
www.imstat.org/aihp

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
2010, Vol. 46, No. 2, 299–312
DOI: 10.1214/09-AIHP315
© Association des Publications de l’Institut Henri Poincaré, 2010

Between Paouris concentration inequality and variance
conjecture

B. Fleury

Université Pierre et Marie Curie, Equipe d’Analyse Fonctionnelle, Institut de Mathématiques de Jussieu, boite 186, 4 place Jussieu,
75252 Paris Cedex 05, France. E-mail: fleury_bruno@yahoo.fr

Received 3 May 2008; revised 20 January 2009; accepted 10 February 2009

Abstract. We prove an almost isometric reverse Hölder inequality for the Euclidean norm on an isotropic generalized Orlicz ball
which interpolates Paouris concentration inequality and variance conjecture. We study in this direction the case of isotropic convex
bodies with an unconditional basis and the case of general convex bodies.

Résumé. Nous prouvons une inégalité inverse Hölder presque isométrique pour la norme euclidienne sur une boule d’Orlicz
généralisée isotrope qui interpole l’inégalité de concentration de Paouris et la conjecture de la variance. Nous étudions dans ce sens
le cas des corps convexes isotropes à base inconditionnelle et celui des corps convexes généraux.
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1. Introduction

Let K be a convex body in R
n and let X = (X1, . . . ,Xn) be a random vector uniformly distributed in K . We suppose

that K is in an isotropic position that means:

1. voln(K) = 1 (where voln stands for the Lebesgue measure on R
n);

2. the barycenter of K (EX) is 0;
3. the expectations E〈X,θ〉2 = L2

K do not depend on θ ∈ Sn−1.

It is known that every convex body has an affine image which is isotropic. We denote by |x| the Euclidean norm of
x ∈ R

n.
Under the isotropic condition, Paouris [14] showed that for some absolute constants c1 > 0 and c2 > 0 and for any

real p ∈ [2, c1
√

n],
(
E|X|p)1/p ≤ c2

(
E|X|2)1/2

. (1)

Besides, Bobkov and Koldobsky [4] emphasized (considering a particular case of a conjecture of Kannan, Lovász

and Simonovits [11]) that the ratio σ 2
K = Var |X|2

nL4
K

should be bounded from above by a universal constant which can be

written

(
E|X|4)1/4 ≤

(
1 + C

n

)(
E|X|2)1/2 (2)
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for some numerical constant C > 0. Anttila, Ball and Perissinaki proved this conjecture in [1] for the lnp-balls by
showing in this case that

cov
(
X2

i ,X
2
j

) ≤ 0 (3)

for any i and j in {1, . . . , n} with i �= j . Wojtaszczyk [17] extended this property (3) [and thus (2)] for the generalized
Orlicz balls, that is to say when

K =
{

x = (x1, . . . , xn) ∈ R
n,

n∑
i=1

fi

(|xi |
) ≤ 1

}
,

where, for any i ∈ {1, . . . , n}, fi : R+ → R
+ ∪ {∞} is convex and satisfies: fi(0) = 0, ∃t ∈ R

+∗ , fi(t) �= 0 and ∃s ∈
R

+∗ , fi(s) �= ∞. Recently, Klartag [10] proved (2) for the unconditional convex bodies (the convex bodies which are
symmetric with respect to the coordinate hyperplanes). But the general case remains open.

In this direction, it is natural to try to estimate the ratio (E|X|p)1/p

(E|X|2)1/2 for p ∈ [4, c1
√

n]. This question is connected

to the estimate of the spectral-gap for convex bodies. For any random vector Y in R
n with the law μY , we denote

λ1(Y ) = λ1(μY ) the spectral-gap of μY that is to say the best constant A ≥ 0 such that for any sufficiently smooth
function f : Rn → R

AVar
[
f (Y )

] ≤ E
∣∣∇f (Y )

∣∣2
.

Kannan, Lovász and Simonovits conjectured in [11] that, under the isotropy assumption, we have

λ1(X) ≥ 1

cL2
K

(4)

for some absolute constant c > 0. Up to now, this conjecture was proved only for the lnp-balls with p ∈ [1,∞] [8,16].
It is well known that an estimate of spectral gap implies moment bounds for Lipschitz functions. We observe that this
conjecture implies

(
E|X|p)1/p ≤

(
1 + a1p

n

)(
E|X|2)1/2 (5)

for any p ∈ [2, a2
√

n] where a1 > 0 and a2 > 0 are numerical constants. The following statement is the main result of
this paper.

Theorem 1. There exist universal constants C1 > 0, . . . ,C6 > 0 such that:

1. for any random vector X uniformly distributed on an isotropic generalized Orlicz ball and for any p ∈ [2,C1
√

n],
(
E|X|p)1/p ≤

(
1 + C2p

n

)(
E|X|2)1/2;

2. for any random vector X uniformly distributed on an isotropic unconditional convex body and for any p ∈
[2,C3

√
n

log(n)
],

(
E|X|p)1/p ≤

(
1 + C4p

n

)(
E|X|2)1/2;

3. for any random vector X uniformly distributed on an isotropic convex body and for any p ∈ [2,C5n
1/10.02],

(
E|X|p)1/p ≤

(
1 + C6p

n1/5.01

)(
E|X|2)1/2

.
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These reverse Hölder inequalities obviously give concentration inequalities for the Euclidean norm. The Paouris
inequality (1) for the convex bodies [14] is equivalent to the concentration inequality within a Euclidean ball

∀t ≥ 1 P
(|X| ≥ Ct

(
E|X|2)1/2) ≤ e−c

√
nt (6)

for some numerical constants c > 0 and C > 0. The inequality (2) implies the concentration inequality within a thin
Euclidean shell

∀t > 0 P
(∣∣|X| − (

E|X|2)1/2∣∣ ≥ t
(
E|X|2)1/2) ≤ Ce−c(

√
nt)1/2

(7)

for other absolute constants c and C. This is a consequence of the ψ1/2-behaviour of the polynomial | · |2 − E|X|2
on K . More precisely, Bobkov [2] showed that, for any polynomials P of degree d and any p ≥ 1, (E|P(X)|p/d)1/p ≤
c0pE|P(X)|1/d for some numerical constant c0. (7) does not give the optimal dependence on n for t ≥ 1 as in (6). But
Theorem 1 implies:

Corollary 2. There exist universal constants c > 0 and C > 0 such that, for any random vector X uniformly distrib-
uted on an isotropic generalized Orlicz ball

∀t > 0 P
(∣∣|X| − (

E|X|2)1/2∣∣ ≥ t
(
E|X|2)1/2) ≤ Ce−c

√
nt .

In the general case, the best deviation inequalities for the Euclidean norm on K were proved by Klartag in [9]:

∀t ∈ (0,1] P
(∣∣|X| − (

E|X|2)1/2∣∣ ≥ t
(
E|X|2)1/2) ≤ C′e−c′t3.33n0.33

(8)

and by Paouris (6) for t ≥ C [14]. Emphasize that assertion 2 of Theorem 1 for p ∈ [2, cn1/4] is a consequence of (7)
and that one can deduce assertion 3 from (8). Moreover, the inequality (8) implies an almost isometric moment bound
for p ∈ [cn1/10.01, c′n0.33], as will be shown later in Lemma 6.

The paper is organized as follows. In Section 2, we will give some preliminary observations and we will explain
how to deduce Corollary 2 from Theorem 1. We will prove Theorem 1 in Section 3 for the generalized Orlicz balls
by applying the negative association property got by Pilipczuk and Wojtaszczyk [15], which generalizes (3). The
unconditional case will be studied in Section 4. The proof uses the main results got by Klartag in [10]. In Section 5,
we will give a proof of Theorem 1 for the general convex bodies which does not use (8) and is interesting in its own
right. We will use the almost radial behavior of marginals of isotropic log-concave measures studied by Klartag to
get (8) [9] and we will estimate the spectral gap of measure projections.

The letters c, c′,C,C′, c1, . . . stand for various positive universal constants, whose value may change from one line
to the next.

2. Preliminaries

Definition 3. Let X be a random vector on R
n such that for all p ≥ 0, E|X|p < ∞. X will be said to satisfy the

inequality (V ) with a constant A > 0 if for any real p ≥ 2,

Var |X|p ≤ A
p2

n
E|X|2p.

Kannan, Lovász and Simonovits’ conjecture for the functions | · |p implies that the random vectors uniformly
distributed on an isotropic convex body K satisfy the inequality (V ) with a universal constant. Indeed, (4), the Hölder
inequality and the isotropic position of K lead to

Var |X|p ≤ cL2
Kp2

E|X|2p−2 ≤ cL2
Kp2(

E|X|2p
)1−1/p ≤ cp2

n
E|X|2p.
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Lemma 4. Let X be a random vector on R
n such that for all p ≥ 0, E|X|p < ∞ and let r and p0 be positive reals

with p0 ≤ √
n. Define D1, D2 and D3 in the following way

D1 = inf

{
d > 0,∀p ∈

[
2,

p0√
d

]
,
(
E|X|p)1/p ≤

(
1 + dp

n

)(
E|X|2)1/2

}
,

D2 = inf

{
d > 0,∀p ∈

[
2,

p0√
d

]
,Var |X|p ≤ dp2

n
E|X|2p

}
,

D3 = inf

{
d > 0,∀p ∈

[
2

r
,

p0

r
√

d

]
∩ N,Var |X|rp ≤ d(rp)2

n
E|X|2rp

}
.

Then, there exist positive reals a, b depending only on r such that

D3 ≤ D2 ≤ aD1 ≤ bD3.

In particular, if X satisfies (V ) with a constant A, we have for some universal constants c1 > 0 and c2 > 0,

∀p ∈
[

2, c1

√
n√
A

] (
E|X|p)1/p ≤

(
1 + c2Ap

n

)(
E|X|2)1/2

. (9)

Proof. The existence of an absolute constant a such that D2 ≤ aD1 is a consequence of the growth of t �→ (E|X|t )1/t .
D3 ≤ D2 is clear. To get the third inequality, we introduce the function φ : t �→ log(E|X|t )1/t and we observe by the
Jensen inequality

φ′(t) = 1

t2

Ent |X|t
E|X|t = 1

t2
E

[
log

( |X|t
E|X|t

) |X|t
E|X|t

]
≤ 1

t2
log

E|X|2t

(E|X|t )2
≤ 1

t2

Var |X|t
(E|X|t )2

.

Moreover, the convexity of s �→ φ(1/s) means that t �→ Ent |X|t /E|X|t is nondecreasing. Hence, for any q ≥ 2 and
for any integer p such that q

r
≤ p ≤ q

r
+ 1, we have

φ′(q) ≤ 1

q2

Ent |X|rp
E|X|rp ≤ 1

q2

Var |X|rp
(E|X|rp)2

≤ 2D3(rp)2

q2n
≤ 2(r + 1)2D3

n

if 2D3r
2p2 ≤ p2

0. Integrating this inequality, we get for any q ∈ [2,
p0√

2D3(r+1)
], (E|X|q )1/q

(E|X|2)1/2 ≤ e2(r+1)2D3q/n ≤ 1 +
4(r+1)2D3q

n
since p0 ≤ √

n. The lemma follows. �

Corollary 2 is a consequence of the following lemmas.

Lemma 5. Let X be a random vector uniformly distributed on an isotropic convex body. If X satisfies the inequal-
ity (V ) with a constant A ≥ 1 then, for any t > 0, we have

P
(|X| ≥ (1 + t)

(
E|X|2)1/2) ≤ Ce−c(

√
n/

√
A)t (10)

for some absolute constants c > 0 and C > 0.

Proof. By the concentration inequality (6), it is sufficient to prove (10) for t ≤ c where c is a numerical constant.

Moreover, we can suppose t ≥
√

A√
n

. Taking p = c1
√

n√
A

in (9), we get (E|X|c1
√

n/
√

A)
√

A/(c1
√

n) ≤ (1+ c3
√

A√
n

)(E|X|2)1/2.

Then, Markov’s inequality gives for any t ∈ [
√

A√
n
, c]

P
[|X| ≥ (1 + c4t)

(
E|X|2)1/2] ≤ P

[|X| ≥ (1 + t)
(
E|X|c1

√
n/

√
A
)√

A/(c1
√

n)] ≤ (1 + t)−c1
√

n/
√

A.

The lemma is thus proved. �
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The following lemma was proved by Klartag in the first version of [10] by exploiting the log-concavity of t �→
P(|X| ≤ et ) for the unconditonal convex bodies got by Cordero–Erausquin, Fradelizi and Maurey in [5]. We reproduce
below its proof for the convenience of the reader.

Lemma (Klartag [10]). There exist absolute constants c > 0 and C > 0 such that, for any random vector X uniformly
distributed on an isotropic unconditional convex body, we have

∀t ∈ (0,1] P
(|X| ≤ (1 − t)

(
E|X|2)1/2) ≤ Ce−c

√
nt .

Proof. According to Klartag [10], X satisfies (2), that is to say, Var |X|2 ≤ C
n
(E|X|2)2. By Markov’s inequality, we

get thus

P

(
|X| ≤

(
1 + c√

n

)(
E|X|2)1/2

)
≥ 3

4
and P

(
|X| ≤

(
1 − c√

n

)(
E|X|2)1/2

)
≤ 1

4

for some numerical constant c > 0. Since t �→ P(|X| ≤ et ) is log-concave [5], for any positive reals a and b and for
any reals u ≥ 1 and s ≥ 1 such that 1

u
+ 1

s
= 1, we have

P
(|X| ≤ ab

(
E|X|2)1/2) ≥ [

P
(|X| ≤ au

(
E|X|2)1/2)]1/u[

P
(|X| ≤ bs

(
E|X|2)1/2)]1/s

.

Taking a = (1− c√
n
)(1+ c√

n
)−1/s , b = (1+ c√

n
)1/s and thus ab = 1− c√

n
and au = (

1−c/
√

n

1+c/
√

n
)u(1+ c√

n
) ≥ e−c′u/

√
n ≥

1 − c′u√
n

, we obtain for any u ≥ 1:

P

(
|X| ≤

(
1 − c′u√

n

)(
E|X|2)1/2

)
≤

(
1

3

)u

≤ 3

(
1

3

)u

.

Since this inequality is obvious for u ≤ 1, the lemma is proved. �

The following lemma shows that (7) implies assertion 2 of Theorem 1 for p ∈ [2, cn1/4] by taking α = 1/2 and
β = 1/2. For α = 0.33/3.33 ≈ 1/10 and β = 3.33, it gives assertion 3 of Theorem 1 by (8).

Lemma 6. Let a, b, α and β be positive reals such that α ≤ 1
2 and αβ ≤ 1

2 . Let X be a random vector in R
n which

satisfies the concentration inequality

∀t > 0 P
(∣∣|X| − (

E|X|2)1/2∣∣ ≥ t
(
E|X|2)1/2) ≤ ae−b(nαt)β 1t≤1 + ae−b

√
nt1t>1.

Then, we have:

1. for all p ∈ [2, c1n
α min(β,1)], (E|X|p)1/p ≤ (1 + C1p

n2α )(E|X|2)1/2,

2. if β > 1, for p ∈ [c1n
α, c2n

αβ ], (E|X|p)1/p ≤ (1 + C2(
p

nαβ )1/(β−1))(E|X|2)1/2,

where c1, c2, C1, C2 are positive constants depending only on a, b and β .

Proof. We will denote by c1,C1, . . . positive constants depending only on a, b, α and β . Let Y = |X|2
E|X|2 − 1. The

concentration assumption means for Y that

∀t > 0 P
(|Y | ≥ t

) ≤ C1e−c1(n
αt)β 1t≤1 + C1e−c1

√
n
√

t1t>1.

This inequality yields, via the integration by parts E|Y |k = k
∫ ∞

0 tk−1
P(|Y | ≥ t)dt ,

∀k ∈ [
1, c2n

αβ
] (

E|Y |k)1/k ≤ C2
k1/β

nα
+ C2

k2

n
≤ C3

k1/β

nα
.
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Therefore, since EY = 0, we get for any integer q ∈ [1, c2n
αβ ],

E|X|2q

(E|X|2)q = E(1 + Y)q = 1 +
q∑

k=2

(
q

k

)
EY k ≤ 1 +

q∑
k=2

(
C4qk1/β−1

nα

)k

≤ 1 + 2 max
2≤k≤q

(
C5qk1/β−1

nα

)k

.

Consider the g :k �→ (
C5qk1/β−1

nα )k and set k0 = e−1(
C5q
nα )1/(1−1/β).

• If β < 1, g is decreasing on (0, k0] and increasing on [k0,∞). Thus, max2≤k≤q g(k) = max(g(2), g(q)) = g(2) ≤
C6

q2

n2α for q ≤ c3n
αβ and the result is proved.

• If β > 1, g is increasing on (0, k0] and decreasing on [k0,∞). When k0 ≤ 2, that is to say, q ≤ c4n
α ,

max2≤k≤q g(k) = g(2) ≤ C7
q2

n2α . When k0 ∈ [2, q], that is to say, q ∈ [c4n
α, c5n

αβ ], max2≤k≤q g(k) = g(k0) =
exp((1 − 1/β)e−1(

C5q
nα )β/(β−1)) and hence

(E|X|2q)1/2q

(E|X|2)1/2
≤ 31/2q exp

(
C8

(
q

nαβ

)1/(β−1))
≤ 1 + C2

(
p

nαβ

)1/(β−1)

. �

3. Case of generalized Orlicz balls

Recall that K is a generalized Orlicz ball if there exist convex increasing functions fi : [0,∞) → [0,∞], i ∈ {1, . . . , n}
which satisfy fi(0) = 0, ∃t ∈ R

+∗ , fi(t) �= 0 and ∃s ∈ R
+∗ , fi(s) �= ∞, such that

K =
{

x = (x1, . . . , xn) ∈ R
n,

n∑
i=1

fi

(|xi |
) ≤ 1

}
.

According to Lemma 4, Theorem 1 for the generalized Orlicz balls is a consequence of the following result:

Theorem 7. If X is a random vector uniformly distributed on an isotropic generalized Orlicz ball, then X satisfies
the inequality (V ) with a universal constant C, that is to say,

∀p ≥ 2 Var |X|p ≤ Cp2

n
E|X|2p.

The proof uses mainly the following theorem:

Theorem (Pilipczuk–Wojtaszczyk [15]). Let X be a random vector uniformly distributed on a generalized Orlicz
ball. For any coordinate-wise increasing bounded functions f , g and any disjoint subsets {i1, . . . , ik} and {j1, . . . , jl}
of {1, . . . , n}, we have

cov
(
f

(|Xi1 |, . . . , |Xik |
)
, g

(|Xj1 |, . . . , |Xjl
|)) ≤ 0. (11)

Notation 8. For any n-tuples x = (x1, . . . , xn) ∈ R
n and α = (α1, . . . , αn) ∈ N

n with |α| = ∑n
i=1 αi = q , we denote

by xα the real number
∏n

i=1 x
αi

i and by
(
q
α

)
the multinomial coefficient q!∏n

i=1 αi ! in such a way that Newton’s formula

is (
n∑

i=1

xi

)q

=
∑

|α|=q

(
q

α

)
xα.

Otherwise for any y = (y1, . . . , yn) ∈ R
n and for any i ∈ {1, . . . , n} we denote the orthogonal projection of y on e⊥

i

by y̌i = (y1, . . . , yi−1,0, yi+1, . . . , yn) the orthogonal projection of y on e⊥
i .
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Proof of Theorem 7. The Pilipczuk–Wojtaszczyk theorem shows that, for any α ∈ N
n and β ∈ N

n with disjoint
supports, we have

cov
(
X2α,X2β

) ≤ 0. (12)

In the case where the supports of α and β are not disjoint, we use the obvious upper bound cov(X2α,X2β) ≤
EX2(α+β). Since the variables Xi are ψ1, that is to say, for any r ≥ 2 (E|Xi |r )1/r ≤ r(E|Xi |2)1/2 ([13], Appendix III),
we have besides

EX
2(αi+βi)
i ≤ (

EX
4αi

i

)1/2(
EX

4βi

i

)1/2 ≤ (4αiLK)2αi (4βiLK)2βi = α
2αi

i β
2βi

i

(
16L2

K

)(αi+βi).

When i belongs to the supports of α and β , (αi + βi)ei and α̌i + β̌i have disjoint supports and (12) gives

cov(X
2(αi+βi)
i ,X2(α̌i+β̌i )) ≤ 0. Hence

EX2(α+β) ≤ EX
2(αi+βi)
i EX2(α̌i+β̌i ) ≤ α

2αi

i β
2βi

i

(
16L2

K

)(αi+βi)
EX2(α̌i+β̌i ). (13)

Consequently, we get by Newton’s formula for any integer q > 0,

Var |X|2q = Var
[∑

|α|=q

(
q

α

)
X2α

]
≤

∑
|α|=q,|β|=q

supp(α)∩supp(β) �=∅

(
q

α

)(
q

β

)
cov

(
X2α,X2β

)

≤
∑

⋃n
i=1{(α,β),|α|=q,|β|=q,αi �=0,βi �=0}

(
q

α

)(
q

β

)
cov

(
X2α,X2β

)

≤
n∑

i=1

q∑
αi=1

q∑
βi=1

(
q

αi

)(
q

βi

)
α

2αi

i β
2βi

i

(
16L2

K

)(αi+βi)
∑

|α̌i |=q−αi

|β̌i |=q−βi

(
q − αi

α̌i

)(
q − βi

β̌i

)
EX2(α̌i+β̌i )

=
n∑

i=1

∑
1≤k≤q

∑
1≤h≤q

(
q

k

)(
q

h

)
h2hk2k

(
16L2

K

)(h+k)
E|X̌i |4q−2(k+h).

The Hölder inequality gives for any i, h ≥ 1 and k ≥ 1,

E|X̌i |4q−2(k+h) ≤ E|X|4q−2(k+h) ≤ (
E|X|4q

)1−(k+h)/(2q) ≤ E|X|4q

(nL2
K)k+h

.

Hence, we obtain

Var |X|2q ≤ n

(∑q

k=1

(
q

k

) (
16k2

n

)k
)2

E|X|4q .

To conclude, it is sufficient to use Lemma 4 and to observe that if q ≤ 1
20

√
n, we have

q∑
k=1

(
q

k

)(
16k2

n

)k

≤
q∑

k=1

(
50kq

n

)k

= 50q

n

q−1∑
k=0

(
50q

n

)k

(k + 1)k+1

≤ 50q

n

q−1∑
k=0

(
200kq

n

)k

≤ 50q

n

q−1∑
k=0

(
200q2

n

)k

≤ 100q

n
.

�
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4. Case of convex bodies with an unconditional basis

Recall that a convex body K in R
n is unconditional if K is symmetric with respect to the coordinate hyperplanes, that

is to say

∀(ε1, . . . , εn) ∈ {−1,1}n,∀x = (x1, . . . , xn) ∈ K (ε1x1, . . . , εnxn) ∈ K.

We repeat the arguments used by Klartag [10] to prove the variance conjecture for the unconditional convex bodies.
The main tool of the proof is the following result based on analysis of the Neumann Laplacian on convex domains.

Theorem (Klartag [10]). Let X be a random vector uniformly distributed on an unconditional convex body K of R
n.

For any i ∈ {1, . . . , n} and for any x ∈ R
n denote B+

i (x) and B−
i (x) the points such that [B−

i (x),B+
i (x)] = K ∩ (x +

Rei) (with 〈B+
i (x), ei〉 ≥ 0 and 〈B−

i (x), ei〉 ≤ 0). Let f : Rn → R be an unconditional function of class C1 (that is
to say, such that, for any (x1, . . . , xn) ∈ R

n and for any (ε1, . . . , εn) ∈ {−1,1}n, f (ε1x1, . . . , εnxn) = f (x1, . . . , xn)).
Then,

Var
[
f (X)

] ≤ E

[
n∑

i=1

(
f (X) − f

(
B+

i (X)
))2

]
. (14)

If h : R → R is an even function of class C1 and r ∈ R
+, by integration by parts and by Cauchy–Schwarz inequality,

we have∫ r

−r

(
h(t) − h(r)

)2 dt ≤ 4
∫ r

−r

t2(h′(t)
)2 dt.

For the functions hi : t �→ f (x1, . . . , xi−1, t, xi+1, . . . , xn) (where f satisfies the assumptions of the previous theorem)
and r = 〈B+

i (x), ei〉 for i ∈ {1, n}, this inequality gives after an integration on K ∩ e⊥
i :∫

K

[
f (x) − f

(
B+

i (x)
)]2 dx

=
∫

K∩e⊥
i

dy

∫ 〈B+
i (y),ei 〉

−〈B+
i (y),ei 〉

[
f (y + tei) − f

(
y + 〈

B+
i (y), ei

〉
ei

)]2
dt

≤ 4
∫

K∩e⊥
i

dy

∫ 〈B+
i (y),ei 〉

−〈B+
i (y),ei 〉

t2(∂if (y + tei)
)2 dt = 4

∫
K

x2
i

(
∂if (x)

)2 dx.

Hence (14) implies

Var
[
f (X)

] ≤ 4
n∑

i=1

E
[
X2

i

(
∂if (X)

)2]
. (15)

Remark. If X is uniformly distributed on an isotropic generalized Orlicz ball, the inequalities

cov

(
n∏

i=1

|Xi |αi ,

n∏
i=1

|Xi |βi

)
≤ 0 if supp(α) ∩ supp(β) = ∅, (16)

cov

(
n∏

i=1

|Xi |αi ,

n∏
i=1

|Xi |βi

)
≤ E

n∏
i=1

|Xi |αi+βi if supp(α) ∩ supp(β) �= ∅ (17)

for any α ∈ (R+)n and β ∈ (R+)n, imply (15) for any function f such that f (x) = ∑
α aα

∏n
i=1 |xi |αi with aα ≥ 0

for any α (expanding the variance is sufficient). Hence, (15) applied to the function | · |p gives the same estimate of
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Var |X|p as one given by (16) and (17). On the other hand, (13) is false in the unconditional case. More precisely, there
does not exist some universal constant C > 0 such that, for any i ∈ {1, . . . , n}, any γ ∈ N

n with γi = 2 and any random
vector X uniformly distributed on an unconditional convex body, E

∏n
k=1 |Xk|γk ≤ CE|Xi |2E

∏
k �=i |Xk|γk . Let us

repeat the counterexample to the square negative correlation property given by Wojtaszczyk in [17] for unconditional
bodies. Let X = (Y,Z) be a random vector on R

n−2 × R
2 = R

n uniformly distributed on the unconditional convex
body L = {x = (y, z) ∈ R

n−2 × R
2, |y|1 + |z|∞ ≤ 1}. Then, for any (δ1, δ2) ∈ N

2,

∫
L∩R

n+
z
δ1
1 z

δ2
2 dy dz =

∫
y∈R

n−2+ :|y|1≤1
dy

∫
[0,1−|y|1]2

z
δ1
1 z

δ2
2 dz =

∫
y∈R

n−2+ :|y|1≤1 dy (1 − |y|1)δ1+δ2+2

(δ1 + 1)(δ2 + 1)

= 1

(n − 3)!(δ1 + 1)(δ2 + 1)

∫ 1

0
tn−3(1 − t)δ1+δ2+2 dt

= (δ1 + δ2 + 2)!
(δ1 + δ2 + n)!(δ1 + 1)(δ2 + 1)

.

Hence

E|Z1|δ1 |Z2|δ2

E|Z1|δ1E|Z2|δ2
=

δ1∏
k=1

[
1 + δ2/(2 + k)

1 + δ2/(n + k)

]
.

For i = n − 1 and γ = (0, (2, γn)) ∈ N
n−2 × N

2, that gives

E

n∏
k=1

|Xk|γk ≥ c min(n, γn)E|Xi |2E

∏
k �=i

|Xk|γk .

According to Lemma 4, Theorem 1 for the unconditional convex bodies is a consequence of following result:

Theorem 9. There exist universal constants c1 > 0 and c2 > 0 such that for any integer n, any real p ∈ [2, c1

√
n

log(n)
]

and any random vector X uniformly distributed on an isotropic unconditional convex body K of R
n, we have

Var |X|p ≤ c2
p2

n
E|X|2p.

Proof. Applying (15) to the function | · |p and using the Cauchy–Schwarz inequality, we get

Var |X|p ≤ 4p2
E|X|44|X|2p−4 ≤ 4p2(

E|X|84
)1/2(

E|X|4p−8)1/2
, (18)

where |X|4 = (
∑n

i=1 X4
i )

1/4. By Borell’s lemma ([13], Appendix III), we have (E|X|84)1/2 ≤ c1nL4
K . Besides, since

the spectral gap of X is bounded from below by c2/(log(n))2 [10], the Poincaré inequality for X applied to the
function | · |q shows that, for q ∈ [1, c3

√
n/ log(n)], E|X|2q ≤ c4(E|X|q)2. Therefore, for p ∈ [2, c5

√
n/ log(n)],

(
E|X|4p−8)1/2 ≤ c6E|X|2p−4 ≤ c6

(
E|X|2p

)1−4/2p ≤ c6

n2L4
K

E|X|2p.

The inequality (18) gives the result. �

5. General case

In this section, X belongs to the class of random vectors in R
n which have a log-concave law, that is to say, for all

nonempty compact subsets A and B of R
n and t ∈ [0,1]

P
(
X ∈ (

tA + (1 − t)B
)) ≥ P(X ∈ A)tP(X ∈ B)1−t ,
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X will be said isotropic if for any θ ∈ Sn−1, we have

E〈X,θ〉 = 0 and E
∣∣〈X,θ〉∣∣2 = 1.

By the Brunn–Minkowski inequality (see, for instance, [7]), if X is uniformly distributed in an isotropic convex body,
1

LK
X is log-concave and is isotropic in the previous meaning.
The proof of assertion 3 of Theorem 1 uses the approach of Klartag [9] to get (8) and the one built independently

in [6]. We can summarize the arguments in the following way:

1. We reduce the estimate of the ratio (E|X|p)1/p/(E|X|2)1/2 to the estimate of this ratio for projections of X on
subspaces.

2. We show that, if Gn is a standard Gaussian vector in R
n, the inequality (V ) is satisfied by most of the projections

of X + Gn on subspaces with an adapted dimension. We use the main tool of Klartag which gives almost radial
projections of X + Gn.

3. We explain how to deduce the result for X from the estimate for X + Gn.

Recall that Gn,k stands for the Grassmannian of all k-dimensional subspaces in R
n and for any subspace F ∈ Gn,k ,

PF stands for the orthogonal projection from R
n on F . Denote by μn,k the unique rotationally-invariant probability

measure on Gn,k and by νn the unique Haar probability measure on the special orthogonal group SO(n) which is
invariant under both left and right translations. μn,k and νn are linked by the following equality: for any measurable
subset Ω of Gn,k and for a fixed subspace F0 ∈ Gn,k , we have

νn

(
u ∈ SO(n),u(F0) ∈ Ω

) = μn,k(Ω).

Furthermore recall that the geodesic distance d on the connected Riemannian manifold SO(n) is equivalent to the
distance defined by the Hilbert–Schmidt norm ‖ · ‖HS. More precisely for any u1 and u2 in SO(n),

‖u1 − u2‖HS ≤ d(u1, u2) ≤ π

2
‖u1 − u2‖HS. (19)

Emphasize that νn satisfies the following log-Sobolev inequality. For any Lipschitz function f : SO(n) → R, we have

Entνn

[
f 2] :=

∫
f 2 log

(
f 2)dνn −

(∫
f 2 dνn

)
log

(∫
f 2 dνn

)
≤ C

n

∫
|∇f |2 dνn, (20)

where |∇f (u)| = lim supd(v,u)→0
|f (v)−f (u)|

d(v,u)
and C > 0 is an absolute constant. Applying (20) to the function |f |p/2,

we observe that, for any p ≥ 1,

d

dp

[
log

(∫
|f |p dνn

)1/p]
= 1

p2

Entνn[f p]∫ |f |p dνn

≤ C

n

∫ |f |p−2 dνn∫ |f |p dνn

‖f ‖2
Lip ≤ C

n

‖f ‖2
Lip

(
∫ |f |p dνn)2/p

≤ C

d(f )
,

where d(f ) = n(

∫ |f |dνn

‖f ‖Lip
)2. Consequently, for any p ∈ [1, d(f )], we have

(∫
SO(n)

|f |p dνn

)1/p

≤
(

1 + C′p
d(f )

)∫
SO(n)

|f |dνn (21)

for a new numerical constant C′ > 0.
In [6], the study of moments bounds for the Euclidean norm on a convex body begins by reducing the problem to

the study of the mean width of its Lp-centroid bodies. When k = 1, the following lemma is similar to this reduction.
In this case, p∗ is the parameter introduced by Paouris in [14].

Lemma 10. Let X be an isotropic random vector in R
n distributed according to a log-concave law. Then, for any

integer k ∈ [1, n] and for any p ∈ [2, c1 max((kn)1/3, n1/2)], we have:

(E|X|p)1/p

(E|X|2)1/2
≤

(
1 + c2p

2

n
min

(
p

k
,1

))∫
Gn,k

(E|PF X|p)1/p

√
k

μn,k(dF), (22)
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where c1 > 0 and c2 > 0 are absolute constants.

Proof. Fix an integer k ∈ [1, n], a real p ≥ 2 and a subspace F0 of Gn,k . There exists a real number an,k,p such that
for all point x ∈ R

n,

|x|p = an,k,p

∫
Gn,k

|PF x|pμn,k(dF) = an,k,p

∫
SO(n)

∣∣PF0u(x)
∣∣pνn(du).

Hence, denoting by Gi a standard Gaussian vector on R
i , we have for q ∈ {2,p},

E|X|q
E|Gn|q =

∫
Gn,k

E|PF X|qμn,k(dF)

E|Gk|q . (23)

Remark that E|Gi |p/(E|Gi |2)p/2 = �(
i+p

2 )�( i
2 )p/2−1/�( i+2

2 )p/2 and that (log ◦�)′ is concave (the Euler’s for-
mula shows that log ◦� is the sum of functions which have a negative third derivative). This implies that i �→
E|Gi |p/(E|Gi |2)p/2 is decreasing. We get

(E|X|p)1/p

(E|X|2)1/2
= (E|Gn|p)1/p

(E|Gn|2)1/2

(E|Gk|2)1/2

(E|Gk|p)1/p

(
∫
Gn,k

E|PF X|pμn,k(dF))1/p

(
∫
Gn,k

E|PF X|2μn,k(dF))1/2

≤
(
∫
Gn,k

E|PF X|pμn,k(dF))1/p

√
k

, (24)

since PF X is isotropic. Consider the function hp : Mn(R) → R such that hp(u) = (E|PF0u(X)|p)1/p . As a con-
sequence of Borell’s lemma ([13], Appendix III), hp satisfies the Khintchine-type inequality hp ≤ Cph2 for some
absolute constant C > 0. Thus, for any u1 and u2 in SO(n), one has∣∣hp(u1) − hp(u2)

∣∣ ≤ hp(u1 − u2) ≤ Cph2(u1 − u2) = Cp
∥∥pF (u1 − u2)

∥∥
HS ≤ Cp‖u1 − u2‖HS.

Hence, the inequality (19) gives for any u ∈ SO(n),

‖hp‖Lip ≤ Cp. (25)

Since, by Stirling’s formula, we have a1 max(
√

i,
√

p) ≤ (E|Gi |p)1/p ≤ a2 max(
√

i,
√

p) for some numerical con-
stants a1 and a2 and since (E|X|p)1/p ≥ (E|X|2)1/2 = √

n, (23) gives for p ≤ n,(∫
SO(n)

h
p
p(u)νn(du)

)1/p

= (E|Gk|p)1/p(E|X|p)1/p

(E|Gn|p)1/p
≥ a3 max

(√
k,

√
p
)
. (26)

Set p∗ = max{p0 ∈ [2, n]: ∀q ∈ [2,p0], q ≤ d(hq)}. By the inequality (21), we have for any p ∈ [2,p∗],
(∫

SO(n)

h
p
p dνn

)1/p

≤
(

1 + C′p
d(hp)

)∫
SO(n)

hp dνn. (27)

In particular, (
∫

SO(n)
h

p
p dνn)

1/p ≤ C′′ ∫
SO(n)

hp dνn. Thus, by using (25) and (26), we get

d(hp) ≥ c1n
max(k,p)

p2
.

Thanks to the inequalities (24) and (27), we get the assertion of Lemma 10 for any p ∈ [2,p∗]. To conclude, it is
sufficient to observe that, if p0 ∈ [p∗,p∗ + 1] is such that d(hp0) ≤ p0, then by the inequalities (25)–(27) and the fact
that p �→ hp is non-decreasing, we get

p∗ + 1 ≥ p0 ≥ d(hp0) ≥ c2n
(
∫

SO(n)
hp∗ dνn)

2

p2
0

≥ c3n
p∗2

p2
0

max(k,p∗)
p∗2

≥ c3

2
n

max(k,p∗)
p∗2

.
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Hence p∗ ≥ c4 max(n1/2, (kn)1/3). Lemma 10 is proved. �

Lemma 11. Let U and V be two isotropic independent random vectors in R
k . Suppose V is symmetric. If U + V

satisfies the inequality (V ) with a constant A > 0 then U satisfies (V ) with a constant c0A where c0 is a universal
constant.

Proof. Let p ≥ 2 be an integer. Since V is symmetric, for any nonnegative integers a, b c we have: E|U |2a |V |2b〈U,

V 〉c ≥ 0. Hence, by using the inequality (|t |2 + |s|2)p ≥ 2p|t |p|s|p for any reals t and s, we get

E|U + V |2p = E
(|U |2 + |V |2 + 2〈U,V 〉)p =

∑
a+b+c=p

p!
a!b!c!E|U |2a|V |2b

(
2〈U,V 〉)c

≥
∑

a+b=p

p!
a!b!E|U |2a |V |2b = E

(|U |2 + |V |2)p ≥ 2p
E|U |pE|V |p ≥ (

2
√

k
)p

E|U |p.

Besides, since U and V are isotropic, from the inequality (V ) and from Lemma 4, we get if p ≤ c1

√
k√
A

,

(
E|U + V |2p

)1/2p ≤
(

1 + c2Ap

k

)(
E|U + V |2)1/2 =

(
1 + c2Ap

k

)√
2k.

Hence

(
E|U |p)1/p ≤

(
1 + c2Ap

k

)2√
k ≤

(
1 + c3Ap

k

)(
E|U |2)1/2

.

Consequently, the proof is complete thanks to Lemma 4. �

We will use the three results which follow. The first is a key argument in the proof of (8) (see Lemma 3.3 in [9]
with α = 0, η = 0, u = 4

5.01 and a little alteration in the constants).

Theorem A (Klartag [9]). Let X be a random vector in R
n distributed according to an isotropic log-concave density.

Denote g : Rn → R
+ the density of Y = X + Gn where Gn is a standard Gaussian vector on R

n independent of X.
For k = �c1n

1/5.01�, there exists a subset E in Gn,k with probability μn,k(E ) ≥ 1 − c2e−c3k such that for any subspace
F ∈ E , any x1 and x2 in F with |x1| = |x2| ≤ 10

√
k, we have∣∣∣∣πF g(x1)

πF g(x2)
− 1

∣∣∣∣ ≤ 1

4
,

where πF g is the density of PF Y and c1, c2 and c3 are absolute constants.

Recall that, if μ1 and μ2 are two Borel probability measures on R
n, dTV(μ1,μ2) stands for the total variation

distance between μ1 and μ2 which is defined by

dTV(μ1,μ2) = 2 sup
A⊂Rn

∣∣μ1(A) − μ2(A)
∣∣ =

∫ ∣∣∣∣dμ1

dx
(x) − dμ2

dx
(x)

∣∣∣∣dx.

Recently, E. Milman proved the following result (see Theorem 5.5 in [12]). The proof is based on the concavity of the
isoperimetric profile for the log-concave measures.

Theorem B (Milman [12]). Let μ1 and μ2 be two log-concave probability measures on R
n. If

dTV(μ1,μ2) ≤ c < 1
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then

1

ac

λ1(μ1) ≤ λ1(μ2) ≤ acλ1(μ1),

where ac > 0 depends only on c.

When Z is a radial random vector on R
n, so as to estimate the spectral-gap of Z, one must essentially estimate

the spectral gaps of Sn−1 and of the random variable |Z|. These estimates are well known when the law of |Z| is
log-concave. In this way, Bobkov showed the following result.

Theorem C (Bobkov [3]). Let Z be a random vector on R
n with a radial density ρ(| · |). Suppose ρ : R+ → R

+ is
log-concave. Then

λ1(Z) ≥ c

EZ2
1

.

Proof of assertion 3 of Theorem 1. Let E be the subset of Gn,k given by Theorem A with k = �c1n
1/5.01�. Fix

a subspace F in E . Denote ZF a random vector on F with the density πF g(| · |θ0) where θ0 ∈ SF = Sn−1 ∩ F is
chosen in such a way that

∫
F

πF g(|x|θ0)dx = 1. θ0 exists since
∫
SF

∫
F

πF g(|x|θ)dx σF (dθ) = ∫
F

πF g(x)dx = 1
(where σF stands for the unique rotationally-invariant Haar probability measure on SF ). Then

dTV(PF Y,ZF ) ≤ 1

4
+

∫
|x|≥10

√
k

(
πF g(x) + πF g

(|x|θ0
))

dx

≤ 1

2
+ 2

∫
|x|≥10

√
k

πF g(x)dx ≤ 27

50
(28)

by Markov’s inequality. Remark that this inequality implies E|ZF |2 ≤ C1E|PF Y |2 = 2C1k for some absolute constant
C1 > 0. Consequently, according to (28) and Theorems B and C, the spectral gap of PF Y is bounded from below by
a universal constant. In particular, PF Y satisfies the inequality (V ) with a universal constant and, by Lemma 11, it is
the same for PF X. Therefore, thanks to Lemma 4, we have, for any p ∈ [2, c2

√
k],

(
E|PF X|p)1/p ≤

(
1 + C2p

k

)(
E|PF X|2)1/2 =

(
1 + C2p

k

)√
k.

Besides, when F /∈ E , Borell’s lemma ([13], Appendix III) shows that (E|PF X|p)1/p ≤ C3p
√

k for any p ≥ 2. Thus,
we get for any p ∈ [2, c2

√
k],∫

Gn,k

(
E|PF X|p)1/p

μn,k(dF) ≤
(

1 + C2p

k

)√
k + C3p

√
kμn,k

(
E c

)

≤
(

1 + C2p

k

)√
k + C4p

√
ke−c3k ≤

(
1 + C5p

k

)√
k.

By Lemma 10, we obtain for p ∈ [1, c4n
1/10.02],

(
E|X|p)1/p ≤

(
1 + C6p

3

kn

)(
1 + C5p

k

)(
E|X|2)1/2 ≤

(
1 + C7p

n1/5.01

)(
E|X|2)1/2

. �
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