
www.imstat.org/aihp

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
2010, Vol. 46, No. 3, 888–893
DOI: 10.1214/09-AIHP334
© Association des Publications de l’Institut Henri Poincaré, 2010

Almost sure absolute continuity of Bernoulli convolutions
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Abstract. We prove an extension of a result by Peres and Solomyak on almost sure absolute continuity in a class of symmetric
Bernoulli convolutions.

Résumé. La continuité absolue, presque sûrement, est démontrée dans une classe de convolutions de Bernoulli symétrique, éten-
dant un résultat de Peres et Solomyak.
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1. Introduction

For λ ∈ (0,1), define the random series

Yλ =
∑
n≥1

±λn,

where the signs are chosen independently with probability 1/2. It is easy to see that the distribution νλ of Yλ is singular
for λ < 1/2, see Kershner and Wintner [2]. Wintner [7] noted that ν1/2 is uniform on [−1,1]. For Lebesgue almost
every 1/2 < λ < 1, Erdös conjectured that νλ is absolutely continuous with respect to the Lebesgue measure on R.
This conjecture has attracted a lot of attention during the years, and was finally settled by Solomyak [4] in 1995, who
also proved that the densities are in L2(R). A simpler proof was later given by Peres and Solomyak in [3].

In this paper we discuss one of the many possible applications of the techniques developed in the paper of Peres
and Solomyak. We will show absolute continuity statements for the distribution of the random series

Yλ =
∑
n≥1

±λϕ(n),

where, as above, the signs ± are chosen independently and with probability 1/2, and where the function ϕ : N → R is
assumed to satisfy

0 ≤ lim
n→∞

ϕ(n)

n
< ∞, (1)
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and some minor technical conditions. In particular, we treat the cases when ϕ(n) = n + r(n), where r is the logarithm
of a slowly varying function, and ϕ(n) = nα for 0 < α < 1 (see Example 1 and Example 3). If the limit in (1) is infinite
it follows that the measure νλ is singular, see e.g. [2], Criteria (10).

2. Bernoulli convolutions and examples

For a function ϕ : N → R and 0 < λ < 1 we consider the infinite convolution product of (δ−λϕ(n) + δλϕ(n) )/2 for n ≥ 1.
This convolution product converges to a measure νλ if and only if

∑
n≥1

λ2ϕ(n) < ∞, (2)

and the finiteness of (2) implies furthermore that this infinite convolution converges absolutely, i.e. the order of the
terms in the convolution is interchangeable (see e.g. Jessen and Wintner [1], Theorem 5 and Theorem 6). Let Ω =
{−1,1}N be the sequence space equipped with the product topology and μ the Bernoulli measure on Ω with the
weights (1/2,1/2). The measure νλ can be written as the push-forward of μ by the random series

Yλ(ω) =
∑
n≥1

ωnλ
ϕ(n), (3)

where ωn denotes the nth coordinate of an element ω in Ω . We are interested in the set of λ in the interval (0,1) for
which the measure νλ is absolutely continuous with respect to the Lebesgue measure m on R. Our first result deals
with the class of random series where

lim
n→∞ϕ(n + 1) − ϕ(n) = 0. (4)

Observe that for functions ϕ with the property (4), it follows that

lim
n→∞

ϕ(n)

n
= 0.

We begin by stating the following theorem.

Theorem 2.1. If ϕ : N → R satisfies property (4) and if there is a λ1 ∈ (0,1] such that, for all λ ∈ (0, λ1), condition (2)
is fulfilled then, for a.e. λ ∈ (0, λ1), the measure νλ induced by the random series (3) is absolutely continuous and has
an L2-density.

Example 1. If ϕ(n) = nα , 0 < α < 1, it follows immediately that the distribution of

Yλ =
∑
n≥1

±λnα

is absolutely continuous for a.e. λ ∈ (0,1), and that the density is in L2.

Example 2. Observe that the function ϕ(n) = n/ logn fulfills (4) and hence the distribution of

Yλ =
∑
n≥1

±λn/ logn

is absolutely continuous for a.e. λ ∈ (0,1), and the density is in L2.

The method used by Wintner in [5,6] and [7] gives a better result in Example 1 in the case when 0 < α < 1/2. In
fact, if 0 < α < 1/2, then the distribution of Yλ is absolutely continuous for all λ ∈ (0,1) and, furthermore, the density
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is smooth. Wintner considered the Fourier transform of the measure νλ which can be represented as a convergent
infinite product: ν̂λ(t) = ∏∞

n=1 cos(λϕ(n)t). Since cos(λϕ(n)t) ≤ 2/3 if 1 ≤ λϕ(n)t ≤ 2, it follows that

|ν̂λ(t)| ≤ (2/3)K(t),

where K(t) = #{n;1 ≤ λϕ(n)t ≤ 2}. In Example 1 a minor calculation yields that, for 0 < α < 1/2, (2/3)K(t) decreases
faster than polynomially and thus, νλ is absolutely continuous and the density is smooth. To guarantee a sufficiently
fast growing of K(t), the function ϕ(n) cannot grow too fast. The method seems to break down at α = 1/2. However,
by taking the slowly growing function ϕ(n) = logn, Wintner’s method applies and we see that the distribution of

Yλ =
∑
n≥1

± 1

nα

is absolutely continuous for all α > 1/2 and the density is smooth.

3. Absolute continuity of Bernoulli convolutions

Theorem 2.1 will be derived from the following result.

Theorem 3.1. Suppose τ : N → R is of the form τ(n) = βn + r(n), where the function r(n) satisfies (4). Then the
measure ηλ induced by the random series Zλ = ∑

n≥1 ±λτ(n), is absolutely continuous and has an L2-density, for a.e.
λ ∈ (2−1/β,2−2/3β).

Example 3. If τ(n) = n + nα , 0 < α < 1, it follows from Theorem 3.1 that, for a.e. λ ∈ (2−1,2−2/3), the distribution
of

Zλ =
∑
n≥1

±λn+nα

is absolutely continuous and the density is in L2.

Proof of Theorem 2.1. Let {nj ; j ≥ 1}, be a subset of N such that ϕ(nj+1) < ϕ(nj ), j ≥ 1, and such that for every
n ≥ 1 there is an j ≥ 1 with ϕ(n) = ϕ(nj ), i.e. the sequence nj should be thought of as the times when ϕ makes a
jump. Observe that we still have

lim
j→∞ϕ(nj+1) − ϕ(nj ) = 0. (5)

Let ϕ̃ : [1,∞) → R be the continuous function which satisfies ϕ̃(j) = ϕ(nj ) and which is linear on [j, j + 1],
j ≥ 1. Fix 0 < β < ∞ and set ψ(x) = ϕ̃−1(βx). Since ϕ̃(x + 1) − ϕ̃(x) → 0 as x → ∞, we can choose N0 such that
ψ(x + 1) − ψ(x) > 1, for x ≥ N0. Let [x] denote the integer part of the real number x. We split the random series Yλ

into two parts:

Yλ(ω) =
∑
j≥N0

ωn[ψ(j)]λ
ϕ̃([ψ(j)]) +

∑
n≥1

n/∈{n[ψ(j)];j≥N0}

ωnλ
ϕ(n)

=: Zλ(ω) + Rλ(ω).

Note that this is possible since the infinite convolution Yλ is absolutely convergent. We want to apply Theorem 3.1
to the function τ(n) = ϕ̃([ψ(n)]). Let r(n) = ϕ̃([ψ(n)]) − βn. By the definition of ψ , r(n) = ϕ̃([ψ(n)]) − ϕ̃(ψ(n))

which, by (5) tends to 0 as n → ∞. Hence, r(n) satisfies trivially condition (4). Let ηλ be the measure induced by the
random series Zλ. It follows from Theorem 3.1, that, for a.e. λ ∈ (2−1/β,2−2/3β), ηλ is absolutely continuous and has
an L2-density. The random variables Zλ and Rλ are independent. Hence, for a.e. λ ∈ (2−1/β,2−2/3β) ∩ (0, λ1), we
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can write the measure νλ as a convolution of two measures where one of them is an absolutely continuous measure
having an L2-density. Thus, the measure νλ itself is absolutely continuous and the density of νλ is in L2(R). Since
0 < β < ∞ was arbitrary we can fill out the whole interval (0, λ1), which concludes the proof of Theorem 2.1. �

Remark 1. We have already noted that a function r : N → R satisfying (4) also fulfills limn→∞ r(n)/n = 0. Observe
furthermore that property (4) implies:

lim
k→∞ r(k + j) − r(k) = 0 for all j ≥ 1

and

lim
k→∞

supj≥1 |r(k + j) − r(k)|
k

= 0.

4. Proof of Theorem 3.1

In [3], Peres and Solomyak studied power series of the form,

g(λ) = 1 +
∑
j≥1

bjλ
j , bj ∈ {−1,0,1},

for λ ∈ (0,1), and proved the following lemma:

Lemma 4.1. Suppose g is of the above form. There is a δ > 0, such that, if g(λ) < δ, for some λ in the interval
[0,2−2/3], then g′(λ) < −δ.

We will study slight modifications of these series. Let rk,j , k, j ≥ 1 be any sequence of real numbers, such that, for
every j ≥ 1,

rk,j → 0 as k → ∞ (6)

and

lim
k→∞

log+(supj≥1 |rk,j |)
k

= 0. (7)

Define

gk(λ) = 1 +
∑
j≥1

bjλ
j+rk,j = g(λ) +

∑
j≥1

bjλ
j (λrk,j − 1), (8)

where g(λ) = 1 + ∑
j≥1 bjλ

j . Using Lemma 4.1, we can prove:

Lemma 4.2. There is a positive constant δ′ and a positive integer K , such that, if k ≥ K and gk(λ) < δ′ for some λ

in [0,2−2/3], then g′
k(λ) < −δ′.

Proof. We have

g′
k(λ) =

∑
j≥1

(j + rk,j )bjλ
j−1+rk,j

= g′(λ) +
∑
j≥1

(j + rk,j )bjλ
j−1(λrk,j − 1) +

∑
j≥1

rk,j bjλ
j−1.
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Let δ be the constant in Lemma 4.1. Set δ′ = δ/2 and pick 0 < ε < δ/8. Since λ ≤ 2−2/3 < 1 and because of (7),
we can choose jε ≥ 1 such that

∣∣∣∣
∑
j≥jε

(j + rk,j )bjλ
j−1(λrk,j − 1)

∣∣∣∣ ≤ ε and

∣∣∣∣
∑
j≥jε

rk,j bjλ
j−1

∣∣∣∣ ≤ ε,

and
∣∣∣∣
∑
j≥jε

bjλ
j (λrk,j − 1)

∣∣∣∣ ≤ ε,

for all k ≥ 1. Furthermore, by condition (6), we can choose Kε ≥ 1 such that

∣∣∣∣∣
jε∑

j=1

(j + rk,j )bjλ
j−1(λrk,j − 1)

∣∣∣∣∣ ≤ ε and

∣∣∣∣∣
jε∑

j=1

rk,j bjλ
j−1

∣∣∣∣∣ ≤ ε,

and

∣∣∣∣∣
jε∑

j=1

bjλ
j (λrk,j − 1)

∣∣∣∣∣ ≤ ε,

for all k ≥ Kε . Note that gk(λ) < δ′ and k ≥ Kε implies, by (8),

g(λ) ≤ δ′ +
∣∣∣∣
∑
j≥1

bjλ
j (λrk,j − 1)

∣∣∣∣ ≤ δ′ + 2ε < δ.

Hence, if gk(λ) < δ′ and k ≥ Kε , by Lemma 4.1,

g′
k(λ) ≤ −δ +

∣∣∣∣
∑
j≥1

(j + rk,j )bjλ
j−1(λrk,j − 1)

∣∣∣∣ +
∣∣∣∣
∑
j≥1

rk,j bjλ
k−1

∣∣∣∣
≤ −δ + 4ε < −δ′. �

We can now finish the proof of Theorem 3.1. Let τ : N → R be as in Theorem 3.1. We can without loss of generality
assume that β = 1. The case for general β follows immediately from a simple scaling argument. The proof closely
follows the ideas outlined in [3]. Suppose ηλ is the push–forward of the Bernoulli measure on Ω under the map

Zλ(ω) =
∑
n≥1

ωnλ
τ(n).

Setting r(n) = τ(n)−n, we note that, by Remark 1, the sequence rk,j = r(k + j)− r(k) satisfies condition (6) and
(7). Let I denote the interval [λ0,2−2/3], where 2−1 < λ0 < 2−2/3, and let K and δ′ be the constants in Lemma 4.2. It
is enough to show that the distribution of the random series

Z̃λ(ω) =
∑
n≥K

ωnλ
τ(n)

is absolutely continuous, for a.e. λ ∈ I , and has an L2-density. Let

ΩK = {(ωK,ωK+1, . . .);ω ∈ Ω},
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and denote by μK the Bernoulli measure on ΩK . Following [3], we need to prove that

S = lim inf
r→0+

1

r

∫
ΩK

∫
ΩK

m

({
λ ∈ I ;

∣∣∣∣
∑
n≥K

(ωn − ω′
n)λ

τ(n)

∣∣∣∣ < r

})
dμK(ω)dμK(ω′) < +∞.

For k ≥ K , let Ω̃k denote the subset of elements (ω,ω′) in ΩK × ΩK such that ωj = ω′
j for all j ≤ k − 1, and

ωk 	= ω′
k . Note that

(μK × μK)(Ω̃k) = 2−(k+1)+K and τ(k + j) − τ(k) = j + rk,j .

We obtain

S ≤ lim inf
r→0+

1

r

∑
k≥K

2−(k+1)+K

∫
Ω̃k

m
({

λ ∈ I ; |gk(λ;ω,ω′)| < r2−1λ
−τ(k)
0

})
dμK(ω)dμK(ω′),

where

gk(λ;ω,ω′) = 1 +
∑
j≥1

bj (k;ω,ω′)λj+rk,j , bj (k;ω,ω′) ∈ {−1,0,1},

for (ω,ω′) ∈ Ω̃k . By Lemma 4.2, the functions gk satisfy a transversality condition on the interval I , and thus,

m
({

λ ∈ I ; |gk(λ;ω,ω′)| ≤ r2−1λ
−τ(k)
0

}) ≤ δ′−1rλ
−τ(k)
0 .

It follows that

S ≤ δ′−12K−1
∑
k≥K

2−kλ
−τ(k)
0 .

Note now that the right-hand side is finite since λ0 > 1/2 and τ(k)/k → 1 as k → ∞. Hence we have proved
Theorem 3.1.
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