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Abstract. We consider the ensemble of curves {γα,N : α ∈ (0,1],N ∈ N} obtained by linearly interpolating the values of the

normalized theta sum N−1/2∑N ′−1
n=0 exp(πin2α), 0≤N ′ <N . We prove the existence of limiting finite-dimensional distributions

for such curves as N→∞, when α is distributed according to any probability measure λ, absolutely continuous w.r.t. the Lebesgue
measure on [0,1]. Our Main Theorem generalizes a result by Marklof [Duke Math. J. 97 (1999) 127–153] and Jurkat and van Horne
[Duke Math. J. 48 (1981) 873–885, Michigan Math. J. 29 (1982) 65–77]. Our proof relies on the analysis of the geometric structure
of such curves, which exhibit spiral-like patterns (curlicues) at different scales. We exploit a renormalization procedure constructed
by means of the continued fraction expansion of α with even partial quotients and a renewal-type limit theorem for the denominators
of such continued fraction expansions.

Résumé. Nous considérons l’ensemble des courbes {γα,N : α ∈ (0,1],N ∈ N} obtenues en interpolant les valeurs des sommes

thêta normalisées N−1/2∑N ′−1
n=0 exp(πin2α), 0 ≤ N ′ < N . Nous démontrons l’existence de la limite des distributions fini-

dimensionnelles de telles courbes quand N →∞, où α est distribué selon une quelconque mesure de probabilité λ, absolument
continue par rapport à la mesure de Lebesgue sur [0,1]. Notre théorème principal généralise un resultat de Marklof [Duke Math. J.
97 (1999) 127–153] et de Jurkat et van Horne [Duke Math. J. 48 (1981) 873–885, Michigan Math. J. 29 (1982) 65–77]. Notre
démonstration se base sur l’analyse des structures géomètriques de telles courbes, qui présentent des motifs à spirale (curlicues)
à différentes échelles. Nous exploitons une procédure de renormalisation construite par le developpement de α en fractions conti-
nues avec quotients partiels pairs et un théorème de renouvellement pour les dénominateurs de tels developpements en fractions
continues.
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1. Introduction

Given a ∈R and N ∈N consider the theta sum

Sa(N) :=
N−1∑
n=0

exp
(
πin2a

) ∈C. (1)

For arbitrary L≥ 0 let us define it as

Sa(L) :=
�L	−1∑
n=0

exp
(
πin2a

)+ {L} exp
(
πi�L	2a

) ∈C,
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where �·	 denotes the floor function and {·} the fractional part. One has Sa+2(N) = Sa(N), S−a(N) = Sa(N) and∫ 1
−1 |Sa(N)|2 da = N . It is convenient to restrict ourselves to a ∈ (−1,1] \ {0} and consider α = |a| ∈ (0,1] and to

study Sα(L), see Section 2.2.
Our goal is to study the curves generated by theta sums, i.e.

γ = γα,N : [0,1]→C
R2, t �→ Sα(tN)√
N

as N →∞. Such curves are piecewise linear, of length
√
N (being made of N segments of length N−1/2). In par-

ticular we are interested in the ensemble of curves {γα,N }α∈(0,1] as N →∞ when α is distributed according to some
probability measure on [0,1].

As illustrated in Fig. 1, these curves exhibit a geometric multi-scale structure, including spiral-like fragments
(curlicues). For a discussion on the geometry of t �→ Sα(tN) (and more general curves defined using exponential
sums) in connection with uniform distribution modulo 1, see Dekking and Mendès France [7]. For the study of other
geometric and thermodynamical properties of such curves, see Mendès France [18,19] and Moore and van der Poorten
[20].

Denote by Bk the Borel σ -algebra on Ck and let us fix a probability measure λ, absolutely continuous w.r.t. the
Lebesgue measure on [0,1].
Theorem 1.1 (Main theorem). For every k ∈N, for every t1, . . . , tk ∈ [0,1], 0≤ t1 < t2 < · · ·< tk ≤ 1, there exists a
probability measure P(k)

t1,...,tk
on Ck such that for every open, nice A ∈ Bk ,

lim
N→∞λ

({
α ∈ (0,1]: (γα,N (tj )

)k
j=1 ∈A

})= P(k)
t1,...,tk

(A). (2)

The measure P(k)
t1,...,tk

is called curlicue measure associated with the moments of time t1, . . . , tk .

We shall define later what we mean by “nice” and prove that many interesting sets are indeed nice. For example,
if Bz(ρ) := {w ∈C: |z−w|< ρ}, then for every (z1, . . . , zk) ∈Ck , the set A= Bz1(ρ1)× · · · ×Bzk (ρk)⊆Ck is nice
for all (ρ1, . . . , ρk) ∈Rk

>0, except possibly for a countable set.
Our main theorem generalizes a result by Marklof [17] (corresponding to k = 1, t1 = 1 and λ = the Lebesgue

measure), which in particular implies the following theorem by Jurkat and van Horne [12,13].

Theorem 1.2 (Jurkat and van Horne). There exists a function Ψ (a, b) such that for all (except for countably many)
a, b ∈R,

lim
N→∞

∣∣{α: a <N−1/2
∣∣Sα(N)

∣∣< b
}∣∣= Ψ (a,b).

Let us remark that Marklof’s approach uses the equidistribution of long, closed horocycles in the unit tangent
bundle of a suitably constructed non-compact hyperbolic manifold of finite volume. Moreover, the explicit asymptotics
for the moments of N−1/2|Sa(N)| (along with central limit theorems [12–14]) were found by Jurkat and van Horne
and generalized by Marklof [17] in the case of more general theta sums using Eisenstein series. In particular it is
known that the above distribution function Ψ is not Gaussian. In the present paper we only show existence of the
limiting measures P(k)

t1,...,tk
. It is in principle possible to derive quantitative informations on the decay of their moments

from our method too, but we shall not dwell on this. For a preliminary discussion of the present work, see Sinai [28].

Remark 1.3. Consider the probability space ([0,1], B, λ), where B is the Borel σ -algebra on [0,1] and λ is as above.
We look at γα,N as a random function, i.e. as a measurable map

γ·,N :
([0,1], B, λ

)→ (
C
([0,1],C), B C

)
,

where B C is the Borel σ -algebra on C([0,1],C) coming from the topology of uniform convergence. Let PN be the
corresponding induced probability measure on C([0,1],C), PN(A) := λ(γ−1

·,N (A)), where A ∈ B C . For 0≤ t1 < t2 <

· · ·< tk ≤ 1, let πt1,...,tk : C([0,1],C)→Ck be the natural projection defined as πt1,...,tk (γ ) := (γ (t1), . . . , γ (tk)).
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Fig. 1. Three curves of the form t �→ γα,N (t).
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Theorem 1.1 can be rephrased as follows: for every k ∈N and for every 0≤ t1 < · · ·< tk ≤ 1

PNπ−1
t1,...,tk

�⇒ P(k)
t1,...,tk

as N→∞,

where “⇒” denotes weak convergence of probability measures. In other words, we prove weak convergence of finite-
dimensional distributions of PN as N→∞.

Remark 1.4. By construction, the measures P(k)
t1,...,tk

automatically satisfy Kolmogorov’s consistency conditions and

hence there exists a probability measure P̃ on the σ -algebra generated by finite-dimensional cylinders Bfdc ⊂ B C so
that P̃π−1

t1,...,tk
= P(k)

t1,...,tk
.

Remark 1.5 (Scaling property of the limiting measures). Notice that

γα,N (τ t)=N−1/2 Sα(τ tN)= τ 1/2γα,τN (t).

Thus, the limiting probability measures P(k)
t1,...,tk

satisfy the following scaling property: for every τ ∈ (0,1]

P(k)
τ t1,...,τ tk

(A)= P(k)
t1,...,tk

(
τ−1/2A

)
.

In particular, for example, P(1)
t (A)= P(1)

1 (t−1/2A).

Remark 1.6. Our results are of probabilistic nature, since we look at the measure of α’s for which some event happens.
Let us stress the fact that the growth of |Sα(N)| for specific or generic α has also been thoroughly studied. For
instance, Hardy and Littlewood [11] proved that if α is of bounded-type, then |Sα(N)| ≤ C

√
N for some constant C.

To the best of our knowledge, the most refined result in this direction is due to Flaminio and Forni [10]. A particular
case of their results on equidistribution of nilflows reads as follows. For every increasing function b : (1,∞)→ (0,∞)

such that
∫∞

1 t−1b−4(t)dt <∞, there exists a full measure set Gb such that for every α ∈ Gb , every β ∈R the following
holds: for every s > 5

2 , there exists a constant C = C(s,α) such that for every f ∈Ws , 2-periodic,

∣∣∣∣∣
N−1∑
n=0

f
(
αn2 + β

)−N

∫ 1

−1
f (x)dx

∣∣∣∣∣≤C
√
Nb(N)‖f ‖s ,

where Ws denotes the Sobolev space and ‖ · ‖s is the corresponding Sobolev norm. This generalizes the work of
Fiedler, Jurkat and Körner [9] where f (x)= eπix and β = 0.

The paper is organized as follows. In Section 2 we discuss the geometric multi-scale structure of the curve t �→
γα,N (t) and we deal with the first step of the renormalization procedure which allows us to move from a scale to the
next one. Moreover, we describe the connection of the renormalization map T with the continued fraction expansion of
α with even partial quotients and we consider an “accelerated” version of it, i.e. the associated jump transformation R.
For the corresponding accelerated continued fraction expansions we prove some estimates on the growth of the entries.
In Section 3 we iterate the renormalization procedure and we approximate the curve γα,N by a curve γ J

α,N in which

only the J largest scales are present. Furthermore, we write (γα,N (tj ))
k
j=1 ∈ Ck as a function of certain random

variables defined in terms of the renewal time n̂N := min{n ∈ N: q̂n > N}, where {q̂n}n∈N is the subsequence of
denominators of the convergents of α corresponding to the map R. In Section 4 we use a renewal-type limit theorem
(proven in the Appendix) to show the existence of the limit for finite-dimensional distributions for the approximating
curve γ J

α,N as N →∞. Estimates from Section 3 allow us to take the limit as J →∞ and prove the existence of
finite-dimensional distributions for γα,N as N →∞. We also discuss the notion of nice sets and give a sufficient
condition for a set to be nice.
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2. Renormalization of curlicues

In this section we recall some known facts concerning the geometry of the curves γα,N . In particular we discuss the
presence/absence of spiral-like fragments and at different scales using a renormalization procedure. The renormaliza-
tion map T is connected with a particular class of continued fraction expansions. From a metrical point of view, this
classical renormalization is very ineffective, because of the intermittent behavior of the map T (which preserves an
infinite, ergodic measure). It is therefore very natural to study an “accelerated version” of T (preserving an ergodic
probability measure) and the corresponding continued fraction expansion.

2.1. Geometric structure at level zero

In order to investigate the presence/absence of spiraling geometric structures at the smallest scale we introduce the
local discrete radius of curvature, following Coutsias and Kazarinoff [5,6]. Set TN := {mN ,0≤m≤N} and let τn :=
n
N
∈ TN \ {0,1}, so that γ (τn)= γα,N (τn)=N−1/2 Sα(n). Define ρα,N(τn) as the radius of the circle passing through

the three points γ (τn−1), γ (τn) and γ (τn+1). A simple computation shows that ρα,N (τn)= 1
2
√
N
| csc(πα(2n−1)

2 )| and
for arbitrary t ∈ [0,1] we set

ρ(t)= ρα,N (t) := 1

2
√
N

∣∣∣∣csc

(
πα(2tN − 1)

2

)∣∣∣∣ ∈R.

The function t �→ ρα,N (t) is 1
αN

-periodic; it has vertical asymptotes at τ (flat)
k = τ

(flat)
k (α,N) := k

αN
+ 1

2N and local

minima at τ (curl)
k = τ

(curl)
k (α,N) := 2k+1

2αN + 1
2N , k ∈ Z, where ρα,N(τ

(curl)
k )= 1

2
√
N

. We partition the interval [0,1] into
subintervals as follows:

[0,1] =
k∗+1⊔
k=0

I
(0)
k ,

where k∗ = k∗α,N := �αN − α+1
2 	 and

I
(0)
k = I

(0)
k;α,N :=

⎧⎪⎨
⎪⎩
[
0, τ (curl)

0

)
if k = 0,[

τ
(curl)
k−1 , τ

(curl)
k

)
if 1≤ k ≤ k∗,[

τ
(curl)
k∗ ,1

]
if k = k∗ + 1.

By construction, the lengths of the above intervals are |I (0)k | = 1
αN

for 1 ≤ k ≤ k∗, |I (0)0 | = 1
2N and 0 ≤ |I (0)k∗+1| =

1− 1
2N − k∗

αN
< 1

αN
. The number of TN -rationals inside each subinterval is of order 1

α
and explicitly given by

#
(
I
(0)
k ∩ TN

)=
⎧⎪⎨
⎪⎩
⌈ 1

2α + 1
2

⌉
if k = 0,⌈ 2k+1

2α + 1
2

⌉− ⌈ 2k−1
2α + 1

2

⌉
if 1≤ k ≤ k∗,

N + 1− ⌈ 2k∗+1
2α + 1

2

⌉
if k = k∗ + 1.

The whole curve γα,N ([0,1]) can be recovered by means of the values of the function ρ at the rationals in TN .
Suppose we know the values of γ (τ0), γ (τ1), . . . , γ (τn−1), γ (τn) and the radius ρ( n

N
). Then the point γ (τn+1) should

be placed at the intersection of the circle of radius N−1/2 centered at γ (τn) and one of the two circles of radius ρ( n
N
)

passing through γ (τn−1) and γ (τn) in order to get a counterclockwise oriented triple (γ (τn−1), γ (τn), γ (τn+1)) when
n
N
∈ [τ (curl)

k−1 , τ
(flat)
k ) (resp., clockwise when n

N
∈ [τ (flat)

k , τ
(curl)
k )). For arbitrary t ∈ [0,1] the curve γ (t) is defined by

linear interpolation.
For small values of α, each subinterval I (0)k , 1≤ k ≤ k∗, contains approximately 1

α
integer multiples of 1

N
and the

curlicue structure is easily understood: those n’s for which ρ(τn) is large correspond to straight-like parts of γ ([0,1]),
while the points close to the minima of ρ give the spiraling fragments (curlicues). For α ∼ 1 the curlicues disappear.
See Fig. 2. We shall see in Section 2.2 how these curlicues appear at different scales though.
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Fig. 2. Geometric patterns at level zero (left) and the function ρα,N (right).

2.2. Approximate and exact renormalization formulae

Let us introduce the map U : (−1,1] \ {0}→ (−1,1] \ {0} where U(t) := − 1
t

(mod 2). The graph of U has countably
many smooth branches. Each interval ( 1

2k+1 ,
1

2k−1 ] is mapped in a one-to-one way onto (−1,1] via t �→ − 1
t
+ 2k.

For a ∈ (−1,1] \ {0} and N ∈N one has the Approximate Renormalization Formula (ARF)∣∣Sa(N)− e(π/4)i|a|−1/2 Sa1

(�N1	
)∣∣≤C1|a|−1/2 +C2, (3)

where a1 = U(a), N1 = |a|N and C1,C2 > 0 are absolute constants which do not depend on N . This result was
established by Hardy and Littlewood [11], Mordell [21], Wilton [32] and Coutsias and Kazarinoff [6], the constants
C1,C2 being always improved.

Let us explain the ARF (3) geometrically. Recall that the curve t �→ γa,N (t) contains k∗|a|,N 
 N1 intervals of the
form [τ (curl)

k−1 , τ
(curl)
k ) at level zero. By (3), the curve t �→√

Nγa,N(t) can be approximated (up to scaling by |a|−1/2 and

rotating by π/4) by t �→√
N1γa1,N1(t). In other words, replace each interval of the form I

(0)
k , 1≤ k ≤ k∗, for γa,N (t)

by a TN1 -rational point in γa1,N1(t). The renormalization map can be seen as a “coarsening” transformation, which
deletes of the geometric structure at level zero. Beside the above-mentioned references, we also want to mention the
work by Berry and Goldberg [3], in which typical and untypical behaviors of {Sα(N

′)}N
N ′=1 are studied with the help

of a renormalization procedure.
Coutsias and Kazarinoff [6] also proved a stronger version of (3):

∣∣Sa(N)− e(π/4)i|a|−1/2 Sa1(n)
∣∣≤ C3

∣∣∣∣ |a|N − n

a

∣∣∣∣≤ C4

for some C3,C4 > 0, where n ∈ N is arbitrary and N = 〈n/|a|〉 is a function of n, 〈·〉 denoting the nearest-integer
function.
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In our analysis we shall focus on (3), which can be extended to Sa(L) for arbitrary L≥ 0:∣∣Sa(L)− e(π/4)i|a|−1/2 Sa1(L1)
∣∣≤C5|a|−1/2 +C6, (4)

where a1 =U(a), L1 = |a|L, C5 = C1 + 2 and C6 = C2 + 1.
Since the function U is odd w.r.t. the origin and S−a(N) = Sa(N), it is natural to consider α = |a| ∈ (0,1] and

keep track of |U(α)| and sgn(U(α)) separately. Define η(α) := sgn(U(α)), ξ(α) := −η(α) and introduce a new map
T : (0,1] → (0,1], T := |U |(0,1]|. More explicitly, let us partition the interval (0,1] into subintervals B(k, ξ), k ∈ N,
ξ =±1, where B(k,−1) := ( 1

2k ,
1

2k−1 ] and B(k,+1) := ( 1
2k+1 ,

1
2k ]. The map T can be represented accordingly as

T (α)= ξ ·
(

1

α
− 2k

)
, α ∈ B(k, ξ), k ∈N, ξ ∈ {±1}.

We shall deal with this map, first introduced by Schweiger [24,25], in Section 2.3 in connection with the even contin-
ued fraction expansion of α. Moreover, for every complex-valued function F set

F (η) :=
{
F if η=+1,
F if η=−1.

With this notations we can define the remainder terms of (3) and (4) for α ∈ (0,1] as follows:

Λ(α,N) := Sα(N)− e(π/4)iα−1/2 S(η1)
α1

(�N1	
)
, N ∈N, (5)

Γ (α,L) := Sα(L)− e(π/4)iα−1/2 S(η1)
α1

(L1), L ∈R, (6)

where α1 = T (α), η1 = η(α), N1 = αN and L1 = αL.
Later, we shall use the fact that Γ (α,L) is a continuous function of (α,L) ∈ (0,1] ×R≥0 (one can actually prove

that it has piecewise C∞ partial derivatives). An explicit formula for Λ(α,N), N ∈N, has been provided by Fedotov
and Klopp [8] in terms of a special function Fα : C→C as follows. For α ∈ (0,1] and w ∈C set

Fα(w) :=
∫
Γw

exp(πiz2/α)

exp(2πi(z−w))− 1
dz, (7)

where Γw is the contour given by

R � t �→ Γw(t)=
{
w+ t + it if |t | ≥ ε,
w+ ε exp

(
πi
(

t
2ε − 1

4

))
if |t |< ε,

and ε = ε(α,w) is smaller than the distance between w and the other poles of the integrand in (7). We have the
following theorem.

Theorem 2.1 (Exact renormalization formula [8]). For every 0 < α ≤ 1 and every N ∈N we have

Λ(α,N)= e−(π/4)iα−1/2[e−πiαN2 Fα

({N1}
)−Fα(0)

]
, (8)

where N1 = αN .

In order to write Γ (α,L) in terms of Λ(α, �L	), we notice that αL = �α�L		 + H(α,L), where H(α,L) :=
α{L} + {α�L	} ∈ [0,2). Moreover, if H(α,L) ∈ [0,1) then �αL	 = �α�L		, while if H(α,L) ∈ [1,2) then �αL	 =
�α�L		 + 1. Now, a simple computation shows that for every α ∈ (0,1] and every L≥ 0

Γ (α,L)=Λ
(
α, �L	)+G1(α,L)− e(π/4)iα−1/2G2(α,L), (9)

where G1(α,L) := {L}eπi�L	2α and

G2(α,L) :=
{
H(α,L)eπi�αL	2α1 if H(α,L) ∈ [0,1),
eπi(�αL	−1)2α1 + (H(α,L)− 1

)
eπi�αL	2α1 if H(α,L) ∈ [1,2).
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Remark 2.2. Applying the stationary phase method to the integrals in (8) and (9) as in [8] one can obtain the approx-
imate renormalization estimates (3) and (4) (possibly with different constants C1, C2, C5, C6).

We want to describe Sα(tN) for N ∈N and t ∈ [0,1]. In this case (4) and (9) can be rewritten as

Sα(tN)= e(π/4)iα−1/2 S(η1)
α1

(tαN)+ Γ (α, tN), (10)

Γ (α, tN)=Λ
(
α, �tN	)+G1(α, tN)+ e(π/4)iα−1/2G2(α, tN). (11)

2.3. Continued fractions with even partial quotients

In this section we discuss the relation between the map T and expansions in continued fractions with even partial
quotients. Consider the following ECF-expansion for α ∈ (0,1]:

α = 1

2k1 + ξ1/(2k2 + ξ2/(2k3 + · · ·)) =:
[[
(k1, ξ1), (k2, ξ2), (k3, ξ3), . . .

]]
, (12)

where kj ∈ N and ξj ∈ {±1}, j ∈ N. ECF-expansions have been introduced by Schweiger [24,25] and studied by
Kraaikamp–Lopes [16]. Since 1 = [[(1,−1), (1,−1), . . .]], it is easy to see that every α ∈ (0,1] \Q has an infinite
expansion with no (1,−1)-tail.

Using the notations introduced in Section 2.2 we notice that if α ∈ B(k, ξ), then α = 1
2k+ξT (α)

. Therefore,

for α = [[(k1, ξ1), (k2, ξ2), (k3, ξ3), . . .
]] ∈ B(k1, ξ1),

T n(α)= [[(kn+1, ξn+1), (kn+2, ξn+2), . . .
]] ∈ B(kn+1, ξn+1), (13)

i.e. T acts as a shift on the space ΩN, where Ω := N × {±1}. Despite its similarities with the Gauss map in the
context of Euclidean continued fractions, the map T has an indifferent fixed point at α = 1 and we have the following
theorem.

Theorem 2.3 (Schweiger [24]). The map T : (0,1] → (0,1] has a σ -finite, infinite, ergodic invariant measure μT

which is absolutely continuous w.r.t. the Lebesgue measure on (0,1]. Its density is ϕT (α) := dμT (α)
dα = 1

α+1 − 1
α−1 .

One of the consequences of this fact is the anomalous growth of Birkhoff sums for integrable functions. Given
f ∈ L1((0,1],μT ), f ≥ 0 μT -almost everywhere, let μT (f ) = ∫ 1

0 f (α)dμT (α) and denote by ST
n (f ) the ergodic

sum
∑n−1

j=0 f ◦T j . Since μT ((0,1])=∞, the Birkhoff Ergodic theorem implies that 1
n

ST
n (f )→ 0 almost everywhere

as n→∞. According to the Hopf’s Ergodic theorem there exists a sequence of measurable functions {an(α)}n∈N

such that 1
an(α)

ST
n (f )(α)→ μT (f ) for almost every α ∈ (0,1] as n→∞. The question “Can the sequence an(α)

be chosen independently of α?” is answered negatively by Aaronson’s theorem ([2], Theorem 2.4.2), according to
which for almost every α ∈ (0,1] and for every sequence of constants {an}n∈N either lim infn→∞ 1

an
ST
n (f )(α)= 0 or

1
ank

ST
nk
(f )(α)→∞ along some subsequence {ank }k∈N as k→∞. However, for weaker types of convergence such a

sequence of constants can indeed be found. The following theorem establishes an = n
logn

and provides convergence
in probability:

Theorem 2.4 (Weak law of large numbers for T ). For every probability measure P on (0,1], absolutely continuous
w.r.t. μT , for every f ∈L1(μT ) and for every ε > 0,

P

(∣∣∣∣ ST
n (f )

n/ logn
−μT (f )

∣∣∣∣≥ ε

)
−→ 0 as n→∞.

Remark 2.5. The proof of Theorem 2.4 follows from standard techniques in infinite ergodic theory. See Aaronson [1]
and [2], Chapter 4. The same rate n

logn
rate for the growth of Birkhoff sums for integrable observables over ergodic

transformations preserving an infinite measure appears in several examples, e.g. the Farey map. A recent interesting
example comes from the study of linear flows over regular n-gons, see Smillie and Ulcigrai [30].
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Let us come back to ECF-expansions. For α = [[(k1, ξ1), (k2, ξ2), . . .]] the convergents have the form

pn

qn
= 1

2k1 + ξ1/(2k2 + ξ2/(2k3 + · · · + ξn−2/(2kn−1 + ξn−1/(2kn))))

= [[(k1, ξ1), (k2, ξ2), . . . , (kn,∗)
]]
, (pn, qn)= 1,

where “∗” denotes any ξn =±1. They satisfy the following recurrent relations:

pn = 2knpn−1 + ξn−1pn−2, qn = 2knqn−1 + ξn−1qn−2, (14)

with q−1 = p0 = 0, p−1 = q0 = ξ0 = 1. Moreover, we have

pn+1qn − pnqn+1 = (−1)n
n∏

j=0

ξj . (15)

The proof of (15) follows from (14) and can be recovered mutatis mutandis from the proof of the analogous result for
Euclidean continued fractions. See, e.g., [23].

Set α0 := α and αn := T n(α). In Section 3, we shall deal with the product α0α1 · · ·αn−1. As in the case of Euclidean
continued fractions, this product can be written in terms of the denominators of the convergents; however the formula
involves the ξn as well: for n ∈N,

(α0 · · ·αn−1)
−1 = qn

(
1+ ξnαn

qn−1

qn

)
. (16)

Notice that, considering f (α) = − logα, Theorem 2.4 reads as follows: for every ε > 0 and every probability mea-
sure P on (0,1], absolutely continuous w.r.t. μT ,

P

(∣∣∣∣− log(α0 · · ·αn−1)

n/ logn
− π2

4

∣∣∣∣≥ ε

)
→ 0 as n→∞.

In other words, the product along the T -orbit of α decays subexponentially in probability.

2.4. The jump transformation R

In order to overcome the issues connected with the infinite invariant measure for T , it is convenient to introduce an
“accelerated” version of T , namely its associated jump transformation (see [26]) R : (0,1] → (0,1]. Define the first
passage time to the interval (0, 1

2 ] as τ : (0,1] → N0 = N ∪ {0} as τ(α) :=min{j ≥ 0: T j (α) ∈ B(1,−1)c = (0, 1
2 ]}

and the jump transformation w.r.t. (0, 1
2 ] as R(α) := T τ(α)+1(α). Let us remark that this construction is very natural.

For instance, if we consider the jump transformation associated to the Farey map w.r.t. the interval ( 1
2 ,1] we get

precisely the celebrated Gauss map. Another example is given by the Zorich map, obtained by accelerating the Rauzy
map, in the context of interval exchange transformations.

The map R was extensively studied in [4]. It is a Markov, uniformly expanding map with bounded distortion and
has an invariant probability measure μR which is absolutely continuous w.r.t. the Lebesgue measure on [0,1]. The
density of μR is given by ϕR(α) := dμR(α)

dα = 1
log 3 (

1
3−α

+ 1
1+α

). For a different acceleration of T in connection with
the geometry of theta sums, see Berry and Goldberg [3].

We want to describe a symbolic coding for R. Let us restrict ourselves to α ∈ (0,1] \Q and identify (0,1] \Q with
the subset Ω̇N ⊂ΩN of infinite sequences with no (1,−1)-tail. Let ω̄= (1,−1). Given α = [[ω1,ω2,ω3, . . .]] ∈ Ω̇N

we have τ = τ(α) = min{j ≥ 0: ωj+1 �= ω̄} and R(α) = [[ωτ+2,ωτ+3,ωτ+4, . . .]] ∈ Ω̇N. Setting Ω∗ := Ω \ {ω̄},
Σ :=N0×Ω∗ and denoting by σ = (h,ω) ∈Σ the Ω-word (ω̄, . . . , ω̄,ω) of length h+ 1 for which ω ∈Ω∗, we can
identify Ω̇N and ΣN and the map R acts naturally as a shift over this space.

For brevity, we denote m± = 0 ·m± = (0, (m,±1)) ∈Σ and h ·m± = (h, (m,±1)) ∈Σ . For α = (h1 ·m±1 , h2 ·
m±2 , . . .) ∈ΣN define ν0 := 1, νn = νn(α)= h1+· · ·+hn+n+1 and let q̂n = q̂n(α) := qνn(α)(α) be the denominator
of the nth R-convergent of α. We shall refer to {q̂n}n∈N as R-denominators and to (hj ·m±j ) as Σ -entries.

In [4] the following estimates were proven:
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Lemma 2.6.

(i) For every α ∈ (0,1], q̂n ≥ 3n/3.
(ii) For Lebesgue-almost every α ∈ (0,1] and sufficiently large n, q̂n ≤ eC7n, where C7 > 0 is some constant.

In Section 3, we will need the following renewal-type limit theorem.

Theorem 2.7. Let L> 0 and n̂L = n̂L(α)=min{n ∈N: q̂n > L}. Fix N1,N2 ∈N. The ratios
q̂n̂L−1

L
and

q̂n̂L
L

and the
entries σn̂L+j , −N1 < j ≤N2 have a joint limiting probability distribution w.r.t. the measure λ as L→∞.

In other words, there exists a probability measure Q(0) =Q(0)
N1,N2

on the space (0,1] × (1,∞)×ΣN1+N2 such that

for every 0≤ a < b ≤ 1≤ c < d and every (N1 +N2)-tuple ϑ = {ϑj }N2
j=−N1+1 ∈ΣN1+N2 we have

lim
L→∞λ

({
α: a <

q̂n̂L−1

L
< b, c <

q̂n̂L

L
< d,σn̂L+j = ϑj ,−N1 < j ≤N2

})

=Q(0)((a, b)× (c, d)× {ϑ}). (17)

Theorem 2.7 is more general than the one given in [4] (Theorem 1.6 therein) because it also includes the
R-denominator q̂n̂L−1 preceding the renewal time n̂L and the limiting distribution obtained for general absolutely
continuous measure λ (instead of simply μR). However, it is a special case of Theorem 4.1 (whose proof is sketched
in the Appendix). Let us just mention that it relies on the mixing property of a suitably defined special flow over the
natural extension R̂ of R. The same strategy was used before by Sinai and Ulcigrai [29] in the proof of the analo-
gous statement for Euclidean continued fractions. Another remarkable result in this direction is due to Ustinov [31]
who provides an explicit expression and an approximation, with an error term of order O(

logL
L

), for their limiting
distribution function.

2.5. Estimates of the growth of Σ -entries

In this section we prove a number of estimates for the growth of Σ -entries. The analogous results for Euclidean
continued fraction expansions are well known, but in our case the proofs are more involved.

Recall that α = (h1 · mζ1
1 , h2 · mζ2

2 , . . .) ∈ ΣN. Let us fix a sequence σ = {σj }j∈N ∈ ΣN. For every n and every
s · t ζ ∈Σ , set

Jn = Jn(σ ) :=
{
α : hj ·mζj

j = σj , j = 1, . . . , n
}

and

Jn+1
[
s · tζ ]= Jn+1(σ )

[
s · t ζ ] := {α ∈ Jn: hn+1 ·mζn+1

n+1 = s · t ζ }⊂ Jn.

Lemma 2.8. Let Jn and Jn+1[s · tζ ] be as above. Then

1

30(s + 1)2t2
≤ |Jn+1[s · tζ ]|

|Jn| ≤ 6

(s + 1)2t2
. (18)

Proof. This proof follows closely the one given by Khinchin concerning Euclidean continued fraction (see [15],
Chapter 12). Let us introduce the convergents pj/qj , j = 1, . . . , νn − 1 associated to (σ1, . . . , σn). The endpoints of
the interval Jn can be written as

pνn−1

qνn−1
and

pνn−1 − ζnpνn−2

qνn−1 − ζnqνn−2
.

Applying the recurrent relations (14) s + 1 times we define the convergents pj/qj , j = 1, . . . , νn + s = νn+1 − 1
corresponding to (σ1, . . . , σn, s · tζ ). The endpoints of the interval Jn+1[s · t ζ ] are

pνn+1−1

qνn+1−1
and

pνn+1−1 − ζpνn+1−2

qνn+1−1 − ζqνn+1−2
,
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where qνn+1−2 = (s + 1)qνn−1 + sζnqνn−2 and qνn+1−1 = (2t (s + 1)− s)qνn−1 + (2ts − s + 1)ζnqνn−2 (the values of
the corresponding numerators are unimportant). Using the formula (15) and setting x = qνn−2

qνn−1
we obtain

|Jn+1[s · tζ ]|
|Jn| = qνn−1(qνn−1 + ζnqνn−2)

qνn+1−1(qνn+1−1 + ζqνn+1−2)

= 1

(s + 1)2t2

(1+ ζnx)

(2− s
(s+1)t + ζnx

2st−s+1
(s+1)t )(2− s

(s+1)t + ζnx
2st−s+1+ζ s

(s+1)t + ζ
t
)

= 1

(s + 1)2t2

A

BC
, (19)

where A, B and C correspond to the terms in parentheses. We distinguish two main cases: (i) ζn =+1 and (ii) ζn =
−1:

(i) If ζn =+1, then 0≤ x ≤ 1 and we get

1≤A≤ 2, 1≤ B≤ 4, 1≤ C≤ 5. (20)

The above estimates for A and B are elementary; the one for C is obtained discussing the cases ζ =+1 (⇒ t ≥ 1)
and ζ =−1 (⇒ t ≥ 2) separately and is also elementary.

(ii) If ζn =−1, then mn ≥ 2 and by (14) 0≤ x ≤ 1
3 . We get

2

3
≤A≤ 1,

2

3
≤ B≤ 2,

1

2
≤ C≤ 3. (21)

Now, (19), (20) and (21) give

1

30(s + 1)2t2
= 1

(s + 1)2t2

2/3

4 · 5 ≤
|Jn+1[s · t ζ ]|

|Jn| ≤ 1

(s + 1)2t2

2

2/3 · 1/2
= 6

(s + 1)2t2
. �

The next lemma estimates the Lebesgue measure of the set of α for which the Σ -entries hj · mζj
j satisfy the

inequalities hj ≤Hj − 1, j = 1, . . . , n, where {Hj }nj=1 is an arbitrary sequence.

Lemma 2.9. Let H = (H1, . . . ,Hn) ∈Nn and set Y(H) := {α: h1 + 1 <H1, . . . , hn + 1 <Hn}. Then

∣∣Y(H)
∣∣≥ (1− 1

H1

) n∏
j=2

λHj
, (22)

where λH =: 1− 4π2

H
.

Proof. For σ ∈Σn and H ∈Nn, let us define the set

W
(σ,H)

j,n := {α: hi ·mζi
i = σi, i = 1, . . . , j, hl < Hl − 1, l = j + 1, . . . , n

}
.

Notice that W(σ,H)
n,n = Jn(σ1, . . . , σn) and does not depend on H . Moreover, Y(H1, . . . ,Hn)=W

(σ,H)

0,n . Consider the
following estimate obtained from the second inequality of (18): for S ∈N

∑
s≥S−1
tζ∈Ω∗

∣∣Jn+1
[
s · tζ ]∣∣≤ 12|Jn|

∑
s≥S−1,
t∈N

1

(s + 1)2t2
≤ 4π2|Jn|

S
. (23)
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Now (23) yields

∣∣W(σ,H)

n−1,n

∣∣ = ∑
hn<Hn−1,

m
ζn
n ∈Ω∗

∣∣Jn(σ1, . . . , σn−1, hn ·mζn
n

)∣∣= |Jn−1| −
∑

hn≥Hn−1,

m
ζn
n ∈Ω∗

∣∣Jn[hn ·mζn
n

]∣∣

≥ |Jn−1|
(

1− 4π2

Hn

)
= λHn

∣∣W(σ,H)

n−1,n−1

∣∣, (24)

where λHn = (1− 4π2

Hn
). Considering the sum for hn−1 <Hn−1 − 1,mζn−1

n−1 ∈Ω∗ in (24) we get

∣∣W(σ,H)

n−2,n

∣∣≥ λHn

∣∣W(σ,H)

n−2,n−1

∣∣≥ λHn · λHn−1

∣∣W(σ,H)

n−2,n−2

∣∣. (25)

Iterating (25) we come to

∣∣W(σ,H)

1,n

∣∣≥ n∏
j=2

λHj

∣∣W(σ,H)

1,1

∣∣= n∏
j=2

λHj

∣∣J1
(
h1 ·mζ1

1

)∣∣

and summing over h1 <H1 − 1,mζ1
1 ∈Ω∗ we get the desired estimate (22):

∣∣Y(H)
∣∣= ∣∣W(σ,H)

0,n

∣∣≥ (1− 1

H1

) n∏
j=2

λHj
.

�

Now we provide an estimate which will be useful later. Let us fix a sequence σ = {σj }j∈N ∈ ΣN and let Jn and
Jn+1[s · t ξ ] be as before. Moreover, set

J ′n−1 = Jn−1(σ ) :=
{
α: hj ·mζj

j = σj , j = 2, . . . , n
}

and

J ′n
[
s · t ζ ]= J ′n(σ )

[
s · t ζ ] := {α ∈ J ′n: hn+1 ·mζn+1

n+1 = s · t ζ }⊂ J ′n−1.

Lemma 2.10.∣∣∣∣ |Jn+1[s · tζ ]|
|Jn| · |J ′n−1|

|J ′n[s · t ζ ]|
− 1

∣∣∣∣≤ C8e−C9n

for some constants C8,C9 > 0.

Proof. Let us observe that RJ ′n−1(σ )= Jn−1(σ
′) and RJ ′n(σ )[s · t ζ ] = Jn(σ

′)[s · t ζ ], where σ ′ = {σ ′j }j∈N and σ ′j =
σj+1. We have

∣∣J ′n−1

∣∣= ∫
J ′n−1

1 dx =
∫
Jn−1(σ

′)
P(1)(x)dx,

∣∣J ′n[s · tζ ]∣∣=
∫
J ′n[s·tζ ]

1 dx =
∫
Jn(σ ′)[s·tζ ]

P(1)(x)dx,

where P is the Perron–Frobenius operator associated to R. The density P(1)(x) is computed as follows. The cylinders
of rank one are of the form

J1
(
h ·m+)= ( 1+ 2mh

1+ 2m(h+ 1)
,1+ 1− 2m

2m(h+ 1)− h

]
,

J1
(
h ·m−)= (1+ 1− 2m

2m(h+ 1)− h
,

1+ 2h(m− 1)

2m(h+ 1)− 2h− 1

]
,
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and R|J1(h·m±)(x) = ∓2m ± 1+h(x−1)
h(x−1)+x

. Therefore, (R|J1(h·m±))′(y) = ∓(h − (h + 1)y)−2 and (R|J1(h·m±))−1(x) =
2hm−h+1±hx

2hm+2m−h±(h+1)x =: yh·m± . We get

P(1)(x) =
∑

y∈R−1(x)

∣∣R′(y)∣∣−1 =
∑

h·mζ∈Σ

(
h− (h+ 1)yh·mζ

)2

=
∑
h≥0

(∑
m≥1

1

(2hm+ 2m− h+ (h+ 1)x)2
+
∑
m≥2

1

(2hm+ 2m− h− (h+ 1)x)2

)

=
∑
h≥0

1

4(h+ 1)2

(
ψ(1)

(
h+ 2+ (h+ 1)x

2h+ 2

)
+ψ(1)

(
3h+ 4− (h+ 1)x

2h+ 2

))
,

where ψ(1)(x)= d
dx

Γ ′(x)
Γ (x)

is the derivative of the digamma function. Notice that the function P(1) is differentiable and
strictly decreasing on [0,1]; moreover,

P(1)′(0)
−0.88575 >−1 and P(1)′(1)= 0. (26)

By the mean value theorem∣∣J ′n−1

∣∣= P(1)(x1) ·
∣∣Jn−1(σ

′)
∣∣ and

∣∣J ′n[s · tζ ]∣∣= P(1)(x2) ·
∣∣Jn(σ ′)[s · tζ ]∣∣ (27)

for some x1 ∈ Jn−1(σ
′) and x2 ∈ Jn(σ

′)[s · t ζ ].
Let {pj/qj }j∈N and {p′j /q ′j }j∈N be the sequences of T -convergents corresponding to σ and σ ′ respectively. Set

x = qνn−2
qνn−1

and x′ = q ′νn−1−2

q ′νn−1−1
. The ECF-expansions of x and x′ coincide up to the (n−1)st R-digit (see [4], Lemma A.1)

and therefore, by Lemma 2.6(i), we have |x − x ′| ≤ 3(1−n)/3. Now, by (27) and (19), we get

|Jn+1[s · tζ ]|
|Jn| · |J ′n−1|

|J ′n[s · t ζ ]|

= (1+ ζnx)(2− s
(s+1)t + ζnx

′ 2st−s+1
(s+1)t )(2− s

(s+1)t + ζnx
′ 2st−s+1+ζ s

(s+1)t + ζ
t
)P(1)(x1)

(1+ ζnx′)(2− s
(s+1)t + ζnx

2st−s+1
(s+1)t )(2− s

(s+1)t + ζnx
2st−s+1+ζ s

(s+1)t + ζ
t
)P(1)(x2)

. (28)

Noticing that ζnx ≥− 1
3 one can show that

∣∣∣∣ (1+ ζnx)

(1+ ζnx′)
− 1

∣∣∣∣,
∣∣∣∣ (2−

s
(s+1)t + ζnx

′ 2st−s+1
(s+1)t )

(2− s
(s+1)t + ζnx

2st−s+1
(s+1)t )

− 1

∣∣∣∣,
∣∣∣∣ (2−

s
(s+1)t + ζnx

′ 2st−s+1+ζ s
(s+1)t + ζ

t
)

(2− s
(s+1)t + ζnx

2st−s+1+ζ s
(s+1)t + ζ

t
)
− 1

∣∣∣∣≤ 3(4−n)/3

2
.

Let us now consider the term P(1)(x1)
P(1)(x2)

. To get estimates of it from above and below we can replace x1 and x1 with

appropriate endpoints of Jn−1(σ
′) and Jn(σ

′)[s · t ζ ]. Since Jn(σ
′)[s · t ζ ] ⊂ Jn−1(σ

′), those four endpoints can be
ordered in four different ways. Let us discuss only one of those cases, the others being similar. Let the endpoints y1 =
p′νn−1−1

q ′νn−1−1
, y2 =

p′νn−1−1−ζnp
′
νn−1−2

q ′νn−1−1−ζnq
′
νn−1−2

, z1 = p′νn−1
q ′νn−1

, z2 = p′νn−1−ζp′νn−2
q ′νn−1−ζq ′νn−2

be arranged as follows: 0 < y1 < z1 < z2 < y2 < 1.

Then, since the function P(1) is decreasing, y1 ≤ x1 ≤ y2 and z1 ≤ x2 ≤ z2, we get

P(1)(x1)

P(1)(x2)
≤ 1+ P(1)(z2)−P(1)(y1)

P(1)(y1)
.

Let us use (26), the fact that z2 and y1 have the same R-expansion up to the (n − 1)st digit, (18) and the fact that
P(1)(1)
 0.90238:

|P(1)(z2)− P(1)(y1)|
P(1)(y1)

≤ |z2 − y1|
P(1)(y1)

≤ C103(1−n)/3

(s + 1)tP(1)(y1)
≤ C113(1−n)/3
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for some constants C10,C11 > 0. Thus we get the desired estimate:

∣∣∣∣ |Jn+1[s · tζ ]|
|Jn| · |J ′n−1|

|J ′n[s · t ζ ]|
− 1

∣∣∣∣≤ C8e−C9n

for some C8,C9 > 0. �

3. Iterated renormalization of γα,N

In Section 2.2 we discussed the renormalization of γα,N , i.e. the procedure which “erases” the geometric structure
at smallest scale in the curve γα,N . Now we want to iterate the renormalization formula (10). In order to do this,
we consider α0 := α, αl := T l(α0) (as in Section 2.3), N0 := N , Nl := αl−1Nl−1, η0 := 1 and ηl := η(αl−1), l ∈ N.
Define also κ0 := 0, κl := κl(α) := 1+ η1+ η1η2+· · ·+ η1η2 · · ·ηl−1. With these notations, iterating (10) r times we
get

Sα(tN) = (α0 · · ·αr−1)
−1/2

(
exp

{
κr

π

4
i

}
S(η1···ηr )
αr

(tNr)

+ exp

{
κr−1

π

4
i

}
α

1/2
r−1Γ

(η1···ηr−1)(αr−1, tNr−1)

+ exp

{
κr−2

π

4
i

}
(αr−2αr−1)

1/2Γ (η1···ηr−2)(αr−2, tNr−2)+ · · ·

+ exp

{
κr−j

π

4
i

}
(αr−j · · ·αr−1)

1/2Γ (η1···ηr−j )(αr−j , tNr−j )+ · · ·

+ exp

{
κ0

π

4
i

}
(α0 · · ·αr−1)

1/2Γ (1)(α0, tN0)

)

= (α0 · · ·αr−1)
−1/2

(
exp

{
κr

π

4
i

}
S(η1···ηr )
αr

(tNr)

+
r∑

j=1

exp

{
κr−j

π

4
i

}
(αr−j · · ·αr−1)

1/2Γ (η1···ηr−j )(αr−j , tNr−j )

)
. (29)

Our next step is to choose r as a function of N and α so that Nr = α0 · · ·αr−1N is O(1), that is (α0 · · ·αr−1)
−1/2 =

O(
√
N). We make use of the relation (16) and we define r in terms of the R-denominator corresponding to the

renewal time n̂N . For α = (h1 ·m±1 , h2 ·m±2 , . . .) ∈ΣN, set r = r(α,N) := νn̂N − 1 = h1 + · · · + hn̂N + n̂N , where
n̂N =min{n ∈N: q̂n > N} as in Theorem 2.7. Define α0 · · ·αr(α,N)−1N =Nr(α,N) =:Θα(N). We have the following
proposition.

Proposition 3.1. Θα(N) has a limiting probability distribution on (0,∞) w.r.t. λ as N →∞. In other words: there
exists a probability measure Q(1) on (0,∞) such that for every 0 < a < b we have

lim
N→∞λ

({
α: a <Θα(N) < b

})=Q(1)((a, b)).
Proof. Our goal is to write Θα(N) as a function of q̂n̂N−1/N , q̂n̂N /N and a finite number of Σ -entries of α preceding
and/or following the renewal time n̂N . By (16) we have

Θα(N)= α0 · · ·ανn̂N
−2N =

(
qνn̂N−1

N
+ ξνn̂N−1 · ανn̂N

−1 ·
qνn̂N−2

N

)−1

. (30)
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In order to write qνn̂N−1 and qνn̂N−2 in terms of q̂n̂N = qνn̂N
and q̂n̂N−1 = qνn̂N−1 we use the recurrent relation (14) for

the ECF-denominators, getting the hn̂ × hn̂ linear system

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2kνn̂ ξνn̂−1
−1 2kνn̂−1 −1

−1 2
. . .

−1
. . . −1
. . . 2 −1

−1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qνn̂−1
qνn̂−2

...

qνn̂−j

...

qνn̂−(hn̂−1)
qνn̂−hn̂

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̂n̂
0
...

0
...

0
q̂n̂−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (31)

where n̂= n̂N . The quantities k
ξνn̂−1

νn̂−1 =m
ζn̂
n̂
∈Ω∗ and kνn̂ ∈N, along with the size hn̂ of the linear system, depend only

on the two Σ -entries (hn̂ ·mζn̂
n̂
, hn̂+1 ·mζn̂+1

n̂+1 ) ∈Σ2. We are interested in the first two entries of the solution of (31).
One can check that

qνn̂−1 = ((2hn̂ − 2)kνn̂−1 − (hn̂ − 2))q̂n̂ − ξνn̂−1q̂n̂−1

(4hn̂ − 4)kνn̂kνn̂−1 − (2hn̂ − 4)kνn̂ + (n− 1)ξνn̂−1
and

(32)

qνn̂−2 = (hn̂ − 1)q̂n̂ + 2kνn̂ q̂n̂−1

(4hn̂ − 4)kνn̂kνn̂−1 − (2hn̂ − 4)kνn̂ + (n− 1)ξνn̂−1
.

Therefore (30) and (32) show that Θα(N) is a function of q̂n̂N−1/N ∈ (0,1], q̂n̂N /N ∈ (1,∞), (hn̂N ·m
ζn̂N
n̂N

, hn̂N+1 ·
m

ζn̂N+1

n̂N+1 ) ∈ Σ2 and ανn̂N
−1 = Rn̂N (α). Now, by Theorem 2.7, we obtain the existence of a limiting distribution as

N→∞, w.r.t. λ. �

3.1. Approximation of γα,N

In this section we construct an approximation for the curve γα,N . The approximating curve γ J
α,N will contain only the

J largest geometric scales (corresponding to J iterations of the jump transformation R). Having specified our choice
for r , we can also regroup the νn̂N terms in (29) involving Γ ’s into n̂N terms as follows:

Δl(t)=Δl(t;α,N) :=
hl+2∑
j=2

exp

{
κνl−j

π

4
i

}(
(α)

νl−2
νl−j

)1/2
Γ (η1···ηνl−j )(ανl−j , tNνl−j ) (33)

for l = 1, . . . , n̂N , where (α)
l2
l1
:= αl1 · · ·αl2 if l1 ≤ l2 and (α)

l2
l1
:= 1 if l1 > l2. Also recall that νl−1 = νl − hl − 1.

Formula (29) becomes now

γα,N (t) = Sα(tN)√
N

= Θ−1/2
α (N)

(
exp

{
κνn̂−1

π

4
i

}
S
(η1···ηνn̂−1)

ανn̂−1

(
tΘα(N)

)+ n̂−1∑
j=0

(
(α)

νn̂−2
νn̂−j−1

)1/2
Δn̂−j (t)

)
, (34)

where n̂= n̂N . The following lemma proves that, on a set of arbitrarily large measure, the product ((α)νn̂−2
νn̂−j−1)

1/2 ×
Δn̂−j (t) decays sufficiently fast as j grows. One can assume that n̂ is large enough so that n̂− j ≥ 1. This is the case
because later we shall let N→∞ and hence n̂N →∞.

Lemma 3.2. For all sufficiently large J

λ
({
α:
∣∣((α)νn̂−2

νn̂−j−1

)1/2
Δn̂−j (t)

∣∣≤ C12e−C13j , j = J, . . . , n̂− 1
})≥ 1− δ1(J ), (35)
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where C12,C13 > 0 are some constants and δ1(J )→ 0 as J →∞.

Proof. Notice that, by (4), for every l = 2, . . . , hn̂−j + 2,

∣∣α1/2
νn̂−j−lΓ (ανn̂−j−l , tNνn̂−j−l)

∣∣≤ C5 +C6α
1/2
νn̂−j−l ≤ C12,

where C12 := C5 +C6. Now, by (33),

∣∣Δn̂−j (t)
∣∣≤ hn̂−j+2∑

l=2

(
(α)

νn̂−j−2
νn̂−j−l

)1/2
Γ (ανn̂−j−l , tNνn̂−j−l)≤ C12(hn̂−j + 1).

By construction of the jump transformation R, exactly one of the factors in (α)
νn̂−j+1−2
νn̂−j−1 is less then 1

2 . Therefore for

every j = 1, . . . , n̂− 1

∣∣((α)νn̂−2
νn̂−j−1

)1/2
Δn̂−j (t)

∣∣≤C122−(1/2)j (hn̂−j + 1).

Thus it is enough to show that, for all sufficiently large J ∈N and n̂,∣∣{α: hn̂−j ≤ eC14j , j = J, . . . , n̂− 1
}∣∣≥ 1− δ2(J ), (36)

where 0 <C14 <
log 2

2 
 0.346574 and δ2(J )→ 0 as J →∞. By Lemma 2.9, setting H = (eC14(n̂−1)+1, eC14(n̂−2)+
1, . . . , eC14J + 1) ∈Nn̂−J , we get∣∣{α: hn̂−j ≤ eC14j , j = J, . . . , n̂− 1

}∣∣
= ∣∣Y(H)

∣∣≥ (1− 1

eC14(n̂−1) + 1

) n̂−2∏
j=J

(
1− 4π2

eC14j + 1

)
≥

∞∏
j=J

(
1− 4π2e−C14j

)=: δ2(J ).

The estimate (36) is thus proven, along with our initial statement (35) setting C13 := log 2
2 −C14. �

For J ∈N define the curve associated to the truncated renormalized sum as

t �→ γ J
α,N (t) :=Θ−1/2

α (N)

(
eκνn̂−1(π/4)i S

(η1···ηνn̂−1)

ανn̂−1

(
tΘα(N)

)+ J−1∑
j=0

(
(α)

νn̂−2
νn̂−j−1

)1/2
Δn̂−j (t)

)
. (37)

The number J corresponds to the number of scales one considers in approximating the curve γα,N , starting from the
largest scale. The following lemma shows that γα,N is exponentially well approximated by γ J

α,N for a set of α’s whose
measure tends to 1 as J increases.

Lemma 3.3. For all sufficiently large J and N

λ
({∣∣γα,N (t)− γ J

α,N (t)
∣∣≤ e−C15J

})≥ 1− δ3(J ) (38)

for every t ∈ [0,1], where C15 > 0 is some constant and δ3(J )→ 0 as J →∞.

Proof. Since by Proposition 3.1 Θα(N) has a limiting distribution on (0,∞) as N →∞, so Θ
−1/2
α (N) does. Then,

for sufficiently large N , we have

λ
({
α: Θ−1/2

α (N)≤ J
})≥ 1− δ4(J ),
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where δ4(J )→ 0 as J →∞. On the other hand, by Lemma 3.2, for sufficiently large J and N ,

∣∣γα,N (t)− γ J
α,N (t)

∣∣ = Θ−1/2
α (N)

∣∣∣∣∣
n̂−1∑

j=J+1

(
(α)

νn̂−2
νn̂−j−1

)1/2
Δn̂−j (t)

∣∣∣∣∣≤ C12Θ
−1/2
α (N)

n̂−1∑
j=J

e−C13j

= C12Θ
−1/2
α (N)

e−C13(J−1) − e−C13(n̂−1)

eC13 − 1
≤ C12eC13

eC13 − 1
Θ−1/2

α (N)e−C13J

holds for every t ∈ [0,1] on a set of μR-measure bigger than 1− δ1(J ). Therefore

∣∣γα,N (t)− γ J
α,N (t)

∣∣≤ C12eC13J

eC13 − 1
e−C13J ≤ e−C15J

for some constant C15 > 0 on a set of μR-measure bigger than 1− δ1(J )− δ4(J ). The lemma is thus proven setting
δ3(J ) := δ1(J )+ δ4(J ). �

3.2. Rewriting of γ J
α,N in terms of renewal variables

Now we can study the curve γ J
α,N (t). Our goal is to rewrite it in terms of Θα(N), ανn̂−1 and a finite number of

Σ -entries preceding the renewal time. We will also need two additional functions, K8
α(N) and Eα(N) to take into

account phase terms and conjugations coming from the renormalization procedure.
For α = (h1 ·mζ1

1 , h2 ·mζ2
2 , . . .) ∈ΣN we have an explicit expression for ηl , l = 1, . . . , νn̂ − 1:

η1 = · · · = ηh1 = 1, ην1−1 =−ζ1,

ην1 = · · · = ην1+h2 = 1, ην2−1 =−ζ2,

...

ηνn̂−1 = · · · = ηνn̂−1+hn̂ = 1, ηνn̂−1 =−ζn̂.

Thus

η1 · · ·ηνl−1 =
l∏

s=1

(−ζs) and (39)

κνl = 1+ (h1 − ζ1)+ (−ζ1)(h2 − ζ2)+ (−ζ1)(−ζ2)(h3 − ζ3)+ · · ·

+ (−ζ1) · · · (−ζl−1)(hl − ζl)= 1+
l∑

j=1

(hj − ζj )

j−1∏
s=1

(−ζs). (40)

The following lemma gives an explicit formula for the partial products along the T -orbit of α which appear in (37).

Lemma 3.4. Let α = (h1 ·mζ1
1 , h2 ·mζ2

2 , . . .) ∈ΣN. Set βj := ανn̂−j−2. Then

Bs,j = Bs,j (α) := (α)
νn̂−j−2
νn̂−j−s =

βj

(s − 1)− (s − 2)βj

, (41)

Dj =Dj(α) := (α)
νn̂−2
νn̂−j−1 =

j−1∏
u=0

βu

1+ hn̂−u(1− βu)
. (42)

Proof. Both identities follow, after telescopic cancellations, from

ανn̂−j−s = (s − 2)− (s − 3)βj

(s − 1)− (s − 2)βj

. (43)

�
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Notice that βj is a function of Rn̂N (α) and j (j ≤ J ) Σ -entries preceding the renewal time n̂N . With the above
notation (37) becomes

γ J
α,N (t) = Θα(N)−1/2

(
exp

{
κνn̂−1

π

4
i

}
S
(η1···ηνn̂−1)

ανn̂−1

(
tΘα(N)

)

+
J−1∑
j=0

D
1/2
j

hn̂−j+2∑
s=2

exp

{
κνn̂−j−s

π

4
i

}
B

1/2
s,j Γ

(η1···ηνn̂−j−s )
(ανn̂−j−s , tNνn̂−j−s)

)
. (44)

We want to collect a phase term of the form exp{κνn̂−J−1
π
4 i} and the corresponding “conjugation” index (η1 · · ·

ηνn̂−J−1). To do this, using (39) and (40), we introduce the quantities ΨJ , ΥJ , EJ and E j
J , depending only on a fi-

nite number of Σ -entries of α preceding the renewal time n̂N :

(κνn̂−1 − κνn̂−J−1)(η1 · · ·ηνn̂−J−1)

= (κνn̂ − κνn̂−J
− η1 · · ·ηνn̂−1 + η1 · · ·ηνn̂−J−1)(η1 · · ·ηνn̂−J−1)

=
n̂∑

u=n̂−J+1

(hu − ζu)

u−1∏
v=n̂−J+1

(−ζv)−
n̂∏

v=n̂−J+1

(−ζv)+ 1

=: ΨJ = ΨJ

(
hl ·mζl

l , l = n̂− J + 1, . . . , n̂
)
,

(κνn̂−j−s − κνn̂−J−1)(η1 · · ·ηνn̂−J−1)

= (κνn̂−j−1 + (hn̂−j − s + 1)(η1 · · ·ηνn̂−j−1−1)− κνn̂−J
+ (η1 · · ·ηνn̂−J−1)

)
(η1 · · ·ηνn̂−J−1)

=
n̂−j−1∑

u=n̂−J+1

(hu − ζu)

u−1∏
v=n̂−J+1

(−ζv)+ (hn̂−j − s + 1)
n̂−j−1∏

v=n̂−J+1

(−ζv)+ 1

=: Υs,J = Υs,J

(
hl ·mζl

l , l = n̂− J + 1, . . . , n̂− j
)
,

EJ := ηνn̂−J
· · ·ηνn̂−1 =

n̂∏
v=n̂−J+1

(−ζv), E j
J := ηνn̂−J

· · ·ηνn̂−j−s =
n̂−j−1∏

v=n̂−J+1

(−ζv).

Now (44) becomes

γ J
α,N (t) = exp

{
κνn̂−J−1

π

4
i

}
Θα(N)−1/2

(
exp

{
ΨJ

π

4
i

}
S(EJ )

Rn̂(α)

(
tΘα(N)

)

+
J−1∑
j=0

D
1/2
j

hn̂−j+2∑
s=2

exp

{
Υs,J

π

4
i

}
B

1/2
s,j Γ (Ej

J )(ανn̂−j−s , tNνn̂−j−s)

)(η1···ηνn̂−J−1)

. (45)

On the other hand, we also introduce the functions Eα(N) and Kα(N), depending on the entire trajectory of α under
the jump transformation R until the renewal time n̂N (exactly as Θα(N) does):

Eα(N) := η1 · · ·ηνn̂−1 =
n̂∏

v=1

(−ζv), Kα(N) := κνn̂ =
n̂∑

u=1

(hu − ζu)

u−1∏
v=1

(−ζv).
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Using (39) and (41)–(43), let us recall that ανn̂−j−s is a function of βj and s; moreover, notice that

η1 · · ·ηνn̂−J−1 = EJ ·Eα(N) and

Nνn̂−j−s = α0 · · ·ανn̂−j−s−1 ·N = Θα(N)

(α)
νn̂−j−2
νn̂−j−s · (α)νn̂−2

νn̂−j−1

= Θα(N)

Bs,j ·Dj

are functions of Θα(N), Eα(N), Rn̂N (α) and a finite number of Σ -entries of α preceding the renewal time n̂N . Fur-

thermore, by (30) and (32), Θα(N) is a function of q̂n̂−1/N , q̂n̂/N , Rn̂N (α) and the two Σ -entries (hn̂N ·m
ζn̂N
n̂N

, hn̂N+1 ·
m

ζn̂N+1

n̂N+1 ).
In addition to this, since κνn̂−J−1 appears in the phase term of (45) as multiplier of π

4 i it is also natural to consider
its values modulo 8. Defining K8

α(N) :=Kα(N) (mod 8), we have

κνn̂−J−1 ≡K8
α(N)−Eα(N)

n̂∑
u=n̂−J+1

(hu − ζu)En̂−u+1 (mod 8).

Therefore, we can rewrite (45) as

γ J
α,N (t)= F1

(
t,Rn̂N (α),

q̂n̂N−1

N
,
q̂n̂N

N
,K8

α(N),Eα(N),
{
hl ·mζl

l , n̂N − J ≤ l ≤ n̂N
})

, (46)

where F1 is a complex-valued, measurable function of its arguments. Notice that the formulae (8) and (11) enter into
the definition of F1, but we shall not use them directly.

Let us recall that Theorem 2.7 (which is a special case of Theorem 4.1 and generalizes Theorem 1.6 in [4]) already
establishes the existence of a limiting probability distribution for q̂n̂N−1/N and q̂n̂N /N , jointly with any finite number
of Σ -entries preceding (and/or following) the renewal time as N→∞, w.r.t. the measure λ.

In the next section we study the quantities K8
α(N) ∈ {0,1, . . . ,7} and Eα(N) ∈ {±1} in (46) and our Main Renewal-

Type Limit Theorem 4.1 will allow us to include them in the statement about the existence of a joint liming probability
distribution. This fact is non-trivial since K8

α(N) and Eα(N) depend on the entire trajectory of α under R until the
renewal time n̂N .

3.3. Limiting distribution for phase and conjugation terms

Let xn := η1 · · ·ηνn−1 =∏n
s=1(−ζs) and yn := κνn − 1=∑n

s=1(hs − ζs)
∏s−1

u=1(−ζu) (mod 8). We want to prove that
(xn, yn) ∈ {±1} × {0,1, . . . ,7} =:Ξ have a joint limiting distribution as n→∞. We will follow the strategy used by
Sinai [27], Chapter 12, to see how the dynamics creates conditional probability distributions and these distributions
define uniquely a limiting probability measure.

Let us consider the natural extension R̂ :ΣZ → ΣZ of R. For σ ∈ ΣZ, denote by σ− = (. . . , σ−2, σ−1, σ0) and
σ+ = (σ1, σ2, . . .) and identify the pair (σ+, σ−) with a point in the rectangle (0,1] × (−1/3,1] \Q2 as discussed
in [4]. One should notice that the “past” is identified with the y-axis and the “future” with the x-axis. Let us consider
cylinders in ΣZ of the form J

(m+1)
σ−n−m,...,σ−n−1,σ−n , n≥ 0, i.e. depending only on the past. Such cylinders J are identified

with rectangles (0,1] × I , where I is an interval in the y-direction, and by |J | we mean the 1-dimensional Lebesgue
measure of I .

Lemma 3.5. For every σ− ∈ΣN, the limit

μ(σ0|σ−1, σ−2, . . .) := lim
n→∞

|J (n+1)
σ−n,...,σ−1,σ0 |
|J (n)

σ−n,...,σ−1 |
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exists and satisfies the following conditions:

μ(σ0|σ−1, . . .)≥ C16,∑
σ0∈Σ

μ(σ0|σ−1, . . .)= 1,

∣∣∣∣μ(σ0|σ−1, . . . , σ−s , σ
′−s−1, σ

′−s−2, . . .)

μ(σ0|σ−1, . . . , σ−s , σ−s−1, σ−s−2, . . .)
− 1

∣∣∣∣≤C17e−C18s (47)

for some constants C16,C17,C18 > 0.

Proof. Let ln = |J (n+1)
σ−n,...,σ−1,σ0 |/|J (n)

σ−n,...,σ−1 |. By Lemma 2.10 we have

∣∣∣∣ ln+1

ln
− 1

∣∣∣∣=
∣∣∣∣ |J

(n+2)
σ−n−1,...,σ−1,σ0 |
|J (n+1)

σ−n−1,...,σ−1 |
· |J

(n)
σ−n,...,σ−1 |

|J (n+1)
σ−n,...,σ−1,σ0 |

− 1

∣∣∣∣≤ C8e−C9n.

This implies the existence of the limit limn→∞ ln and also the desired properties. �

Since we are working with the natural extension of R, setting zn := hn − ζn (mod 8), the quantities (ζn, zn) ∈Ξ

are defined for every n ∈ Z. Now we want to define conditional probability distributions μ0((ζ0, z0)|(ζ−1, z−1), (ζ−2,

z−2), . . .) over ΞZ. Let us fix a sequence σ (0) = {σ (0)
j } ∈ΣZ and for every n ∈N consider

μ
(0)
0

(
(ζ0, z0)|(ζ−1, z−1), (ζ−2, z−2), . . . , (ζ−n, z−n)

)
= μ

(0)
0 ((ζ−n, z−n), . . . , (ζ−1, z−1), (ζ0, z0))

μ
(0)
0 ((ζ−n, z−n), . . . , (ζ−1, z−1))

:=
∑

σ0,σ−1,...,σ−n
μ(σ−n, . . . , σ−1, σ0)∑

σ−1,...,σ−n
μ(σ−n, . . . , σ−1)

=
∑

σ0,σ−1,...,σ−n

∏n
s=0 μ(σ−s |σ−s−1, . . . , σ−n, σ

(0)
−n−1, σ

(0)
−n−2, . . .)∑

σ−1,...,σ−n

∏n
s=1 μ(σ−s |σ−s−1, . . . , σ−n, σ

(0)
−n−1, σ

(0)
−n−2, . . .)

, (48)

where the sums are taken over all possible σ0, σ−1, . . . , σ−n ∈ Σ which are compatible with the values of
(ζ−n, z−n), . . . , (ζ−1, z−1), (ζ0, z0).

Lemma 3.6. The limit

μ0
(
(ζ0, z0)|(ζ−1, z−1), (ζ−2, z−2), . . .

) := lim
n→∞μ

(0)
0

(
(ζ0, z0)|(ζ−1, z−1), (ζ−2, z−2), . . . , (ζ−n, z−n)

)
exists and does not depend on σ (0).

Proof. The Markov process {. . . , σ−n, . . . , σ−1, σ0} has a countable state-space but, by (18), it satisfies a Doeblin
condition. Therefore, it can be exponentially well approximated by a process with finite (but sufficiently large) state-

space. To this end, let us introduce also μ
(0)
0,L as in (48), with the additional constraint that σ−j = h−j · mζ−j

−j ,
satisfy the inequalities h,m ≤ L for 0 ≤ j ≤ n. The sums in the corresponding numerator and denominator are
thereby finite and contain at most (2L2 − L− 1)n+1 and (2L2 − L− 1)n terms respectively. In order to prove that
μ
(0)
0,L((ζ0, z0)|(ζ−1, z−1), (ζ−2, z−2), . . . , (ζ−n, z−n)) has a limit as n→∞ we shall perform a second approximation

of the process {σj } by a finite Markov chain with memory of order
√
n.
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We partition the integers 1, . . . , n into fragments with �√n	 elements. Notice that 0 ≤ n− �√n	2 ≤ 2�√n	 and
define

sq(n)=

⎧⎪⎨
⎪⎩
⌊√

n
⌋− 1 if 0≤ n− ⌊√n

⌋2
<
⌊√

n
⌋

,⌊√
n
⌋

if
⌊√

n
⌋≤ n− ⌊√n

⌋2
< 2

⌊√
n
⌋

,⌊√
n
⌋+ 1 if n− ⌊√n

⌋2 = 2
⌊√

n
⌋

.

The product in the denominator of μ(0)
0,L becomes

n∏
s=1

μ
(
σ−s |σ−s−1, . . . , σ−n, σ

(0)
−n−1, σ

(0)
−n−2, . . .

)

=
sq(n)∏
j=1

μ
(
σ−(j−1)�√n	−1, . . . , σ−j�√n	|σ−j�√n	−1, . . . , σ−(j+1)�√n	, . . . , σ−n, σ

(0)
−n−1, . . .

)

·μ(σ−sq(n)�√n	−1, . . . , σ−(sq(n)+1)�√n	|σ−(sq(n)+1)�√n	−1, . . . , σ−n, σ
(0)
−n−1, . . .

)
(49)

·μ(σ−(sq(n)+1)�√n	−1, . . . , σ−n|σ (0)
−n−1, σ

(0)
−n−2, . . .

)
(50)

=
(sq(n)∏

j=1

μ(σ̂−j |σ̂−j−1)δj

)
· μ̃(1) · μ̃(0),

where

σ̂−j = (σ−(j−1)�√n	−1, . . . , σ−j�√n	) ∈Σ�√n	,
(51)

δj =
μ(σ̂−j |σ̂−j−1, σ−(j+1)�√n	−1, . . .)

μ(σ̂−j |σ̂−j−1)
,

and μ̃(1), μ̃(0) correspond the factors in (49) and (50), respectively. Notice that for n− �√n	2 = k�√n	, k = 0,1,2,
the factor μ̃(0) disappears and μ̃(1) = μ(σ−sq(n)�√n	−1, . . . , σ−n|σ (0)

−n−1, . . .). We claim that

|δj − 1| ≤C19
√
ne−C20

√
n. (52)

In fact, the correction factor δj can be written as

δj =
j�√n	∏

s=(j−1)�√n	+1

μ(σ−s |σ−s−1, . . . , σ−j�√n	, σ̂−j−1, σ−(j+1)�√n	−1, . . .)

μ(σ−s |σ−s−1, . . . , σ−j�√n	, σ̂−j−1)
(53)

and, by (47), each factor in (53), is (C17e−C18
√
n)-close to 1. Therefore, for some constants C21,C22 > 0, | log δj | ≤

C21
√
n · e−C22

√
n and we get (52) for some C19,C20 > 0. The factors μ̃(0) and μ̃(1) can be approximated in the same

way, by truncating the length of the condition after �√n	 digits. Denoting by δ(l) = μ̃(l)

μ̂(l) , l = 0,1, the correction terms

as in (51), one gets |δ(l) − 1| ≤C22
√
ne−C23

√
n for l = 0,1 and for some C22,C23 > 0.

Therefore μ
(0)
0,L((ζ0, z0)|(ζ−1, z−1), (ζ−2, z−2), . . . , (ζ−n, z−n)) is exponentially well approximated by

∑
σ0,σ−1,...,σ−n

μ(σ0|σ−1)
∏sq(n)

j=1 μ(σ̂−j |σ̂−j−1) · μ̂(1)μ̂(0)∑
σ−1,...,σ−n

∏sq(n)
j=1 μ(σ̂−j |σ̂−j−1) · μ̂(1)μ̂(0)

,

which can be understood as the expectation of μ(σ0|σ−1) with respect to the measure for the finite Markov chain
{. . . , σ̂−n, . . . , σ̂−1}. Recall that the phase-space of such Markov chain is {h · mζ ∈ Σ : h,m ≤ L}�√n	, which has
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(2L2 − L − 1)�
√
n	 elements. This Markov chain is ergodic because, by the symbolic coding of the map R, every

sequence of elements of Σ is allowed. By the ergodic theorem for Markov chains and the Doeblin condition we get
the existence of the limit

μ
(0)
0

(
(ζ0, z0)|(ζ−1, z−1), (ζ−2, z−2), . . .

)
= lim

n→∞ lim
L→∞μ

(0)
0,L

(
(ζ0, z0)|(ζ−1, z−1), (ζ−2, z−2), . . . , (ζ−n, z−n)

)
.

Moreover, by (47), the conditional probability distributions μ
(0)
0 ((ζ0, z0)|(ζ−1, z−1), . . .) do not depend on the se-

quence σ (0) and will be denoted simply by μ0((ζ0, z0)|(ζ−1, z−1), . . .). �

Now, let us fix an arbitrary sequence {(ζ (0)
j , z

(0)
j )}j∈Z ∈ΞZ. For each s ∈ Z consider the measure λ

(0)
s defined on

ΞZ using Lemma 3.6 as follows:

λ(0)s

{(
ζ
(0)
s−n, z

(0)
s−n

)
, . . . ,

(
ζ
(0)
s−1, z

(0)
s−1

)} := 1 for every n ∈N,

λ(0)s

{
(ζs, zs), (ζs+1, zs+1), . . . , (ζs+t , zs+t )

}
:=

s+t∏
l=s

μ0
(
(ζl, zl)|(ζl−1, zl−1), . . . , (ζs, zs),

(
ζ
(0)
s−1, z

(0)
s−1

)
,
(
ζ
(0)
s−2, z

(0)
s−2

)
, . . .

)

for every t ≥ 0. Since ΞZ is compact, the space of all probability measures on it is weakly compact and therefore
there exists a subsequence {−sj }j∈N such that limj→∞ sj =∞ and λ

(0)
−sj

�⇒ λ(0) as j →∞. One can show (see
[27], Chapter 12, Theorem 2 and Lemma 2) that

lim
n→∞λ(0)

(
(ζs, zs)|(ζs−1, zs−1), . . . , (ζs−n, zs−n)

)= μ0
(
(ζs, zs)|(ζs−1, zs−1), (ζs−2, zs−2), . . .

)
and such λ(0) is shift-invariant and unique.

Let us now prove the existence of the limiting probability distribution for the sequence {(xn, yn)}n∈N. Observe that

x1 =−ζ1, xn = xn−1 · (−ζn),

y1 = z1, yn = yn−1 + zn · xn−1.

Lemma 3.7. For every (X,Y ) ∈Ξ the limit

lim
n→∞λ(0)

(
xn =X

yn = Y

)

exists.

Proof. Using the above relations we get

λ(0)
(
xn =X

yn = Y

)
=

∑
Xn−1,...,X1

Yn−1,...,Y1

n−1∏
j=1

λ(0)
(
xj+1 =Xj+1
yj+1 = Yj+1

∣∣∣∣ xj =Xj

yj = Yj

)
· λ(0)

(
x1 =X1
y1 = Y1

)

=
∑

Xn−1,...,X1

Yn−1,...,Y1

n−1∏
j=1

λ(0)
(
(ζj+1, zj+1)=Zj+1|(ζj , zj )=Zj

) · λ(0)((ζ1, z1)=Z1
)
, (54)

where (Xn,Yn) := (X,Y ), (Xn−1, Yn−1), . . . , (X1, Y1) ∈Ξ and Zj ∈Ξ are defined as

Z1 := (−X1, Y1), Zj :=
(−Xj−1Xj ,Xj−1(Yj − Yj−1) (mod 8)

)
, j ≥ 2. (55)
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Notice that, by (55), the sum over all X1, . . . ,Xn−1, Y1, . . . , Yn−1 in (54) can be replaced by the sum over all possible
Z1, . . . ,Zn−1 ∈Ξ .

Let us denote by pZ,W := λ(0)((ζj+1, zj+1) = W |(ζj , zj ) = Z), the transition probabilities for Z,W ∈ Ξ , by
Π := (pZ,W )Z,W∈Ξ the corresponding 24 × 24 stochastic matrix and by π := (λ(0)((ζ1, z1) = Z))Z∈Ξ the initial
probability distribution. Thus, we can write (54) as

λ(0)
(
xn =X

yn = Y

)
= (Πnπ

)
Z
, (56)

where Z = (−Xj−1Xj ,Xj−1(Yj − Yj−1) (mod 8)). The stochastic matrix Π has positive entries and therefore

λ(0)
(
xn=X
yn=Y

)
has a limit for every (X,Y ) ∈Ξ as n→∞. �

Let J be as in the previous section. It represents a finite number of Σ -entries preceding the renewal time n̂N
defining the approximating curve t �→ γ J

α,N (t). We can rewrite Eα(N) and K8
α(N) as follows:

Eα(N)= xn̂N−J · EJ ,

K8
α(N)=

[
1+ yn̂N−J + xn̂N−J ·

n̂N∑
u=n̂N−J+1

(hu − ζu)E n̂N−u
J

]
8

, (57)

(
Eα(N),K8

α(N)
)= F2

(
(xn̂N−J , yn̂N−J ),

{
hl ·mζl

l , n̂N − J < l ≤ n̂N
})
,

where F2 :Ξ ×ΣJ →Ξ .

4. Existence of limiting finite-dimensional distributions

In this section we prove the existence of limiting finite-dimensional distribution for γ J
α,N as N →∞, w.r.t. λ. There-

after, we extend the result to γα,N . We also discuss the notion of nice set and we give a sufficient condition for a set
A⊂Ck to be nice.

For every t ∈ [0,1], by (46) and (57), we can write

γ J
α,N (t)= F

(
t;Rn̂N (α),

q̂n̂N−1

N
,
q̂n̂N

N
, (xn̂N−J , yn̂N−J ), {σl}n̂Nl=n̂N−J

)
,

where F= F(1) : [0,1]× (0,1]× (0,1]× (1,∞)×Ξ ×ΣJ →C is a measurable function of its arguments. Similarly,
for every 0≤ t1 < t2 < · · ·< tk ≤ 1, setting γ J

α,N
(t1, . . . , tk) := (γ J

α,N (t1), . . . , γ
J
α,N (tk)), we have

γ J

α,N
(t1, . . . , tk)= F(k)

(
(t1, . . . , tk);Rn̂N (α),

q̂n̂N−1

N
,
q̂n̂N

N
, (xn̂N−J , yn̂N−J ), {σl}n̂Nl=n̂N−J

)
,

where F(k) : [0,1]k × (0,1] × (0,1] × (1,∞)×Ξ ×ΣJ →Ck .
The following Renewal-Type Limit theorem is the core of the proof of the existence of finite-dimensional distribu-

tions for γ J
α,N as N →∞. It is a generalization of Theorem 1.6 in [4] and its proof will be sketched in the Appendix.

Let us just mention that it relies on the mixing property of the special flow built over the natural extension of R, under
the a suitably chosen roof function.

Theorem 4.1 (Main Renewal-Type Limit theorem). Fix N1,N2 ∈ N. The quantities
q̂n̂N−1

N
,
q̂n̂N
N

, {σn̂N+l}N2
l=−N1+1,

(xn̂N−N1 , yn̂N−N1) have a joint limiting probability distribution w.r.t. the measure λ as N →∞.
In other words: there exists a probability measure Q= QN1,N2 on the space (0,1] × (1,∞)×ΣN1+N2 ×Ξ such

that for every a1, b1, a2, b2 ∈ R, 0 < a1 < b1 < 1 < a2 < b2, for every c = (cl)
N2
l=−N1+1 ∈ ΣN1+N2 and for every
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(x, y) ∈Ξ , we have

λ

({
α: a1 <

q̂n̂N−1

N
< b1, a2 <

q̂n̂N

N
< b2, (σn̂N+l )

N2
l=−N1+1 = c,

(
xn̂N−N1

yn̂N−N1

)
=
(
x

y

)})

−→Q
(
(a1, b1)× (a2, b2)× {c} ×

{
(x, y)

})
as N→∞. (58)

Remark 4.2. Let us also mention that the proof of Theorem 4.1 provides an explicit formula for Q((a1, b1)×(a2, b2)×
{c}×{(x, y)}), based on a geometrical construction. Moreover, if we fix c ∈ΣN1+N2 and (x, y) ∈Ξ , then the measure
on (0,1] × (1,∞) defined as QN1,N2;c,(x,y)(E) :=QN1,N2(E × {c} × {(x, y)}) is equivalent to the Lebesgue measure
on (0,1] × (1,∞).

Notice that the limiting probability distribution of Rn̂N (α) = (σn̂N+1, σn̂N+2, . . .) ∈ ΣN can be obtained by
providing a limiting probability distribution for any fixed number of Σ -entries after the renewal time n̂N , i.e.
σn̂N+1, . . . , σn̂N+N2 , N2 ∈N. We immediately get the following corollary.

Corollary 4.3. Fix J ∈N. The quantities Rn̂N ,
q̂n̂N−1

N
,
q̂n̂N
N

, (xn̂N−J , yn̂N−J ), {σl}n̂Nl=n̂N−J
have a joint limiting proba-

bility distribution on (0,1] × (0,1] × (1,∞)×Ξ ×ΣJ+1 as N→∞, with respect to the measure λ on [0,1].

Let us denote the limiting probability measure by Q(J ). For every (x, y) ∈ Ξ and σ ∈ ΣJ+1 the measure on
(0,1]2×(1,∞) defined as Q(J )

(x,y),σ (E) :=Q(J )(E×{(x, y)}×{σ }) is equivalent to the Lebesgue measure on (0,1]2×
(1,∞). This fact is a consequence of Remark 4.2.

Remark 4.4. Fix (t1, . . . , tk) ∈ [0,1]k , J ∈N, (x, y) ∈Ξ and σ ∈ΣJ+1. Denoting (u, v,w)= (Rn̂N (α),
q̂n̂N−1

N
,
q̂n̂N
N

),
we can rewrite the functions in Lemma 3.4 as

βj = βj (u)=
a
(1)
j + b

(1)
j u

c
(1)
j + d

(1)
j u

, Bs,j = Bs,j (u)=
a
(2)
s,j + b

(2)
s,j u

c
(2)
s,j + d

(2)
s,j u

, Dj =Dj(u)=
j−1∏
l=0

a
(3)
l + b

(3)
l u

c
(3)
l + d

(3)
l u

for some constants a
(1)
j , b

(1)
j , c

(1)
j , d

(1)
j , a

(2)
s,j , b

(2)
s,j , c

(2)
s,j , d

(2)
s,j , a

(3)
l , b

(3)
l , c

(3)
l , d

(3)
l (determined by σ ). Notice that the

functions βj , Bs,j and Dj take values in (0,1] and, despite their rational structure, they are C∞ functions of u ∈ (0,1].
Moreover, ανn̂N−1 = ανn̂N−1(u)= a(4)+b(4)u

c(4)+d(4)u
∈ (0,1], by (30) and (32),

Θα(N) =: θ(u, v,w)= (a(5)v+ b(5)w+ c(5)ανn̂N−1

(
d(5)v + e(5)w

))−1

= c(4) + d(4)u

(a(5)v + b(5)w)(c(4) + d(4)u)+ c(5)(a(4) + b(4)u)(d(5)v + e(5)w)
∈ (0,∞)

is also a C∞ function of (u, v,w), where a(4), b(4), c(4), d(4), a(5), b(5), c(5), d(5), e(5) are some constants (determined
by σ ). For t = (t1, . . . , tk), set

f
(J )
t := F(k)

(
(t1, . . . , tk), ·

)
: (0,1]2 × (1,∞)×Ξ ×ΣJ+1 →Ck.

Finally, ανn̂N−j
=:Aj(u)= a

(6)
j +b

(6)
j u

c
(6)
j +d

(6)
j u

∈ (0,1] for some constants a
(6)
j , b

(6)
j , c

(6)
j , d

(6)
j and

f
(J )
t;(x,y),σ := F(k)

(
(t1, . . . , tk); ·, (x, y), σ

)= f
(J )
t

(·, (x, y), σ ) : (0,1]2 × (1,∞)→Ck
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reads as

f
(J )
t;(x,y),σ (u, v,w) =

(
C(1)θ(u, v,w)−1/2

[
C(2)S(C(3))

u

(
tlθ(u, v,w)

)

+
J−1∑
j=0

Dj(u)
1/2

C
(4)
j +2∑
s=2

C(5)
s Bs,j (u)

1/2Γ

(
Aj(u), tl

θ(u, v,w)

Bs,j (u)Dj (u)

)](C(6)))k

l=1

,

where C(1),C(2),C
(5)
s ∈ C, C(3),C(6) ∈ {±1} and C

(4)
j ∈ N are constants determined by (x, y) ∈Ξ and σ ∈ΣJ+1.

Notice that f
(J )
t;(x,y),σ : (0,1]2 × (1,∞) → Ck a continuous function (with piecewise C∞ partial derivatives) of

(u, v,w).

4.1. Nice sets

We say that A ∈ Bk is (t1, . . . , tk)-nice (or simply nice) if for every J ∈N, for every (x, y) ∈Ξ and every σ ∈ΣJ+1,
∂((f

(J )
t;(x,y),σ )

−1(A)) has zero Lebesgue measure in (0,1]2 × (0,∞).

Notice that if A=A1 × · · · ×Ak , where Al ∈ B1 and Al is tl-nice for l = 1, . . . , k, than A is (t1, . . . , tk)-nice. The
following lemma gives a sufficient condition for A ∈ B1 to be t -nice, analogous to Lemma 5.1 in [17].

Lemma 4.5. Let A ∈ B1 be an open convex set, 0 ∈ A, with smooth boundary. Let A(w,ρ) := {ρz+w: z ∈ A}. Fix
t ∈ [0,1] and w ∈C. Then, except for countably many ρ, A(w,ρ) is t -nice.

Proof. Let t ∈ [0,1] be fixed. For every J ∈ N, every (x, y) ∈ Ξ and every σ ∈ ΣJ+1 the set (0,1]2 × (1,∞) has
finite Q(J )

(x,y),σ
-measure, say q

(J )
(x,y),σ

> 0. Since f
(J )
t;(x,y),σ is measurable, the measure of the set X (ρ) = {(u, v,w) ∈

(0,1]2 × (1,∞): f
(J )
t;(x,y),σ (u, v,w) ∈A(w,ρ)} tends to q

(J )
(x,y),σ as ρ→∞. Since A(w,ρ) is convex for every ρ, the

sets I(ρ) = {(u, v,w) ∈ (0,1]2 × (1,∞): f
(J )
t ∈ ∂A(w,ρ)} are disjoint for different values of ρ. Therefore, there

can be only countably many ρ for which I(ρ) has positive Q(J )
(x,y),σ (and thus Lebesgue) measure. Since f

(J )
t;(x,y),σ is

continuous, the boundary of X (ρ) is contained in I(ρ), concluding thus the proof. �

4.2. Limiting finite-dimensional distributions for γ J
α,N and γα,N

The main consequence of our Main Renewal-Type Limit Theorem 4.1 is the following proposition.

Proposition 4.6 (Limiting finite-dimensional distributions for γ J
α,N ). For every k ∈ N and every 0 ≤ t1 < t2 <

· · ·< tk ≤ 1 there exists a probability measure P(J,k)
t1,...,tk

on Ck such that for every open, (t1, . . . , tk)-nice set A ∈ Bk , we
have

lim
N→∞λ

({
α ∈ (0,1]: γ J

α,N
(t1, . . . , tk) ∈A

})= P(J,k)
t1,...,tk

(A). (59)

Moreover, if {A(j)}j∈N, A(j) ∈ Bk , is a decreasing sequence of open, (t1, . . . , tk)-nice sets such that Leb(A(j))→ 0,

then limj→∞ P(J,k)
t1,...,tk

(A(j))= 0.

Proof. Since A ∈ Bk is open and (t1, . . . , tk)-nice, the set {α ∈ (0,1]: γ J
α,N

(t1, . . . , tk) ∈A} can be written as

{
α:

(
Rn̂N ,

q̂n̂N−1

N
,
q̂n̂N

N
, (xn̂N−J , yn̂N−J ), {σl}n̂Nl=n̂N−J

)
∈ (f (J )

t

)−1
(A)

}
(60)
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and (
f

(J )
t

)−1
(A)=

⊔
(x,y)∈Ξ,

σ∈ΣJ+1

B(x,y),σ ×
{
(x, y)

}× {σ } = ⊔
(x,y)∈Ξ,

σ∈ΣJ+1,l∈N,

B(x,y),σ �=∅

R
(l)
(x,y),σ

× {(x, y)}× {σ },

where B(x,y),σ = B(x,y),σ (A) := (f
(J )
t;(x,y),σ )

−1(A) are open (possibly empty) subsets of (0,1]2 × (1,∞) with bound-

aries of measure zero and R
(l)
(x,y),σ = R

(l)
(x,y),σ (A) ⊆ (0,1]2 × (1,∞) are parallelepipeds of the form (a0, b0) ×

(a1, b1)× (a2, b2) (the endpoints in each coordinate can be either included or not for different values of (x, y) and σ )
and a0, b0, a1, b1, a2, b2, depend on (x, y), σ and l. Thus the set in (60) is a disjoint union of sets of the form1

{
α: a0 <Rn̂N < b0, a1 <

q̂n̂N−1

N
< b1, a2 <

q̂n̂N

N
< b2, (xn̂N−J , yn̂N−J )= (x, y), {σl}n̂Nl=n̂N−J

= σ

}

whose λ-measures converge to Q(J )(R
(l)
(x,y),σ ×{(x, y)}× {σ }) as N→∞ by Corollary 4.3. This concludes the proof

of Proposition 4.6 setting

P(J,k)
t1,...,tk

(A) :=
∑

(x,y)∈Ξ,

σ∈ΣJ+1,l∈N,

B(x,y),σ �=∅

Q(J )
(
R

(l)
(x,y),σ (A)

)
.

�

Now, for fixed k and t1, . . . , tk we want to consider the limit of P(J,k)
t1,...,tk

(A) as J →∞. We have the following
lemma.

Lemma 4.7. For every k ∈ N, every 0≤ t1 < t2 < · · ·< tk ≤ 1 and every open, (t1, . . . , tk)-nice set A ∈ Bk , the limit
limJ→∞ P(J,k)

t1,...,tk
(A) exists. It will be denoted by P(k)

t1,...,tk
(A).

Proof. For simplicity, write XJ
N(α) = γ J

α,N
(t1, . . . , tk), XN(α) = γ

α,N
(t1, . . . , tk) and PJ = P(J,k)

t1,...,tk
. Moreover, for

z= (z1, . . . , zk) ∈Ck set |z| := |z1| + · · · + |zk|. Assume, by contradiction, that the sequence {PJ }J∈N does not have
a limit as J →∞. In this case there exist ε > 0 and a subsequence J = {Jl}l∈N such that |PJ ′(A)− PJ ′′(A)|> ε for
every J ′, J ′′ ∈ J . By definition of PJ ′(A) and PJ ′′(A) we have that for every δ5 > 0 and for sufficiently large N ,∣∣λ{XJ ′

N ∈A
}− λ

{
XJ ′′

N ∈A
}∣∣≥ 1− δ5. (61)

On the other hand, by Lemma 3.3, we know that

λ
{∣∣XN −XJ

N

∣∣≤ ke−C15J
}≥ 1− δ3(J ) (62)

and δ3(J )→ 0 as J →∞. Now (62) implies that

λ
{∣∣XJ ′

N −XJ ′′
N

∣∣≤ k
(
e−C15J

′ + e−C15J
′′)}≥ 1− δ3

(
J ′
)− δ3

(
J ′′
)

and thus∣∣λ{XJ ′
N ∈A

}− λ
{
XJ ′′

N ∈A
}∣∣

≤ ∣∣λ{XJ ′
N ∈A,

∣∣XJ ′
N −XJ ′′

N

∣∣≤ k
(
e−C15J

′ + e−C15J
′′)}− λ

{
XJ ′′

N ∈A
}∣∣+ δ3

(
J ′
)+ δ3

(
J ′′
)

≤ ∣∣λ{XJ ′′
N ∈A′

}− λ
{
XJ ′′

N ∈A
}∣∣+ δ3

(
J ′
)+ δ3

(
J ′′
)
, (63)

1Strict inequalities are replaced by “≤” when the endpoints are included.
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where A′ = {z ∈Ck: |z−w| ≤ k(e−C15J
′ + e−C15J

′′
),w ∈A}. Now, by taking sufficiently large J ′, J ′′ ∈ J and using

the last part of Proposition 4.6, (63) gives∣∣λ{XJ ′
N ∈A

}− λ
{
XJ ′′

N ∈A
}∣∣≤ λ

{
XJ ′′

N ∈A′ \A}+ δ3
(
J ′
)+ δ3

(
J ′′
)≤ ε/3,

contradicting thus (61) if we choose δ5 = ε/2. �

Now we can prove our Main theorem.

Proof of Theorem 1.1. So far, by Lemma 4.7, we know that

lim
J→∞ lim

N→∞λ
{
α: γ J

α,N
(t1, . . . , tk) ∈A

}= P(k)
t1,...,tk

(A).

Roughly speaking, we want to interchange the order of the two limits. Let us use the same notations of the proof of
Lemma 4.7 and, in addition, set YJ

N(α) :=XN(α)−XJ
N(α) and P := P(k)

t1,...,tk
. By (62) we have

λ{XN ∈A} ≤ λ
{
XJ

N + YJ
N ∈A,

∣∣YJ
N

∣∣≤ ke−C15J
}+ δ3(J )≤ λ

{
XJ

N ∈A′
}+ δ3(J ), (64)

where A′ = {z ∈Ck: |z−w| ≤ ke−C15J ,w ∈A} and δ3(J )→ 0 as J →∞. Now, by Proposition 4.6 and Lemma 4.7,
(64) becomes

λ{XN ∈A} ≤ PJ (A)+ δ6(N)+ δ3(J )= P(A)+ δ7(J )+ δ6(N)+ δ3(J ), (65)

where δ6(N)→ 0 as N→∞ and δ7(J )→ 0 as J →∞. On the other hand, in a similar way we get

λ{XN ∈A} ≥ λ
{
XJ

N + YJ
N ∈A,

∣∣YJ
N

∣∣≤ keC15J
}≥ λ

{
XJ

N ∈A′′
}≥ PJ

(
A′′
)+ δ8(N)

= P(A)+ δ9(J )+ δ8(N), (66)

where A′′ = {z ∈ A: |z − w| ≤ ke−C15J ,w ∈ Ac}, δ8(N)→ 0 as N →∞ and δ9(J )→ 0 as J →∞. Now, taking
limN→∞ limJ→∞, in (64) and (66), we obtain limN→∞ λ{XN ∈A} = P(A), i.e. (2) as desired. �

Remark 4.8. Considering, as in Remark 1.3, our reference probability space ([0,1], B, λ),

γ·,N , γ J·,N :
([0,1], B, λ

)→ (
C
([0,1],C), B C

)
are two random function. Let PN and PJ

N the corresponding induced probability measures on C([0,1],C). Now Propo-
sition 4.6, Lemma 4.7 and Theorem 1.1 read as follows: for every k ∈N and for every 0≤ t1 < · · ·< tk ≤ 1,

PJ
Nπ−1

t1,...,tk

N→∞
Prop. 4.6

P(J,k)
t1,...,tk

J→∞
Lem. 4.7

P(k)
t1,...,tk

PNπ−1
t1,...,tk

.
N→∞

Thm. 1.1

Appendix: Proof of Theorem 4.1

This appendix is devoted to the explanation of the proof of Theorem 4.1. This theorem is a generalization of Theo-
rem 1.6 in [4] and therefore we shall indicate how to modify its proof. Let us first recall some notation from [4].

Let R̂ :ΣZ →ΣZ the natural extension of R as in Section 3.3 and let μ
R̂

be the natural invariant measure induced

by μR . Set D(R̂) :=ΣZ. For ψ ∈ L1(D(R̂)) set DΦ = {(σ̂ , z): σ̂ ∈D(R̂),0≤ z≤ψ(σ̂ )}, let {Φt }t∈R be the special
flow on DΦ and let μΦ = μ

R̂
× Leb, where Leb is the Lebesgue measure in the z-direction. This flow is mixing,2

i.e. limt→∞μΦ(A∩Φ−t (B))= μ(A)μ(B) for every Borel subsets A,B ⊂DΦ (see Proposition 3.4 in [4]). We shall

2The flow {Φt }t is actually proven to be a K-flow.
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use the following relation between the special flow Φt and the (non-normalized) Birkhoff sum of ψ under R̂. Setting

SR̂
r (ψ)(σ̂ ) :=∑r−1

j=0 ψ(R̂j (σ̂ )) and r(σ̂ , t) :=min{r ∈N: SR̂
r (ψ)(σ̂ ) > t} we get for t ∈R+

Φt(σ̂ ,0)= (R̂r(σ̂ ,t)−1(σ̂ ), t − SR̂
r(σ̂ ,t)−1(ψ)(σ̂ )

)
.

Fix a cylinder C and set gC := supσ̂∈C g(σ̂ ), where g :D(R̂)→R+ is a function defined so that

log q̂n(σ̂ )= SR̂
n (ψ)(σ̂ )+ g(σ̂ )+ εn(σ̂ ), sup

σ̂∈D(R̂)

∣∣εn(σ̂ )∣∣≤ C233−n/3 (67)

for some constant C23 > 0. If |g(σ̂ ) − gC | ≤ ε/2 on C (this is always possible, by considering a sufficiently small
cylinder C ), then one can choose a time T= T(N, C) = logN − gC so that n̂N (σ̂ )= r(σ̂ ,T) holds on C \ U , where
U =U(C)⊂ C , μ

R̂
(U)≤ 7εμ

R̂
(C). Given two functions F1,F2 :D(R̂)→R we define

DΦ(F1,F2) :=
{
(σ̂ , z) ∈DΦ : ψ(σ̂ )− F2(σ̂ ) < z < ψ(σ̂ )− F1(σ̂ )

}
.

Notice that for some values of F1(σ̂ ),F2(σ̂ ) (e.g., when they are negative) the corresponding sets of z’s can be empty.

Sketch of proof of Theorem 4.1. The condition (σn̂N+l )
N2
l=−N1+1 = c in (58) can be rewritten as R̂n̂N (σ̂ )−1(σ̂ ) ∈

C(c)

N1,N2
, where C(c)

N1,N2
is a cylinder determined by N1,N2 and c. We claim that

lim
N→∞λ

({
α ∈ (0,1]: a1 <

q̂n̂N−1

N
< b1, a2 <

q̂n̂N

N
< b2, R̂

n̂N (σ̂ )−1(σ̂ ) ∈ C(c)

N1,N2
,

(
xn̂N−N1

yn̂N−N1

)
=
(
x

y

)})

= px,y,c ·μΦ

(
D̄Φ(a1, b1, a2, b2, c)

)
, (68)

where px,y,c is a real number between 0 and 1 (we shall define it later in this proof), D̄Φ(a1, b1, a2, b2) :=DΦ(loga1+
ψ ◦R̂−1, logb1+ψ ◦R̂−1)∩DΦ(loga2, logb2)∩p−1 C(c)

N1,N2
(see Fig. 3) and p :DΦ →D(R̂) is the vertical projection

onto the base. Set

AC :=
{
σ̂ ∈ C: a1 <

q̂n̂N−1

N
< b1, a2 <

q̂n̂N

N
< b2, R̂

n̂N (σ̂ )−1(σ̂ ) ∈ C(c)

N1,N2
,

(
xn̂N−N1

yn̂N−N1

)
=
(
x

y

)}
.

Consider ε > 0. One can find a finite collection of cylinders Cε for which (58) can be 10ε-approximated
by
∑

C∈Cε
μ
R̂
(AC\U), where U =U(C) is as above.

Let λ̂ be an absolutely continuous measure on the ΣZ = (0,1] × (−1/3,1] \ Q2 that projects onto λ on ΣN =
(0,1] \Q, i.e. for every interval I ⊂ (0,1] we have λ̂(I × (−1/3,1])= λ(I). If, for instance, λ = μR , then we can
take λ̂= μ

R̂
.

In order to show (68), noticing that AC depends on N , it is enough to prove that, for sufficiently large N ,

∣∣∣∣ λ̂(AC\U)

λ̂(C \U)
− px,y,c ·μΦ

(
D̄Φ(a1, b1, a2, b2, c)

)∣∣∣∣≤ C24ε

for some C24 > 0. Since λ̂ is absolutely continuous w.r.t. μ
R̂

, it is enough to show, for sufficiently large N and
sufficiently small cylinders C , that

∣∣∣∣μR̂
(AC\U)

μ
R̂
(C \U)

− px,y,c ·μΦ

(
D̄Φ(a1, b1, a2, b2, c)

)∣∣∣∣≤C24ε. (69)
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Fig. 3. The region D̄Φ(a1, b1, a2, b2, c) described in the proof of Theorem 4.1 is the intersection of the three shaded regions:

DΦ(loga1 +ψ ◦ R̂−1, logb1 +ψ ◦ R̂−1), DΦ(loga2, logb2) and p−1 C(c)

N1,N2
.

If N is sufficiently large we get{
σ̂ ∈ C \U : a1 <

q̂n̂N−1

N
< b1, a2 <

q̂n̂N

N
< b2

}

= {σ̂ ∈ C \U : loga1 < SR̂
r(σ̂ ,T)−1(ψ)(σ̂ )− T+ εN,C(σ̂ ) < logb1

}
∩ {σ̂ ∈ C \U : loga2 < SR̂

r(σ̂ ,T)(ψ)(σ̂ )− T+ ε′N,C(σ̂ ) < logb2
}
,

where εN,C(σ̂ ) := εn̂N (σ̂ )−1(σ̂ ) − gC + g(ω̂), ε′
N,C(σ̂ ) := εn̂N (σ̂ )(σ̂ ) − gC + g(ω̂) and εn̂N (σ̂ )−1, εn̂N (σ̂ ) are de-

fined in (67). One can show that supσ̂∈C\U |εN,C(σ̂ )| + supσ̂∈C\U |ε′N,C(σ̂ )| ≤ C25ε for some C25 > 0. Notice that

v := SR̂
r(σ̂ ,T)(ψ)(σ̂ ) − T is the vertical distance from ΦT (σ̂ ,0) and the roof function ψ(R̂n̂N (σ̂ )−1(σ̂ )) and there-

fore SR̂
r(σ̂ ,T)−1(ψ)(σ̂ ) − T = v − ψ(R̂n̂N (σ̂ )−2(σ̂ )). Using the vertical projection p :DΦ → D(R̂) we write the

condition R̂n̂N (σ̂ )−1(σ̂ ) ∈ C(c)

N1,N2
as p(ΦT (σ̂ ,0)) ∈ C(c)

N1,N2
and setting BN(x, y) := {σ̂ ∈ D(R̂): xn̂N (σ̂ )−N1(σ̂ ) =

x, yn̂N (σ̂ )−N1(σ̂ )= y} we get

AC\U × {0} ⊆
(
(C \U)× {0})∩ (BN(x, y)× {0})
∩Φ−T

(
DΦ

(
loga1 +ψ ◦ R̂−1 −C25ε, logb1 +ψ ◦ R̂−1 +C25ε

)
∩DΦ(loga2 −C25ε, logb2 +C25)∩ p−1 C(c)

N1,N2

)
and

AC\U × {0} ⊇
(
(C \U)× {0})∩ (BN(x, y)× {0})
∩Φ−T

(
DΦ

(
loga1 +ψ ◦ R̂−1 +C25ε, logb1 +ψ ◦ R̂−1 −C25ε

)
∩DΦ(loga2 +C25ε, logb2 −C25)∩ p−1 C(c)

N1,N2

)
.
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For sufficiently small δ, 0 < δ < ε, one can show that

AC\U × [0, δ) ⊆ Φ−T

((
DΦ

(
loga1 +ψ ◦ R̂−1 −C25ε− δ, logb1 +ψ ◦ R̂−1 +C25ε

)
∩DΦ(loga2 −C25ε− δ, logb2 +C25ε)∩ p−1 C(c)

N1,N2

)∪Dδ
Φ

)
,

where Dδ
Φ :=D(R̂)×[0, δ). Thus, recalling that T= T(N)= logN − gC and setting W+

N (ε, δ) :=Φ−T (D̄
ε,+
Φ (a1, b1,

a2, b2, c) ∪ Dδ
Φ), where D̄

ε,+
Φ (a1, b1, a2, b2, c) := (DΦ(loga1 + ψ ◦ R̂−1 − C26ε, logb1 + ψ ◦ R̂−1 + C25ε) ∩

DΦ(loga2 −C26ε, logb2 +C25ε)∩ p−1 C(c)

N1,N2
) and C26 = C25 + 1, we obtain

δ ·μ
R̂
(AC\U)≤ μΦ

((
(C \U)× [0, δ))∩ (BN(x, y)× [0, δ))∩W+

N (ε, δ)
)
. (70)

Our goal is to show that, for sufficiently large N , one can C27ε-approximate (for some constant C27 > 0) the left-
hand side of (70) with the product of the μΦ -measures of the three sets (C \ U) × [0, δ), BN(x, y) × [0, δ) and
W+

N (ε, δ). First, we can replace BN(x, y)× [0, δ) in (70) by B ′N(x, y) := BN(x, y)× {(σ̂ , z) ∈DΦ : 0 ≤ z ≤ ψ(σ̂ )}
and write DN = DN(x, y, a1, b1, a2, b2, c, ε, δ) := B ′N ∩ W+

N (ε, δ) = Φ−T(N)(EN), where EN := ΦT(N)(B
′
N) ∩

D̄
ε,+
Φ (a1, b1, a2, b2, c).
Let us recall the following classical result by Rényi [22]: let (Ω,B,P ) be a probability space and let G,HN ∈B,

N ∈N, then

lim
N→∞P(G∩HN)→ P(A) · β iff lim

N→∞P(Hk ∩HN)= P(Hk) · β for each k ∈N0, (71)

where H0 =Ω . In our case Ω =DΦ , P = μΦ , A= (C \U)× [0, δ) and HN =DN . We can compute P(Hk ∩HN)

for fixed k as follows

μΦ(Dk ∩DN)= μΦ

(
Φ−T(k)

(
Ek ∩Φ−(T(N)−T(k))(EN)

))= μΦ

(
Ek ∩Φ−(T(N)−T(k))(EN)

)
. (72)

For every k ∈N we can write Ek as a disjoint union of

E
(n,θ)

k := {(σ̂ , y) ∈DΦ : σ̂ = R̂n̂k(σ̂
′)−N1

(
σ̂ ′
)
, n̂k
(
σ̂ ′
)= n,

(
σ̂ ′j
)n−N1
j=1 = θ

}∩ D̄
ε,+
Φ (a1, b1, a2, b2, c),

where n ∈N and θ ∈Σn−N1 is such that xn−N1(θ)= x and yn−N1(θ)= y and we can write (72) as

μΦ

(
Ek ∩Φ−(T(N)−T(k))(EN)

)=∑
n,θ

μΦ

(
E

(n,θ)

k ∩Φ−(T(N)−T(k))(EN)
)
. (73)

Each term in the series above is now written as a product

μΦ

(
ΦT(k)

(
B ′N
)|E(n,θ)

k ∩Φ−(T(N)−T(k))
(
D̄

ε,+
Φ (a1, b1, a2, b2, c)

))
(74)

·μΦ

(
E

(n,θ)

k ∩Φ−(T(N)−T(k))
(
D̄

ε,+
Φ (a1, b1, a2, b2, c)

))
. (75)

We apply the mixing property of the special flow {Φt } to the factor (75), getting

μΦ

(
E

(n,θ)

k ∩Φ−(T(N)−T(k))
(
D̄

ε,+
Φ (a1, b1, a2, b2, c)

))−→ μΦ

(
E

(n,θ)

k

)
μΦ

(
D̄

ε,+
Φ (a1, b1, a2, b2, c)

)
.

as N →∞. We claim that the factor (74) also has a limit:

lim
N→∞μΦ

(
ΦT(k)

(
B ′N(x, y)

)|E(n,θ)

k ∩Φ−(T(N)−T(k))
(
D̄

ε,+
Φ (a1, b1, a2, b2, c)

))=: px,y,c. (76)

In order to see this one can analyze geometrically the action of the special flow as follows. The set E(n,θ)

k is fixed and

involves a finite number of entries of σ̂− in the base D(R̂) and some region in the z-direction. In the D(R̂) component,
the set Φ−(T(N)−T(k))(D

ε,+
Φ (a1, b1, a2, b2, c)) corresponds to setting to c the coordinates at from (σ̂j )

n̂N−n+N2
j=n̂N−n−N1+1,
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i.e. in a neighborhood (of fixed size) of the renewal time n̂N . In the z-direction it gives a region which, by mixing,
spreads according to the invariant measure μΦ as N →∞. Since the set ΦT(k)(B

′
N(x, y)) gives no restrictions in the

z-direction, it is enough to establish the existence of the limit (76) for the projection of the sets onto the base D(R̂).
In the base, however, the limit follows from the Markov-like property of the process {(xn, yn)}n∈N ∈ ΞN (namely
extending (56) to conditional probability distributions). Now taking the limit in (73) we get

lim
N→∞μΦ

(
Ek ∩Φ−(T(N)−T(k))(EN)

) = px,y,c ·μΦ

(
D̄

ε,+
Φ (a1, b1, a2, b2, c)

)∑
n,θ

μΦ

(
E

(n,θ)

k

)

= px,y,c ·μΦ

(
D̄

ε,+
Φ (a1, b1, a2, b2, c)

) ·μΦ(Ek),

i.e. the rightmost part of (71) with β = px,y,c ·μΦ(D̄
ε,+
Φ (a1, b1, a2, b2, c)). Thus we proved that

lim
N→∞μΦ

((
(C \U)× [0, δ))∩ (BN(x, y)× [0, δ))∩W+

N (ε, δ)
)

= μΦ

(
(C \U)× [0, δ)) · px,y,c ·μΦ

(
D̄

ε,+
Φ (a1, b1, a2, b2, c)

)
= δ ·μ

R̂
(C \U) · px,y,c ·μΦ

(
D̄

ε,+
Φ (a1, b1, a2, b2, c)

)
. (77)

Now (70) and (77) imply that, for sufficiently large N ,

δ ·μ
R̂
(AC\U)≤ δ ·μ

R̂
(C \U) · (px,y,c ·μΦ

(
D̄

ε,+
Φ (a1, b1, a2, b2, c)

)+C27ε
)

(78)

for some C27 > 0. Proceeding as in [4] (Lemma 3.8 therein) one can show that, for sufficiently small δ,(
(C \U)× [0, δ))∩Φ−T

(
D̄

ε,−
Φ (a1, b1, a2, b2, c) \Dδ

Φ

)⊆AC\U × [0, δ),

where D̄
ε,−
Φ = DΦ(loga1 + ψ ◦ R̂−1 + C28ε, logb1 + ψ ◦ R̂−1 − C29ε) ∩ DΦ(loga2 + C28ε, logb2 − C29ε) ∩

p−1 C(c)

N1,N2
, for some C28,C29 > 0. Using the mixing property of the flow {Φt }t as above we get, for sufficiently

large N ,

δ ·μ
R̂
(AC\U)≥ δ ·μ

R̂
(C \U) · (px,y,c ·μΦ

(
D̄

ε,−
Φ (a1, b1, a2, b2, c)

)−C30ε
)

(79)

for some C30 > 0. Moreover, by Fubini’s theorem, for some C31 > 0,∣∣μΦ

(
D̄

ε,±
Φ (a1, b1, a2, b2, c)

)− px,y,c ·μΦ

(
D̄Φ(a1, b1, a2, b2, c)

)∣∣≤ C31ε. (80)

Finally, by (78)–(80) we get (69) for some C24 > 0 and this completes the proof of Theorem 4.1. �
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