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Abstract. We study a one-dimensional Brownian motion conditioned on a self-repelling behaviour. Given a nondecreasing positive
function f (t), t ≥ 0, consider the measures μt obtained by conditioning a Brownian path so that Ls ≤ f (s), for all s ≤ t , where Ls

is the local time spent at the origin by time s. It is shown that the measures μt are tight, and that any weak limit of μt as t → ∞ is
transient provided that t−3/2f (t) is integrable. We conjecture that this condition is sharp and present a number of open problems.

Résumé. Etant donnée une fonction croîssante f (t), t ≥ 0, considérons la mesure μt obtenue lorsqu’on on conditionne un mou-
vement brownien de sorte que Ls ≤ f (s), pour tout s ≤ t , où Ls est le temps local accumulé au temps s à l’origine. Nous montrons
que les mesures μt sont tendues, et que toute limite faible de μt lorsque t → ∞ est la loi d’un processus transient si t−3/2f (t) est
intégrable. Nous conjecturons que cette condition est également nécessaire pour la transience et proposons un certain nombre de
questions ouvertes.
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1. Introduction

Let (Xt , t ≥ 0) be a Brownian motion in Rd . It is well known that d = 2 is a critical value for the recurrence or
transience of X. In this paper, we show however that even in dimension 1, a very small perturbation of the Brownian
path may result in the transience of the process. Let f : [0,∞) → [0,∞) be a given nonnegative Borel function such
that f (0) > 0, and consider the event

Kt = {
Ls ≤ f (s), for all s ≤ t

}
.

Here (Ls, s ≥ 0) is a continuous determination of the local time process of X at the origin x = 0. Our goal in this
paper is to analyse the limiting behaviour of the Wiener measure conditioned on Kt , as t → ∞. Since (Ls, s ≥ 0) is
almost surely nondecreasing, we may and will assume without loss of generality that f is nondecreasing. (Otherwise
one may always consider f̂ (t) = infs≥t f (s).) Note that by Brownian scaling, Lt is of order

√
t for an unconditional

Brownian path. Hence when f (t) ≤ t1/2, this constraint is of a self-repelling nature, since it forces the Brownian path
to spend less time than it would naturally want to at the origin. We will thus assume that f is nondecreasing and
t−1/2f (t) is nonincreasing.

Our main result is that if f is only logarithmically smaller than t1/2, then X becomes transient almost surely in
the limit t → ∞. Here, a probability measure P on the space C of continuous sample paths is called transient (almost
surely) if P(limt→∞ |Xt | = +∞) = 1. If lim supt→∞ Xt = +∞ and lim inft→∞ Xt = −∞ with P-probability 1, then
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P is called recurrent. We equip C with the topology of uniform convergence on compact sets, which turns C into a
Polish space, and discuss weak convergence of probability measures on C with respect to this topology.

Theorem 1. Let W denote the Wiener measure on C , and let Wt = W(·|Kt ). Then {Wt , t ≥ 0} is a tight family.
Assume further that∫ ∞

1

f (t)

t3/2
dt < ∞. (1)

Then for any weak subsequential limit P of Wt as t → ∞, P is transient almost surely.

In particular, if f (t) ∼ √
t(log t)−γ with γ ≥ 0, then P is transient as soon as γ > 1. We believe, but have not

succeeded in proving, that condition (1) is sharp, in the following sense.

Conjecture 1. If∫ ∞

1

f (t)

t3/2
dt = ∞, (2)

then any weak limit P of Wt as t → ∞ is recurrent almost surely.

It should be noted that this problem is open even in the basic case where f (t) ∼ √
t as t → ∞, for which it is still

the case that W(Et ) → 0 as t → ∞.
Figure 1 below illustrates this result.
In the recurrent regime, i.e. if (2) holds, we further believe that the local time process of X is well defined almost

surely under P, but that X is “far away from breaking the constraint Kt ,” in the following sense:

Conjecture 2. Assume (2), and let P be any weak limit of Wt . Then there exists a nonnegative deterministic function
ω(t) → ∞ as t → ∞ such that

P

(
Lt ≤ f (t)

ω(t)

)
→ 1 (3)

as t → ∞.

Furthermore, when f (t) ∼ t1/2(log t)−γ as t → ∞, with 0 < γ < 1, we believe that

Lt ≤ f (t) exp
(−C(log t)γ

)
, (4)

with probability asymptotically 1, for some C > 0. It may seem surprising at first that, in the recurrent regime, the
process shouldn’t use its full allowance of local time. This phenomenon is related to entropic effects, which cause the
process to stay far away from breaking the constraint to allow for more fluctuations. In [2], we already observed a
similar behaviour in the case where the local time profile of the process is conditioned to remain bounded at every
point, and have called this phenomenon “Brownian entropic repulsion.” This aspect is actually crucially exploited in
our proof, which relies on considering a suitable softer constraint K′

t (easier to analyse, because more “Markovian”),
but which nevertheless turns out to be equivalent to that of Kt .

Discussion and relation to previous works. The integral test (1) is reminiscent of classical integral tests on Brownian
motion. Indeed, an indication that this test provides the right answer follows from a pretty basic calculation. This
calculation is carried out in Lemma 4, where the probability of hitting 0 during the interval [t/2, t] given Kt is
estimated. However we stress that one of the major difficulties of this problem is to control the long-range interactions
induced by conditioning far away into the future, and to show that this propagates down to an arbitrarily large but
finite window close to the origin in a manageable way. It is this long-range interaction, inherent to the study of self-
interacting processes, which is at the source of our difficulties in proving Conjectures 1 and 2.
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Fig. 1. Simulations of trajectories up to time t = 104. From top to bottom: γ = 0.5, γ = 0.9 and γ = 1.1.
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Putting a bound on the local time can be viewed as introducing some form of self-repellence of the process. The
problems studied here are reminiscent of some problems arising in the mathematical study of random polymers, of
which an excellent review can be found in [6]. Our work is also somewhat related in spirit to a series of papers by
Roynette et al. (see, e.g., [12], or the forthcoming monograph by Roynette and Yor [13]) and Najnudel [8] , although
our goals and methods are quite different.

Theorem 1 establishes tightness of the measures Pt but not weak convergence. One possible approach to prove
uniqueness would be to identify the limiting process as the unique solution to a certain stochastic differential equation.
We note that this is related to the work of Barlow and Perkins [1], which describes the behaviour of Brownian motion
near a typical slow point, i.e., a time t near which the growth of B satisfies

lim sup
h→0

h−1/2|Bt+h − Bt | = 1.

Blowing up the trajectory near this slow point, their Theorem 3.3 gives precisely a description of the process as a
solution to a certain stochastic differential equation.

Organization of the paper. In Section 2, we prove some preliminary results which contain results interesting for
their own sake. Namely, it is shown in Theorem 2 that a Brownian motion conditioned on having a local time at the
origin bounded by 1 is transient, and that the total local time accumulated by this process is a uniform random variable
on (0,1). Note that this is smaller than 1 almost surely, so here again the process does not use its full allowance of
local time. Also, in Theorem 3 that a Brownian motion conditioned on the event Et = {Lt ≤ f (t)} is recurrent in the
limit t → ∞ as soon as f (t) → ∞, no matter how slowly.

In Section 3, we give a proof of the main result (Theorem 1). This is based partly on Theorem 3 and on a general
result which shows that any conditioning of the Brownian motion based on its zero set cannot grow faster than
diffusively (Lemma 1) and, in the case of Kt , this is matched by a lower bound of the same order of magnitude
(Lemma 2). These various ingredients are put together using a coupling method, which then gives the proof of the
result.

Finally in Section 4, we study a slightly different but related problem, where a Brownian path is conditioned to
spend no more than one unit of time in the negative half-line. It is shown there again that the measures converge
weakly to a limiting process, which is (unsurprisingly) transient, and also that the total amount of time spent in the
forbidden region by this process is equal to U2, where U is a uniform random variable on (0,1). Hence here again, the
process does not use its full allowance, another expression of the entropic repulsion principle.

2. Preliminaries

2.1. Brownian motion with bounded local time

It will be convenient to define various processes on the same space, but governed by different probability measures
on this space. We take for this common space the space C = C([0,∞),R) = the space of continuous functions from
[0,∞) into R. Xs will denote the sth coordinate function on C ; we shall also write X(s) for Xs occasionally when
s is a complicated expression. In this setup Brownian motion is obtained by putting the Wiener measure W on C ; W

is concentrated on the paths which start at X(0) = 0 and makes increments over disjoint intervals independent with
suitable Gaussian distributions. We now take L(·, ·) as a jointly continuous local time of the Brownian motion. This
is a continuous function L(s, x) which satisfies

{∣∣{s ≤ t : Xs ∈ B}∣∣} =
∫ t

0
I [Xs ∈ B]ds =

∫
x∈B

L(t, x)dx (5)

W-almost surely simultaneously for all Borel sets B and t ≥ 0 ([7], Section 3.4). Under the measure W there a.s.
exists such a jointly continuous function, and it is clearly unique for any sample function for which it exists.

As a first step towards the proof of Theorem 1, we prove the following simple result. Assume that f (t) = 1, so that

Kt := {Lt ≤ 1}.
Our first theorem describes the weak limit of Wt as t → ∞. This description involves a Bessel-3 process, a description
of which can be found, for instance, in [10].
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Theorem 2. The measures Wt converge weakly on C to a measure P. Under P, the process X is transient and P

can be described as follows: On some probability space let U, {B(s), s ≥ 0}, ε and {B(3)(s), s ≥ 0} respectively be
a random variable with a uniform distribution on [0,1], a Brownian motion, a random variable uniform on {−1,1},
and a Bessel-3 process, and assume that these four random elements are independent of each other. Define

τ = sup
{
v: L(v,0) < U

}
(6)

(where L is the local time of B), and

Y(t) =
{

B(t) if t ≤ τ ,
εB(3)(t − τ) if t > τ .

Then P is the distribution of {Y(t), t ≥ 0}.

Somewhat informally, the theorem says that under P, X can be described by first drawing an independent uniform
random variable U . Then X is the standard Brownian motion until it has accumulated a local time at 0 equal to U ,
and performs a three-dimensional Bessel process afterwards.

It is well known that a Bessel-3 process starting at the origin diverges to infinity almost surely. This is of course
the reason why the process governed by P is transient. However, we can say more. It is also well known that Lt , the
local time at 0 can change only at times t when Xt = 0. This fact is also clear from (5). Together with the description
of the process under P this implies that Lt is a.s. constant on t ≥ τ at which it takes the value U (by definition and
continuity of the inverse local time τ ). Thus, the theorem implies

L∞ = Lτ = U. (7)

Since U < 1 almost surely, this shows that under P, X does not use its full allowance of local time, which is another
expression of the entropic repulsion principle.

Proof of Theorem 2. Step 1. In this step we shall give a representation of Brownian motion by means of excursions.
This will turn out to be useful for the proof. Readers familiar with this sort of things are encouraged to skip this step
and go to step 2. To help with the intuition, consider the set Z := {t : Xt = 0}. If Xt is a continuous function of t , then
Z is a closed set, and its complement, R \ Z is a countable union of maximal open intervals. On each such interval
X 
= 0. The piece of the path of X on such an interval is called an excursion of X. One can now try to construct a
process equivalent to X by first picking excursions on some probability space and according to a suitable distribution,
and then putting these excursions together. For X a Brownian motion, this can be done rather explicitly. The following
description can be found in a number of references (see, e.g., [7], Section III.4.3, [10], Chapter XII). The excursions
are elements of W which is the collection of continuous functions w : [0,∞) → R such that w(0) = 0, and for which
there exists a ζ(w) > 0 such that w(t) > 0 or w(t) < 0 for all 0 < t < ζ(w) and w(t) = 0 for t ≥ ζ(w). ζ(w) is called
the length of the excursion w, or sometimes its duration.

Itô’s fundamental result about the excursions of a Brownian motion states that there exists a σ -finite measure ν on
the space W , called Itô’s measure, such that the Brownian motion, viewed in the correct time-scale, can be seen as
a Point process of excursions with intensity measure ν. To state this result precisely, note that X has only countably
many excursions (since there are only finitely many excursions above 1/n for each finite n ≥ 1 in any compact time-
interval). Let (ei)

∞
i=1 be an enumeration of these excursions. Since Lt only increases on the zero set of X, let 	i be the

common value of Lt throughout the excursion ei , for i ≥ 1. Then Itô’s theorem states that

M :=
∑
i≥1

δ(	i ,ei ) (8)

is a Poisson point process on (0,∞) × W , with intensity measure dλ ⊗ dν, where dλ is the Lebesgue measure on
(0,∞). That is, for any Borel set in (0,∞) × W , if

P (B) := (the number of points of this process in the set B),
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then P (B) has a Poisson distribution with mean
∫
B

dλdν, and for disjoint sets Bi in (0,∞) × W , the P (Bi) are
independent. With a slight abuse of notation, we say that (l, e) ∈ M if M(l, e) = 1. Note that the collection of points
(	i, ei) entirely determines the path of X. [Indeed, if we define, for all u > 0,

τ(u) =
∑
	≤u

(	,e)∈M

ζ(e),

then for all i ≥ 1, the function τ(u) has an upward jump of size ζ(ei) at time si , and these are the only jumps of τ .
If t > 0, let s = inf{u ≥ t : �τ(u) > 0}, and let e be the excursion associated with the jump of τ at time u. Then it is
easy to check that we have the formula

e
(
t − τ

(
u−)) = Xt,

where X is the original process that we started with, and for all u > 0,

τ(u) = inf{t > 0: Lt > u}. (9)

Thus the excursions can easily be put together.]
A well-known description of Itô’s measure (see, e.g., [10], Section XII.4), which we will use in this proof, is the

following determination of the “law" of the duration of an Itô excursion:

ν(ζ > t) =
∫ ∞

t

ds√
2πs3

=
√

2

πt
. (10)

Step 2. Consider the event E ′
t that by time τ(1) (defined by (9)), there is an excursion of duration greater than t .

That is, formally

E ′
t = {

there exists (	, e) ∈ M such that 	 ≤ 1 and ζ(e) > t
}
.

Observe that on the one hand, E ′
t ⊂ Et . Indeed, Et can be written as

Et = {
τ(1) > t

}
and it is clear that this occurs on E ′

t . On the other hand, we claim that the two events have asymptotically the same
probability. Indeed, if B = {e ∈ W : ζ(e) > t}, then E ′

t is the event that by time 1, at least one point of M has fallen in
B . Since the number of such points is Poisson with a parameter given in (10), we obtain

P
(

E ′
t

) = 1 − exp

(
−

√
2

πt

)

from which we deduce

P
(

E ′
t

) ∼
√

2

πt
(11)

as t → ∞. To compute P(Et ), we appeal to Lévy’s reflection principle. Let

St = sup
s≤t

Xs.

Then Lévy showed that under the Wiener measure W, the two processes (L(t,0), t ≥ 0) and (St , t ≥ 0) have the same
distribution. On the other hand, for fixed t ≥ 0, by the standard reflection principle, St has the same distribution as
|Xt | (see, e.g., Durrett [4], Section 7.4, or [10], Sections III.3.7 and VI.2.3). Consequently,

W
{

Et

} = W
{|Xt | ≤ 1

} = 1√
2πt

∫
x∈[−1,1]

e−x2/2t dx ∼ √
2/(πt). (12)
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Let A ∈ F∞ = ∨
t≥0 Ft . It follows from the above that

W(A|Et ) −→
t→∞ P(A) if and only if W

(
A|E ′

t

) −→
t→∞P(A). (13)

It thus suffices to prove Theorem 2 when the event we condition on is E ′
t , rather than Et . In fact, for the same reason,

one can condition on the event E (2)
t that there is exactly one excursion of duration greater than t prior to time τ(1).

Indeed E (2)
t ⊂ E ′

t and we also have P(E (2)
t ) ∼ P(Et ) since the probability that there are two or more such excursion is

O(t−1).
Now, for B ⊂ W , let (NB

u ,u ≥ 0) = P ([0, u) × B) be the number of points of M that have fallen in B by time u,
and take B to be the set B = {e ∈ W : ζ(e) > t} defined above (11). Note that NB· is a Poisson process with rate ν(B).
It is well known that, conditionally on the number of jumps of a Poisson process by time 1, the jump times have the
distribution of the uniform order statistics. In particular, since

E (2)
t = {

NB
1 = 1

}
,

we see that conditional upon E (2)
t , there exists a uniform random variable U in (0,1) and e ∈ B such that (U, e) ∈ M .

Moreover, e is independent of U and is distributed according to ν(·|B). That is,

P(e ∈ ·) = ν(e ∈ ·)
ν(ζ > t)

. (14)

Consider now the conditional distribution of
∑

i≥1:ei∈Bc δ(	i ,ei ) given E (2)
t . By the independence property of Poisson

point processes in disjoint sets, this distribution is simply equal to the unconditional distribution of the restriction of
M to (0,∞) × Bc. Therefore, let M ′ be an independent realization of M , and let

M̃ = M ′|(0,1]×Bc + δ(U,e) + M|(1,∞]×W . (15)

Let X̃ be the process obtained by reconstructing the path from the point process M̃ . The above reasoning shows that
for a set A ∈ Fs , where s > 0 is fixed (while t > s tends to infinity)

P(X ∈ A|Et ) ∼ P
(
X ∈ A|E (2)

t

) ∼ P(X̃ ∈ A).

Thus it suffices to show that X̃ converges in distribution to the law Q of the process Y in Theorem 2. Note that
(X̃t ,0 ≤ t ≤ τ(U)) depends only on the points of M ′, and is thus independent of (U, e). Moreover, provided M ′ did
not have any point in B on the time-interval [0,1] (an event of probability 1 − o(1)), (X̃t ,0 ≤ t ≤ τ(U) has the same
distribution as (Xt ,0 ≤ t ≤ τ(U)). Since e is also independent from U , it thus suffices to prove that

ν(·|ζ > t) −→
t→∞P

(
εB(3) ∈ ·) (16)

weakly. There are many ways to prove (16), and we propose one below. Let us postpone the proof of this statement
for a few moments and finish the proof of Theorem 2. What we have proved is that for every s > 0,

W(A|Et ) → P(A), A ∈ Fs , s > 0, (17)

where P is the measure described in the statement of Theorem 2. It is not hard (but not immediate) to deduce weak
convergence of W(·|Et ) towards P. The problem is that one cannot directly apply the λ−π system theorem of Dynkin
to conclude that (17) holds for all A ∈ F∞. Instead, note that, as in the proof of Lemma 6 in [2], (17) implies tightness
(all events involved in the verification of tightness are measurable with respect to Fs for some s > 0), and furthermore
any weak limit must be identical to P, because for instance of the convergence of the finite-dimensional distributions.
Thus Wt converges weakly towards P.

Turning to the proof of (16), which is well known in the folklore (but we have not been able to find a precise
reference), we propose the following simple argument. First note that under ν, sign(e) is uniform on {−1,+1} and is
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independent from (|e(x)|, x ≥ 0), which has a “distribution” equal to ν+, the restriction of ν to positive excursions.
Let ν+(·|ζ = t) denote the law of a positive Itô excursion conditioned to have duration equal to t , that is, the weak
limit of

ν+(·; ζ ∈ (t, t + ε))

ν+(ζ ∈ (t, t + ε))
(18)

as ε → 0. Since

ν+(A|ζ > t) =
∫

s>t

ν(A|ζ = s)
ds√
2πs3

, (19)

it suffices to prove

ν+(·|ζ = t) −→
t→∞P

(
B(3) ∈ ·). (20)

It is not hard to show (see, e.g., Pitman [9], formula (28)), that a Brownian excursion conditioned to have duration
equal to t is equal in distribution to a 3-dimensional Bessel bridge of duration t , that is, can be written as

eu =
√

b2
1,u + b2

2,u + b2
3,u, 0 ≤ u ≤ t, (21)

where (bi,u,0 ≤ u ≤ t)3
i=1 are three independent one-dimensional Brownian bridges. Now, it is easy to check (see,

e.g., Yor [14], Section 0.5) that if W(t) is the law of a one-dimensional bridge of duration t , then for s < t ,

dW(t)

dW

∣∣∣∣
Fs

=
(

t

t − s

)
exp

(
− X2

s

2(t − s)

)
. (22)

Letting t → ∞ and s > 0 fixed, we see that the above Radon–Nikodyn derivative converges to 1. This means that the
restrictions of (bi,u,0 ≤ u ≤ t)3

i=1 to Fs converge to three independent Brownian motions. By (21), it follows that the

restriction of (eu,0 ≤ u ≤ t) converges to (

√
X2

1,u + X2
2,u + X2

3,u,0 ≤ u ≤ s) in distribution, where (Xi,u, u ≥ 0)3
i=1

are three independent Brownian motions. The law of this process is, of course, the same as P|Fs
, and hence Theorem 2

is proved. �

2.2. Slowly growing local time

We now consider a problem which may be considered the basic building block for the proof of Theorem 1. Let f be
a nonnegative nondecreasing function, and let

Et = {
Lt ≤ f (t)

}
. (23)

Let

Qt (·) = W(·|Et ) (24)

with {Xt, t ≥ 0} distributed according to the Wiener measure W. Note the difference between Et and Kt , where the
conditioning concerns the entire growth of the local time profile up to time t , whereas Et concerns only the value of
L at time t .

Theorem 3. Assume that f (t) → ∞ as t → ∞. Then Qt converges weakly to the standard Wiener measure W on C .

This result may be a little surprising at first: even if f grows as slowly as log log(t) we still obtain a recurrent
process, indeed a Brownian motion in the limit. What is going on is that the effect of the conditioning is to create
one very long excursion, but whose starting point escapes to infinity as t → ∞. As a result the conditioning becomes
trivial in the weak limit.
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Proof of Theorem 3. The strategy for the proof of Theorem 3 is similar to that used in the proof of Theorem 2, and
we will thus give fewer details. We start again by noticing that the event Et = {Lt ≤ f (t)} is equivalent to the event
{τ(f (t)) > t}. If we define the event E ′

t that there is at least one excursion of duration greater than t by time τ(f (t)),
then we have again E ′

t ⊂ Et , and letting λ = f (t)ν(ζ > t) = f (t)
√

2/(πt),

W
(

E ′
t

) = 1 − e−λ ∼ f (t)

√
2

πt
(25)

while once again, by Lévy’s identity and the reflection principle,

W(Et ) = W
(|Xt | ≤ f (t)

) = 1√
2πt

∫
|x|≤f (t)

e−x/(2t) dx ∼ f (t)

√
2

πt
. (26)

Therefore, this time again, if A ∈ F∞ then W(A|Et ) → P(A) as t → ∞ if and only if W(A|E ′
t ) → P(A). Thus let

M = ∑
i≥1 δ(	i ,ei ) be Itô’s excursion point process, and let M̃ be a realisation of M conditionally given E ′

t . Then
reasoning as in (15), we may write

M̃ = M ′|(0,f (t)] + δ(Uf (t),e) + M|(f (t),∞)×W , (27)

where M ′ is an independent realisation of M , U is an independent uniform random variable on (0,1), and e has the
distribution (14). Letting X̃ be the path reconstructed from the points of M̃ , we see that the distribution of X̃ up to
time τ(Uf (t)) is that of a standard Brownian motion. (We also have that X̃t = e(t − τ(Uf (t))) for τ(Uf (t)) ≤ t ≤
τ(Uf (t)) + ζ(e), and that the process e still converges to a 3-dimensional Bessel process as t → ∞ with a random
sign, but as we will see this is irrelevant.) Observe that now the random variable τ(Uf (t)) tends to infinity almost
surely since f (t) → ∞ as t → ∞. In particular this convergence holds in probability. Fix any s ≥ 0 and A ∈ Fs . Then∣∣P(

(X̃u,0 ≤ u ≤ s) ∈ A
) − W(A)

∣∣ ≤ 2P
(
τ
(
Uf (t)

)
> s

) → 0

as t → ∞. This proves that the law of (Xu,0 ≤ u ≤ s) conditionally given E ′
t , converges weakly as t → ∞ (or indeed

in total variation) towards W|Fs
. Therefore, by (25) and (26), the law of (Xu,0 ≤ u ≤ s) given Et also converges

weakly towards W|Fs
. This proves Theorem 3. �

In words, the conditioning “becomes invisible” asymptotically: the effect of conditioning on Et is to add a three-
dimensional Bessel which starts far away in the future. Observe that, as a byproduct, given Et ,

Lt

f (t)
−→
t→∞ −→ U (28)

in distribution, where U is a uniform random variable on (0,1).

3. Proof of the main result

3.1. Preliminary estimates

To begin with the proof of Theorem 1, we first divide the positive half-line into dyadic blocks. Let tj = 2j , and
let Ij = [tj−1, tj ). We use as a shorthand notation Kn = Ktn . Our strategy will consist in studying a less stringent
constraint for which the analysis is easier. Let C′

n be the following modified constraint:

C′
n = {

Ls − Ltn−1 ≤ f (s), for all s ∈ In

}
, (29)

and define analogously

K ′
n =

n⋂
j=1

C′
j . (30)
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Note that K ′
n is obviously a “weaker” constraint, in the sense that Kn ⊂ K ′

n. The difference between Kn and K ′
n is

that K ′
n is “more Markovian” and hence easier to analyse. We will show however that Kn has a positive probability

to occur given K ′
n (bounded away from zero), which means that any result which is true for K ′

n with probability 1,
will also be true for Kn. Note also that K ′

n may be realised as the event Ktn associated with a modified function f̂ (t),
which stays constant on each interval Ij and takes the value f (tj ) on this interval.

Let Hj = {Xs = 0 for some s ∈ Ij }, and let A′
j = Hj ∩ C′

j .
We start the proof with the following general result which we will extensively use as an upper-bound on the growth

of X given Kt . For a function ω ∈ C , let Z(ω) = {x ≥ 0: ω(x) = 0} be the set of its zeros; we view Z as a random
variable under the probability measure W. That is, we equip the set Ω of all closed subsets of the real nonnegative
half-line with the σ -field B defined by Z ∈ B if and only if {ω ∈ C: Z(ω) ∈ Z} ∈ F , where F is the Borel σ -field
on C generated by the open sets associated with local uniform convergence. Let Z be a set of closed subsets of R+,
such that W(Z ∈ Z) > 0. Let � be the order on Ω defined by ω � ω′ if and only if ω(x) ≤ ω′(x) for all x ≥ 0.
Finally, let P (Bess) denote the law of a three-dimensional Bessel process, which is obtained when one considers, e.g.,
the Euclidean norm of a Brownian motion in R3.

Lemma 1. Conditionally on {Z ∈ Z}, the |X| is dominated by a three-dimensional Bessel process. More precisely,
for any continuous bounded functional F on C , which is nondecreasing for the order �,

W
(
F

(|Xs |, s ≥ 0
)∣∣Z ∈ Z

) ≤ P (Bess)(F(Xs, s ≥ 0)
)
, (31)

where P (Bess) denote the law of a 3-dimensional Bessel process.

Proof. Let (Rs, s ≥ 0) be a three-dimensional Bessel process. Recall that (Rs, s ≥ 0) is solution of the stochastic
differential equation:

dRs = dBs + 1

Rs

ds. (32)

We work conditionally on {Z(ω) = z} for a given z ∈ Z . z being closed, its complement is open and defines open
intervals which are referred to as excursion intervals. Given {Z = z}, the law of X can be described as a concatenation
of independent processes whose laws are precisely Itô excursions conditioned on their duration ζ , where ζ is the
length of the excursion interval of z under consideration. More formally, for ζ > 0, let nζ denote the law of a Brownian
excursion conditioned to have duration ζ . Note that this a priori only makes sense Lebesgue-almost everywhere (see,
e.g., Section V.10 in Feller [5]). However, the Brownian scaling property implies that nζ is weakly continuous for the
topology induced by local uniform convergence, so that nζ is defined unambiguously for all ζ > 0. Furthermore, it
is not hard to show (see, e.g., Pitman [9], formula (28)), that under n1, X is a solution to the stochastic differential
equation:

dXs = dBs + 1

Xs

ds − Xs

1 − s
ds (33)

for which there is strong uniqueness. By Brownian scaling, under nζ , X is thus the unique in law solution to the
stochastic differential equation:

dXs = dBs + 1

Xs

ds − Xs

ζ − s
ds. (34)

Start with a small parameter δ > 0. If X ∈ C is a continuous function, let X(δ) denote the element of C obtained by
removing all the excursions of X of duration smaller than δ (alternatively, retaining all the excursions of length greater
than δ). Since there are always no more than a finite number of excursions longer than δ on any compact interval,
there is no problem in ordering these excursions chronologically. Likewise, let X(δ) denote the process X where all
the excursions longer than δ have been removed. Then Itô’s excursion theorem tells us that under W, the processes
X(δ) and X(δ) are independent. Furthermore, the law of X(δ) can be obtained by concatenating an i.i.d. sequence of
excursions conditioned to have length greater than δ. As a consequence, let Z(δ) be the zero set of X(δ), and for z ∈ Ω
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let z(δ) ∈ Ω be the closed subset of R+ where all intervals of zc of length smaller than δ. Then, given {Z(ω) = z}, X(δ)

may be described as a concatenation of independent excursions of respective laws nζ1, . . . , together with independent
random signs, where ζ1, . . . are the chronologically ordered interval lengths of (z(δ))c . Since W(Z ∈ Z) > 0, it follows
that

E
[
F

(∣∣X(δ)
∣∣)∣∣Z ∈ Z

] = 1

W(Z ∈ Z)

∫
Ω

1{z∈Z }μ(dz)E
[
F

(∣∣Xδ
∣∣)∣∣Z = z

]
. (35)

By the above two observations, given {Z = z}, X(δ) may be obtained as a concatenation of independent solutions to
the stochastic differential equations (34). We may thus construct a coupling of X(δ) with a Bessel process (Rs, s ≥ 0)

as follows. Fix a Brownian motion (Bs, s ≥ 0). Let ζ1, ζ2, . . . denote the lengths of the excursions of z(δ), ordered
chronologically. We first construct (X

(δ)
s ,0 ≤ s ≤ ζ1) and (Rs,0 ≤ s ≤ ζ1) on the same probability space by solving

(32) and (34) using the same Brownian motion (Bs,0 ≤ s ≤ ζ1) (this is possible by strong uniqueness), and by giving
X(δ) a random sign on that interval. Since (34) contains an additional negative drift term compared to (32), it follows
that ∣∣X(δ)

s

∣∣ ≤ Rs (36)

holds pointwise on [0, ζ1]. By the Markov property of Brownian motion at time ζ1, there is no problem in extending
this construction on the interval [ζ1, ζ1 + ζ2], this time using the Brownian motion (Bs − Bζ1, ζ1 ≤ s ≤ ζ1 + ζ2) for

both (32) and (34). Since Rζ1 ≥ |X(δ)
ζ1

| by (36), and since (34) still contains an additional negative drift term compared
to (32), we conclude that the comparison (36) still holds true on the interval [ζ1, ζ1 + ζ2]. It is trivial to extend this
construction on all of R+ by induction, and to obtain (36) pointwise on all of R+. Since F is nondecreasing, we
deduce that

E
[
F

(∣∣Xδ
∣∣)∣∣Z = z

] ≤ E(Bess)[F(X)
]
.

Plugging this into (35), we get

E
[
F

(∣∣X(δ)
∣∣)∣∣Z ∈ Z

] ≤ E(Bess)[F(X)
]
. (37)

On the other hand, F is by assumption continuous for the local uniform convergence, and it is easy to see that X(δ)

converges almost surely to X in the local uniform convergence. Since F is furthermore bounded, we conclude by the
dominated convergence theorem that

E
[
F

(|X|)∣∣Z ∈ Z
] ≤ E(Bess)[F(X)

]
as requested. �

Lemma 1 has the following concrete and useful consequence. Observe that the event Kn may be written as {Z(ω) ∈
Zn} for some set Zn. Indeed, recall that almost surely for every t ≥ 0:

Lt = lim
δ→0

(
π

2
δ

)1/2

Nδ
t ,

where Nδ
t is the number of excursions longer than δ by time t . (See, e.g., Proposition (2.9) of Chapter XII in [10] for

a proof.) Thus we obtain in particular:

W
(
F

(|Xs |, s ≥ 0
)∣∣K ′

n

) ≤ P (Bess)(F(Xs, s ≥ 0)
)
. (38)

Remark 1. An easy modification of the above proof shows that if X0 = x 
= 0 almost surely (i.e., if W is replaced by
the law of (x + Bt , t ≥ 0) in (31)), then the same result holds where R is a Bessel process also started at x.

Corresponding to this upper-bound on the growth of X given Kt , we will prove a matching lower-bound and show
that given Kt , |X| dominates a reflecting Brownian motion. in terms of reflecting Brownian motion.
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Lemma 2. For all T ≥ 2,

WT

(
F

(|Xs |, s ≥ 0
)) ≤ W

(
F

(|Xs |, s ≥ 0
))

.

Proof. It is well known that a conditioned Brownian motion can be seen as an h-transform of the process and hence as
adding a drift to the Brownian motion. It suffices to show that this drift is always the same sign as the current position
of the process. Formally, fix T ≥ 0 and let

A = {
ω ∈ Ω: Ls(ω) ≤ f (s) for all 0 ≤ s ≤ T

}
. (39)

For t ≥ t0, and 0 ≤ 	 ≤ f (t)0, define:

A(t, 	) = {
ω ∈ Ω: Ls ≤ f (s + t) for all 0 ≤ s ≤ T − t

}
. (40)

That is, A is the initial constraint and A(t, 	) is what remains of that constraint after t units of time and having already
accumulated of local time at zero of 	 by that time. Let

h(x, t, 	) = Wx

(
A(t, 	)

)
. (41)

Then the conditioned process PT may be described by using Girsanov’s theorem, to get that under PT , then X is a
solution to

dXt = dWt + ∇x logh(Xt , t,Lt ), (42)

where L is the local time at the origin of X and W is a one-dimensional Brownian motion. Details can be found for
instance in [11], Section IV.39, in the case where the constraint depends only on the position of X (and not on its local
time as well) but the proof remains unchanged in this case as well. Assume to simplify that x ≥ 0, and let us show
that ∇x logh(x, t, 	) ≥ 0 for all t ≥ t0 and 0 ≤ 	 ≤ f (t). It suffices to prove that (∂h/∂x)(x, t, 	) ≥ 0. Thus it suffices
to prove that for all y ≥ x sufficiently close to x,

h(y, t, 	) ≥ h(x, t, 	). (43)

In other words, we want to show that the probability of A(t, 	) is monotone in the starting point. We use a coupling
argument similar to the one we used in [2], Lemma 8. Let X be a standard Brownian motion started at x and let Y be
another Brownian motion, started at y. Consider the stopping time:

τ = inf
{
t > 0: Yt = |Xt |

}
(44)

and construct the process Z defined by Zt = Yt for t ≤ τ and for t > τ :

Zt =
{

Xt if Xτ = Yτ ,
−Xt if Xτ = −Yτ .

Then Zt has the law of Brownian motion started at y. Moreover, we claim that for any s > 0, in this coupling:

Ls(Z) ≤ Ls(X).

Indeed, note that for any s ≤ τ we have Ls(Z) = 0 since Z cannot hit 0 before τ . Afterwards, the local time of Z

increases exactly as that of X, hence in general, for all s ≥ 0:

Ls(Z) = (
Ls(X) − Lτ (X)

)
+. (45)

From (45), we also see that the increment of Ls(Z) over any time-interval is smaller or equal to the increment of
Ls(X) over the same time-interval. Therefore, if X satisfies A(t, 	), then so does Z. As a consequence,

Wx

(
A(t, 	)

) ≤ Wy

(
A(t, 	)

)
which is the same as (43). Thus Lemma 2 is proved. �



Integral test for the transience of a Brownian path 551

A first consequence of these two dominations is a simple proof that the conditioned processes form a tight family
of random paths.

Lemma 3. The family of measures {Pt }t≥0 is tight.

Proof. By classical weak convergence arguments (see, e.g., Billingsley [3]), it suffices to prove that for each fixed A,
the following two limit relations hold:

lim
b→∞ lim sup

T →∞
PT

(
sup

0≤s≤A

∣∣X(s)
∣∣ > b

)
= 0, (46)

and for each η > 0

lim
ε↓0

lim sup
T →∞

PT

(
sup

0≤s,s′≤A,|s−s′|<ε

∣∣X(s) − X
(
s′)∣∣ > η

)
= 0. (47)

Equation (46) is a direct consequence of Lemma 1, so we move to the proof of (47). Basically, the domination above
and below by a Bessel process and a reflecting Brownian motion give us a uniform Kolmogorov estimate:

ET

(|Xt − Xs |4
) ≤ C(t − s)2

for some C > 0 and all t, s > 0. For instance, to get a bound on E((Xt −Xs)
4+), it suffices to note that if s < t without

loss of generality, then conditionally on Fs , the process (Xs+u,u ≥ 0) under WT may be realised again as a Brownian
motion conditioned upon satisfying a constraint of the form KT −s , and hence the domination by a 3-dimensional
Bessel process started from Xs holds. The bound on E((Xt − Xs)

4−) follows similarly.
Thus, if n is an integer and 0 ≤ k ≤ A2n, by Markov’s inequality:

WT

(
sup

0≤k≤A2n

|X(k+1)2−n − Xk2−n | ≥ 2−n/8
)

≤ A2nC2n/4−2n = CA2−3n/4.

Thus, summing over n ≥ N for some N ≥ 1:

WT

(
∃n ≥ N, sup

0≤k≤A2n

|X(k+1)2−n − Xk2−n | ≥ 2−n/8
)

≤ CA2−3N/4. (48)

Now, let s, t be two dyadic rationals such that s < t and |s − t | < 2−N , and assume that the complement of the event in
the left-hand side of (48) holds. Let r ≥ N be the least integer such that |s − t | > 2−r−1. Then there exists an integer
0 ≤ k ≤ A2r , as well as two integers 	,m such that

s = k2−r − ε12−r−1 − · · · − ε	2−r−	,

t = k2−r + ε′
12−r−1 + · · · + εm2−r−m,

with εi, ε
′
i ∈ {0,1}. For 0 ≤ i ≤ 	 and 0 ≤ j ≤ m let

si = k2−r − ε12−r−1 − · · · − ε	2−r−i ,

tj = k2−r + ε′
12−r−1 + · · · + εm2−r−j .

Thus by the triangular inequality:

|Xt − Xs | ≤ |Xt0 − Xs0 | +
	∑

i=1

|Xsi − Xsi−1 | +
m∑

j=1

|Xtj − Xtj−1 |

≤ 2−r/8 +
	∑

i=1

2−(r+i)/8 +
m∑

j=1

2−(r+j)/8 ≤ 3

1 − 2−1/8
2−r/8 ≤ c|t − s|1/8
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with c = 3/(1 − 2−1/8)21/8. Therefore, by the density of dyadic rationals in [0,A], it follows that

WT

(
sup

s,t∈[0,A];|s−t |≤ε

|Xs − Xt | > c|s − t |1/8
)

≤ CAε3/4,

where ε = 2−N . Since the right-hand side does not depend on T , we may take the limsup as T → ∞, and (47) follows
directly. �

3.2. Proof of the Theorem 1

Lemma 4. Let γ > 0. There exists C > 0 such that for all n large enough,

W
(
A′

j |K ′
j−1

) ≤ C
f (tj )√

tj
. (49)

Proof. We use an a priori rough upper-bound, based on the local time accumulated at the end of the interval Ij . Let
τj = inf{t > tj−1: Xt = 0}. Conditionally on Hj and Fτj

, (Xτj +t , t ≥ 0) is a Brownian motion started at 0 by the
strong Markov property. Thus by (25),

W
(
C′

j |Fτj
;K ′

j−1,Hj

) ≤ C
f (tj )√
tj − τj

.

Now, note that if T 0 denote the hitting time of zero and Wx denote the Wiener measure started from x and St =
sups≤t Xs , then by translation invariance and the reflection principle, we have for all t > 0 and x 
= 0,

Wx(T 0 ∈ dt)

dt
= d

dt
W(St > x) = d

dt
2
∫ ∞

x/
√

t

e−v2/2 dv√
2π

= ct−3/2xe−x2/2t ≤ ct−1, (50)

where c > 0 is a universal constant independent of t and x. As a consequence, conditioning on Ftj−1 and letting
x = Xtj−1 ,

W
(
A′

j |Ftj−1,Xtj−1 = x
) ≤

∫ tj

tj−1

W(τj ∈ ds|Ftj−1,Xtj−1 = x)
Cf (tj )√
tj − s

≤ Cf (tj )

∫ tj

tj−1

1√
tj − s

ds

s

≤ C
f (tj )√
tj−1

∫ 2

1

1√
2 − u

du

u
≤ C

f (tj )√
tj

. (51)

Taking the expectation of both sides, we deduce the result. �

We now show how the above lemma can be extended to show that the probability of hitting zero during the
interval Ij is uniformly small as n → ∞. This is the key lemma of the proof, since it precisely deals with the way the
self-interaction of the process “propagates” down from +∞ to the finite window [tj−1, tj ] we are considering.

Lemma 5. There exists C > 0 and j0 ≥ 1 such that

W
(
Hj |K ′

n

) ≤ C
f (tj )√

tj
, (52)

uniformly in n ≥ j + 1 and j ≥ 1.
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Proof. We first note that for all n ≥ j + 1,

W
(
Hj |K ′

n

) = W
(
A′

j |K ′
j−1

)W(K ′
n|K ′

j ∩ Hj)

W(K ′
n|K ′

j )
. (53)

In view of Lemma 4, it thus suffices to prove that

W
(
K ′

n|K ′
j ∩ Hj

) ≤ CW
(
K ′

n|K ′
j

)
(54)

for all j ≥ j0 and n ≥ j + 1, for some uniform j0,C > 0. Consider a process (X1(t), t ≥ 0) (resp., (X2(t), t ≥ 0)),
which is a Brownian motion conditioned on K ′

j ∩ Hj ∩ {|X1(tj )| ≤ √
tj } (resp., K ′

j ∩ {|X2(tj )| >
√

tj }). Assume
further that X1 and X2 are independent. Note that conditionally on X1(tj ) and X2(tj ), both processes evolve after
time tj as independent Brownian motions started from their respective positions at this time. Construct a process X̂ as
follows. Let τ := inf{t > tj : |X2(t)| = |X1(t)|}, and let ε = X2(t)/X1(t) ∈ {−1,1}. Define

X̂t =
{

X2(t) for t ≤ τ ,
εX1(t) for t ≥ τ .

Then by the Markov property, X̂ has the same distribution as X2. Moreover, note that |X1(tj )| ≤ |X2(tj )| holds almost
surely, and hence∣∣X1(t)

∣∣ ≤ ∣∣X̂(t)
∣∣

for all t ≥ tj . Recall that by (5), if (Bu,u ≥ 0) is a Brownian motion, then for all s ≤ t , Lt(B) − Ls(B) =
limε→0

1
2ε

∫ t

s
1{|Bu|≤ε} du almost surely. It follows immediately from this and the above that

Lt(X̂) − Ltj (X̂) ≤ Lt(X1) − Ltj (X1), t ≥ tj .

Therefore, if X1 ∈ K ′
n then automatically X̂ ∈ K ′

n. Hence we deduce that

P
(
X1 ∈ K ′

n

) ≤ P
(
X̂ ∈ K ′

n

)
. (55)

Now, observe that

P
(
X̂ ∈ K ′

n

) = W
(
K ′

n

∣∣K ′
j ∩ {∣∣X(tj )

∣∣ >
√

tj
})

≤ W(K ′
n;K ′

j )

W(K ′
j )W(|X(tj )| > √

tj |K ′
j )

≤ 1

p1
W

(
K ′

n|K ′
j

)
, (56)

where W(|X1(tj )| > √
tj |K ′

j ) ≥ p1 > 0 does not depend on n, by Lemma 2.
Similarly,

P
(
X1 ∈ K ′

n

) = W
(
K ′

n|K ′
j ∩ Hj ∩ {∣∣X(tj )

∣∣ ≤ √
tj

})
≥ W(K ′

n;K ′
j ∩ Hj ; |X(tj )| ≤ √

tj )

W(K ′
j ∩ Hj)

≥ W
(
K ′

n|K ′
j ∩ Hj

)
W

(∣∣X(tj )
∣∣ ≤ √

tj
∣∣K ′

j ∩ Hj

)
≥ p2W

(
K ′

n|K ′
j ∩ Hj

)
, (57)
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where W(|X(tj )| ≤ √
tj |K ′

j ∩ Hj) ≥ p2 > 0 does not depend on n by Lemma 1. Putting together (55), (56) and (57),
we find that

W
(
K ′

n|K ′
j ∩ Hj

) ≤ 1

p1p2
W

(
K ′

n|K ′
j

)
which is precisely what was required. �

Lemma 6. Assume that γ > 1. There exists c1, c2 > 0 which does not depend on n such that

c1t
−1/2
n ≤ W(Kn) ≤ W

(
K ′

n

) ≤ c2t
−1/2
n (58)

for all n sufficiently large.

Proof. The first inequality is a trivial consequence of the observation that Kn occurs automatically if τ1 > tn and
Lt1 < f (t1), where τj = inf{t ≥ tj : Xt = 0}. The second inequality is also trivial since Kn ⊂ K ′

n. It thus remains
to show the third inequality. Let Gk,n = ⋂n

j=k Hc
j = {τj > tn}. Then by Lemma 5, letting g(t) = f (t)/

√
t , which is

nonincreasing by assumption, we have that

W
(
Gc

k,n|K ′
n

) ≤ C

n∑
j=k

g(tj ) ≤ C

∞∑
j=k

g(tj ).

Since g is nonincreasing, note that

∫ j

j−1
g
(
2t

)
dt ≥ g(tj )

and thus

∞∑
j=k

g(tj ) ≤
∫ ∞

k−1
g
(
2t

)
dt = 1

ln 2

∫ ∞

tk−1

g(u)

u
du = 1

ln 2

∫ ∞

tk−1

f (u)

u3/2
du.

Since f satisfies the condition (1), then the integral in the right-hand side is finite and we can find J large enough that
W(Gc

k,n|K ′
n) ≤ 1/2 when k ≥ J . Thus we get,

W
(
K ′

n

) = W
(
K ′

n; τJ > tn
) + W

(
K ′

n; τJ ≤ tn
)

≤ W(τJ > tn) + 1

2
W

(
K ′

n

)
.

Thus

1

2
W

(
K ′

n

) ≤ W(τJ > tn) ∼ c2t
−1/2
n (59)

as n → ∞, for some c2 > 0 that does not depend on n. The proof follows immediately. �

As a consequence of Lemma 6, we see that W(Kn|K ′
n) ≥ c1/c2 > 0, uniformly in n. In particular, applying

Lemma 5, we get the following estimate valid for all t ≥ tj :

W(Hj |Kt ) ≤ C′g(tj ) (60)

for some C′ > 0 which does not depend on t . It is now easy to conclude that any weak limit of Wt is transient:
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Proof of Theorem 1. Fix ε > 0. Observe that by (60), we can find J ≥ 1 such that W(τJ > t |Kn) ≥ 1 − ε for all
t ≥ tj . Let A > 0 be an arbitrarily large number, and fix u < v. Let

R =
{

inf
s∈[tJ +u,tJ +v] |Xs | ≤ A

}
,

W(Kt ;R) = W(Kt ;R; τJ < t) + W(Kn;R,τJ ≥ t)

≤ W(Kt )ε + W(τJ > t)W(R|τJ > t).

Now, by Lemma 6 we see that dividing by W(Kt ) we find

W(R|Kt ) ≤ ε + c3W(R|τJ > t).

Now, observe that given τJ > t , and given Ftj , the process {X(t), t ≥ tj } converges weakly to a 3-dimensional Bessel
process started from X(tj ) as t → ∞. Note that f �→ inf[u,v] |f | is a continuous functional on the space C of contin-
uous sample paths (equipped with the topology of local uniform convergence). Since a Bessel process started from
x > 0 always dominates a Bessel process started at 0, we deduce that

lim sup
t→∞

W(R|τJ > t) ≤ P (Bess)(R′),
where P (Bess) denotes the law of a 3-dimensional Bessel process started at 0, and

R′ =
{

inf
s∈[u,v] |Xs | ≤ A

}
.

Since P (Bess) is almost surely transient, it follows that we can find u large enough such that for all fixed v > u,
P (Bess)(R′) ≤ ε (independently of v), in which case we obtain

lim sup
t→∞

W(R|Kt ) ≤ ε(1 + c3).

Using once again the fact that the infimum over a compact set is a continuous functional, we see that for any weak
subsequential limit P of W(·|Kt ),

P(R) ≤ ε(1 + c3)

for all v > 0 arbitrarily large. Letting v → ∞ and changing ε into ε/(1 + c3), we obtain by monotone convergence:

P

(
inf[u,∞)

|Xs | ≤ A
)

≤ ε.

Thus if Λ = sup{t ≥ 0: |Xt | ≤ A}, we have P(Λ > u) ≤ ε. Since ε > 0 is arbitrary, we have proved that Λ < ∞,
P-almost surely. Since A is arbitrary, this proves that P is transient almost surely. �

4. Brownian motion with bounded negative part

Until now, we have only considered conditionings which involve the local time of a Brownian motion at a specified
point. The next result studies the case where the forbidden region is a semi-infinite interval. Let (Xt , t ≥ 0) be a
one-dimensional Brownian motion and let At be the additive functional of X defined by

At =
∫ t

0
1{Xs<0} ds. (61)

At is known as the negative part of Brownian motion, and is nothing else than the time spent by X in the negative
half-axis. Let

Et = {At ≤ 1}
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and let Qt be the measure defined by conditioning the Wiener measure on the event Et .

Theorem 4. As t → ∞, Wt converges weakly to a measure P which is transient almost surely. Moreover, under P we
have

A∞
d= U2,

where U is a uniform random variable on (0,1).

An explicit description of the measure Q of the limiting process is given in the proof. In a way that is analogous
to Theorem 2, the process is also made up of several independent pieces glued together at a certain random time.
The proof of Theorem 4 uses explicit descriptions of the Brownian path and precise distributional results (such as
Paul Lévy’s arcsine law). At this point it is not clear how to extend this result to time-dependent conditionings in the
manner of Theorem 3 or 1.

Proof of Theorem 4. We start by recalling Paul Lévy’s second arcsine law, which states that At =d gt , where

gt = sup{s ≤ t : Xs = 0}
and both of these random variables have the arcsine law:

W

(
At

t
∈ dx

)
= 1

π
√

x(1 − x)
1{x∈(0,1)} dx. (62)

(See, e.g., Theorem 2.7 in Chapter VI, and (3.20) in Chapter III of [10].) It is also well known (see, for instance,
Theorem 4.1 of [14]) that there is the following decomposition of the sample path of Brownian motion at gt :

• (Bs, s ≤ gt ) and (Bgt+s , s ≥ 0) are independent.
• ( 1√

gt
Bsgt ,0 ≤ s ≤ 1) is a standard Brownian bridge of duration 1.

Therefore, by independence between the two pieces, the event that {gt ≤ 1} and the excursion containing 1 is
positive has probability:

W(gt ≤ 1 and X1 > 0) = (1/2)W(At ≤ 1).

It follows that

W(gt ≤ 1 and X1 > 0|At ≤ 1) = 1/2. (63)

On this event it is clear that X is transient, so transience of W occurs with probability at least 1/2. In fact a more
precise argument allows one to generalize this and get transience with probability 1. We will show that there is a
constant that for every A > 1

lim
t→∞ W(gt > A|Et ) = 1/

(
2
√

A
)
, (64)

where by definition Et = {At ≤ 1} is the event that we condition on. To see why (64) holds, we start by remarking that
due to the Arscine law:

W(Et ) =
∫ 1/t

0

dx

π
√

x(1 − x)
∼ 2

π
√

t
. (65)

Observe on the other hand that

W(gt ≤ A|Et ) = 1

W(Et )
W(gt ≤ A;Agt ≤ 1;Bt > 0). (66)
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Also, yet another result of P. Lévy tells us that if (bs,0 ≤ s ≤ 1) is a standard Brownian bridge, then

∫ 1

0
1{bs≤0} ds

d= U (67)

a uniform random variable in (0,1). (See, e.g, (3.9) in Chapter XII of [10]). Putting these pieces together and using
(66), it follows that for A > 1,

W
(
gt ≤ A;A−

gt
≤ 1;Bt > 0

) = 1

2

∫ A/t

0

dx

π
√

x(1 − x)
·
(

1 ∧ 1

xt

)

= 1

2

∫ 1/t

0

dx

π
√

x(1 − x)
+ 1

2

∫ A/t

1/t

dx

π
√

x(1 − x)

1

xt

∼ 1

π
√

t
+ 1

2t

∫ A/t

1/t

dx

πx3/2

∼ 1

π
√

t

(
2 − 1/

√
A

)
.

Equation (64) now follows immediately from (66) and (65). On the other hand, a similar computation yields for
0 < A < 1,

W(gt < A|Et ) ∼ √
A/2. (68)

It is easy to see from (64) that the conditional law of B given E ′
t converges to the law of a transient process. This

process can be described via the following sample path decomposition. Let g be a random variable such that:

P(g ∈ dy) =
{

1
4y−1/2 if 0 < y ≤ 1,
1
4y−3/2 dy if y > 1.

(69)

This is obtained by differentiating respectively (68) and (64). Let (bs,0 ≤ s ≤ 1) be an independent Brownian bridge
conditioned so that∫ g

0
1{bt/g≤0} dt ≤ 1. (70)

Then for t ≤ g we put Xt = g1/2bt/g , and after time g, we glue an independent 3-dimensional Bessel process. Note
that with probability 1/2, g < 1, so in that case, the conditioning (70) is trivial, and the total time accumulated by
(Xt , t ≥ 0) in the negative half-line is uniform on (0, g). By (67), in that case we can thus write A∞ = Ug, with U a
uniform random variable on (0,1) independent from g. On the other hand, if g > 1, then A∞ is uniformly distributed
on (0, g), conditionally on being smaller than 1 (by (70)). Thus A∞ is uniformly distributed on (0,1) in that case. To
finish the proof of Theorem 4, it suffices to make a computation: for 0 < u < 1,

P(A∞ < u) = 1

2
P(A∞ < u|g > 1) + 1

2
P(A∞ < u|g < 1)

= 1

2
u + 1

2

(
P(g < u|g < 1) +

∫
u<y<1

P(g ∈ dy|g < 1)
u

y

)

= 1

2
u + 1

2

(
u1/2 + u

(
u−1/2 − 1

)) = u1/2 = P
(
U2 < u

)
.

Hence the proof is finished. �
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