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Abstract. We study γk(x2, . . . , xk; t), the k-fold renormalized self-intersection local time for Brownian motion in R1. Our main
result says that γk(x2, . . . , xk; t) is continuously differentiable in the spatial variables, with probability 1.

Résumé. Nous étudions γk(x2, . . . , xk; t), le temps local renormalisé d’auto-intersection d’ordre k du mouvement brownien
dans R1. Notre résultat principal montre que γk(x2, . . . , xk; t) est presque sûrement continûment différentiable dans les variables
spatiales.
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1. Introduction

The object of this paper is to establish the almost sure continuous differentiability of renormalized intersection local
time for the multiple intersections of Brownian motion in R1.

Intersection local times were originally envisioned as a means of “measuring” the amount of self-intersections of
Brownian motion Wt ∈ Rm. Formally, the k-fold intersection local time is

αk(x2, x3, . . . , xk; t) =
∫

· · ·
∫

{0≤t1≤···≤tk≤t}

k∏
j=2

δ(Wtj − Wtj−1 − xj )dt1 · · · dtk,

where δ(x) denotes the δ-function. Intuitively, αk(0,0, . . . ,0; t) measures the “amount” of k-fold intersections.
More precisely, we can set

αk,ε(x2, x3, . . . , xk; t)

=
∫

· · ·
∫

{0≤t1≤···≤tk≤t}

k∏
j=2

fε(Wtj − Wtj−1 − xj )dt1 · · · dtk, (1.1)

where fε is an approximate δ-function, and try to take the ε → 0 limit.
In two dimensions, limε→0 αk,ε(x2, x3, . . . , xk; t) will not exist unless all xi �= 0! This gave rise to the prob-

lem of renormalization: to subtract from αk,ε(x2, x3, . . . , xk; t) terms involving lower order intersection local times,
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αj,ε(x2, x3, . . . , xk; t) for j < k, in such a way that a finite and continuous, ε → 0 limit results. This was originally
done for double intersections of Brownian motion by Varadhan [14], and gave rise to a large literature, see Bass and
Khoshnevisan [1], Dynkin [2], Le Gall [3–5] and Rosen [7,8,10–12].

In this paper we are concerned with one dimensional Brownian motion. In this case, as we show below, the limit

αk(x2, x3, . . . , xk; t) = lim
ε→0

αk,ε(x2, x3, . . . , xk; t) (1.2)

exists a.s. Although, as we will see, αk(x2, x3, . . . , xk; t) is almost surely continuous, it is not C1 in the spatial variable.
It is here that renormalization enters in the one dimensional case.

Let

g(x) =
∫ ∞

0
e−t/2pt(x)dt = e−|x|, (1.3)

where pt (x) is the Brownian density function. We define the renormalized k-fold intersection local time for x =
(x2, . . . , xk) ∈ Rk−1 by

γk(x; t) =
∑

A⊆{2,...,k}
(−1)|A|

(∏
j∈A

g(xj )

)
αk−|A|(xAc ; t), (1.4)

where for any B = {i1 < · · · < i|B|} ⊆ {2, . . . , k}
xB = (xi1, xi2, . . . , xi|B|). (1.5)

Here, we use the convention α1(t) = t . Simple combinatorics then show that

αk(x; t) =
∑

A⊆{2,...,k}

(∏
j∈A

g(xj )

)
γk−|A|(xAc ; t). (1.6)

The renormalization (1.4) used here is similar to that used in [11] and [1] for two dimensional Brownian motion, but
in that case g(x) = ∫ ∞

0 e−t/2pt(x)dt is infinite when x = 0, compare (1.3). One key result of those papers is that
γk(x; t) has a continuous extension from (R2 − {0})k−1 × R+ to (R2)k−1 × R+.

Here is our main result.

Theorem 1. For Brownian motion in R1

αk(x; t) = lim
ε→0

αk,ε(x; t) (1.7)

exists and is jointly continuous a.s. Furthermore, γk(x; t) is differentiable in x and ∇xγk(x; t) is jointly continuous
with probability 1.

For k = 2, this was established in [9] by very different techniques. It seems impossible to use those techniques for
k > 3.

In [13] we use Theorem 1 to give a simple proof of the CLT for the L2 modulus of continuity of local time.
Note that g(x) is continuously differentiable for x �= 0. Equation (1.6) then exhibits precisely the non-

differentiability of αk(x; t). This justifies our choice of renormalization (1.4). Simple combinatorics show that we
obtain a similar result if we add any C1 function to g(x). We have chosen g(x) as a potential density to simplify our
proofs.

Our paper is organized along the lines of [11]. That paper was concerned with the continuity of γk(x2, x3, . . . , xk; t)
in two dimensions, for Brownian motion and stable processes. Our challenge here is to study differentiability, and for
ease of exposition we consider only Brownian motion. After laying the groundwork in Section 2, we establish the exis-
tence and almost sure continuity of αk(x2, x3, . . . , xk; ζ ) in Section 3, where ζ is an independent mean-2 exponential
random variable. In Section 4 we show that the renormalized k-fold intersection local time γk(x2, x3, . . . , xk; ζ ) is
almost surely differentiable with a continuous derivative, again at an independent exponential time. In Section 5 we
use martingale techniques to obtain a.s. joint continuty.
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2. Intersection local times: moments

Let Wt denote Brownian motion in R1 with transition densites pt(x). In this section we introduce approximate inter-
section local times for Wt and present formulas for the expectations of their moments.

Let f denote a smooth positive function supported on [−1,1], such that
∫

f (x)dx = 1, and for any ε > 0 let

fε(y) = 1

ε
f

(
y

ε

)

and fε,x(y) = fε(y − x). We define the approximate intersection local time of order k as

αk,ε(x2, x3, . . . , xk; t)

=
∫

· · ·
∫

{0≤t1≤···≤tk≤t}

k∏
j=2

fε,xj
(Wtj − Wtj−1)dt1 · · · dtk. (2.1)

We often abbreviate this as αk,ε(x; t) where x = (x2, x3, . . . , xk) ∈ Rk−1. Let g(x) = ∫ ∞
0 e−t/2pt (x)dt = e−|x| denote

the Green’s function for Wt , and let ζ denote a mean-2 exponential random variable independent of Wt . The following
follows appear in [11], Section 2, and are reproduced here for the convenience of the reader. The first formula follows
easily from the Markov property for Wt .

Lemma 1.

E

(
n∏

i=1

αki,εi

(
xi; ζ ))

=
∑
v∈V

∫ n∏
i=1

ki∏
j=2

fεi ,x
i
j

(
yi
j − yi

j−1

) k∏
p=1

g(wv(p) − wv(p−1))dw1 · · · dwk, (2.2)

where xi = (xi
2, x

i
3, . . . , x

i
ki

), k = ∑n
i=1 ki , (w1, . . . ,wk) = (y1, . . . , yn) ∈ (R1)k and V is the set of permutations v of

{1,2, . . . , k} such that whenever wv(p) = yi
j ,wv(p̃) = yi

j̃
we have p > p̃ ⇐⇒ j > j̃ .

A change of variables leads to the following more useful formula.

Lemma 2.

E

(
n∏

i=1

αki,εi

(
xi; ζ ))

=
∑
s∈S

∫ n∏
i=1

ki∏
j=2

f
(
yi
j

) k∏
p=1

g

(
zs(p) +

c(p)∑
j=2

(
εs(p)y

s(p)
j + x

s(p)
j

)

−
(

zs(p−1) +
c(p−1)∑
j=2

(
εs(p−1)y

s(p−1)
j + x

s(p−1)
j

)))
dyi

j dz1 · · · dzn, (2.3)

where xi = (xi
2, x

i
3, . . . , x

i
ki

), k = ∑n
i=1 ki , S is the set of mappings s : {1,2, . . . , k} �→ {1, . . . , n} such that |s−1(i)| =

ki,∀1 ≤ i ≤ n, and c(p) = |{u ≤ p | s(u) = s(p)}|.
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3. Intersection local times: existence and continuity at exponential times

We first consider the intersection local time αk at an independent mean-2 exponential time ζ .
A function Zε(x) indexed by ε ∈ (0,1] and x in a topological space S will be said to converge locally uniformly

in x as ε → 0 if for any compact K ∈ S , Zε(x) converges uniformly in x ∈ K as ε → 0.

Theorem 2. Almost surely, αk,ε(x; ζ ) converges locally uniformly in x as ε → 0. Hence

αk(x; ζ ) := lim
ε→0

αk,ε(x; ζ ) (3.1)

is continuous.
Furthermore, the occupation density formula holds:∫

Φ(x2, . . . , xk)αk(x2, . . . , xk; ζ )dx2 · · · dxk

=
∫

· · ·
∫

{0≤t1≤···≤tk≤ζ }
Φ(Wt2 − Wt1, . . . ,Wtk − Wtk−1)dt1 · · · dtk (3.2)

for all bounded Borel measurable functions Φ on Rk−1.

Remark 1. The occupation density formula (3.2) shows that αk(x; ζ ) is independent of the particular f used to define
αk,ε(x; ζ ).

Proof of Theorem 2. We will show that for n even and γ > 0 we can find δ > 0 such that

E
({

αk,ε(x; ζ ) − αk,ε′
(
x′; ζ )}n) ≤ cn,γ

∣∣(ε, x) − (
ε′, x′)∣∣δn/2 (3.3)

for all 0 < ε,ε′ ≤ γ /2 and all x, x′ ∈ Rk−1. The multidimensional version of Kolmogorov’s lemma, [6], Chapter 1,
Theorem 2.1, then gives us that for any δ′ < δ and any M < ∞ we have

∣∣αk,ε(x; ζ ) − αk,ε′
(
x′; ζ )∣∣ ≤ cn,γ (ω)

∣∣(ε, x) − (
ε′, x′)∣∣δ′/2 (3.4)

for all rational 0 < ε, ε′ ≤ γ /2 and all rational x, x′ ∈ Rk−1, |x|, |x′| ≤ M . Since αk,ε(x; ζ ) is clearly continuous as
long as ε > 0, this will establish the statements concerning (3.1).

To establish (3.3) we first handle the variation in ε. If h is a function of ε, let

	ε,ε′h = h(ε) − h
(
ε′).

From Lemma 2 we have

E

(
n∏

i=1

{
αk,εi

(
xi; ζ ) − αk,ε′

i

(
xi; ζ )}n

)

=
n∏

i=1

	εi,ε
′
i
E

(
n∏

i=1

αk,εi

(
xi; ζ ))

=
n∏

i=1

	εi,ε
′
i

∑
s∈S

∫ n∏
i=1

k∏
j=2

f
(
yi
j

) nk∏
p=1

g

(
zs(p) +

c(p)∑
j=2

(
εs(p)y

s(p)
j + x

s(p)
j

)

−
(

zs(p−1) +
c(p−1)∑
j=2

(
εs(p−1)y

s(p−1)
j + x

s(p−1)
j

)))
dyi

j dz1 · · · dzn, (3.5)
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where we eventually set all (εi, ε
′
i ) = (ε, ε′). We expand this as a sum of many terms using

	ε,ε′(uv) = (	ε,ε′u)v(ε) + u
(
ε′)(	ε,ε′v) (3.6)

so that each term contains for each 1 ≤ i ≤ n a single difference of the form 	εi,ε
′
i
g. Since each g factor in (3.5)

involves at most two i’s, whenever our procedure gives two differences involving the same g factor we write one
of the differences as two terms. The upshot is that after setting all (εi, ε

′
i ) = (ε, ε′), the expectation E({αk,ε(x; ζ ) −

αk,ε′(x; ζ )}n) can be written as a sum of many terms of the form appearing in (2.3) except that at least n/2 of the g

factors have been replaced by factors of the form

	ε,ε′,j g

(
zs(p) +

c(p)∑
j=2

(
ε̃s(p)y

s(p)
j + x

s(p)
j

) −
(

zs(p−1) +
c(p−1)∑
j=2

(
ε̃s(p−1)y

s(p−1)
j + x

s(p−1)
j

)))
, (3.7)

where ε̃ can be variously ε, ε′ and the notation 	ε,ε′,j denotes a difference between two g factors of the above form

in which one of the ε’s, multiplying y
s(p)
j or y

s(p−1)
j has been replaced by ε′.

Our result then follows using∣∣g(x) − g(y)
∣∣ = ∣∣e−|x| − e−|y|∣∣ ≤ |x − y|(g(x) + g(y)

)
(3.8)

for the variation in ε, and the variation in x is handled similarly. This completes the proof of (3.1).
To prove the occupation density formula (3.2) we note that∫

Φ(x2, . . . , xk)αk,ε(x2, . . . , xk; ζ )dx2 · · · dxk

=
∫

· · ·
∫

{0≤t1≤···≤tk≤ζ }
Φ ∗ Fε(Wt2 − Wt1, . . . ,Wtk − Wtk−1)dt1 · · · dtk, (3.9)

where Fε(x2, . . . , xk) = ∏k
j=2 fε(xj ). Hence, by what we have established above, we can take the ε → 0 limit in (3.9)

to yield (3.2) whenever Φ is a bounded continuous function. The monotone convergence theorem then allows us to
obtain (3.2) for all bounded Borel measurable Φ . This completes the proof of Theorem 2. �

4. Renormalized intersection local times: continuous differentiability at exponential times

We have defined the renormalized k-fold intersection local time for x = (x2, . . . , xk) ∈ Rk−1 by

γk(x; t) =
∑

A⊆{2,...,k}
(−1)|A|

(∏
j∈A

g(xj )

)
αk−|A|(xAc ; t), (4.1)

where for any B = {i1 < · · · < i|B|} ⊆ {2, . . . , k}
xB = (xi1, xi2, . . . , xi|B|). (4.2)

Here, we use the convention α1(t) = t . Define the approximate renormalized k-fold intersection local time for x =
(x2, . . . , xk) ∈ Rk−1 by

γk,ε(x; t) =
∑

A⊆{2,...,k}
(−1)|A|

(∏
j∈A

gε(xj )

)
αk−|A|,ε(xAc ; t), (4.3)

where gε(x) = fε ∗ g(x). Clearly γk,ε(x; ζ ) ∈ C1 for fixed ε > 0 so that for any yl, zl

γk,ε(x2, . . . , xl−1, zl, xl+1, . . . , xk; ζ )

− γk,ε(x2, . . . , xl−1, yl, xl+1, . . . , xk; ζ ) =
∫ zl

yl

∂

∂xl

γk,ε(x; ζ )dxl. (4.4)
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By Theorem 2 and the continuity of g it follows that almost surely γk,ε(x; ζ ) → γk(x; ζ ) as ε → 0, locally uni-
formly in x. It follows from the next theorem that ∂

∂xl
γk,ε(x; ζ ) → ψk(x; ζ ) as ε → 0, locally uniformly in x, for

some continuous ψk(x). Hence it follows from (4.4) that for any yl, zl

γk(x2, . . . , xl−1, zl, xl+1, . . . , xk; ζ )

− γk(x2, . . . , xl−1, yl, xl+1, . . . , xk; ζ ) =
∫ zl

yl

ψk(x; ζ )dxl. (4.5)

This implies that γk(x; ζ ) is differentiable with respect to xl , and ∂
∂xl

γk(x; ζ ) = ψk(x; ζ ), hence is continuous in x.

Theorem 3. Almost surely, for each 2 ≤ l ≤ k

∂

∂xl

γk,ε(x; ζ ) (4.6)

converges locally uniformly as ε → 0. Hence the limit is continuous in x.

Proof. As in the proof of Theorem 2 it suffices to show that for n even and γ > 0 we can find δ > 0 such that

E

({
∂

∂xl

γk,ε(x; ζ ) − ∂

∂xl

γk,ε′(x′; ζ )

}n)
≤ cn,γ

∣∣(ε, x) − (
ε′, x′)∣∣δn/2 (4.7)

for all 0 < ε,ε′ ≤ γ /2 and all x, x′ ∈ Rk−1.
Note that

∂

∂xl

αk,ε(x2, x3, . . . , xk; t)

= −
∫

· · ·
∫

{0≤t1≤···≤tk≤t}

l−1∏
j=2

fε(Wtj − Wtj−1 − xj )

× (fε)
′(Wtl − Wtl−1 − xl)

k∏
j=l+1

fε(Wtj − Wtj−1 − xj )dt1 · · · dtk. (4.8)

Note also that since g(x) is differentiable for all x �= 0, with g′(x) = −g(x) for x > 0 and g′(x) = g(x) for x < 0, it
follows that for any compactly supported f ∈ C1(R1)∫

f ′(x)g(x)dx

= lim
ε→0

(∫ −ε

−∞
f ′(x)g(x)dx +

∫ ε

−ε

f ′(x)g(x)dx +
∫ ∞

ε

f ′(x)g(x)dx

)

= lim
ε→0

(
f (−ε)g(−ε) −

∫ −ε

−∞
f (x)g(x)dx

)
+ lim

ε→0

∫ ε

−ε

f ′(x)g(x)dx

+ lim
ε→0

(
−f (ε)g(ε) +

∫ ∞

ε

f (x)g(x)dx

)

= −
∫ 0

−∞
f (x)g(x)dx +

∫ ∞

0
f (x)g(x)dx

= −
∫ ∞

−∞
f (x)g′(x)dx, (4.9)
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where for definiteness we set g′(0) = 0. Hence as in (2.3), and using the product rule for differentiation

E

(
n∏

i=1

∂

∂xi
l

αki ,εi

(
xi; ζ ))

= (−1)n
∑
s∈S

∫ n∏
i=1

(
ki∏

j=2,j �=l

fεi

(
yi
j

))
(fεl

)′
(
yi
l

)

×
k∏

p=1

g

(
zs(p) +

c(p)∑
j=2

(
y

s(p)
j + x

s(p)
j

) −
(

zs(p−1) +
c(p−1)∑
j=2

(
y

s(p−1)
j + x

s(p−1)
j

)))
dyi

j dz1 · · · dzn

=
∑

s∈S,a∈A
(−1)ā2

∫ n∏
i=1

ki∏
j=2

fεi
(yi

j )

×
nk∏

p=1

g(a1(p)+a2(p))

(
zs(p) +

c(p)∑
j=2

(
y

s(p)
j + x

s(p)
j

)

−
(

zs(p−1) +
c(p−1)∑
j=2

(
y

s(p−1)
j + x

s(p−1)
j

)))
dyi

j dz1 . . . dzn, (4.10)

where g(0) = g,g(1) = g′, g(2) = g′′, and A is the set of maps a = (a1, a2) : [1, . . . , kn] �→ {0,1} × {0,1} such that:

• ∑nk
p=1 a1(p) + a2(p) = n,

• for each 1 ≤ i ≤ n

nk∑
p=1

a1(p)1{s(p)=i} + a2(p)1{s(p−1)=i} = 1,

• if a1(p) = 1, then c(p) ≥ l,
• if a2(p) = 1, then c(p − 1) ≥ l.

In other words, if s(p) = i then a1(p) = 1 if and only if, after using the product rule for differentiation, the pth g

factor is the only g factor to which ∂

∂yi
l

has been applied. Similarly, if s(p − 1) = i then a2(p) = 1 if and only if, after

using the product rule for differentiation, the pth g factor is the only g factor to which ∂

∂yi
l

has been applied. In (4.10),

ā2 = ∑nk
p=1 a2(p).

Then by scaling

E

(
n∏

i=1

∂

∂xi
l

αki ,εi

(
xi; ζ ))

=
∑

s∈S,a∈A
(−1)ā2

∫ n∏
i=1

ki∏
j=2

f
(
yi
j

)

×
k∏

p=1

g(a1(p)+a2(p))

(
zs(p) +

c(p)∑
j=2

(
εs(p)y

s(p)
j + x

s(p)
j

)

−
(

zs(p−1) +
c(p−1)∑
j=2

(
εs(p−1)y

s(p−1)
j + x

s(p−1)
j

)))
dyi

j dz1 · · · dzn, (4.11)
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where we eventually set all εi = ε.
We note in particular that if p is a “bad integer,” i.e. s(p) = s(p − 1), the g(m) factor in the above product has the

form

g(m)
(
εs(p)y

s(p)

c(p) + x
s(p)

c(p)

)
(4.12)

and in this case m = 0 or 1.
Let us now analyze the changes which occur in (4.11) when we replace the factor ∂

∂xr
l
αkr ,εr (x

r ; ζ ) by
∂

∂xr
l
{(∏j∈B gεr (x

r
j ))αkr−|B|,εr (x

r
Bc ; ζ )}. Keeping in mind (4.12) we see that now s runs over those s ∈ S such that

s(p) = r, c(p) ∈ B ⇒ s(p − 1) = r , i.e. such p’s are bad, and in the integrand on the right hand side of (4.11), aside
from the factor

∏
j∈B g(·)(εry

r
j + xr

j ), all other occurences of εry
r
i + xr

i , i ∈ B are deleted.
If h(x) is any function of the variable x we use the notation

Dxh = h(x) − h(0)

for the difference between the value of h at x and it’s value at x = 0. If s ∈ S we set Bs = {p|s(p) = s(p − 1)}. The
upshot is that we have

E

(
n∏

i=1

∂

∂xi
l

γki ,ε

(
xi; ζ ))

=
∑

s∈S,a∈A
(−1)ā2

∫ n∏
i=1

ki∏
j=2

f
(
yi
j

)( ∏
p∈Bs

g(a1(p)+a2(p))
(
εs(p)y

s(p)

c(p) + x
s(p)

c(p)

))

×
( ∏

p∈Bs

D
εs(p)y

s(p)
j +x

s(p)

c(p)

) ∏
p∈Bc

s

g(a1(p)+a2(p))

(
zs(p) +

c(p)∑
j=2

(
εs(p)y

s(p)
j + x

s(p)
j

)

−
(

zs(p−1) +
c(p−1)∑
j=2

(
εs(p−1)y

s(p−1)
j + x

s(p−1)
j

)))
dyi

j dz1 · · · dzn, (4.13)

where we eventually set all (εi, ε
′
i ) = (ε, ε′).

To establish (4.7) we first handle the variation in ε. By (4.13)

E

(
n∏

i=1

{
∂

∂xi
l

γki ,ε

(
xi; ζ ) − ∂

∂xi
l

γki ,ε
′
(
xi; ζ )})

=
n∏

i=1

	εi,ε
′
i

∑
s∈S,a∈A

(−1)ā2

∫ n∏
i=1

ki∏
j=2

f
(
yi
j

)

×
( ∏

p∈Bs

g(a1(p)+a2(p))
(
εs(p)y

s(p)

c(p) + x
s(p)

c(p)

))( ∏
p∈Bs

D
εs(p)y

s(p)
j +x

s(p)

c(p)

)

×
∏

p∈Bc
s

g(a1(p)+a2(p))

(
zs(p) +

c(p)∑
j=2

(
εs(p)y

s(p)
j + x

s(p)
j

)

−
(

zs(p−1) +
c(p−1)∑
j=2

(
εs(p−1)y

s(p−1)
j + x

s(p−1)
j

)))
dyi

j dz1 · · · dzn, (4.14)

where we eventually set all (εi, ε
′
i ) = (ε, ε′). We will show that this is bounded in absolute value by cn|ε − ε′|δn/2

for all |ε|, |ε′| ≤ γ . (At this stage, and for ease in generalizing to the variation in x, we allow ε, ε′ to be zero or
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negative.) Compared to our proof of Theorem 2, the main difficulty here comes from the fact that g′(x), g′′(x),
although uniformly bounded, are not continuous at x = 0. It is here that the operators

∏
p∈Bs

D
εs(p)y

s(p)
j +x

s(p)

c(p)

will play

a critical role.
In the following we let g� = g,g′ or g′′. Fix s ∈ S, a ∈ A. As in the proof of Theorem 2, the corresponding term

on the left-hand side of (4.14) can be written as a sum of many terms of the form appearing in (2.3) except that at least
n/2 of the g� factors have been replaced by factors of the form

	εi,ε
′
i
g�

(
zi + εiy

i
j − zi′ + bi

)
(4.15)

or

	εi,ε
′
i

(
g�

(
εiy

i
j + bi

)
Dεiy

i
j +bi

) = (
g�

(
εiy

i
j + bi

) − g�
(
ε′
iy

i
j + bi

))
Dεiy

i
j +bi

+ g�
(
ε′
iy

i
j + bi

)
(Dεiy

i
j +bi

− Dε′
i y

i
j +bi

). (4.16)

Furthermore, we can assume that any i which appears in (4.16) differs from from any i, i′ that appears in (4.15).
Otherwise, we simply write one of them as a difference of two terms and consider each separately.

Consider first

	εi,ε
′
i
g�

(
zi + εiy

i
j − zi′ + bi

)
= 	εi,ε

′
i
g�

(
zi + εiy

i
j − zi′ + bi

)
1{|zi+εiy

i
j −zi′+bi |≥4|εi−ε′

i ||yi
j |}

+ 	εi,ε
′
i
g�

(
zi + εiy

i
j − zi′ + bi

)
1{|zi+εiy

i
j −zi′+bi |≤4|εi−ε′

i ||yi
j |}. (4.17)

For the first term since we are away from the discontinuity of g�, we use (3.8) to obtain a factor of C|εi − ε′
i |,

since |yi
j | ≤ 1, while for the second term we use the fact that g� is bounded and hence the dzi integral contributes

a factor of C|εi − ε′
i |. In more detail, on the set {|zi + εiy

i
j − zi′ + bi | ≤ 4|εi − ε′

i ||yi
j |}, up to a bounded error, we

can replace every occurrence of zi in a g� factor by zi′ , and in particular we simply bound 	εi,ε
′
i
g�(zi + εiy

i
j −

zi′ + bi) by 2. This eliminates any occurrence of zi except in 1{|zi+εiy
i
j −zi′+bi |≤4|εi−ε′

i ||yi
j |} which we can write as

1{B(zi′−εiy
i
j −bi ),4|εi−ε′

i ||yi
j |)}(zi). We then do the the dzi integral, to obtain a bound of C|εi − ε′

i |.
A similar analysis holds for the last term in (4.16) since Dεiy

i
j +bi

− Dε′
iy

i
j +bi

= 	εiy
i
j +bi ,ε

′
i y

i
j +bi

, and we have not yet

“used” the dzi integral. Finally, for the term (g�(εiy
i
j +bi)−g�(ε′

iy
i
j +bi))Dεiy

i
j +bi

in (4.16), if |εiy
i
j +bi | ≥ |εi −ε′

i |
then εiy

i
j + bi and ε′

iy
i
j + bi have the same sign, so we can use (3.8) to obtain a factor of C|εi − ε′

i |, while if

|εiy
i
j + bi | ≤ |εi − ε′

i | we can use Dεiy
i
j +bi

and the dzi integral to obtain a factor of C|εiy
i
j + bi | ≤ C|εi − ε′

i |. �

5. Renormalized intersection local times: joint continuity of the spatial derivative

Recall the approximate kth order renormalized intersection local time.

γk,ε(x; t) =
∑

A⊆{2,...,k}
(−1)|A|

(∏
j∈A

gε(xj )

)
αk−|A|,ε(xAc ; t). (5.1)

Theorem 4. Almost surely, γε,k(x; t) and ∂
∂xl

γk,ε(x; t) converge locally uniformly on Rk−1 × R+ as ε → 0. Hence

γk(x; t) def= lim
ε→0

γε,k(x; t) (5.2)

is differentiable in x and ∇xγε,k(x; t) is continuous in (x, t) ∈ Rk−1 × R+.
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Proof. Let Yt denote Brownian motion killed at an independent mean-2 exponential time ζ . From now on, γε,k(x; t)
will be defined for the process Yt in place of Wt . Using Fubini’s theorem, it suffices as before to show that γε,k(x; t) and
∂

∂xl
γε,k(x; t) converge locally uniformly on Rk−1 ×[0, ζ ) as ε → 0 with probability 1. We will focus on ∂

∂xl
γε,k(x; t),

and leave the easier case of γε,k(x; t) to the reader.
If S is a subset of Euclidean space we will say that {Zε(x); (ε, x) ∈ (0,1] × S} converges rationally locally

uniformly on S as ε → 0 if for any compact K ∈ S , Zε(x) converges uniformly in x ∈ K as ε → 0 when re-
stricted to dyadic rational x, ε. We note that since ∂

∂xl
γε,k(x; t) for ε > 0 is continuous in ε, x, t , saying that

∂
∂xl

γε,k(x; t) converges locally uniformly or converges rationally locally uniformly on Rk−1 × [0, ζ ) as ε → 0 are
equivalent.

We know from Theorem 3 that ∂
∂xl

γε,k(x;∞) converges locally uniformly on Rk−1 as ε → 0 with probability 1.
Using martingale techniques we will see that the right continuous martingale

Γk,ε,l(x; t) def= E

{
∂

∂xl

γk,ε(x;∞)

∣∣∣Ft

}

converges rationally locally uniformly on Rk−1 × R+ as ε → 0 with probability 1. Γk,ε,l(x; t) is not the same as
∂

∂xl
γε,k(x; t), but we will see that they differ by terms of “lower order,” and we will be able to complete our proof by

induction. Given the tools we have developed so far in this paper, the proof is conceptually fairly straightforward, but
in order to treat the “lower order” terms systematically we need to introduce some notation. This we now proceed to
do.

We first define the approximate kth order generalized intersection local time

αk,ε(x2, x3, . . . , xk;φ; t)

=
∫

{0≤t1≤···≤tk≤t}

k∏
j=2

fε,xj
(Ytj − Ytj−1)φ(Ytk )dt1 · · · dtk (5.3)

and set

αk,ε(x2, x3, . . . , xk;φ) = αk,ε(x2, x3, . . . , xk;φ;∞).

αk,ε(x2, x3, . . . , xk;φ) is the approximate kth order generalized total intersection local time. For ease of notation in
later formulas, we also set

α1,ε(φ; t) =
∫

{0≤t1≤t}
φ(Yt1)dt1 (5.4)

and

α0,ε(φ; t) =
∫

φ(z)dz (5.5)

although α1,ε(φ; t) is independent of ε and α0,ε(φ; t) is independent of ε, t .
Observe that

E
{
αk,ε(x2, x3, . . . , xk;φ)|Ft

}
= αk,ε(x2, x3, . . . , xk;φ; t)

+
k−1∑
i=0

E

(∫
{0≤t1≤···≤ti≤t≤ti+1···≤tk}

k∏
j=2

fε,xj
(Ytj − Ytj−1)φ(Ytk )dt1 · · · dtk

∣∣∣Ft

)
(5.6)
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and for i ≥ 1

E

(∫
{0≤t1≤···≤ti≤t≤ti+1···≤tk}

k∏
j=2

fε,xj
(Ytj − Ytj−1)φ(Ytk )dt1 · · · dtk

∣∣∣Ft

)

=
∫

{0≤t1···≤ti≤t≤ti+1···≤tk}

i∏
j=2

fε,xj
(Ytj − Ytj−1)

× E

(
fε,xi+1

(
(Yti+1 − Yt ) + (Yt − Yti )

) k∏
j=i+2

fε,xj
(Ytj − Ytj−1)

× φ
(
(Ytk − Ytk−1) + · · · + (Yti+1 − Yt ) + Yt

)∣∣∣Ft

)
dt1 · · · dtk

=
∫

{0≤t1···≤ti≤t}

i∏
j=2

fε,xj
(Ytj − Ytj−1)fε,xi+1

(
zi+1 + (Yt − Yti )

)

×
k∏

j=i+2

fε,xj
(zj )φ(zi+1 + · · · + zk + Yt )

k∏
j=i+1

g(zj )dzj dt1 · · · dti

= αi,ε

(
x2, x3, . . . , xi;λk−i,ε[φ;xi+1, . . . , xk;Yt ]; t

)
, (5.7)

where

λk−i,ε[φ;xi+1, . . . , xk;u](v)

=
∫

fε,xi+1(zi+1 + u − v)

k∏
j=i+2

fε,xj
(zj )

× φ(zi+1 + · · · + zk + u)

k∏
j=i+1

g(zj )dzi+1 · · · dzk

=
∫

g(zi+1 + v − u)

k∏
j=i+2

g(zj )

× φ(zi+1 + · · · + zk + v)

k∏
j=i+1

fε,xj
(zj )dzi+1 · · · dzk. (5.8)

Similarly, for i = 0 we have

E

(∫
{0≤t≤t1···≤tk}

k∏
j=2

fε,xj
(Ytj − Ytj−1)φ(Ytk )dt1 · · · dtk

∣∣∣Ft

)

=
∫

{0≤t≤t1···≤tk}
E

(
k∏

j=2

fε,xj
(Ytj − Ytj−1)

× φ
(
(Ytk − Ytk−1) + · · · + (Yt1 − Yt ) + Yt

)∣∣∣Ft

)
dt1 · · · dtk
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=
∫ k∏

j=2

fε,xj
(zj )φ(z1 + · · · + zk + Yt )

k∏
j=1

g(zj )dzj

=
∫ (∫

g(v)φ(v + z2 + · · · + zk + Yt )

k∏
j=2

fε,xj
(zj )g(zj )dzj

)
dv

= α0,ε

(
λk,ε[φ;x2, . . . , xk;Yt ]; t

)
, (5.9)

where, recall our convention (5.5),

λk,ε[φ;x2, . . . , xk;u](v)

=
∫

g(v − u)φ(z2 + · · · + zk + v)

k∏
j=2

fε,xj
(zj )g(zj )dzj . (5.10)

By abuse of notation we can introduce a fictitious x1, and letting fε,x1(z1) denote δ(z1), the δ-function, we can write

λk,ε[φ;x2, . . . , xk;u](v)

=
∫

g(z1 + v − u)

k∏
j=2

g(zj )φ(z1 + z2 + · · · + zk + v)

k∏
j=1

fε,xj
(zj )dzj . (5.11)

Finally setting

λk,ε[φ;x1, . . . , xk;Yt ] =: λk,ε[φ;x2, . . . , xk;Yt ] (5.12)

this now takes the same form as (5.8) with i = 0. Then we can write

E
{
αk,ε(x2, x3, . . . , xk;φ)|Ft

}
= αk,ε(x2, x3, . . . , xk;φ; t)

+
k−1∑
i=0

αi,ε

(
x2, x3, . . . , xi;λk−i,ε[φ;xi+1, . . . , xk;Yt ]; t

)
. (5.13)

Setting

λk−i[φ; zi+1, . . . , zk;u](v)

= g(zi+1 + v − u)

k∏
j=i+2

g(zj )φ(zi+1 + · · · + zk + v) (5.14)

we have

λk−i,ε[φ;xi+1, . . . , xk;u](v)

=
∫

λk−i[φ; zi+1, . . . , zk;u](v)

k∏
j=i+1

fε,xj
(zj )dzi+1 · · · dzk. (5.15)

We next define the approximate kth order generalized renormalized intersection local time

γk,ε(x;φ; t) =
∑

A⊆{2,...,k}
(−1)|A|

(∏
j∈A

gε(xj )

)
αk−|A|,ε(xAc ;φ; t) (5.16)
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and set

γk,ε(x2, x3, . . . , xk;φ) = γk,ε(x2, x3, . . . , xk;φ;∞).

γk,ε(x2, x3, . . . , xk;φ) is the approximate kth order generalized total renormalized intersection local time. As before,
for ease of notation in later formulas, we also set

γ1,ε(φ; t) =
∫

{0≤t1≤t}
φ(Yt1)dt1

and

γ0,ε(φ; t) =
∫

φ(z)dz.

Using (5.13) we find that

E
{
γk,ε(x2, x3, . . . , xk;φ)|Ft

}
= γk,ε(x2, x3, . . . , xk;φ; t) +

∑
A⊆{2,...,k}

(−1)|A|
(∏

j∈A

gε(xj )

)

×
k−|A|−1∑

i=0

αi,ε

(
xAc(1), xAc(2), . . . , xAc(i−1);λk−|A|−i,ε[φ;xAc(i), . . . , xAc(k−|A|);Yt ]; t

)
, (5.17)

where

Ac = {
Ac(1) < Ac(2) < · · · < Ac

(
k − |A|)}.

We reorganize this by writing A as the disjoint union of

Ai = {
j ∈ A|j < Ac(i)

}
and Bi = {

j ∈ A|j > Ac(i)
}

so that

(−1)|A|
(∏

j∈A

gε(xj )

)

× αi,ε

(
xAc(1), xAc(2), . . . , xAc(i−1);λk−|A|−i,ε[φ;xAc(i), . . . , xAc(k−|A|);Yt ]; t

)
= (−1)|Ai |

( ∏
j∈Ai

gε(xj )

)

× αi,ε

(
xAc(1), xAc(2), . . . , xAc(i−1); (−1)|Bi |

( ∏
j∈Bi

gε(xj )

)
λk−|A|−i,ε[φ;xAc(i), . . . , xAc(k−|A|);Yt ]; t

)
.

It is now easy to see that if we fix 0 ≤ l ≤ k − 1 and sum in (5.17) over all A ⊆ {2, . . . , k} with Ac(i) = l + 1 we will
obtain

γl,ε

(
x2, x3, . . . , xl;Λk−l,ε[φ;xl+1, . . . , xk;Yt ]; t

)
, (5.18)

where

Λk−l,ε[φ;xl+1, . . . , xk;u](v)

=
∫

Λk−l[φ; zl+1, . . . , zk;u](v)

k∏
j=l+1

fε,xj
(zj )dzi+1 · · · dzk (5.19)
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with

Λk−l[φ; zl+1, . . . , zk;u](v)

=
∑

B⊆{l+2,...,k}
(−1)|B|

(∏
j∈B

g(zj )

)
λk−|B|−l,ε[φ;x{l+1,...,k}−B;u](v)

= g(zl+1 + v − u)
∑

B⊆{l+2,...,k}
(−1)|B|

(∏
j∈B

g(zj )

) ∏
j∈{l+2,...,k}−B

g(zj )

× φ

(
zl+1 +

∑
i∈{l+2,...,k}−B

zi + v

)

= g(zl+1 + v − u)

k∏
j=l+2

g(zj )
∑

B⊆{l+2,...,k}
(−1)|B|φ

(
zl+1 +

∑
i∈{l+2,...,k}−B

zi + v

)

= g(zl+1 + v − u)

k∏
j=l+2

g(zj )Dzj
φ(zl+1 + · · · + zk + v). (5.20)

The reader can check that this is consistent with our conventions when l = 0. Combining the above we obtain

E
{
γk,ε(x2, x3, . . . , xk;φ)|Ft

}
= γk,ε(x2, x3, . . . , xk;φ; t)

+
k−1∑
i=0

γi,ε

(
x2, x3, . . . , xi;Λk−i,ε[φ;xi+1, . . . , xk;Yt ]; t

)
. (5.21)

We will say that Λk−i[φ; zi+1, . . . , zk;u] is obtained from φ by adjunction of zi+1, . . . , zk;u.
In order to make the sequel easier to follow, we make some explanatory comments. We will use (5.21) inductively

to show that almost surely ∂
∂xl

γk,ε(x2, x3, . . . , xk; t) converges locally uniformly in x, t as ε → 0. The convergence of
the conditional expectation will follow easily from martingale inequalities and the techniques we have used to obtain
convergence at exponential times. When looking at the last line in (5.21) we encounter something new, the presence
of Yt . Rather than try to deal with this directly we prove that almost surely

∂

∂xl

γi,ε

(
x2, x3, . . . , xi;Λk−i,ε[φ;xi+1, . . . , xk;u]; t)

converges locally uniformly in x,u, t as ε → 0. Using the fact that Y is almost surely locally bounded, this will show
that almost surely

∂

∂xl

γi,ε

(
x2, x3, . . . , xi;Λk−i,ε[φ;xi+1, . . . , xk;Yt ]; t

)
converges locally uniformly in x, t as ε → 0 which will allow us to complete the induction step. This explains the
presence of u in (5.19) and (5.20). We will refer to such u as a “new” parameter, while the {x2, . . . , xk} will be referred
to as “old” parameters.

We will say that a function ϕy1,...,yn(v) is an admissable function of v with auxiliary parameters y1, . . . , yn if it can
be written in the form

ϕy1,...,yn(v) =
∏
j∈B0

g(yj )Dyj

p∏
i=1

g

(
v +

∑
v∈Bi

±yv

)
, (5.22)
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where Bi ⊆ {1, . . . , n},∀i = 0,1, . . . , p, and {1, . . . , n} = ⋃p

i=1 Bi . Here p is an arbitrary positive integer. If
ϕy1,...,yn(v) is of the above form we will say that ϕy1,...,yn(v) is of weight |B0|+p. Note that the weight of ϕy1,...,yn(v)

is the number of g factors in (5.22). We will also consider the function ϕ(v) ≡ 1 to be an admissable function of v (of
weight 0 and with no auxiliary parameters).

If ϕy1,...,yn(v) is an admissable function of v with auxiliary parameters y1, . . . , yn we will use the notation
ϕy1,...,yn;ε(v) to denote the function in which some of the auxiliary variables have been smoothed. More precisely,
we will say that ϕy1,...,yn;ε(v) is a totally ε-smoothed version of ϕy1,...,yn(v) if

ϕy1,...,yn;ε(v) =
∫

ϕy1+εz1,...,yn+εzn(v)
∏
i∈A

f (zi)dzi

∏
i∈Ac

dμ0(zi) (5.23)

for some subset A ⊆ {1, . . . , n} such that (with the notation of (5.22)) B0 ⊆ A and Bi ∩ A �= ∅ for all i = 1, . . . , p. In
other words, we require that each g factor in (5.22) contain at least one element of the set yj , j ∈ A. Here μ0 is the
Dirac measure which puts unit mass at the origin. It would be more precise to refer to the function defined in (5.23) as
ϕy1,...,yn;ε,A(v), but in order to avoid further cluttering of the notation, and because the actual nature of the set A will
be irrelevant for us, we shall simply drop it from the notation. The reader will note in the sequel that it is precisely the
“old” parameters which are integrated against an f . �

The next lemma assembles some facts about adjunction which follow easily from the definitions.

Lemma 3. Let ϕy1,...,yn(v) be an admissable function of v of weight q and auxiliary parameters y1, . . . , yn,
and let Λk−i[ϕy1,...,yn;xi+1, . . . , xk;u] denote the function in (5.20) obtained from ϕy1,...,yn(v) by adjunction of
xi+1, . . . , xk;u. Then:

1. Λk−i[ϕy1,...,yn;xi+1, . . . , xk;u](z) is an admissable function of z of weight q + k − i and auxiliary parameters
y1, . . . , yn, xi+1, . . . , xk, u.

2. If ϕy1,...,yn;ε(v) is a totally ε-smoothed version of ϕy1,...,yn(v), then the function Λk−i,ε[ϕy;ε;xi+1, . . . , xk;u] de-
fined in (5.19) is a totally ε-smoothed version of Λk−i[ϕy;xi+1, . . . , xk;u].

In the following, the notation ∇γi,ε(x;ϕy;ε) will denote the gradient with respect to x and y. In fact, we are not
interested in differentiating with respect to “new” parameters, but to avoid excessive notation we consider them also.

The next lemma generalizes Theorem 3.

Lemma 4. Let ϕy(z) be an admissable function of z of weight k − i and auxiliary parameters y = (y1, . . . , yj ) and
let ϕy;ε(z) be a totally ε-smoothed version of ϕy(z). Then there exists δ > 0 such that for each n and M < ∞ we can
find cn,M < ∞ such that

E

({
sup
FM

|∇γi,ε(x;ϕy;ε) − ∇γi,ε′(x′;ϕy′;ε′)|
|(ε, x, y) − (ε′, x′, y′)|δ

}n)
≤ cn,M, (5.24)

where supFM
is taken over all dyadic rational pairs (ε, x, y) �= (ε′, x′, y′) such that 0 < ε,ε′ ≤ 1 and |x|, |x ′|, |y|,

|y′| ≤ M .

Proof. According to [6], Chapter 1, Theorem 2.1, it suffices to show that there exists δ > 0 such that for each n and
M < ∞ we can find cn,M < ∞ such that

E
(∣∣∇γi,ε(x;ϕy;ε) − ∇γi,ε′

(
x′;ϕy′;ε′

)∣∣n) ≤ cn,M

∣∣(ε, x, y) − (
ε′, x′, y′)∣∣δn (5.25)

for all (ε, x, y), (ε′, x′, y′) such that 0 < ε, ε′ ≤ 1 and |x|, |x′|, |y|, |y′| ≤ M . Equation (5.25) follows as in the proof
of Theorem 3. �

Proof of Theorem 4 (continued). We will show by induction on i = 0,1, . . . , k that ∇γi,ε(x;ϕy;ε; t) converges
locally uniformly in (x, y, t) ∈ Rj+i−1 × [0, ζ ) as ε → 0 for all admissable functions ϕy(z) of z of weight k − i and
auxiliary parameters y = (y1, . . . , yj ).
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The case i = k and ϕy(z) ≡ 1 will prove our theorem.
Consider first the case of i = 0. We have to show that if ϕy(z) is an admissable function of z of weight k and

auxiliary parameters y = (y1, . . . , yj ) and ϕy;ε(z) is a totally ε-smoothed version of ϕy(z), then both

γ0,ε(x;ϕy;ε; t) ≡
∫

ϕy;ε(z)dz

and

∂

∂yl

γ0,ε(x;ϕy;ε; t) ≡
∫

∂

∂yl

ϕy;ε(z)dz

converge locally uniformly in y ∈ Rj as ε → 0. This follows as in the proof of Theorem 3.
Assume now that for all p < i, and for all admissable functions Φy(z) of z of weight k−p and auxiliary parameters

y = (y1, . . . , yj ′) we have that ∇γp,ε(x;Φy;ε; t) converges locally uniformly in (x, y, t) ∈ Rj ′+p−1 × [0, ζ ) as ε → 0
for any totally ε-smoothed version Φy;ε(z) of Φy(z). Let us show that if ϕy(z) is an admissable functions of z of
weight k − i and auxiliary parameters y = (y1, . . . , yj ), and ϕy;ε(z) is a totally ε-smoothed version of ϕy(z), then
∇γi,ε(x;ϕy;ε; t) converges locally uniformly in (x, y, t) ∈ Rj+i−1 × [0, ζ ) as ε → 0.

With FM as in Lemma 4, let Fm
M ;m = 1,2, . . . be an exhaustion of FM by a sequence of finite symmetric subsets.

(A set F of pairs (a, b) is symmetric if (a, b) ∈ F ⇒ (b, a) ∈ F ). Let us define the right continuous martingale

Γi,ε(x;ϕy;ε; t) = E
(∇γi,ε(x;ϕy;ε)|Ft

)
. (5.26)

By [6], Chapter II, Theorem 1.7, applied to the right continuous submartingale

Am
t = sup

Fm
M

|Γi,ε(x;ϕy;ε; t) − Γi,ε′(x′;ϕy′;ε′ ; t)|
|(ε, x, y) − (ε′, x′, y′)|δ (5.27)

we have that

E

({
sup

t
sup
Fm

M

|Γi,ε(x;ϕy;ε; t) − Γi,ε′(x′;ϕy′;ε′ ; t)|
|(ε, x, y) − (ε′, x′, y′)|δ

}n)

≤ E

({
sup
Fm

M

|∇γi,ε(x;ϕy;ε) − ∇γi,ε′(x′;ϕy′;ε′)|
|(ε, x, y) − (ε′, x′, y′)|δ

}n)

≤ E

({
sup
FM

|∇γi,ε(x;ϕy;ε) − ∇γi,ε′(x′;ϕy′;ε′)|
|(ε, x, y) − (ε′, x′, y′)|δ

}n)

≤ cn,M, (5.28)

where the last line used Lemma 4. Hence

E

({
sup

t
sup
FM

|Γi,ε(x;ϕy;ε; t) − Γi,ε′(x′;ϕy′;ε′ ; t)|
|(ε, x, y) − (ε′, x′, y′)|δ

}n)
≤ cn,M. (5.29)

In particular this shows that

sup
t

sup
F1,M

∣∣Γi,ε(x;ϕy;ε; t) − Γi,ε′(x;ϕy′;ε′ ; t)∣∣ ≤ C(ω)
∣∣ε − ε′∣∣δ, (5.30)

where F1,M denotes the set of dyadic rational (x, y) ∈ Rj+i−1 with |x|, |y| ≤ M . Thus, Γi,ε(x;ϕy;ε; t) converges
rationally locally uniformly on Rj+i−1 × R+ as ε → 0 with probability 1.
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It is easy to see that ∇γi,ε(x;ϕy;ε; t) is continuous in ε, x, y, t for ε > 0. Thus, as with ∇γε,k(x; t), saying that
∇γi,ε(x;ϕy;ε; t) converges locally uniformly or converges rationally locally uniformly as ε → 0 are equivalent.
By (5.21)

Γi,ε(x;ϕy;ε; t)
= ∇γi,ε(x2, x3, . . . , xi;ϕy;ε; t)

+
i−1∑
p=0

∇γp,ε

(
x2, x3, . . . , xp;Λi−p,ε[ϕy;ε;xp+1, . . . , xi;Yt ]; t

)
. (5.31)

Hence to show that ∇γi,ε(x;ϕy;ε; t) converges locally uniformly on Rj+i−1 × [0, ζ ) as ε → 0 with probability 1 it
suffices to show that for each p < i

∇γp,ε

(
x2, x3, . . . , xp;Λi−p,ε[ϕy;ε;xp+1, . . . , xi;Yt ]; t

)
converges locally uniformly on Rj+i−1 × [0, ζ ) as ε → 0 with probability 1. However, by Lemma 3, Λi−p,ε[ϕy;ε;
xp+1, . . . , xi;u] is a totally ε-smoothed version of Λi−p[ϕy;xp+1, . . . , xi;u], and the latter is an admissable function
of weight k − p with auxiliary variables y, xp+1, . . . , xi, u. Therefore, by our induction assumption,

∇γp,ε

(
x2, x3, . . . , xp;Λi−p,ε[ϕy;ε;xp+1, . . . , xi;u]; t)

converges locally uniformly in (x, y,u, t) ∈ Rj+i × [0, ζ ) as ε → 0 with probability 1. Since Yt is locally bounded
on [0, ζ ), this completes proof of Theorem 4. �
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