an+1 + a2(n−1)/3))s(a + a−(n+2)/3)

+ P
(
Vγ ∈ (an−1 − a2(n−1)/3, an−1])s(a−1)+ E

(
Un

γ 1{d(Vγ ,(an−1,an+1))≥a2(n−1)/3}
)
.

By part (i), we obtain that

P
(
Vγ ≥ an+1)aδ + P

(
Vγ ≤ an−1)a−δ ≥ Un

0 − K6/a
n/3.

Similarly we get

P
(
Vγ ≥ an+1)aδ + P

(
Vγ ≤ an−1)a−δ ≤ Un

0 + K7/a
n/3.

This completes the proof. �

Proposition A.2. There exists C8 ∈ (0,∞) so that for all x > 0,

sup
x≤y≤2x

EV
y

(σV
x/2∑

r=0

1Vr∈[x,2x]

)
< C8x.

Proof. By the usual compactness considerations and Lemma 3.1, there exists c > 0 such that P V
y (σV

x/2 < x) > c for
all x > 0 and y ∈ [x,2x]. From this and the Markov property applied to successive re-entries to the interval [x,2x]
(see the proof of Proposition 6.1 for details), we obtain

P V
y

(σV
x/2∑

r=0

1Vr∈[x,2x] > nx

)
≤ (1 − c)n,

and the result follows. �
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