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Abstract. In this paper, we consider Poincaré inequalities for non-Euclidean metrics on Rd . These inequalities enable us to de-
rive precise dimension free concentration inequalities for product measures. This technique is appropriate for a large scope of
concentration rate: between exponential and Gaussian and beyond. We give equivalent functional forms of these Poincaré type
inequalities in terms of transportation-cost inequalities and inf-convolution inequalities. Workable sufficient conditions are given
and a comparison is made with super Poincaré inequalities.

Résumé. Dans cet article, nous introduisons des inégalités de Poincaré pour des métriques non-euclidiennes sur R
d et nous mon-

trons qu’elles entraînent des inégalités de concentrations adimensionnelles pour les mesures produits. Cette technique nous permet
d’atteindre un spectre très large de taux de concentration, aussi bien sous et sur-gaussiens. Par ailleurs, nous montrons que ces
inégalités de Poincaré admettent des formes fonctionnelles équivalentes en termes d’inégalités de transport et d’inf-convolution.
Enfin, nous donnons des conditions suffisantes pour ces inégalités de Poincaré et nous les comparons aux inégalités super-Poincaré.
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1. Introduction

1.1. Poincaré inequality and concentration of measure

One says that a probability measure on a metric space (X , d) satisfies a Poincaré inequality also called spectral gap
inequality with the constant C, if for all locally Lipschitz function f , one has

Varμ(f ) ≤ C

∫
|∇f |2 dμ, (1.1)

where the length of the gradient is defined by

|∇f |(x) := lim sup
y→x

|f (x) − f (y)|
d(x, y)

(1.2)

(when x is not an accumulation point of X , one defines |∇f |(x) = 0).
It is well known since the works [1,2,12,23] that the inequality (1.1) implies dimension free concentration inequal-

ities for the product measures μn, n ≥ 1.
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For example, in [12], Ledoux and Bobkov proved that if μ verifies (1.1), then there exists a constant L depending
only on C such that for all subset A of X n with μn(A) ≥ 1/2,

∀h ≥ 0 μn
(
Ah
)≥ 1 − e−Lh, (1.3)

where the set Ah is the enlargement of A defined by

Ah =
{

y ∈ X n: inf
x∈A

n∑
i=1

α
(
d(xi, yi)

)≤ h

}
,

where α(u) = min(|u|, u2) for all u ∈ R (see [12], Corollary 3.2, and Section 2 of the present paper).
Inequalities such as (1.3) were first obtained by Talagrand in different articles using completely different techniques

(see e.g. [36]).
In this paper, one will say that a probability measure μ satisfies the classical Poincaré inequality with constant

C > 0 on R
d , if μ satisfies (1.1) on R

d equipped with its standard Euclidean norm | · |2. In that case, one will write
that μ satisfies the inequality SG(C), where SG stands for spectral gap. In all the sequel, Bp will denote the �p unit
ball of R

m: Bp = {x ∈ R
m: |x1|p + · · · + |xm|p ≤ 1}.

If μ satisfies the inequality SG(C) on R
d then (1.3) can be rewritten in a more pleasant way: for all subset A of

(Rd)n with μn(A) ≥ 1/2,

∀h ≥ 0 μn
(
A + √

hB2 + hB1
)≥ 1 − e−hL (1.4)

with a constant L depending on C and the dimension d . The archetypic example of a measure satisfying the classical
Poincaré inequality is the exponential measure on R

d νd
1 , where dν1(x) = 1

2 e−|x| dx. For this probability, (1.4) cannot
be improved (a version of (1.4) with sharp constants has been established by Talagrand in [34] see also Maurey [30],
Corollary 1). Thus (1.4) expresses that the probability measures μn concentrate at least as fast as the exponential
measure on (Rd)n.

Some probability measures concentrate faster than the exponential measure. For example, the standard Gaussian
measure γ m on R

m verifies for all A ⊂ R
m with γ m(A) ≥ 1/2,

∀h ≥ 0 γ m(A + hB2) ≥ 1 − e−h2/2. (1.5)

One cannot derive such a bound from the classical Poincaré inequality. The inequality (1.5) requires stronger tools.
For example, it is now well known that (1.5) follows from the Logarithmic-Sobolev inequality, introduced by Gross
in [24], which is strictly stronger than the classical Poincaré inequality (see [27], Chapter 5). Let us recall, that a
probability measure μ on R

d is said to satisfy the Logarithmic-Sobolev inequality with a constant C > 0, if

Entμ
(
f 2)≤ C

∫
|∇f |22 dμ (1.6)

holds for all locally Lipschitz function f on R
d , where the entropy functional is defined by

∀f ≥ 0 Entμ(f ) =
∫

f log(f )dμ −
(∫

f dμ

)
· log

(∫
f dμ

)
.

1.2. Changing the metric improves the concentration

The aim of this paper is to show that considering Poincaré inequality on R
d equipped with other metrics than the

Euclidean distance makes possible to reach a large scope of concentration properties including Gaussian or even
stronger behaviors. The metrics we are going to equip R

d with are of the form:

∀x, y ∈ R
d dω(x, y) =

[
d∑

i=1

∣∣ω(xi) − ω(yi)
∣∣2]1/2

, (1.7)

where, in all the paper, we will assume that ω : R → R is increasing and verifies:
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• ω is such that x 
→ ω(x)/x is nondecreasing on (0,+∞),

• ω is nonnegative on R
+,

• ω is such that ω(−x) = −ω(x), for all x ∈ R.

Note that the first assumption is verified as soon as ω is convex on R
+ with ω(0) = 0.

Definition 1.1. One says that a probability measure μ on R
d satisfies the inequality SG(ω,C) if μ satisfies the

Poincaré inequality (1.1) for the distance dω(·, ·) defined by (1.7) with the constant C > 0.

The following proposition gives examples of the variety of concentration rates enabled by our approach:

Proposition 1.2. Let ωp(x) = max(x, xp) on R
+ with ωp(−x) = −ωp(x) for all x ∈ R.

Suppose that μ satisfies the inequality SG(ωp,C) on R
d for some C > 0.

If p ∈ [1,2], then for all n ≥ 1 and all A ⊂ (Rd)n with μn(A) ≥ 1/2,

∀h ≥ 0 μn
(
A + 2

√
hB2 + 2h1/pBp

)≥ 1 − e−Lh. (1.8)

If p ≥ 2, then for all n ≥ 1 and all A ⊂ (Rd)n with μn(A) ≥ 1/2,

∀h ≥ 0 μn
(
A + 2

√
hB2 ∩ 2h1/pBp

)≥ 1 − e−Lh, (1.9)

where L is a constant depending only on C and the dimension d ; one can take L = α( 1√
Cκ

)/(16d), where κ =√
18e

√
5.

This result will be easily deduced from (1.3) and from an elementary comparison between the metric dωp(·, ·) and
the norms | · |p .

This paper will provide a lot of sufficient conditions for the inequalities SG(ω,C). Let us just say for the moment
that, in particular, for all p ∈ [1,+∞), the probability measure dνp(x) = 1

Zp
e−|x|p dx verifies SG(ωp,C) for some C

on R. For these νp one thus formally recovers a famous result by Talagrand ([35], Theorem 2.4). Let us emphasize
here that the above proposition only gives an example of the concentration results we can obtain with this approach.
It is for instance possible to derive adapted concentration results for fast decreasing probabilities such as dμ(x) =
1
Z

exp(− exp(x2))dx.
Before presenting in details our results, let us outline some of the positive features of the inequalities SG(ω, ·):

• They enjoy the classical properties of Poincaré inequalities: tensorization and stability under bounded perturbation.
• A lot of workable sufficient conditions are available. In dimension one, one proves a necessary and sufficient con-

dition.
• A large variety of Talagrand’s like concentration inequalities can be obtained. Moreover it is interesting to note that

the same family of functional inequalities yields as well sub-Gaussian and super-Gaussian estimates.
• These inequalities are weak. For example, we are going to show that for all p ∈ (1,2] the Poincaré inequality

SG(ωp, ·) is strictly weaker than the Latała–Oleszkiewicz inequality LO(p, ·) defined below and gives the same
kind of concentration.

• Finally, inequalities SG(ω, ·) are equivalent to certain transportation-cost inequalities and inf-convolution inequal-
ities. As a byproduct, our paper furnishes new results for these inequalities.

1.3. About the literature

In recent years, several authors developed many different tools in order to obtain dimension free concentration es-
timates such as (1.8) and (1.9) for 1 < p ≤ 2 (see e.g. [5,7,8,19,25,26,37]) and p > 2 [13,14,17,18,21,39]. It will
be a difficult task to give a complete summary of these various attempts. We will focus on four important func-
tional approaches to the concentration of measure phenomenon: the Latała–Oleszkiewicz inequalities, the modified
Logarithmic-Sobolev inequalities, the super Poincaré inequalities and the transportation-cost inequalities.
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The Latała–Oleszkiewicz inequalities. We have already indicate how the concentration inequalities (1.8) for p = 1
and p = 2 can be derived from the classical Poincaré inequality and the Logarithmic-Sobolev inequality (1.6) re-
spectively. In [25], Latała and Oleszkiewicz proposed a family of inequalities interpolating between Poincaré and
Log-Sobolev. These inequalities are defined as follows. Let p ∈ [1,2], one will say that a probability measure μ on
R

d satisfies the inequality LO(p,C) if

sup
a∈(1,2)

∫
f 2 dμ − (

∫ |f |a dμ)2/a

(2 − a)2(1−1/p)
≤ C

∫
|∇f |22 dμ, (1.10)

holds for all f smooth enough. For p = 1, the inequality (1.10) is Poincaré inequality SG(C) and for p = 2 it
is equivalent to the Logarithmic-Sobolev inequality (see [25], Corollary 1). The LO(p,C) inequalities on R were
completely characterized by Barthe and Roberto in [7]. Several extensions of this inequality were considered (see e.g.
[41] or [5]). According to [25], Theorem 1, if μ is a probability measure on R

d satisfying LO(p,C), then there is a
constant L > 0 such that μn verifies the concentration inequality (1.8). So, roughly speaking, if μ verifies LO(p,C)

it concentrates independently of the dimension like dνp(x) = 1
Zp

e−|x|p dx, p ∈ [1,2].
Modified Logarithmic-Sobolev inequalities. These inequalities first appear in a paper of Bobkov and Ledoux [11].

Let H : R → R+ be a convex function; one says that a probability μ on Rd verifies the modified Logarithmic-Sobolev
inequality LS(H,C), if

Entμ
(
f 2)≤ C

∫ d∑
i=1

H

(
∂if

f

)
f 2 dμ, (1.11)

holds for all positive and locally Lipschitz function f . When H(x) = x2, the preceding inequality is simply the
Logarithmic-Sobolev inequality, and if H(x) = x2 for |x| ≤ 1 and +∞ otherwise, the resulting inequality was shown
to be equivalent to the Poincaré inequality (see [12], Theorem 3.1).

• Let p ≥ 2 and consider Hq(x) = |x|q with 1/p + 1/q = 1; the inequality LS(Hq,C) was studied by Bobkov and
Ledoux in [13] and by Bobkov and Zegarlinski in [14], where a complete characterization on R was achieved (see
[14], Theorem 5.3). This inequality is associated to super-Gaussian concentration. More precisely, if μ verifies
LS(Hq,C) then for all subset A of (Rd)n with μn(A) ≥ 1/2,

∀t ≥ 0 μn
(
A + t1/pBp

)≥ 1 − e−Lt ,

where L is independent of n. For p ≥ 2, the measure dνp(x) = 1
Zp

e−|x|p dx verifies LS(Hq,C) for some C and
1/p + 1/q = 1.

• Let p ∈ [1,2] and consider Hq(x) = max(x2, |x|q) with 1/p + 1/q = 1. The family LS(Hq,C) was first studied
by Gentil, Guillin and Miclo in [19] where it was shown that LS(Hq,C) was fulfilled by dνp(x) = 1

Zp
e−|x|p dx

for p ∈ [1,2] and 1/p + 1/q = 1. It was recently completely characterized on the real line by Barthe and Roberto
(see [5], Theorem 10). As shown in [19] or [5], Example 31, if μ verifies LS(Hq,C) for some C then it verifies
the concentration inequality (1.8) for some L > 0. Other choices of H were considered in [5] and a general con-
centration inequality established (see [5], Theorem 29, and the remarks after). These results are available under the
assumption that H(x)/x2 is increasing. The resulting concentrations inequalities are thus always sub-Gaussian.

The super Poincaré inequality. Let β : [1,+∞) → R
+ be a nonincreasing function; one says that a probability μ

on R
d verifies the super Poincaré inequality with the function β if

∀s ≥ 1
∫

f 2 dμ ≤ β(s)

∫
|∇f |22 dμ + s

(∫
|f |dμ

)2

, (1.12)

holds true for all locally Lipschitz function f . If μ verifies (1.12), one will write for short that μ satisfies the inequality
SP(β). Super Poincaré inequalities were introduced by Wang in [39]. They are of great interest in spectral theory or
for isoperimetric problems (see [6]). Another nice feature of this family is that several other functional inequalities
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are encoded among it, i.e. correspond to specific choices of β . For example, defining for all p ≥ 1, βp(s) = (log(e +
s))−2(1−1/p), then the Latała–Oleszkiewicz inequality LO(p,C), p ∈ [1,2] is equivalent to SP(C̃βp) for some C̃ as
shown in [41], Corollary 1.2. The same is true for F -Sobolev inequalities (see [39], Theorems 3.1 and 3.2) or weak
Logarithmic-Sobolev inequalities (see [15]). For a general β only quite rough concentration estimates can be deduced
from SP(β). For example, if μ verifies the inequality SP(Cβp) for some C with the function βp defined above, then∫

ea|x|p dμ(x) < +∞ for some a > 0. The general case is more intricate (see [39], Theorem 6.2, or Proposition 5.2 of
the present paper). Moreover, unlike the functional inequalities presented above, the super Poincaré inequality does
not tensorize properly and thus the concentration bounds may be affected by the dimension.

The transportation-cost inequalities. Transportation-cost inequalities were first introduced by Marton and Tala-
grand in [28,29,37]. In these inequalities one tries to bound an optimal transportation-cost in the sense of Kantorovich
by the relative entropy functional. More precisely, if c : X × X → R+ is a measurable map on some metric space X ,
the optimal transportation-cost between ν and μ ∈ P (X ) (the set of probability measures on X ) is defined by

Tc(ν,μ) = inf
π∈P(ν,μ)

∫
c(x, y)dπ, (1.13)

where P(ν,μ) is the set of probability measures π on X × X such that π(dx, Y ) = ν(dx) and π(X ,dy) = μ(dy).
One says that μ satisfies the transportation-cost inequality with the cost function c(x, y) if

∀ν ∈ P (X ) Tc(ν,μ) ≤ H(ν|μ), (1.14)

where H(ν|μ) denotes the relative entropy of ν with respect to μ and is defined by H(ν|μ) = ∫ log( dν
dμ

)dν if ν is
absolutely continuous with respect to μ and H(ν|μ) = +∞ otherwise. Transportation-cost inequalities are known to
have good tensorization properties and to yield concentration results independent of the dimension (all these facts are
recalled in Section 4 – see also [22]).

One will say that μ satisfies the inequality TCp(C), p ∈ [1,2] if it satisfies the transportation-cost inequality
with the cost function c(x, y) = 1

C
min(|x − y|22, |x − y|p2 ). It is now classical that the inequality TCp(C) implies

a concentration inequality similar to (1.8). When p = 2, the inequality TC2(·) is usually denoted by T2. In [37],
Talagrand proved that the inequality TC2(·) is satisfied by Gaussian measures.

In dimension one, an almost complete characterization of transportation-cost inequalities was proposed by the
author in [21]. It covers in particular the case of the TCp(·) inequalities for all p ∈ [1,2]. In higher dimensions, one
only knows that TCp(·) inequalities and modified logarithmic Sobolev inequalities are related:

• For p = 2, a celebrated result by Otto and Villani shows that the Logarithmic-Sobolev inequality implies TC2(·)
(see [33]). It was shown by Cattiaux and Guillin in [16] that the implication is strict: there exist probability measures
satisfying TC2(·) and not the Logarithmic-Sobolev inequality. Wang provides extensions of Otto and Villani’s result
to Riemannian manifolds and path spaces in [40,42].

• The case p = 1 is very interesting. Bobkov, Gentil and Ledoux have shown in [9] that the inequality TC1(·) is
equivalent to the Poincaré inequality SG(·) (see Theorem 4.7 for a precise statement).

• For p ∈ (1,2), it was shown by Gentil, Guillin and Miclo in [19] that the modified Logarithmic-Sobolev inequality
LS(Hq, ·) with 1/p + 1/q = 1 implies the transportation-cost inequality TCp(·).

• The case p > 2 is much less known. Examples of probability measures satisfying the transportation-cost inequality
with a cost function of the form |x − y|pp appear in [13] or [17].

Another very efficient functional approach to the concentration of measure phenomenon was proposed by Maurey
in [30]: the so-called (τ ) property also called inf-convolution inequality. As we will see in Section 4, inf-convolution
inequalities are in fact equivalent to transportation-cost inequalities (see Proposition 4.13).

1.4. Presentation of the results

The map ω is defined on R but we will also denote by ω the map defined on R
m (for every m ≥ 1) by (x1, . . . , xm) 
→

(ω(x1), . . . ,ω(xm)). The image of a probability measure μ on a space X under a measurable map T : X → Y will be
denoted by T �μ. We recall that it is defined by

∀A ⊂ Y T �μ(B) = μ
(
T −1(A)

)
.
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Our paper is organized as follows:

• In Section 2, we first recall some well-known facts about Poincaré inequalities. One explains then how to derive
general Talagrand’s concentration results from the inequalities SG(ω, ·). The main result of this section is Propo-
sition 2.4, where we show that if μ verifies SG(ω,C) for some C > 0, then μn concentrates independently of the
dimension in the following way: for all n ≥ 1 and all A ⊂ (Rd)n, one has

∀h ≥ 0 μn
(
A + Bω(h)

)≥ 1 − e−Lh,

where L is a constant depending only on C and Bω(h) is the Orlicz ball defined by

Bω(h) =
{

(x1, . . . , xn) ∈ (Rd
)n:

n∑
i=1

d∑
j=1

α ◦ ω

( |xi,j |
2

)
≤ h

}
.

(For all 1 ≤ i ≤ n, xi,j ,1 ≤ j ≤ d , are the coordinates of the vector xi ∈ R
d .) Proposition 2.4 easily implies Propo-

sition 1.2 for the special case of the functions ωp .
• In Section 3 we address the problem of finding workable sufficient conditions for the Poincaré inequalities SG(ω, ·).

To do so, we relate the inequality SG(ω, ·) to the classical Poincaré inequality SG(·). One shows in Proposition 3.1,
that

μ verifies SG(ω,C) ⇐⇒ ω�μ verifies SG(C). (1.15)

So, according to (1.15), to prove that a probability measure μ verifies SG(ω, ·), all we have to do is to apply to the
measure ω�μ one of the known criteria for the classical Poincaré inequality SG(·). In dimension one, one thus easily
derive from the celebrated Muckenhoupt theorem a necessary and sufficient condition for the inequality SG(ω, ·)
(see Theorem 3.2). Using this criteria, one can give a large collection of examples. Under mild regularity condi-
tions, one proves in Proposition 3.3 that a symmetric probability dμ(x) = e−V (x) dx on R satisfies the inequality
SG(ω,C) for some C if and only if

lim inf
x→+∞

V ′(x)

ω′(x)
> 0. (1.16)

The same strategy can be applied in dimension d . It is well known that a probability dμ(x) = e−V (x) dx on R
d

satisfies the Poincaré inequality as soon as lim inf|x|→+∞ 1
2 |∇V |2(x)2 − V (x) > 0. Combined with (1.15), this

criteria yields a sufficient condition for the inequality SG(ω, ·) (see Proposition 3.5).
• In Section 4, we show the equivalence between the Poincaré inequalities for the metrics dω and certain

transportation-cost inequalities.

Definition 1.3. Let us say that μ ∈ P (Rd) satisfies the inequality TC(ω, a) if it satisfies the transportation-cost
inequality (1.14) with the cost function (x, y) 
→ α(adω(x, y)), where dω(x, y) is defined in (1.7).

In Theorem 4.6, which is one of the main results of this paper, one proves that μ satisfies the inequality SG(ω,C)

for some C if and only if it satisfies the inequality TC(ω, a) for some a. The link between a and C is made precise in
Theorem 4.6. This theorem is an extension of a result by Bobkov, Gentil and Ledoux concerning the equivalence of the
classical Poincaré inequality and the inequality TC1(·) (see [9], Corollary 5.1). This extension is performed using a
very simple contraction principle for transportation-cost inequalities. This technique was previously used by the author
in [21] to characterize a large class of transportation-cost inequalities on the real line. Since the inequality TC(ωp, ·)
is easily shown to be stronger than TCp(·), Theorem 4.6 offers new sufficient conditions for the transportation-cost
inequalities TCp(·) (see Corollary 4.11). Up to now, Corollary 4.11 gives the weakest known sufficient condition for
TCp inequalities.

• In Section 5, we compare the inequalities SG(ω, ·) to other functional inequalities.
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The main result of this paper, Theorem 5.4, states that under not very restrictive conditions on the function β , the
super Poincaré inequality SP(β) implies an inequality SG(ωβ, ·) where ωβ depends only on the function β . Since a
lot of functional inequalities are encoded as super Poincaré inequalities, this result is extremely general.

As a consequence, one deduces in particular the following relationships.
For p ∈ [1,2],

μ verifies LO(p, ·) �⇒ μ verifies SG(ωp, ·).
Moreover, a counter example of Cattiaux and Guillin shows that the Logarithmic-Sobolev inequality (which corre-
sponds to p = 2) is strictly stronger than the inequality SG(ω2, ·) (see Remark 5.19).

For p ≥ 2 and 1/p + 1/q = 1,

μ verifies LS(Hq, ·) �⇒ μ verifies SG(ωp, ·).
Let us emphasize another interesting fact about Theorem 5.4. One knows that super Poincaré inequalities do not

tensorize properly. If μ verifies a super Poincaré inequality, then μn will satisfy a super Poincaré inequality with β(s)

replaced by β(s/n). Thus the inequalities deteriorate when the dimension increases. On the other hand, the inequality
SG(ωβ, ·) implied by the super Poincaré inequality has a good tensorization property and implies concentration
independent of the dimension. From this follows that super Poincaré inequalities (almost) always imply dimension
free concentration estimates.

2. Poincaré inequalities and concentration of measure

2.1. A reminder on Poincaré inequalities

Let us recall the two classical structural properties of Poincaré inequalities: tensorization property and stability under
bounded perturbations.

Proposition 2.1. Let μ be a probability on R
d satisfying the Poincaré inequality SG(ω,C) for some constant C > 0.

• For all n ≥ 1, the probability measure μn verifies SG(ω,C) on (Rd)n.
• If μ̄ is a probability measure on R

d absolutely continuous with respect of μ with a density of the form dμ̄(x) =
eh(x) dμ(x) with h bounded, then μ̄ verifies the Poincaré inequality SG(ω, eOsc(h)C), where Osc(h) = sup(h) −
inf(h).

The reader will find a proof (in the general case) in e.g. [27], Corollary 5.7.

2.2. Poincaré inequalities and concentration – the abstract case

Now let us recall how concentration estimates can be derived from the Poincaré inequality. We follow the work by
Bobkov and Ledoux [12].

Theorem 2.2 (Bobkov–Ledoux). If μ satisfies (1.1), then for every bounded function f on X n such that∑n
i=1 |∇if |2 ≤ a2 and maxi=1,...,n |∇if | ≤ b, μn a.e. (where |∇if | denotes the length of the gradient with respect to

the ith coordinate) one has

∀t ≥ 0 μn

(
f ≥

∫
f dμn + t

)
≤ exp

(
−min

(
t2

Cκ2a2
,

t√
Cκb

))
, with κ =

√
18e

√
5. (2.1)

The preceding deviation inequality expresses that Lipschitz functions are almost constant on X n.
Another way to express the concentration of the product measure μn is given in the following corollary which can

be easily deduced from the preceding theorem:
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Corollary 2.3 (Bobkov–Ledoux). Let μ be a probability measure on X satisfying the Poincaré inequality (1.1) on
(X , d) with the constant C > 0. There is a constant L depending only on C such that for all subset A of X n with
μn(A) ≥ 1/2,

∀h ≥ 0 μn
(
Ah
)≥ 1 − e−Lh, (2.2)

where the set Ah is the enlargement of A defined by

Ah =
{

y ∈ X n: inf
x∈A

n∑
i=1

α
(
d(xi, yi)

)≤ h

}
,

where α(u) = min(|u|, u2) for all u ∈ R. One can take L = α( 1√
Cκ

)/16, where as before κ =
√

18e
√

5.

For the sake of completeness, the reader will find a proof of these two results in the Annex.

2.3. The SG(ω, ·) inequality and concentration

Proposition 2.4. Suppose that μ satisfies SG(ω,C) on R
d for some C > 0. Then for all n ≥ 1 and all A ⊂ (Rd)n

with μn(A) ≥ 1/2, one has

∀h ≥ 0 μn
(
A + Bω(h)

)≥ 1 − e−Lh,

where L = α( 1√
Cκ

)/(16d) and Bω(h) is defined by

Bω(h) =
{

(x1, . . . , xn) ∈ (Rd
)n:

n∑
i=1

d∑
j=1

α ◦ ω

( |xi,j |
2

)
≤ h

}
. (2.3)

(For all 1 ≤ i ≤ n, xi,j ,1 ≤ j ≤ d are the coordinates of the vector xi ∈ Rd .)

Remark 2.5. The fact that the dimension d appears in the preceding result is not important. The important thing is
that the constants do not depend on the dimension n.

We need the following elementary facts:

Lemma 2.6.

(1) For all x, y ∈ R, |ω(x) − ω(y)| ≥ ω(
|x−y|

2 ).

(2) The function α(u) = min(|u|, u2) is such that α(au) ≥ α(a)α(u), for all a,u ≥ 0.

Proof. Let us prove the first point. The function x 
→ ω(x)/x is nondecreasing on R
+. It follows that ω is super

additive on R
+. Indeed, if 0 < x ≤ y then ω(x + y) = ω(y(1 + x/y)) ≥ (1 + x/y)ω(y) = ω(y)+ xω(y)/y ≥ ω(y)+

xω(x)/x = ω(y) + ω(x).

Let x ≥ y. If x ≥ y ≥ 0, then using the super additivity of ω, one gets ω(x) = ω((x − y) + y) ≥ ω(x − y) + ω(y),
so ω(x) − ω(y) ≥ ω(x − y) ≥ ω((x − y)/2). The case 0 ≥ x ≥ y is similar. Now, if x ≥ 0 ≥ y, then ω(x) − ω(y) =
ω(x) + ω(−y) ≥ ω(max(x,−y)) ≥ ω((x − y)/2).

Now let us prove the second point. If 0 < a ≤ 1, then α(au)/α(a) = u2 if u ≤ 1/a and α(au)/α(a) = u/a if
u ≥ 1/a. If u ≤ 1, one has α(au)/α(a) = α(u). If u ∈ [1,1/a], then u2 ≥ u and so α(au)/α(a) ≥ α(u). If u ≥ 1/a,
then u/a ≥ u and so α(au)/α(a) ≥ α(u). The case a ≥ 1 can be handled in a similar way. �

Proof of Proposition 2.4. First, dω(u, v) ≥ 1√
d

∑d
i=1 |ω(ui) − ω(vi)|, for all u,v ∈ R

d .
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Now,

α
(
dω(u, v)

) ≥ α

(
d∑

i=1

1√
d

∣∣ω(ui) − ω(vi)
∣∣) (i)≥

d∑
i=1

α

(
1√
d

∣∣ω(ui) − ω(vi)
∣∣)

(ii)≥
d∑

i=1

α

(
1√
d

ω

( |ui − vi |
2

))
(iii)≥ 1

d

d∑
i=1

α ◦ ω

( |ui − vi |
2

)
,

where (i) comes from the super additivity of the function α, (ii) from Lemma 2.6(1) and (iii) from Lemma 2.6(2).
Consequently, for all x ∈ (Rd)n and A ⊂ (Rd)n,

inf
a∈A

n∑
i=1

α
(
dω(xi, ai)

)≥ 1

d
inf
a∈A

n∑
i=1

d∑
j=1

α ◦ ω

( |xi,j − ai,j |
2

)
.

Applying (2.2) yields immediately the desired result. �

Proof of Proposition 1.2. Suppose p ∈ [1,2]; in view of Proposition 2.4, it is enough to prove that

nd∑
k=1

α ◦ ωp(uk) ≤ h �⇒ u = (u1, . . . , und) ∈ √
hB2 + h1/pBp.

Let s = (s1, . . . , snd) and t = (t1, . . . , tnd) be defined by sk = uk if uk ∈ [−1,1] and sk = 0 if |uk| > 1 and t = u − s.
Then,

nd∑
k=1

α ◦ ωp(uk) = |s|22 + |t |pp ≤ h.

So, |s|2 ≤ √
h and |t |p ≤ h1/p. Since u = s + t , one concludes that u ∈ √

hB2 + h1/pBp.

Now, if p ≥ 2, then ∀x ≥ 0, α◦ωp(x) = max(x2, xp). This observation together with Proposition 2.4 easily implies
the result. �

Let us conclude this section with a remark concerning centering. If μ is a probability measure on R
d and z ∈ R

d ,
let us denote by μz the translate of μ defined by:

μz(A) = μ(A + z) (2.4)

for all measurable set A.
The following corollary is immediate.

Corollary 2.7. Suppose that there is some z ∈ Rd such that μz verifies the inequality SG(ω,C) for some C > 0, then
for all n ≥ 1 and all A ⊂ (Rd)n with μn(A) ≥ 1/2, one has

∀h ≥ 0 μn
(
A + Bω(h)

)≥ 1 − e−Lh,

where L = α( 1√
Cκ

)/(16d) and Bω(h) is defined by (2.3).

Definition 2.8. One will say that μ verifies the centered Poincaré inequality SG(ω,C) if μ∫ x dμ verifies the inequality
SG(ω,C).

This definition will play an important role in Section 5.
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3. Workable sufficient conditions for SG(ω, ·)

3.1. Links with the classical Poincaré inequality

In order to obtain sufficient conditions for the inequalities SG(ω, ·), one relates them to (weighted) forms of the
classical Poincaré inequality, which is quite well known.

Proposition 3.1. Let μ be a probability measure on R
d and C a positive number. The following properties are equiv-

alent:

(i) The probability measure μ verifies SG(ω,C).

(ii) The probability measure ω�μ verifies SG(C).

(iii) The probability measure μ satisfies the following weighted Poincaré inequality:

Varμ(f ) ≤ C

∫ d∑
i=1

1

ω′(xi)2

(
∂f

∂xi

(x)

)2

dμ(x) (3.1)

for all f : Rd → R such that f ◦ ω−1 is of class C1.

Proof. Let us denote |∇f |ω (resp. |∇f |2) the length of the gradient computed with respect to the metric dω(·, ·) (see
(1.2)). If f : Rd → R is locally Lipschitz for the Euclidean metric, then according to Rademacher theorem, one has

lim sup
y→x

|f (x) − f (y)|
|x − y|2 =

[
d∑

i=1

(
∂f

∂xi

)2

(x)

]1/2

= |∇f |2(x)

for μ a.e. x ∈ R
d , and so the length of the gradient equals the norm of the vector ∇f μ a.e.

Locally Lipschitz function for dω(·, ·) and | · |2 are related in the following way. A function g : Rd → R is locally
Lipschitz for dω(·, ·) if and only if g ◦ ω−1 is locally Lipschitz for | · |2.

(i) ⇒ (ii) Define μ̃ = ω�μ. Let f : R
d → R be locally Lipschitz for | · |2, then f ◦ω is locally Lipschitz for dω(·, ·),

and

Varμ̃(f ) = Varμ(f ◦ ω) ≤
∫ ∣∣∇(f ◦ ω)

∣∣2
ω

dμ
(∗)=
∫

|∇f |22 ◦ ω dμ =
∫

|∇f |22 dμ̃,

where (∗) follows from the easy to check identity: |∇(f ◦ ω)|ω = |∇f |2 ◦ ω:
(ii) ⇒ (i) The proof is the same.
(ii) ⇒ (iii) Take f : Rd → R such that f ◦ ω−1 is of class C1. Then

Varμ(f ) = Varμ̃
(
f ◦ ω−1)≤ ∫ ∣∣∇(f ◦ ω−1)∣∣2

2 ◦ ω dμ =
∫ d∑

i=1

1

ω′(xi)2

(
∂f

∂xi

(x)

)2

dμ(x).

(iii) ⇒ (ii) Apply the weighted Poincaré inequality to the function f ◦ ω with f of class C1. �

3.2. Dimension one

In the following proposition, a necessary and sufficient condition is given for SG(ω, ·) inequalities.

Proposition 3.2. A probability measure μ on R absolutely continuous with density h > 0 satisfies the inequality
SG(ω,C) for some C > 0 if and only if

D−
ω = sup

x≤m
μ(−∞, x]

∫ m

x

ω′(u)2

h(u)
du < +∞ and D+

ω = sup
x≥m

μ[x,+∞)

∫ x

m

ω′(u)2

h(u)
du < +∞, (3.2)
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where m denotes the median of μ. Moreover, the optimal constant C in (1.1) denoted by Copt verifies

max
(
D−

ω ,D+
ω

)≤ Copt ≤ 4 max
(
D−

ω ,D+
ω

)
.

This proposition follows at once from the celebrated Muckenhoupt condition for the classical Poincaré inequality
(see [32]).

Proof of Proposition 3.2. According to Muckenhoupt condition, a probability measure dν = hdx having a positive
continuous density with respect to Lebesgue measure, satisfies the classical Poincaré inequality if and only if

D− = sup
x≤m

ν(−∞, x]
∫ m

x

1

h(u)
du < +∞ and D+ = sup

x≥m
ν[x,+∞)

∫ x

m

1

h(u)
du < +∞,

and the optimal constant Copt verifies max(D−,D+) ≤ Copt ≤ 4 max(D−,D+). Now, according to Proposition 3.1,

μ satisfies SG(ω,C) if and only if μ̃ = ω�μ satisfies SG(C). The density of μ̃ is h̃ = h◦ω−1

ω′◦ω−1 . Plugging h̃ in Mucken-
houpt conditions gives immediately the announced result. �

The following result completes the picture giving a large class of examples:

Proposition 3.3. Let μ be an absolutely continuous probability measure on R with density dμ(x) = e−V (x) dx. As-
sume that the potential V is of class C1 and that ω verifies the following regularity condition:

ω′′(x)

ω′2(x)
−→

x→+∞ 0.

If V is such that

lim inf
x→±∞

sgn(x)V ′(x)

ω′(x)
> 0, (3.3)

then the probability measure μ verifies the Poincaré inequality SG(ω,C) for some C > 0.

Proof. Let μ̃ = ω�μ and let ν be the symmetric exponential probability measure on R, that is the probability measure
with density dν(x) = 1

2 e−|x| dx. It is well known that it verifies the following Poincaré inequality:

Varν(g) ≤ 4
∫

g′2(x)dν(x) (3.4)

for all smooth g (see, for example, [12], Lemma 2.1). Let T : R → R be the map defined by T (x) = F−1
μ̃

◦ Fν(x),
with Fν(x) = ν(−∞, x] and Fμ̃(x) = μ̃(−∞, x]. It is well known that T is increasing and transports ν on μ̃ which
means that T �ν = μ̃. Let us apply inequality (3.4) to a function g = f ◦ T . It yields immediately:

Varμ̃(f ) ≤ 4
∫

f ′2(T ′ ◦ T −1)2 dμ̃ ≤ 4
(

sup
x∈R

T ′(x)
)2
∫

f ′2 dμ̃.

As a conclusion, if the map T is L Lipschitz then μ̃ verifies Poincaré inequality SG(4L2). The probability μ̃ has
density dμ̃(x) = e−Ṽ (x) dx, with Ṽ (x) = V (ω−1(x)) + logω′ ◦ ω−1(x). It is proved in [21] (see Proposition 34)
that a sufficient condition for T to be Lipschitz is that lim infx→±∞ sgn(x)Ṽ ′(x) > 0. But Ṽ ′(ω(x)) = V ′(x)

ω′(x)
+ ω′′(x)

ω′2(x)

and by assumption ω′′(x)

ω′2(x)
→ 0 when x goes to ∞. Thus lim infx→±∞ sgn(x)Ṽ ′(x) = lim infx→±∞ sgn(x)V ′(x)

ω′(x)
, which

completes the proof. �

Remark 3.4. The condition lim infx→±∞ sgn(x)V ′(x)
ω′(x)

> 0 can also be derived from Proposition 3.2 using the same
techniques as in e.g. [3], Theorem 6.4.3. But this method has the disadvantage of introducing useless technical as-
sumptions such as lim±∞ V ′′/(V ′2) = 0.
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3.3. Dimension d

In dimension d , one gets:

Proposition 3.5. Let μ be a probability measure on R
d absolutely continuous with respect to the Lebesgue measure,

with dμ(x) = e−V (x) dx with V a function of class C2. Suppose that ω is of class C3 on R and such that ω′(0) > 0
and

∀x ∈ R

∣∣∣∣ ω(3)

(ω′)3
(x)

∣∣∣∣≤ M

for some M ≥ 0. If there is some constant u > 0 such that

lim inf|x|→+∞
1

u2

d∑
i=1

[
1

10

(
∂V

∂xi

)2(
x

u

)
− ∂2V

∂x2
i

(
x

u

)]
1

ω′(xi)2
> dM,

then the probability measure μ satisfies SG(ω̃,C) for some C, where ω̃(x) = ω(ux), for all x ∈ R.

Proof. It is well known that a probability dν(x) = e−W(x) dx on R
d satisfies the classical Poincaré inequality if W

verifies the following condition:

lim inf|x|→+∞
1

2
|∇W |22(x) − W(x) > 0. (3.5)

This condition is rather classical; a nice elementary proof can be found in [4].
Suppose that μ is an absolutely continuous probability measure on R

d with density dμ(x) = e−V (x) dx with V of
class C2. Then μ̃ = ω�μ has density dμ̃(x) = e−Ṽ (x) dx, with

∀x ∈ R
d Ṽ (x) = V

(
ω−1(x)

)+ d∑
i=1

logω′ ◦ ω−1(xi).

According to Proposition 3.1, to show that μ satisfies the inequality SG(ω,C) for some C > 0 it is enough to show
that μ̃ satisfies the inequality SG(C) and a sufficient condition for this is that Ṽ fulfills condition (3.5).

Elementary computations yield

∂Ṽ

∂xi

(
ω(x)

)= 1

ω′(xi)

∂V

∂xi

(x) + ω′′(xi)

ω′2(xi)
,

∂2Ṽ

∂x2
i

(
ω(x)

)= − ω′′(xi)

ω′3(xi)

∂V

∂xi

(x) + 1

ω′2(xi)

∂2V

∂x2
i

(x) + ω(3)(xi)

ω′3(xi)
− 2

ω′′2(xi)

ω′4(xi)
.

Let I (x) = 1
2 |∇Ṽ |22(ω(x)) − Ṽ (ω(x)); one has:

I (x) =
d∑

i=1

1

ω′2(xi)

[
1

2

(
∂V

∂xi

)2

(x) − ∂2V

∂x2
i

(x)

]
+ 2

d∑
i=1

ω′′(xi)

ω′3(xi)

∂V

∂xi

(x) + 5

2

d∑
i=1

ω′′2(xi)

ω′4(xi)
−

d∑
i=1

ω(3)(xi)

ω′3(xi)
.

Using the inequality uv ≥ − 5
4u2 − 1

5v2, one has

2
d∑

i=1

ω′′(xi)

ω′3(xi)

∂V

∂xi

(x) = 2
d∑

i=1

(
ω′′(xi)

ω′2(xi)

)
·
(

1

ω′(xi)

∂V

∂xi

(x)

)

≥ −5

2

d∑
i=1

ω′′2(xi)

ω′4(xi)
− 2

5

d∑
i=1

1

ω′2(xi)

(
∂V

∂xi

)2

(x),
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and so

I (x) ≥
d∑

i=1

1

ω′2(xi)

[
1

10

(
∂V

∂xi

)2

(x) − ∂2V

∂x2
i

(x)

]
−

d∑
i=1

ω(3)(xi)

ω′3(xi)
.

Since, lim inf|x|→+∞ I (x) = lim inf|y|→+∞ 1
2 |∇Ṽ |22(y) − Ṽ (y) and

∑d
i=1

ω(3)(xi )

ω′3(xi )
≤ dM , one concludes that Ṽ sat-

isfies (3.5) as soon as

lim inf|x|→+∞

d∑
i=1

1

ω′2(xi)

[
1

10

(
∂V

∂xi

)2

(x) − ∂2V

∂x2
i

(x)

]
> dM.

Applying this latter condition to the probability measure μu = (u Id)�μ (where Id is the identity function) which has
density dμu(x) = 1

ud e−V (x/u) dx gives the condition of Proposition 3.5. �

4. Transportation-cost inequalities

Let us recall the notation relative to this family of inequalities. A probability measure μ satisfies the transportation-cost
inequality with the cost function c(x, y) on R

d if for all probability measure ν on R
d , the following holds:

inf
π∈P(ν,μ)

∫
c(x, y)dπ(x, y) ≤ H(ν|μ), (4.1)

where P(ν,μ) is the set of all probability measures on R
d × R

d such that π(dx × R
d) = ν(dx) and π(Rd × dy) =

μ(dy) and H(ν|μ) is the relative entropy of ν with respect to μ.
One writes for short that μ satisfies the inequality TC(ω, a) if there is some a > 0 such that

∀ν inf
π∈P(ν,μ)

∫
α
(
adω(x, y)

)
dπ(x, y) ≤ H(ν|μ),

with α(u) = min(|u|, u2) and dω(·, ·) the distance defined by (1.7). The purpose of this section is to show that the
inequalities SG(ω, ·) are equivalent to transportation-cost inequalities TC(ω, ·).

Transportation-cost inequalities of the form TC(ω, ·) are quite unusual. Let us define another family of
transportation-cost inequalities appearing often in the literature (see [9,19,37]).

Let p ≥ 1; one says that μ verifies the inequality TCp(C) if

when p ∈ [1,2],∀ν, inf
π∈P(ν,μ)

∫
min
(|x − y|22, |x − y|p2

)
dπ(x, y) ≤ CH(ν|μ),

when p ∈ [2,+∞),∀ν, inf
π∈P(ν,μ)

∫
max

(|x − y|22, |x − y|pp
)

dπ(x, y) ≤ CH(ν|μ).

As we will see, the inequality TCp(·) is slightly weaker than the inequality TC(ωp, ·) (see the proof of Corollary 4.11).
So in this case, our characterization of inequalities TC(ωp, ·) in terms of Poincaré inequalities brings new information
and criteria for the study of the TCp(·).

4.1. Basic properties

Like Poincaré inequalities, transportation-cost inequalities enjoy a tensorization property and are related to Talagrand’s
concentration inequalities.
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Proposition 4.1 (Tensorization). Suppose that a probability measure μ on a space X satisfies the transportation-
cost inequality (4.1) with the cost function c(x, y), then μn satisfies the transportation-cost inequality on X n with the
cost function c⊕n(x, y) =∑n

i=1 c(xi, yi). In other words,

∀ν ∈ P
(

X n
)

inf
π∈P(ν,μn)

∫ n∑
i=1

c(xi, yi)dπ ≤ H
(
ν|μn

)
,

where P(ν,μn) is the set of probability measures on X n× X n such that π(dx, X n) = ν(dx) and π(X n,dy) = μn(dy).

This result goes back to the first works of Marton on the subject (see [28,29]). A proof can be found in [22].
Let us explain how to derive concentration inequalities from the inequality TC(ω, a).

Proposition 4.2. If μ satisfies the transportation-cost inequality TC(ω, a), then for all n ≥ 1 and all A ⊂ (Rd)n,

∀h ≥ 0 μn
(
A + Bω(h)

)≥ 1 − 1

μn(A)
e−hα(a/

√
d)/2,

where Bω(h) is defined as in Proposition 2.4.

Remark 4.3. According to Theorem 4.6 below, if μ satisfies the inequality SG(ω,C) then it satisfies TC(ω, a) with
a = 1√

Cκ
. With this value of a the concentration inequality given by Proposition 4.2 is almost the same as the one

derived in Proposition 2.4.

We will need the following lemma:

Lemma 4.4. The function α(u) = min(|u|, u2) is such that α(x + y) ≤ 2(α(x) + α(y)), for all x, y ≥ 0.

Proof. If x + y ≤ 1, then α(x + y) = (x + y)2 ≤ 2(x2 + y2) = 2(α(x) + α(y)).
Now, suppose that x + y ≥ 1.
If x ≤ 1 and y ≤ 1, then α(x + y) = x + y ≤ (x + y)2 ≤ 2(x2 + y2) = 2(α(x) + α(y)).

If x ≤ 1 and y ≥ 1, then x ≤ y ⇒ x − 2x2 ≤ y ⇒ x + y ≤ 2(x2 + y) ⇒ α(x + y) ≤ 2(α(x) + α(y)).

If x ≥ 1 and y ≥ 1, then α(x + y) = x + y = α(x) + α(y) ≤ 2(α(x) + α(y)). �

Proof of Proposition 4.2. If μ satisfies TC(ω, a) on R
d then according to Proposition 4.1, μn satisfies the

transportation-cost inequality on (Rd)n with the cost function c defined by

c :
(
(x1, . . . , xn), (y1, . . . , yn)

) ∈ (Rd
)n × (Rd

)n 
→
n∑

i=1

α
(
adω(xi, yi)

)
.

Using the triangle inequality for the metric dω(·, ·) and Lemma 4.4, one has

∀x, y, z ∈ (Rd
)n

c(x, z) ≤ 2c(x, y) + 2c(y, z).

Now, let ν1 and ν2 be two probability measures on (Rd)n. Take π1 ∈ P(ν1,μ
n) and π2 ∈ P(μn, ν2), then one can

construct three random variables X,Y,Z such that L(X,Y ) = π1 and L(Y,Z) = π2 (see, for instance, the Gluing
lemma of [38], p. 208). Then, one has

Tc(ν1, ν2) ≤ E
[
c(X,Z)

]≤ 2E
[
c(X,Y )

]+ 2E
[
c(Y,Z)

]
= 2

∫
c(x, y)dπ1(x, y) + 2

∫
c(y, z)dπ2(y, z).

Optimizing on π1 and π2 gives

Tc(ν1, ν2) ≤ 2Tc

(
ν1,μ

n
)+ 2Tc

(
ν2,μ

n
)
.
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Consequently, μn satisfies the following symmetrized transportation-cost inequality: for all ν1, ν2 probability mea-
sures on (Rd)n,

Tc(ν1, ν2) ≤ 2H
(
ν1|μn

)+ 2H
(
ν2|μn

)
.

Take dν1 = 1A dμn/μn(A) and dν2 = 1Ã dμn/μn(Ã), for some A, Ã ⊂ (Rd)n, then

inf
x∈A,y∈Ã

c(x, y) ≤ Tc(ν1, ν2) ≤ 2H
(
ν1|μn

)+ 2 H
(
ν2|μn

)
= 2 log

(
1/μn(A)

)+ 2 log
(
1/μn(Ã)

)
.

Letting c(A, Ã) = infx∈A,y∈Ã c(x, y), one gets

μn(A)μn(Ã) ≤ e−c(A,Ã)/2.

Defining

Ã =
{
y: inf

x∈A
c(x, y) > α

(
a/

√
d
)
h
}

one gets μn(Ã) ≤ 1
μn(A)

e−α(a/
√

d)h/2. To obtain the announced inequality it is thus enough to compare A + Bω(h)

and Ã. Take x = (x1, . . . , xn) ∈ (Rd)n and y = (y1, . . . , yn) ∈ (Rd)n; then for all i ∈ 1, . . . , n, one has

α
(
adω(xi, yi)

) (a)≥ α

(
a√
d

d∑
j=1

∣∣ω(xi,j ) − ω(yi,j )
∣∣) (b)≥

d∑
j=1

α

(
a√
d

∣∣ω(xi,j ) − ω(yi,j )
∣∣)

(c)≥
d∑

j=1

α

(
a√
d

ω

(
xi,j − yi,j

2

))
(d)≥ α

(
a/

√
d
) d∑

j=1

α ◦ ω

(
xi,j − yi,j

2

)
,

where (a) follows from the comparison between the norms | · |2 and | · |1 in R
d , (b) from the super additivity of α, (c)

from Lemma 2.6(1) and (d) from Lemma 2.6(2).
Consequently, if y /∈ A + Bω(h), then infx∈A

∑n
i=1
∑d

j=1 α ◦ ω(
xi,j −yi,j

2 ) ≥ h, and so y belongs to Ã. From this

follows that μn(A + Bω(h)) ≥ μn(Ãc) ≥ 1 − 1
μn(A)

e−α(a/
√

d)h/2, which completes the proof. �

Remark 4.5. The idea of deriving concentration estimates from transportation-cost inequalities goes back to Marton’s
seminal work [28]. The above proof is essentially due to Talagrand (see the proof of [37], Corollary 1.3).

4.2. Links with Poincaré inequalities

Theorem 4.6. Let μ be a probability measure on R
d absolutely continuous with respect to Lebesgue measure. Then μ

satisfies the Poincaré inequality SG(ω,C) for some C > 0 if and only if it satisfies the transportation-cost inequality
TC(ω, a) for some a > 0.

More precisely:

• If μ satisfies SG(ω,C) then it satisfies TC(ω, 1√
Cκ

), with κ =
√

18e
√

5.

• If μ satisfies the inequality TC(ω, a), then μ satisfies the inequality SG(ω, 1
2a2 ).

The proof of Theorem 4.6 relies on two ingredients. The first one is the following result by Bobkov, Gentil and
Ledoux ([9], Corollary 5.1):
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Theorem 4.7 (Bobkov, Gentil and Ledoux). If an absolutely continuous probability measure μ satisfies the inequal-
ity SG(C) on R

d then it satisfies the transportation-cost inequality for the cost function (x, y) 
→ αs(|x − y|2) for all
s < 2√

C
, where

αs(t) =
{

t2

4L(s)
if |t | ≤ 2L(s)s,

s|t | − L(s)s2 otherwise,
with L(s) = C

2

(
2 + √

Cs

2 − √
Cs

)2

es
√

5C.

In particular, if one takes s = 1√
C

, then it is easy to check that αs(t) ≥ α( t√
Cκ

), where α(u) = min(|u|, u2) and

κ =
√

18e
√

5. Thus if μ satisfies SG(C) it satisfies the transportation-cost inequality with the cost function (x, y) 
→
α(

|x−y|2√
Cκ

). In other words, with the definition of the transportation-cost inequality TC(ω, a), the preceding result can
be restated as follows:

Corollary 4.8. If μ is an absolutely continuous probability measure on R
d satisfying the classical Poincaré inequality

SG(C) for some C > 0, then it satisfies the transportation-cost inequality TC(Id, 1√
Cκ

). (Where Id : R → R :x 
→ x

is the identity function.)

The converse is also true:

Proposition 4.9. If μ satisfies TC(Id, a), for some a > 0, then μ satisfies the inequality SG( 1
2a2 ).

The proof of Proposition 4.9 is classical and can be found in various places (see e.g. the proofs of [9], Corollary 5.1,
or [30], Corollary 3).

The second argument is a very simple contraction principle:

Proposition 4.10. Let μ be a probability measure on a metric space X ; if μ satisfies the transportation-cost in-
equality with the cost function c : X × X → R

+, and if T : X → Y is a measurable bijection then, T �μ satisfies the
transportation-cost inequality with the cost function (x, y) 
→ c(T −1(x), T −1(y)).

This contraction principle goes back to Maurey’s work on infimum convolution inequalities (see [30]). A proof can
also be found in [21], where this simple property was intensively used to derive necessary and sufficient conditions
for transportation-cost inequalities on the real line.

Now let us apply the contraction principle together with Theorem 4.7 to prove that Poincaré inequalities SG(ω, ·)
and transportation-cost inequalities TC(ω, ·) are qualitatively equivalent.

Proof of Theorem 4.6. If μ satisfies SG(ω,C), then according to Proposition 3.1, ω�μ satisfies the classical Poincaré
inequality SG(C), and according to Corollary 4.8, this implies that ω�μ satisfies TC(Id, a), with a = 1√

Cκ
. Accord-

ing to the contraction principle, μ (which is the image of ω�μ under the map ω−1) satisfies the transportation-cost
inequality with the cost function (x, y) 
→ α(a|ω(x)−ω(y)|2) = α(adω(x, y)) by definition of the metric dω(·, ·) (see
(1.7)).

Now suppose that μ satisfies TC(ω, a) for some a > 0. According to the contraction principle, ω�μ satisfies
TC(Id, a), and according to Proposition 4.9, this implies that ω�μ satisfies SG( 1

2a2 ). Using Proposition 3.1, one

concludes that μ satisfies SG(ω, 1
2a2 ). This concludes the proof. �

Corollary 4.11. If an absolutely continuous probability measure μ verifies the inequality SG(ωp,C) on R
d , for

some C and p ≥ 1, then:

• if p ∈ [1,2] it satisfies the transportation-cost inequality

∀ν inf
π∈P(ν,μ)

∫
min
(|x − y|22, |x − y|p2

)
dπ(x, y) ≤ 4

α(1/(
√

Cdκ))
H(ν|μ);
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• if p ≥ 2 it satisfies the transportation-cost inequality

∀ν inf
π∈P(ν,μ)

∫
max

(|x − y|22, |x − y|pp
)

dπ(x, y) ≤ 2p

α(1/(
√

Cdκ))
H(ν|μ).

Proof. Let cp(x, y) =∑d
i=1 α ◦ ωp(

xi−yi

2 ). During the proof of Proposition 4.2, we have shown that

α
(
a/

√
d
)
cp(x, y) ≤ α

(
adωp(x, y)

)
.

So, if μ satisfies the inequality TC(ωp, a), it satisfies the transportation-cost inequality with the cost function
α(a/

√
d)cp(x, y).

For p ∈ [1,2], the function α ◦ ωp(
√·) is concave, so

cp(x, y) ≥ α ◦ ωp

(|x − y|2/2
)≥ 1/4 min

(|x − y|22, |x − y|p2
)
.

For p ≥ 2,

cp(x, y) ≥ max
(
1/4|x − y|22,1/2p|x − y|pp

)≥ 1/2p max
(|x − y|22, |x − y|pp

)
.

The result follows from Theorem 4.6. �

Remark 4.12. In particular, the inequality SG(ω2, ·) implies TC(ω2, ·) which is stronger than Talagrand’s T2 in-
equality, that is to say the transportation-cost inequality with a cost function of the form (x, y) 
→ a|x − y|22 for
some a > 0. The transportation-cost inequalities T2 and TC(ω2, ·) seem to be very close; we do not know if they are
equivalent.

4.3. Links with inf-convolution inequalities

Transportation-cost inequalities are closely related to another type of inequalities introduced by Maurey in [30], the
so called inf-convolution inequalities.

Let us say that a probability measure μ on a metric space X satisfies the inf-convolution inequality with the cost
function c : X × X → R

+, if the following holds for all measurable nonnegative functions f : X → R
+:∫

eQcf dμ ·
∫

e−f dμ ≤ 1, (4.2)

where the inf-convolution operator Qc is defined by

Qcf (x) = inf
y∈X

{
f (y) + c(x, y)

}
. (4.3)

One will say that a probability measure μ on R
d satisfies the inf-convolution inequality IC(ω, a) if it satisfies the

inf-convolution inequality (4.2) with the cost function c(x, y) = α(adω(x, y)).

The inequalities TC(ω, ·) and IC(ω, ·) are qualitatively equivalent, as shown by the following proposition:

Proposition 4.13. If μ verifies the inequality IC(ω, a) then it verifies the inequality TC(ω, a). Conversely, if μ

verifies the inequality TC(ω, a) then it verifies the inf-convolution inequality with the cost function 2α(a
2 dω(x, y)); in

particular, it satisfies the inequality IC(ω, a
2 ).

Proof. Let Qaf (x) = infy∈X{f (y) + α(adω(x, y))}. If μ verifies the inequality IC(ω, a) then, applying Jensen in-
equality, it holds:∫

eQaf dμ ≤ e
∫

f dμ (4.4)
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for all bounded measurable f : Rd → R. According to [22], Corollary 1, this latter inequality is equivalent to the
transportation-cost inequality TC(ω, a).

Conversely, suppose that μ verifies the transportation-cost inequality TC(ω, a). According to [22], Corollary 1,
the inequality (4.4) holds. Applying (4.4) to Qaf instead of f , one gets∫

eQa(Qaf ) dμ · e− ∫ Qaf dμ ≤ 1

and applying again (4.4) with −Qaf instead of f , one gets∫
eQa(−Qa(f )) dμ · e

∫
Qaf dμ ≤ 1.

Multiplying these two inequalities yields to∫
eQa(Qaf ) dμ ·

∫
eQa(−Qa(f )) dμ ≤ 1.

Now, for all x, y ∈ R
d, one has: −f (x) + Qaf (y) ≤ α(adω(x, y)), and consequently, −f (x) ≤ Qa(−Qa(f ))(x).

Plugging this into the last inequality gives∫
eQa(Qaf ) dμ ·

∫
e−f dμ ≤ 1.

An easy computation gives:

Qa
(
Qaf

)
(x) = inf

y∈Rd

{
f (y) + 2α

(
a

2
dω(x, y)

)}
.

This completes the proof. �

The following corollary is an immediate consequence of Theorem 4.6:

Corollary 4.14. Let μ be a probability measure on R
d absolutely continuous with respect to Lebesgue measure with

a positive density. Then μ satisfies the Poincaré inequality SG(ω,C) for some C > 0 if and only if it satisfies the
inequality IC(ω, a) for some a > 0.

More precisely:

• If μ satisfies SG(ω,C) then it satisfies IC(ω, 1
2
√

Cκ
), with κ =

√
18e

√
5.

• If μ satisfies the inequality IC(ω, a), then μ satisfies the inequality SG(ω, 1
2a2 ).

5. Comparison with other functional inequalities

In this section, one shows that the Poincaré inequalities SG(ω, ·) are weaker than super Poincaré inequalities.
Let us recall that μ verifies the super Poincaré inequality SP(β) if for every locally Lipschitz f on R

d , one has

∀s ≥ 1
∫

f 2 dμ ≤ β(s)

∫
|∇f |22 dμ + s

(∫
|f |dμ

)2

, (5.1)

where β : [1,+∞) → R
+ is nonincreasing.

Remark 5.1. Of course super Poincaré inequalities are stronger than the classical Poincaré inequality. Namely, if
μ satisfies SP(β), then μ verifies SG(2β(1)). Indeed, taking s = 1 in (5.1) and applying it to (f − m)+, where m
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denotes the median of the function f , gives:∫
f ≥m

(f − m)2 dμ ≤ β(1)

∫
f ≥m

|∇f |22 dμ +
(∫

f ≥m

f − mdμ

)2

≤ β(1)

∫
f ≥m

|∇f |22 dμ + 1

2

∫
f ≥m

(f − m)2 dμ.

Thus,
∫
f ≥m

(f − m)2 dμ ≤ 2β(1)
∫
f ≥m

|∇f |22 dμ. Doing the same with (f − m)− yields,
∫
f ≤m

(f − m)2 dμ ≤
2β(1)

∫
f ≤m

|∇f |22 dμ. Adding these inequalities gives
∫
(f − m)2 dμ ≤ 2β(1)

∫ |∇f |22 dμ. Since Varμ(f ) ≤ ∫ (f −
m)2 dμ, this concludes the proof.

5.1. Concentration involved by super Poincaré

As noted by Wang in [39], Theorems 6.1 and 6.2, super Poincaré inequalities imply concentration results. This is
recalled in the following proposition.

Proposition 5.2. Suppose that μ verifies (5.1) with a continuous decreasing function β such that β(s) → 0 when s

goes to +∞ and define a = 1/
√

2β(1), then for all 1-Lipschitz function f on R
d such that

∫
f dμ = 0, one has:

∀λ ≥ 0
∫

eλf dμ ≤ exp

(
λ

∫ λ

0
φ(t ∨ a)dt

)
,

where the function φ is defined by

∀t > 0 φ(t) = 1

t2
log

(
2β−1

(
1

2t2

))
.

As a consequence, defining for all λ ≥ 0, Λβ(λ) = λ
∫ λ

0 φ(t ∨ a)dt and for all t ≥ 0, Λ∗
β(t) = supλ≥0{λt − Λβ(λ)},

one has

∀t ≥ 0 μ(f ≥ t) ≤ e−Λ∗
β(t)

.

Moreover, the inverse function of Λ∗
β can be expressed as follows

∀t ≥ 0 Λ∗−1
β (t) =

∫ t

0
ψ(u)du,

where ψ : (0,+∞] → R
+ is defined by:

ψ(t) =
⎧⎨⎩
√

2 log(2)β(1)
t

if t ≤ log(2),√
2β
( et

2

)
if t ≥ log(2).

The observation concerning the inverse of Λ∗
β seems to be new and will be very useful in the sequel. The proof

below is simpler than the one proposed by Wang in [39].

Proof of Proposition 5.2. Let f be a 1-Lipschitz function with
∫

f dμ = 0; define Z(λ) = ∫ eλf dμ and Λ(λ) =
logZ(λ). Applying (5.1) to the function eλf yields:

Z(2λ) ≤ λ2β(s)Z(2λ) + sZ(λ)2.
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So, if s > β−1(1/λ2), one easily gets

Λ(2λ) ≤ log

(
s

1 − λ2β(s)

)
+ 2Λ(λ).

Since the function Λ is convex, one has Λ(2λ) ≥ Λ(λ) + λΛ′(λ), and so[
Λ(λ)

λ

]′
= λΛ′(λ) − Λ(λ)

λ2
≤ 1

λ2
log

(
s

1 − λ2β(s)

)
. (5.2)

If λ < 1/
√

2β(1) = a, then taking s = 1 in (5.2) yields[
Λ(λ)

λ

]′
≤ − 1

λ2
log
(
1 − λ2β(1)

)≤ 2 log(2)β(1) = φ(a).

If λ ≥ 1/
√

2β(1) = a, then taking s = β−1( 1
2λ2 ) in (5.2) gives[

Λ(λ)

λ

]′
≤ φ(λ).

So, for all λ > 0, [Λ(λ)
λ

]′ ≤ φ(λ ∨ a); since Λ(λ)/λ→λ→0 0 one gets the result.

The inequality μ(f ≥ t) ≤ e−Λ∗
β(t) follows at once from the preceding using routine arguments.

Now, let us prove the claim concerning the inverse of Λ∗
β . It is easy to check that

∫ λ

0
φ(u ∨ a)du =

∫ +∞

1/λ

1

u2
φ

(
1

u
∨ a

)
du =

∫ +∞

1/λ

ψ−1(u)du = −
∫ ψ−1(1/λ)

0
vψ ′(v)dv.

Now integrating by part yields∫ ψ−1(1/λ)

0
vψ ′(v)dv = ψ−1(1/λ)

λ
−
∫ ψ−1(1/λ)

0
ψ(u)du.

Let h(λ) = λ
∫ t

0 ψ(u)du − Λβ(λ), then

h(λ) = λ

∫ t

ψ−1(1/λ)

ψ(u)du + ψ−1(1/λ) = λ

∫ t

ψ−1(1/λ)

(
ψ(u) − 1/λ

)
du + t.

Observing that ψ is decreasing and λ 
→ ψ−1(1/λ) is increasing, it is easy to check that the integral term above is
always nonpositive and vanishes when λ = 1/ψ(t). One concludes that

sup
λ≥0

h(λ) = Λ∗
β

(∫ t

0
ψ(u)du

)
= t,

which concludes the proof. �

Lemma 5.3. Suppose that β : [1,+∞) → R
+ is a continuous decreasing function such that s 
→ sβ(s) is nondecreas-

ing on [1,+∞) and define ωβ : R+ → R
+ as follows:

∀t ≥ 0 ω−1
β (t) = 4

∫ t

0

√
β
(
eu
)

du. (5.3)

Then one has

∀t ≥ 0 α ◦ ωβ(t) ≤ Λ∗
β(t) ≤ α ◦ ωβ(5t), (5.4)
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where α(t) = min(t2, t) for all t ≥ 0.

Proof. Let us prove the lower bound in (5.4). According to Proposition 5.2, this inequality is equivalent to the fol-
lowing one

∀t ≥ 0 Λ∗−1
β

(
α(t)

)= ∫ t2∧t

0
ψ(u)du ≤ 4

∫ t

0

√
β
(
eu
)

du, (5.5)

where the function ψ is defined in Proposition 5.2. In fact a slightly better inequality holds true:

∀t ≥ 0 Λ∗−1
β

(
α(t)

)= ∫ t2∧t

0
ψ(u)du ≤ 2

√
2
∫ t

0

√
β
(
eu/2

)
du, (5.6)

with the convention β(s) = β(1), when s ∈ [0,1]. Since the function sβ(s) is nondecreasing on [0,+∞) it is easy to
check that β(eu/2) ≤ 2β(eu), and so (5.6) implies (5.5). To prove (5.6), let us distinguish the following cases:

• If t ≤ log(2), then Λ∗−1
β (α(t)) = Λ∗−1

β (t2) = 2
√

2 log(2)β(1)t ≤ 2
√

2β(1)t = 2
√

2
∫ t

0

√
β(eu/2)du.

• If log(2) ≤ t , then

Λ∗−1
β

(
α(t)

) ≤ Λ∗−1
β (t) = 2

√
2β(1) log(2) +

∫ t

log(2)

√
2β
(
eu/2

)
du

≤ 2
∫ log(2)

0

√
2β
(
eu/2

)
du +

∫ t

log(2)

√
2β
(
eu/2

)
du

≤ 2
√

2
∫ t

0

√
β
(
eu/2

)
du.

The proof of the upper bound in (5.4) is similar and left to the reader. �

Examples. Let p ≥ 1, and define βp(s) = log(e+s)2(1/p−1) (which verifies the condition sβp(s) increasing according
to Lemma 5.14). Then, one can show that

∀t ≥ 0 ωp

(
t

4p(21/p − 1)

)
≥ ωβp(t) ≥ ωp

(
t

4p

)
, (5.7)

where ωp(u) = u ∨ up for all u ≥ 0. In particular, if μ verifies inequality SP(Cβp) for some C > 0, then one has

∀t ≥ 0 μ

(
|x|2 ≥ t +

∫
|x|2 dμ

)
≤ e−α◦ωp(t/(4

√
Cp)),

and this implies that
∫

eε|x|p2 dμ < +∞ for some ε > 0. Since the probability measure dνp(x) = 1
Zp

e−|x|p dx verifies

SP(Cβp), for some C > 0, one concludes that the function ωβp gives the right order of concentration. We think that
more generally the function ωβ is of the right order.

Now we can state our main result:

Theorem 5.4. Let β : [1,+∞) → R
+ be a continuous decreasing function such that s 
→ sβ(s) is increasing and

such that there is some λ ≥ 4 for which the following holds

∀s ≥ 1 λβ(λs) ≥ 4β(s). (5.8)

If a probability measure μ on R
d verifies the super Poincaré inequality SP(β), then there is some a > 0 such that μ

verifies SG(ωβ(·/a),4λ2), where ωβ is defined by (5.3) for t ≥ 0 and extended to R
− by ωβ(t) = −ωβ(−t), for t �= 0.

One can take

a = max
(
λ,Λ∗

β(m)
)
,
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where m = ∫ |x|2 dμ.
Moreover, under the same assumptions, the probability measure μ verifies the centered Poincaré inequality

SG(ωβ(·/ā),4λ2) (see Definition 2.8) with

ā = max
(
λ,Λ∗

β

(√
2β(1)d

))
.

The constant ā above depends only on β and enjoys the following invariant property: if β is replaced by tβ with
t > 0, then ā is unchanged.

Finally, under the same assumptions, the probability measure μ verifies the following transportation-cost inequality

inf
π∈P(ν,μ)

∫ d∑
i=1

α ◦ ωβ

( |xi − yi |
2ā

)
dπ(x, y) ≤ 1

α(1/(2λκ
√

d))
H(ν|μ)

for all probability measure ν on R
d .

Remark 5.5. The assumptions concerning β are not very restrictive. They are in particular fulfilled by the functions
βp(s) = log(e + s)2(1/p−1) (see Lemma 5.14). The last part of Theorem 5.4 can be seen as a generalization of Otto
and Villani result concerning Talagrand’s T2 inequality.

5.2. A capacity measure criterion for super Poincaré inequality

Our approach to compare the inequalities SG(ω, ·) to the super Poincaré inequalities relies on the capacity-measure
results of Barthe, Cattiaux and Roberto [5,6].

Let us recall the definition of a capacity-measure inequality (a good reference for this type of inequalities is the
book of Mazja [31]).

Definition 5.6. Let μ be a probability measure on R
d . Let A ⊂ Ω be Borel sets. One defines

Capμ(A,Ω) = inf

{∫
|∇f |22 dμ: 1A ≤ f ≤ 1Ω

}
.

The capacity of a set A with μ(A) ≤ 1/2 is defined by

Capμ(A) = inf
{
Capμ(A,Ω): A ⊂ Ω and μ(Ω) ≤ 1/2

}
= inf

{∫
|∇f |22 dμ: f : Rd → [0,1], f|A = 1 and μ(f = 0) ≥ 1/2

}
.

One says that μ satisfies a capacity-measure inequality if there is a function Ψ : [0,1] → R
+ such that for all A with

μ(A) ≤ 1/2,

Ψ
(
μ(A)

)≤ Capμ(A).

Many functional inequalities admit a transcription in terms of capacity measure. The simplest example is the
classical Poincaré inequality on R

d .

Theorem 5.7. A probability measure μ on R
d verifies the inequality SG(C) for some C > 0 if and only if there is

some D > 0 such that for all A ⊂ R
d with μ(A) ≤ 1/2,

μ(A) ≤ D Capμ(A).

Moreover, optimal constants verify Dopt/2 ≤ Copt ≤ 4Dopt.
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A proof of Theorem 5.7 can be found in [5], Proposition 13.
Under some assumptions on the function β the same holds true for super Poincaré inequalities. The following

theorem due to Barthe, Cattiaux and Roberto shows how to deduce a super Poincaré inequality from a capacity
measure inequality (see [6], Theorem 1 and Corollary 6).

Theorem 5.8 (Barthe–Cattiaux–Roberto). Let β : [1,+∞) → R
+ be a nonincreasing function such that s 
→ sβ(s)

is nondecreasing. Suppose that for all A ⊂ R
d , with μ(A) ≤ 1/2,

μ(A)

β(1/μ(A))
≤ Capμ(A),

then μ verifies the super Poincaré inequality SP(8β).

In fact, for our purpose one is only interested in the converse proposition:

Proposition 5.9. Let β : [1,+∞) → R
+ be a nonincreasing function such that s 
→ sβ(s) is nondecreasing. Suppose

also that there exists λ ≥ 4 such that

∀s ≥ 1 λβ(λs) ≥ 4β(s).

Under the preceding assumption, if μ verifies the super Poincaré inequality SP(β), then for all A ⊂ R
d , with μ(A) ≤

1/2 one has

μ(A)

β(1/μ(A))
≤ 4λCapμ(A).

Proof. The following proof is a straightforward adaptation of the proof of [5], Theorem 22, and we will only sketch
it. Let A ⊂ R

d with μ(A) ≤ 1/2 and f : Rd → [0,1] a function which is 1 on A and vanishes with probability more
than 1/2. For all k ∈ Z, define fk = (f − 2k)+ ∧ 2k and Ωk = {f ≥ 2k}. Applying the super Poincaré inequality (5.1)
to the function fk one obtains:

∫
f 2

k dμ ≤ β(s)

∫
|∇fk|22 dμ + s

(∫
|fk|dμ

)2

≤ β(s)

∫
|∇f |22 dμ + sμ(Ωk)

∫
f 2

k dμ.

Taking s = 1
2μ(Ωk)

≥ 1 and noticing that f 2
k ≥ 22k on Ωk+1 gives

μ(Ωk+1)2
2k ≤

∫
f 2

k dμ ≤ 2β

(
1

2μ(Ωk)

)∫
|∇f |22 dμ.

Defining F(x) = 1
2β(x/2)

for x ≥ 2, ak = μ(Ωk) and C = ∫ |∇f |2 dμ one gets 22kak+1F(1/ak) ≤ C, as soon as

ak > 0. Applying [5], Lemma 23, one concludes that 22kakF (1/ak) ≤ λC as soon as ak > 0. If one takes k = 0, one
has A ⊂ Ω0 so a0 ≥ μ(A) and since sβ(s) is nondecreasing, a0F(1/a0) ≥ μ(A)F(1/μ(A)). Consequently,

μ(A)

4β(1/μ(A))
≤ μ(A)

2β(1/(2μ(A)))
≤ λ

∫
|∇f |22 dμ.

Optimizing over f gives the result. �
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5.3. Proof of Theorem 5.4

In all what follows, we will adopt the following convention: for s ≤ 1, one defines β(s) = β(1).
For all x > 0, let

Θ(x) = x

4λβ(1/x)
, (5.9)

where λ is defined in (5.8).

Lemma 5.10. If β : (0,+∞] → R+ is a nonincreasing function such that s 
→ sβ(s) is nondecreasing then the func-
tion Θ defined by (5.9) is nondecreasing and verifies Θ(x + y) ≤ Θ(x) + Θ(y) for all x, y ∈ R

+.

Proof. Since sβ(s) is nondecreasing, it follows that Θ is nondecreasing. Moreover, since β is nonincreasing, it follows
that Θ(x)/x is nonincreasing. Thus, if x ≥ y > 0; one gets

Θ(x + y) = Θ
(
x(1 + y/x)

)≤ (1 + y/x)Θ(x) = Θ(x) + yΘ(x)/x ≤ Θ(x) + Θ(y).

This completes the proof. �

The following lemma explains how behave capacity-measure inequalities under push-forward:

Lemma 5.11. Suppose that μ satisfies the capacity-measure inequality

∀A with μ(A) ≤ 1/2 Ψ
(
μ(A)

)≤ D Capμ(A).

Then μ̃ = ω�μ verifies the inequality

∀A with μ̃(A) ≤ 1/2 Ψ
(
μ̃(A)

)≤ DCapμ̃(A),

where

Capμ̃ = inf

{∫ d∑
i=1

(
ω′ ◦ ω−1(xi)

)2( ∂f

∂xi

)2

(x)dμ̃: f : Rd → [0,1], f|A = 1 and μ̃(f = 0) ≥ 1/2

}
.

Proof. Let A be such that μ̃(A) ≤ 1/2, and f be such that f = 1 on A and μ̃(f = 0) ≥ 1/2. Define B = ω−1(A) and
g = f ◦ ω. Then μ(B) = μ̃(A) ≤ 1/2, g ≥ 1 on B and {g = 0} = ω−1{f = 0} and so μ(g = 0) = μ̃(f = 0) ≥ 1/2.
Applying the capacity-measure inequality verified by μ to B and g yields

Ψ
(
μ̃(A)

)= Ψ
(
μ(B)

)≤ D

∫
|∇g|22 dμ = D

∫ d∑
i=1

(
ω′ ◦ ω−1(xi)

)2( ∂f

∂xi

)2

(x)dμ̃.

Optimizing over such functions f gives the announced inequality for μ̃. �

The next lemma compares the capacity Capμ̃ to the usual capacity Capμ:

Lemma 5.12. Suppose that ω is convex and let B∞(r) = {x ∈ R
d : max1≤i≤d |xi | ≤ r}, for all r ≥ 0. If A ⊂ B∞(r)

and μ(A) ≤ 1/2, then

Capμ̃(A) ≤ 2
(
ω′ ◦ ω−1(r + 1)

)2[
Capμ̃(A) + μ̃

(
B∞(r)c

)]
.



732 N. Gozlan

Proof. Let

Capr
μ̃(A) = inf

{∫
|∇f |22 dμ̃: 1A ≤ f ≤ 1B∞(r+1) and μ̃(f = 0) ≥ 1/2

}
.

Using the fact that the function ω′ ◦ ω−1 is nondecreasing on R
+, one clearly has:

Capμ̃(A) ≤ (ω′ ◦ ω−1(r + 1)
)2

Capr
μ̃(A).

Now let f : Rd → [0,1] be such that f|A = 1 and μ̃(f = 0) ≥ 1/2. Let h : R → R
+ defined by h(t) = (r + 1 − t)+ ∧ 1

and consider ϕ : Rd → R
+ defined by ϕ(x) = h(|x|∞). It is not difficult to check that |∇ϕ|2 ≤ 1B∞(r)c . Let g = f ϕ;

one has 1A ≤ g ≤ 1B∞(r+1), μ̃(g = 0) ≥ μ̃(f = 0) ≥ 1/2 and

Capr
μ̃(A) ≤

∫
|∇g|22 dμ̃ =

∫
|∇f ϕ + f ∇ϕ|22 dμ̃

≤ 2
∫

|∇f |22ϕ2 dμ̃ + 2
∫

f 2|∇ϕ|22 dμ̃

≤ 2
∫

|∇f |22 dμ̃ + 2μ̃
(
B∞(r)c

)
.

Optimizing over f yields:

Capr
μ̃(A) ≤ 2 Capμ̃(A) + 2μ̃

(
B∞(r)c

)
. �

Proof of Theorem 5.4. Define μ̃ as the image of μ under the map x 
→ ωβ(x/a) with a = max(λ,Λ∗
β(m)). One wants

to prove that μ̃ verifies the classical Poincaré inequality. According to Proposition 5.9, the probability measure μ

satisfies the capacity-measure inequality

∀A with μ(A) ≤ 1/2 Θ
(
μ(A)

)≤ Capμ(A). (5.10)

According to Lemma 5.11, μ̃ satisfies the capacity-measure type inequality:

∀A with μ̃(A) ≤ 1/2 Θ
(
μ̃(A)

)≤ Capμ̃(A),

where Capμ̃ is defined in the lemma.
Let B∞(r) = {x ∈ R

d : max1≤i≤d(|xi |) ≤ r}, for all r ≥ 0. Let A ⊂ R
d with μ̃(A) ≤ 1/2; one has

Θ
(
μ̃(A)

) (i)≤ Θ
(
μ̃
(
A ∩ B∞(r)

))+ Θ
(
μ̃
(
B∞(r)c

))
(ii)≤ Capμ̃

(
A ∩ B∞(r)

)+ Θ
(
μ̃
(
B∞(r)c

))
(iii)≤ 2/a2(ω′

β ◦ ω−1
β (r + 1)

)2[Capμ̃

(
A ∩ B∞(r)

)+ μ̃
(
B∞(r)c

)]+ Θ
(
μ̃
(
B∞(r)c

))
(iv)≤ 2/a2(ω′

β ◦ ω−1
β (r + 1)

)2[Capμ̃(A) + μ̃
(
B∞(r)c

)]+ Θ
(
μ̃
(
B∞(r)c

))
(v)≤ e

8a2β(er )

[
Capμ̃(A) + μ̃

(
B∞(r)c

)]+ Θ
(
μ̃
(
B∞(r)c

))
,

where (i) follows from the sub-additivity and the monotonicity of Θ , (ii) from Lemma 5.11, (iii) from Lemma 5.12
and the convexity of ωβ , (iv) from the fact that the function A 
→ Capμ̃(A) is nondecreasing and (v) from the defini-
tion (5.3) of ωβ and the inequality β(er+1) ≥ 1/eβ(er ). Thanks to Lemma 5.13 below, one has

μ̃
(
B∞(r)c

)≤ (2e)e−r .
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Using the monotonicity and the sub-additivity of Θ , one has Θ(μ̃(B∞(r)c)) ≤ Θ((2e)e−r ) ≤ (2e)Θ(e−r ). So, letting
t = μ̃(A) and using the definition of Θ , one has:

∀r ≥ 0
t

β(1/t)
≤
(

eλ

2a2
Capμ̃(A) +

(
e2λ

a2
+ 2e

)
e−r

)
1

β(er )
.

Since a ≥ λ ≥ 4, one has eλ
2a2 ≤ 1/2 and e2λ

a2 + 2e ≤ 8 and so letting b = t
β(1/t)

, one gets

sup
s≥1

{
bβ(s) − 8/s

}≤ 1

2
Capμ̃(A).

Let g(s) = sβ(s), s ≥ 1; by hypotheses g is increasing and goes to +∞ when s → +∞. Taking s = g−1(16/b)

(which is well defined) yields

bβ
(
g−1(16/b)

)≤ Capμ̃(A).

According to (5.8), one has g(λx) ≥ 4g(x) for all x ≥ 1; from this follows that g−1(4x) ≤ λg−1(x) for all x ≥ β(1)

and by iteration, g−1(16x) ≤ λ2g−1(x), for all x ≥ β(1). Consequently,

g−1(16/b) ≤ λ2g−1(1/b) = λ2g−1(g(1/t)
)= λ2/t.

As β is nonincreasing, one concludes that β(λ2/t) ≤ β(g−1(16/b)). Since β(λ2/t) ≥ β(1/t)/λ2, one gets t/λ2 ≤
bβ(g−1(16/b)) ≤ Capμ̃(A).

In other word, for all A ⊂ R
d with μ̃(A) ≤ 1/2

μ̃(A) ≤ λ2 Capμ̃(A).

According to Theorem 5.7, one concludes that μ̃ verifies the classical Poincaré inequality SG(4λ2).
Let μ̄ = μ∫ x dμ. If μ verifies the super Poincaré inequality (5.1), then so does μ̄. So all the preceding results

apply to μ̄. In particular, μ̄ verifies the inequality SG(ωβ(·/a),4λ2), with a = max(λ,Λ∗
β(m̄)), where m̄ = ∫ |x −∫

y dμ|2 dμ(x). But,

m̄2 ≤
d∑

i=1

∫ (
xi −

∫
yi dμ

)2

dμ(x) ≤ 2β(1)d,

where the first inequality follows from Cauchy–Schwarz inequality and the second from the fact that μ ver-
ifies the Poincaré inequality SG(2β(1)) (see Remark 5.1). This proves that μ̄ verifies SG(ωβ(·/ā),4λ2) with
ā = max(λ,Λ∗

β(
√

2β(1)d)).
The invariance property of ā follows immediately from the definition of Λ∗

β given in Proposition 5.2.

Now, according to Theorem 4.6, μ̄ verifies the inequality TC(ωβ(·/ā), 1
2λκ

). Reasoning as in the proof of Corol-
lary 4.11, one sees that this implies that μ̄ satisfies the transportation-cost inequality with the cost function

c(x, y) = α

(
1

2λκ
√

d

) d∑
i=1

α ◦ ωβ

( |xi − yi |
2ā

)
.

Since transportation-cost inequalities are translation invariant, this concludes the proof. �

During the proof of Theorem 5.4, one has used the following lemma.

Lemma 5.13. The probability measure μ̃ which is the image of μ under the map x 
→ ωβ(x/a) with a =
max(λ,Λ∗

β(m)) and m = ∫ |x|2 dμ verifies

∀r ≥ 0 μ̃
(|x|∞ ≥ r

)≤ (2e)e−r .
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Proof. According to Lemma 5.3 and e.g. [20], Lemma 2.3, one has

∀ε ∈ [0,1)

∫
eεΛ∗

β(||x|2−m|) dμ ≤ 1 + ε

1 − ε
,

where Λ∗
β is defined in Proposition 5.2. Using the convexity of Λ∗

β and the fact that Λ∗
β ≥ α ◦ωβ one gets since a ≥ 2,

exp
(
α ◦ ωβ

(|x|2/a
))≤ exp

(
Λ∗

β

(|x|2/a
))≤ exp

(
1

a
Λ∗

β

(∣∣|x|2 − m
∣∣)) · exp

(
1

a
Λ∗

β(m)

)
.

Since |ωβ(x/a)|∞ = ωβ(|x|∞/a) ≤ ωβ(|x|2/a), integrating yields:∫
eα(|x|∞) dμ̃(x) ≤ 1 + 1/a

1 − 1/a
· exp

(
1

a
Λ∗

β(m)

)
≤ 2e

which gives the result. �

5.4. Consequences of Theorem 5.4

In this section we will draw consequences of Theorem 5.4. We will focus on the functions βp(s) = log(e + s)2(1/p−1),
but more general results could be stated. First let us show that these functions verify the assumptions of Theorem 5.4.

Lemma 5.14. For all p ≥ 1, the function βp(s) = log(e + s)2(1/p−1) is such that s 
→ sβp(s) is increasing on
[0,+∞). Moreover, for all p ≥ 1, there is some λ ≥ 4, such that λβp(λs) ≥ 4βp(s) for all s ≥ 1. Let us denote
by λp the smallest of these λ’s, then the map p 
→ λp is increasing. Moreover, one always has λp ≤ 205 for all p ≥ 1
and for p ∈ [1,2], one has λp ≤ 20.

Proof. Let r = 2(1 − 1/p); then r ∈ [0,2). The map s 
→ log(e + s)r is concave on [0,+∞). Consequently, the map
s 
→ (log(e+s)r −1)/s decreases on (0,+∞) and so does s 
→ log(e+s)r/s. In other word s 
→ sβp(s) is increasing.

Next observe that λβp(λs) ≥ 4βp(s) ⇔ λ[ log(e+s)
log(e+λs)

]r ≥ 4. This clearly implies that the map p 
→ λp is nondecreas-
ing.

Let f (s) = log(e+s)
log(e+λs)

; then

f ′(s) = (e + λs) log(e + λs) − λ(e + s) log(e + s)

log(e + λs)2(e + s)(e + λs)

= ϕ(λs) − λϕ(s)

log(e + λs)2(e + s)(e + λs)
,

with ϕ(s) = (e + s) log(e + s). Then d
ds

ϕ(s)
s

= s−e log(e+s)

s2 . If x ≥ 6, then d
ds

ϕ(s)
s

≥ 0 so s 
→ ϕ(s)/s is nondecreasing
and this implies that ϕ(λs) ≥ λϕ(s) for all s ≥ 6. As a consequence, f ′(s) ≥ 0 when s ≥ 6 and the function f is
thus nondecreasing on [6,+∞). Consequently, f (s) ≥ f (6) for s ≥ 6 and f (s) ≥ 1

log(e+6λ)
for s ≤ 6. Since f (6) ≥

1
log(e+6λ)

, one has f (s) ≥ 1
log(e+6λ)

for all s ≥ 1.
From what precedes one concludes it is enough to find λ ≥ 4 such that

λ

log(e + 6λ)r
≥ 4.

For r = 2, one checks that λ = 205 is convenient and for r = 1, one can take λ = 20. This the proof. �

5.4.1. Comparison with Latała–Oleszkiewicz inequalities
Let us recall that μ satisfies the Latała–Oleszkiewicz inequality LO(p,C) if

∀f sup
a∈(1,2)

∫
f 2 dμ − (

∫ |f |a dμ)2/a

(2 − a)2(1−1/p)
≤ C

∫
|∇f |22 dμ. (5.11)
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The following result is due to Wang (see [41], Theorem 1.1):

Theorem 5.15. Let p ∈ [1,2]; a probability measure verifies the LO(p,C) for some C > 0 if and only if it verifies
the super Poincaré inequality SP(C̃βp).

Remark 5.16. If μ verifies LO(p,C), then it verifies SP(96Cβp). This follows easily from [6], Corollary 8.

Corollary 5.17. If μ verifies the inequality LO(p,C) on R
d , with p ∈ [1,2] then μ verifies the centered inequality

SG(ωp(·/(a1
√

C)), a2), where a1 depends only on the dimension d and a2 is an absolute constant. One can take
a1 = 4

√
6 max(5d,20) and a2 = (320)2.

Remark 5.18. The fact that the dimension d appears in the constant a2 above is not a problem, thanks to the ten-
sorization property of the (centered) Poincaré inequality.

Proof of Corollary 5.17. According to Theorem 5.15, μ verifies SP(96Cβp) and according to Theorem 5.4, μ verifies
the centered Poincaré inequality SG(ω,4λ2

p), with ω := ω96Cβp(·/ā) = ωβp(·/(4ā
√

6C)). According to Lemma 5.14,

one has λp ≤ 20. Using the inequalities (5.4) and (5.7), one sees that Λ∗
βp

(
√

2βp(1)d) ≤ Λ∗
β2

(
√

2d) ≤ 5d , so ā ≤
max(5d,20). It is easy to check that ω′

βp
≥ 1

4p
ω′

p ≥ 1
8ω′

p . According to Proposition 3.1, one concludes that μ verifies

the centered Poincaré inequality SG(ωp(·/(4 max(5d,20)
√

6C)), (320)2). �

Remark 5.19. According to Corollary 5.17, the Logarithmic-Sobolev inequality is stronger than the Poincaré inequal-
ity SG(ω2, ·). In [16], Cattiaux and Guillin were able to construct a potential V on R satisfying V (−x) = V (x) and
lim infx→+∞ V ′(x)/x > 0 but such that the probability measure dμ(x) = e−V (x) dx does not satisfy the Bobkov–Götze
necessary and sufficient condition for the Logarithmic-Sobolev inequality (see [10]). According to Proposition 3.3, this
shows that the Logarithmic-Sobolev inequality is strictly stronger than the inequality SG(ω2, ·).

5.4.2. Comparison with modified Logarithmic-Sobolev inequalities
Let H : R → R

+; let us recall that μ verifies the modified Log-Sobolev inequality LS(H,C) on R
d , if for all locally

Lipschitz positive function f ,

Entμ
(
f 2)≤ C

d∑
i=1

∫
H

(
∂if

f

)
f 2 dμ.

Let p ≥ 2 define q such that 1/p + 1/q = 1 and Hq(x) = |x|q . The inequality LS(Hq, ·) is related to super Poincaré
inequality SP(βp) as explained in the following proposition.

Proposition 5.20. Let p ≥ 2 and suppose that μ verifies the inequality LS(Hq,C) on R
d with 1/p + 1/q = 1, then

μ verifies the super Poincaré inequality SP(C2(1−1/p)kβp), where k is a constant depending only on the dimension d

and p.

Proof. Since the function x 
→ xq/2 is concave, applying Jensen inequality yields:∫
Hq

(
∂if

f

)
f 2 dμ ≤

(∫
(∂if )2 dμ

)q/2(∫
f 2 dμ

)1−q/2

.

So, using concavity again,

Entμ
(
f 2)≤ Cd1−q/2

(∫
|∇f |22 dμ

)q/2(∫
f 2 dμ

)1−q/2

.
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Since, xq/2 = infs>0{sx + aqsq/(q−2)}, with aq = (
2−q

2 )( 2
q
)q/(q−2), one concludes that for all s > 0,

Entμ
(
f 2)≤ C̃s

∫
|∇f |22 dμ + C̃aqsq/(q−2)

∫
f 2 dμ,

letting C̃ = Cd1−q/2. According to the proof of [39], Theorem 3.1, if a probability measure μ verifies an inequality
of the form:

Entμ
(
f 2)≤ c1

∫
|∇f |22 dμ + c2

∫
f 2 dμ,

then it verifies

∀r > 0
∫

f 2 dμ ≤ r

∫
|∇f |22 dμ +

(
rc2

2c1
+ 1

)2

exp

(
c2 + 2c1

r

)(∫
|f |dμ

)2

.

From this follows, that∫
f 2 dμ ≤ r

∫
|∇f |22 dμ +

(
aq

2
rs2/(q−2) + 1

)2

exp
(
C̃aqsq/(q−2) + 2C̃s/r

)(∫ |f |dμ

)2

holds for all s, r > 0. Choosing s = r(2−q)/2 yields:

∀r > 0
∫

f 2 dμ ≤ r

∫
|∇f |22 dμ + 1

4
(aq + 2)2 exp

(
C̃(aq + 2)r−q/2)(∫ |f |dμ

)2

or equivalently:

∀s ≥ 1

4
bq

∫
f 2 dμ ≤ C̃2/qb

1/q
q log

(
4s

bq

)−2/q ∫
|∇f |22 dμ + s

(∫
|f |dμ

)2

,

where bq = (aq + 2)2. According to [14], Proposition 2.3, μ verifies the Poincaré inequality SG(cqC2/q), where

cq = 36 · 62/q . Let β(s) = cq ∧ d2/q−1b
1/q
q log( 4s

bq
)−2/q for s ≥ bq/4 and β(s) = cq for s ∈ [1, bq/4], then μ verifies

the super Poincaré inequality SP(C2/qβ). It is clear that one can find a constant k such that β ≤ kβp . This constant k

depends only on d and q . �

Reasoning exactly as in Corollary 5.17, one proves the following result.

Corollary 5.21. Let p ≥ 2 and suppose that μ verifies the inequality LS(Hq,C) on R
d with 1/p + 1/q = 1, then μ

verifies SG(ωp(·/aC1−1/p), b), where a and b are constants depending only on d and p.

Annex: Proof of Theorem 2.2 and its corollary

Sketch of proof of Theorem 2.2. First step: According to [12], Theorem 3.1 (which is the main result of [12]), μ

enjoys a modified Logarithmic-Sobolev inequality: for all 0 < s < 2√
C

and for all locally Lipschitz f : X → R such
that |∇f | ≤ s μ a.e. one has

Entμ
(
ef
)≤ L(s)

∫
|∇f |2ef dμ, (A.1)

where L(s) = C
2 ( 2+√

Cs

2−√
Cs

)2es
√

5C.
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Second step: Tensorization. Thanks to the tensorization property of the entropy functional,

Entμn

(
ef
)≤ ∫ n∑

i=1

Entμ
(
efi
)

dμn

for all f : X n → R.
Applying this inequality together with (A.1) yields

Entμn

(
ef
)≤ L(s)

∫ n∑
i=1

|∇if |2ef dμ (A.2)

for all 0 < s < 2√
C

and f : X n → R such that max1≤i≤n |∇if | ≤ s μn a.e.

Third step: Herbst argument. Thanks to the homogeneity one can suppose that f : X n → R is such that
max1≤i≤n |∇if | ≤ 1 (b = 1) and

∑n
i=1 |∇if |2 ≤ a2. Define Z(λ) = ∫ eλf dμn. Then, applying (A.2) to λf , one

easily obtains the following differential inequality

∀0 < λ ≤ s <
2√
C

d

dλ

(
log(Z(λ))

λ

)
≤ L(s)a2,

and since log(Z(λ))
λ

→λ→0
∫

f dμn, one gets

∀0 < λ ≤ s <
2√
C

∫
eλf dμn ≤ eλ2L(s)a2+λ

∫
f dμn

.

Fourth step: Tchebychev argument. This latter inequality on the Laplace transform yields via Tchebychev argument:

∀t ≥ 0 μn

(
f ≥

∫
f dμn + t

)
≤ e−hs(t),

where

hs(t) = sup
λ∈[0,s]

{
λt − L(s)a2λ2}=

{
t2

4L(s)a2 if 0 ≤ t ≤ 2L(s)a2s,

st − L(s)a2s2 if t ≥ 2L(s)a2s.

Now it easy to see that, hs(t) ≥ min( t2

4L(s)a2 , st
2 ). For s = 1/

√
C one obtains after some computations,

hs(t) ≥ min

(
t2

Cκ2a2
,

t√
Cκ

)
with κ =

√
18e

√
5. �

Sketch of proof of Corollary 2.3. Take A ⊂ X n, such that μn(A) ≥ 1/2 and define F(x) = infa∈A

∑n
i=1 α(d(xi, ai)),

where α(u) = min(|u|, u2). Then for all r ≥ 0, the function f = min(F, r) verifies (see the details in [12]):
max1≤i≤n |∇if | ≤ 2 and

∑n
i=1 |∇if |2 ≤ 4r. Moreover, since μn(A) ≥ 1/2, one has

∫
f dμn = ∫

f 1Ac dμn ≤
r(1 − μn(A)) ≤ r/2. Consequently, applying (2.1) to f yields:

μn(F ≥ r) = μn(f ≥ r) ≤ μn

(
f ≥

∫
f dμn + r/2

)
≤ e−rK(C),

with K(C) = 1
16 min( 1

Cκ2 , 1√
Cκ

) = 1
16α( 1√

Cκ
). This concludes the proof of (2.2). �
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