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Abstract. This paper proves a version for stochastic differential equations of the Lie–Scheffers theorem. This result characterizes
the existence of nonlinear superposition rules for the general solution of those equations in terms of the involution properties of the
distribution generated by the vector fields that define it. When stated in the particular case of standard deterministic systems, our
main theorem improves various aspects of the classical Lie–Scheffers result. We show that the stochastic analog of the classical
Lie–Scheffers systems can be reduced to the study of Lie group valued stochastic Lie–Scheffers systems; those systems, as well
as those taking values in homogeneous spaces are studied in detail. The developments of the paper are illustrated with several
examples.

Résumé. Ce papier contient une généralisation du Théorème de Lie–Scheffers aux équations différentielles stochastiques. Ce
résultat caractérise l’existence de règles de superposition non linéaires pour la solution générale de ces équations, en termes des
propriétés d’involution de la distribution engendrée par les champs vecteurs qui les définissent. Dans le cas particulier des systèmes
déterministes, notre théorème principal améliore certains aspects du théorème de Lie–Scheffers traditionnel. Nous montrons que
l’analogue stochastique des systèmes de Lie–Scheffers classiques peuvent être réduits à l’étude des systèmes de Lie–Scheffers
stochastiques à valeurs dans un groupe de Lie; ces systèmes, ainsi que ceux qui prennent des valeurs dans des espaces homogènes
sont étudiés en détail. Les développements de ce papier sont illustrés avec plusieurs exemples.
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1. Introduction

A differential equation is said to have a superposition rule (a more explicit definition is provided in the next section)
whenever any of its solutions can be written as a given (in general nonlinear) function of the initial condition and of
a fixed set of particular solutions. The first characterization of the existence of superposition rules was given by the
Norwegian mathematician Sophus Lie in a remarkable piece of work [20] where he established a link between the
existence of superposition rules and what we nowadays call the Lie algebraic properties of the vector fields that define
a time-dependent differential equation. This result is referred to as the Lie–Scheffers theorem and systems that satisfy
its hypotheses as Lie–Scheffers systems.

Lie–Scheffers systems have been the subject of much attention due to their widespread occurrence in physics and
mathematics. The reader is encouraged to check with [3,4], and references therein, for various presentations of the
classical Lie–Scheffers theorem, an excellent collection of examples of applications of this theorem, and for historical
remarks.

The main goal of this paper is the extension of the Lie–Scheffers theorem to stochastic differential equations.
This generalization is stated in Theorem 3.1. It is worth emphasizing that the main result of the paper, Theorem 3.1,
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cannot be seen just as a mere transcription of the deterministic Lie–Scheffers theorem into the context of Stratonovich
stochastic integration by using the so-called Malliavin’s Transfer Principle [22]. This Principle states that whatever
is true for standard differential equations also holds for Stratonovich stochastic differential equations; as we will see
later on, there are purely stochastic conditions that appear in the statement of the theorem.

Additionally, in proving Theorem 3.1 we have carefully spelled out the regularity conditions needed for the result
to be valid; those conditions are only vaguely evoked in the classical references or in the cited papers that study the
deterministic case. More importantly, a careful construction of the proof has lead us to realize that the hypotheses
under which we can guarantee the existence of superposition rules can be weakened: the Lie algebra condition in the
classical theorem can be replaced by an involutivity hypothesis that is, in general, less restrictive.

The contents of the paper are structured as follows. Section 2 explains in detail the notion of superposition rule and
includes a proposition that translates this concept into geometric terms. Section 3 contains the main theorem that we
have already described.

Section 4 is dedicated to the study of Lie–Scheffers systems on Lie groups and homogeneous spaces; this case
is particularly relevant since, as we show in the first result of that section (Proposition 4.1), classical Lie–Scheffers
systems (roughly speaking, those generated by vector fields that close a Lie algebra) can be locally reduced to this
case via a theorem due to Palais. In that section we also show, as an example, how Lévy stochastic processes can
be seen as Lie group valued Lie–Scheffers systems. The section concludes with a brief presentation of the classical
Wei–Norman method for solving Lie–Scheffers systems, adapted to the stochastic context.

Section 5 contains a discussion on how the existence of a superposition rule for a stochastic differential equation
makes available a remarkable feature that has deserved certain attention in the context of standard stochastic differen-
tial equations, namely, the fact that the stochastic flow can be written as a fixed deterministic function of the Brownian
forcing of the equation in question. Indeed, a well-known theorem by Ben Arous [2], that we state in the paper and
whose proof is based on the use of stochastic Taylor expansions, shows that this property of the flow is available under
exactly the same hypotheses as the classical Lie–Scheffers theorem. Our main theorem allows, admittedly only to a
certain extent, the generalization of this statement to any stochastic differential equation that satisfies its hypotheses;
more specifically, any SDE generated by vector fields that span an involutive distribution has a superposition rule and
hence its flow can be written as a fixed deterministic function of the initial conditions and of a set of solutions that
contain the stochastic behavior of the resulting map.

The paper concludes with a section that contains a number of examples that illustrate the developments of the
paper.

2. Superposition rules for stochastic differential equations

Let (Ω, F ,P ) be a probability space. We start by considering the stochastic differential equation

δΓ = S(X,Γ ) δX, (2.1)

where X : R+ × Ω → Rl is a given Rl-valued semimartingale and S(x, z) :TxRl → TzRn is a Stratonovich operator
from Rl to Rn. Sometimes we will choose a basis in T ∗Rl and will write down the Stratonovich operator S(x, z) in
terms of its components (S1(x, z), . . . , Sl(x, z)) with respect to that basis.

Definition 2.1. A superposition rule of the stochastic differential equation (2.1) is a pair (Φ, {Γ1, . . . ,Γm}), where
Φ : Rn(m+1) → Rn is a (not necessarily smooth) function and {Γi : R+ ×Ω → Rn | i = 1, . . . ,m} is a set of particular
solutions of (2.1) such that any solution Γ of (2.1) can be written, at least up to a sufficiently small stopping time τ ,
as

Γ = Φ
(
z1, . . . , zn;Γ1, . . . ,Γm

)=: Φ(z;Γ1, . . . ,Γm),

where z = (z1, . . . , zn) a set of n arbitrary constants associated with the initial condition of the solution Γ , that is,
Γ (0,ω) = (z1, . . . , zn), for all ω ∈ Ω . We extend to the stochastic context the terminology used for standard differen-
tial equations and we will call Lie–Scheffers systems the stochastic differential equations that admit a superposition
rule.
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Remark 2.2. As we will see in examples later on in the paper, superposition rules exist only locally. That is why we
can, without loss of generality, restrict our attention to stochastic differential equations on Euclidean spaces. Observe
also that we are requiring that Φ does not depend on time, the probability space, or the noise X. This prevents us from
using certain regularization techniques at the time of testing the existence of superposition rules. For example, when
dealing with a deterministic differential equation, the standard transformation of a time-dependent system γ̇ = f (t, γ )

on Rn, f : Rn+1 → Rn into the autonomous one

γ̇ = f (t, γ ) and ṫ = 1

on Rn+1 obtained by adding an extra trivial differential equation for the time is not allowed; indeed, if we find
a superposition rule for the transformed autonomous system, that rule does not yield a superposition rule for the
original system that satisfies the requirements of our definition, precisely due to the explicit dependence on time that
appears in the superposition function.

In order to study the implications of the presence of a superposition rule we take a more geometric approach. Let Ψ

be the function defined by

Ψ : Rn(m+2) −→ Rn,
(2.2)

(z, q0, q1, . . . , qm) �−→ q0 − Φ(z;q1, . . . , qm).

Notice that for any z ∈ Rn, the function Ψz := Ψ (z, ·) : Rn(m+1) → Rn is constant on a (m + 1)-tuple (Γ,Γ1, . . . ,Γm)

of solutions of the system (2.1), at least up to a given stopping time τ , provided that Γt=0 = z ∈ Rn a.s. From now on
we assume that all the solutions Γ that we are dealing with are constant a.s. at t = 0. Additionally, if the function Φ

is smooth then the map Ψz : Rn(m+1) → Rn is a submersion for any fixed z ∈ Rn, because

rank

(
∂Ψ

j
z

∂qi
0

)
j,i=1,...,n

= rank(In) = n, (2.3)

where In is the identity matrix of dimension n. Consequently, for any z ∈ Rn, the level set Ψ −1
z (0) ⊂ Rn(m+1) is a

closed embedded submanifold of Rn(m+1) of dimension nm . That is, the function Ψ defines a family G of regular
nm-dimensional submanifolds Gz via the zero level sets Ψ −1

z (0) = {p ∈ Rn(m+1) | Ψ (z,p) = 0} =: Gz of Ψz, for
any z ∈ Rn. The submanifolds Gz are globally diffeomorphic to Rnm via the restriction πm|Gz

to Gz of the projection

πm : Rn(m+1) = Rn× m+1· · · ×Rn → Rnm = Rn× m· · · ×Rn onto the last m Rn factors. This is easy to see by verifying that
the inverse Ξz : Rmn → Gz of πm|Gz

is given by Ξz(q1, . . . , qm) = (Φ(z;q1, . . . , qm), q1, . . . , qm), which is obviously
a diffeomorphism. In order to study the significance of the family of submanifolds G we start by introducing the
following definition.

Definition 2.3. Let Y : Rn → Rn be a vector field. The vector field

Ỹ : Rn(m+1) −→ Rn(m+1),

(q0, . . . , qm) �−→ (
Y(q0), . . . , Y (qm)

)
is called the diagonal extension of Y .

It can be easily checked that the set of diagonal extensions of vector fields in X(Rn) are a subalgebra of X(Rn(m+1));
more explicitly, for any Y1, Y2, Y3 ∈ X(Rn) and λ ∈ R,

[Ỹ1, Ỹ2 + λỸ3] = ˜[Y1, Y2 + λY3]. (2.4)

The following proposition states that, roughly speaking, the family of submanifolds G completely characterizes the
superposition rule.



Superposition rules and stochastic Lie–Scheffers systems 913

Proposition 2.4. Suppose that the stochastic differential equation (2.1) admits a smooth superposition rule
(Φ, {Γ1, . . . ,Γm}). Suppose that (Γ1, . . . ,Γm)t=0 = (p1, . . . , pm) ∈ Rmn a.s. Then, there exists a family G of
closed embedded nm-dimensional submanifolds of Rn(m+1) such that for any z ∈ Rn there exists Gz ∈ G such that
(Γ z,Γ1, . . . ,Γm) ⊂ Gz, with Γ z the solution of (2.1) such that (Γ z)t=0 = z. Moreover, for any Gz ∈ G the map
πm|Gz

: Gz → Rnm is a diffeomorphism.
Conversely, let G be a family of (not necessarily embedded) submanifolds of Rn(m+1) diffeomorphic to Rnm via

πm and {Γ1, . . . ,Γm} a set of distinct solutions of (2.1) such that (Γ1, . . . ,Γm)t=0 = (p1, . . . , pm) ∈ Rmn a.s. Then,
if for any point z ∈ Rn there is an element Gz that contains the point (z,p1, . . . , pm) and the diagonal extensions
(S̃1(X, ·), . . . , S̃l(X, ·)) of the vector fields (S1(X, ·), . . . , Sl(X, ·)) that define (2.1) are tangent to Gz when evaluated
at (Γ z,Γ1, . . . ,Γm), then (2.1) admits a (possibly nonsmooth) superposition rule.

Proof. In view of the remarks preceding Definition 2.3 we just need to prove that having a family G that satisfies the
hypotheses in the statement allows us to recover the superposition rule.

Let {Γ1, . . . ,Γm} be the set of fixed distinct solutions of (2.1). Denote pi = (Γi)t=0 the (necessarily different)
constant initial conditions of Γi , i = 1, . . . ,m. Let z = (z1, . . . , zn) ∈ Rn be a point and let Gz be the submanifold in G
such that (z,p1, . . . , pm) ∈ Gz; by hypothesis, this manifold is diffeomorphic to Rnm via the map ϕz = πm|Gz

, where
πm : Rn(m+1) → Rnm is the projection onto the last nm factors. In other words, the last nm coordinates of a point in
Rn(m+1) serve as global coordinates of Gz. Introduce the projection

π0
Rn : Rn(m+1) −→ Rn,

(2.5)
(q0, . . . , qm) �−→ q0.

We now define

(Γ0)t (ω) := π0
Rn ◦ ϕ−1

z

(
(Γ1)t (ω), . . . , (Γm)t (ω)

)
. (2.6)

It is immediate to see that (Γ0)t=0 = z and that Γ0 is a semimartingale because, by construction, it is a composition of
smooth functions with semimartingales. Let now Γ z be the unique solution of (2.1) with a.s. initial condition z ∈ Rn.
We will proceed by proving that Γ0 defined in (2.6) equals Γ z and we will therefore have a superposition rule Φ given
by the map Φ(z;Γ1, . . . ,Γm) := π0

Rn ◦ϕ−1
z (Γ1, . . . ,Γm). Notice that unless additional hypotheses are assumed on the

family G , there is no guarantee on the smoothness of Φ on the z variable.
In order to prove that Γ0 equals Γ z, denote by (qk; k = 1, . . . , n) the coordinates on Rn and by (qk

a ; k =
1, . . . , n;a = 0, . . . ,m) the coordinates on Rn(m+1). Let Fa

k : Rnm → Rn and Xa
k : Rnm → Rn(m+1) be the maps de-

fined as

Fa
k (q1, . . . , qm) = T(q1,...,qm)

(
π0

Rn ◦ ϕ−1
z ◦ πm

)( ∂

∂qk
a

)
,

Xa
k

(
ϕ−1

z (q1, . . . , qm)
)= T(q1,...,qm)

(
ϕ−1

z ◦ πm

)( ∂

∂qk
a

)
= (

Fa
k (q1, . . . , qm),0, a−1. . . ,

n entries︷ ︸︸ ︷
(0, k−1. . . ,1, . . . ,0),m−a. . . ,0

)
,

where a = 1, . . . ,m, k = 1, . . . , n. Observe that, by construction, the nm vector fields Xa
k are linearly independent and

span Tq Gz at any q ∈ Gz, since ϕ−1
z is a diffeomorphism form Rnm to Gz.

Now, we notice that for any j = 1, . . . , l, the vectors

S̃j

(
X;Γ z,Γ1, . . . ,Γm

)= (
Sj

(
X,Γ z

)
, Sj (X,Γ1), . . . , Sj (X,Γm)

)
(2.7)

are by hypothesis tangent to Gz. Additionally, due to (2.6) and the Stratonovich differentiation rules we can write

δΓ0 =
m∑

a=1

n∑
k=1

Fa
k (Γ1, . . . ,Γm) δΓ k

a =
m∑

a=1

n∑
k=1

l∑
j=1

Fa
k (Γ1, . . . ,Γm)Sk

j (X,Γa) δXj . (2.8)
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Moreover,(
m∑

a=1

n∑
k=1

Fa
k (Γ1, . . . ,Γm)Sk

j (X,Γa), Sj (X,Γ1), . . . , Sj (X,Γm)

)
∈ Rn(m+1) (2.9)

belongs also to T Gz for any j = 1, . . . , l, since (2.9) can be written as a linear combination of the nm linearly inde-
pendent vector fields Xa

k . Indeed,(
m∑

a=1

n∑
k=1

Fa
k (Γ1, . . . ,Γm)Sk

j (X,Γa), Sj (X,Γ1), . . . , Sj (X,Γm)

)
=

m∑
a=1

n∑
k=1

Sk
j (X,Γa)X

a
k (Γ1, . . . ,Γm).

Subtracting (2.9) from (2.7), we see that for any j = 1, . . . , l,

Wj :=
(

Sj

(
X,Γ z

)−
m∑

a=1

n∑
k=1

Fa
k (Γ1, . . . ,Γm)Sk

j (X,Γa),0, . . . ,0

)
∈ T Gz.

Any of these vector fields, if different from zero, is obviously linearly independent from all the Xa
k , a = 1, . . . ,m,

k = 1, . . . , n. If that is the case we could therefore conclude that dim(Gz) is strictly bigger than nm, which is obviously
a contradiction. Therefore, Wj = 0 necessarily, and hence

Sj

(
X,Γ z

)=
m∑

a=1

n∑
k=1

Fa
k (Γ1, . . . ,Γm)Sk

j (X,Γa),

which guarantees that Γ0 is a solution of (2.1) because by (2.8)

δΓ0 =
l∑

j=1

Sj

(
X,Γ z

)
δXj = δΓ z.

�

Remark 2.5. In the previous proposition we saw how the tangency of the diagonal extensions of the vector fields that
define the SDE to the submanifolds in G is a sufficient condition to ensure the existence of a superposition rule. Is
it necessary? Suppose that we have a smooth superposition rule (Φ,Γ1, . . . ,Γm) and let Ψ be the associated map
introduced in (2.2). As we have that Ψz(Γ

z,Γ1, . . . ,Γm) = 0, the Stratonovich differentiation rules yield

0 =
n∑

i=1

m∑
a=0

∂Ψz

∂qi
a

(
Γ z,Γ1, . . . ,Γm

)
δΓ i

a =
l∑

j=1

n∑
i=1

m∑
a=0

∂Ψz

∂qi
a

(
Γ z,Γ1, . . . ,Γm

)
Si

j (X,Γa) δXj . (2.10)

A sufficient condition for this identity to hold is that, for any j ∈ {1, . . . , l},
n∑

i=1

m∑
a=0

∂Ψz

∂qi
a

(
Γ z,Γ1, . . . ,Γm

)
Si

j (X,Γa) = 0 (2.11)

or, equivalently, that the diagonal extensions S̃j (X,Γ z,Γ1, . . . ,Γm) are tangent to the elements of the family of sub-
manifolds G given by the zero fibers of the maps Ψz. Additionally, one can find situations in which (2.10) implies (2.11):
for instance if j = 1 and (like in the case of the Brownian motion) the quadratic variation [X,X] is a strictly increas-
ing process, a straightforward application of the Doob–Meyer decomposition and the Itô isometry make in this case
(2.10) and (2.11) equivalent.

Remark 2.6. If we add to the hypotheses of Proposition 2.4 that for any z ∈ Rn and for any (p1, . . . , pm) ∈ Rnm there
exist a submanifold Gz in G such that (z,p1, . . . , pm) ∈ Gz (for instance when G is a foliation of Rn(m+1) whose leaves
are diffeomorphic to Rnm via πm) then the superposition function that we constructed in the proof of that result has the
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following extremely convenient property: the superposition function is the same for any fundamental sets of solutions
{Γ1, . . . ,Γm} that we may want to choose. In other words, once Φ is known, we can take m arbitrary independent
solutions of (2.1) to write down any solution. This situation frequently occurs in mechanics; see for instance, the study
of the classical Riccati equation in [5].

3. The stochastic Lie–Scheffers theorem

The main goal of this section is proving a theorem that characterizes the existence of a superposition rule for a
stochastic differential equation in terms of the integrability properties of the distribution spanned by the vector fields
that define it. This can be translated into a Lie algebraic requirement, which allows us to recover the classical Lie–
Scheffers theorem in the stochastic context (Corollary 3.5).

In order to have at hand the necessary concepts to state the main theorem, we start by briefly recalling some
standard results on generalized distributions due to Stefan [24,25] and Sussman [26]. Let M be a smooth manifold,
D ⊂ X(M) be a family of smooth vector fields, and D the smooth generalized distribution spanned by D. Let GD
be the pseudogroup of transformations generated by the flows of the vector fields in D and constructed as follows:
let k ∈ N∗ be a positive natural number, X an ordered family X = (X1, . . . ,Xk) of k elements of D, and T a k-tuple
T = (t1, . . . , tk) ∈ Rk such that F i

t denotes the (locally defined) flow of Xi , i ∈ {1, . . . , k}, ti ; the elements FT of GD
are the locally defined diffeomorphisms of the form FT = F 1

t1
◦ F 2

t2
◦ · · · ◦ Fk

tk
. Two points x and y in M are said

to be GD -equivalent, if there exists a diffeomorphism FT ∈ GD such that FT (x) = y. The relation GD -equivalent
is an equivalence relation whose equivalence classes are called the GD -orbits, that are sometimes referred to as the
accessible sets associated to the family D.

Given the family D and the associated pseudogroup GD we can define another family D′ of vector fields as

D′ := {T FT · X | X ∈ D, FT ∈ GD},
that clearly extends D, that is, D ⊂ D′. The distribution D′ spanned by the elements of D′ is by construction GD -
invariant. That is, for each FT ∈ GD and for each z ∈ M in the domain of FT ,

TzFT

(
D′(z)

)= D′(FT (z)
)
. (3.1)

Moreover, since (D′)′ = D′ by construction, the Stefan–Sussmann theorem guarantees that it is completely integrable
in the sense that for every point z ∈ M , there exists an integral manifold of D′ everywhere of maximal dimension
which contains z. The maximal integral manifolds of a completely integrable generalized distribution on M form a
generalized foliation of M (see for instance [8]). A leaf of a generalized foliation is regular if it has a neighborhood
where the singular foliation induces a regular foliation by restriction. A point is regular if it belongs to a regular
leaf. Regular points are open and dense in M ([8], Theorem 2.2). We will refer to D′ (respectively D′) as the Stefan–
Sussmann extension of D (respectively D). The Stefan–Sussmann theorem also establishes an equivalence between the
GD -invariance of D (D′ = D) and its complete integrability; additionally, if D is a completely integrable distribution,
then its integral manifolds are the GD-orbits. When the distribution D has constant dimension, the Stefan–Sussmann
theorem reduces to the celebrated and especially convenient Frobenius theorem which states that D is integrable if
and only if D is involutive. Recall that D is involutive if [X,Y ] takes values in D whenever X and Y are vector fields
with values in D.

In the sequel, we will use the following notation in order to be able to handle diagonal extensions of different
dimensions. Given l ∈ N and X ∈ X(Rn), we will denote by X̃l ∈ X(Rln) the diagonal extension of X to Rln. For the
sake of consistency with the previous section X̃ means X̃m+1.

Theorem 3.1 (Lie–Scheffers’ theorem for SDE). Let

δΓ = S(X,Γ ) δX (3.2)

be a stochastic differential equation on Rn, where X : R+ × Ω → Rl is a given Rl-valued semimartingale and
S(x, z) :TxRl → TzRn is a Stratonovich operator from Rl to Rn. Let V be an arbitrary open neighborhood of Rn.
Then,
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(i) If the X-dependent vector fields {S1(X, ·), . . . , Sl(X, ·)} can be expressed on V as

Sj (X, z) =
r∑

i=1

bi
j (X)Yi(z) ∈ TzRn, bi

j ∈ C∞(
Rl
)
, z ∈ V, (3.3)

and the distribution D spanned by the vector fields D = {Y1, . . . , Yr} ⊂ X(V ) is involutive, then (3.2) admits a local
superposition rule.

(ii) Conversely, suppose that (3.2) admits a superposition rule (Φ, {Γ1, . . . ,Γm}) and that the diagonal extensions
{S̃1(X, ·), . . . , S̃l(X, ·)} to Rn(m+1) are tangent to the family G of nm-dimensional submanifolds of Rn(m+1) associated
to this superposition rule (see Proposition 2.4). Let D̃(q) := span{S̃j (Xt , q) | j ∈ {1, . . . , l}, t ∈ R+}, q ∈ Rn(m+1),
D̃′ the Stefan–Sussmann extension of D̃, and G0 its associated generalized foliation. Let z ∈ Rn, pi = (Γi)t=0, and
suppose that p = (z,p1, . . . , pm) ∈ Rn(m+1) belongs to a regular leaf (G0)z of G0. Then, there exists an open neigh-
borhood V of z, a family of vector fields {Y1, . . . , Yr } ⊂ X(V ), and a family of functions {bi

j }i=1,...,r
j=1,...,l ⊂ C∞(Rl ) such

that

Sj (X,v) =
r∑

i=1

bi
j (X)Yi(v) (3.4)

for any v ∈ V . Moreover, the vector fields {Y1, . . . , Yr} form a real Lie algebra.

Proof. (i) Given l ∈ N, we define V l := V × l· · · ×V and dl := maxq∈V l {dim(span{Ỹ l
1(q), . . . , Ỹ l

r (q)})}. Notice that
for any l ∈ N one has dl ≤ dl+1 and dl ≤ r . Let m ∈ N be the smallest number for which dm = dm+1 and let q0 ∈ V m+1

be such that

dim
(
span

{
Ỹ m+1

1 (q0), . . . , Ỹ
m+1
r (q0)

})= dm+1. (3.5)

The maximality of the dimension of span{Ỹ m+1
1 , . . . , Ỹ m+1

r } at q0 implies that there exists a neighborhood U of q0 in
V m+1 for which dim(span{Ỹ m+1

1 (q), . . . , Ỹ m+1
r (q)}) = dm+1, for all q ∈ U . Indeed, the expression (3.5) is equivalent

to saying that the r × n(m + 1) matrix M(q) with entries Mij (q) := (Ỹ m+1
i (q))j has rank dm when evaluated at q0

which, in turn, amounts to the existence of a non-vanishing minor Mdm+1(q0) of M(q0) of order dm+1. Since the minor
Mdm+1(q) depends smoothly on q and Mdm+1(q0) �= 0, there exists an open neighborhood U of q0 in V m+1 for which
Mdm+1(q) �= 0, for any q ∈ U . This implies that dim(span{Ỹ m+1

1 (q), . . . , Ỹ m+1
r (q)}) ≥ dm+1, for all q ∈ U . However,

the maximality used in the definition of dl+1 implies that the previous inequality is necessarily an equality.
Consequently, we have found an open set U ⊂ V m+1 in which the distribution D spanned by the family

{Ỹ m+1
1 , . . . , Ỹ m+1

r } has constant rank. Moreover, (2.4) and the hypothesis on {Y1, . . . , Yr} being in involution im-
ply by the classical Frobenius theorem that D is integrable. Let G0 be the family of maximal integrable leaves of D

that form a foliation of Um+1. Now, shrinking U if necessary and using foliation coordinates for G0, we extend the
distribution D to another integrable distribution D ⊃ D of rank nm whose integrable leaves G contain those of G0,
and for which the restrictions of πm : Rn(m+1) → Rmn to the leaves in G are diffeomorphisms onto their images.

Let now {p1, . . . , pm} be a set of m distinct points in V such that (p1, . . . , pm) ∈ πm(U) and {Γ1, . . . ,Γm} the
solutions of (3.2) such that (Γ1, . . . ,Γm)t=0 = (p1, . . . , pm) a.s. Let Γ := (Γ1, . . . ,Γm) and τ the stopping time
defined as τ := inf{t > 0 | Γt �= πm(U)}. Since the vector fields

S̃m+1
j (X,Γ ) =

r∑
i=1

bi
j (X)Ỹm+1

i (Γ )

are tangent to the integral leaves of G0 and hence to those of G , at least up to time τ , Proposition 2.4 guarantees the
existence of a local superposition rule.

(ii) We start the proof by providing a lemma that will be needed in our argument.

Lemma 3.2. Let {Y1, . . . , Yr } ⊂ X(Rn) with r ≤ mn and let {Ỹ1, . . . , Ỹr } be the corresponding diagonal extensions
to Rn(m+1). Suppose that {Tqπm(Ỹ1(q)), . . . , Tqπm(Ỹr (q))} are linearly independent for any q in a neighborhood
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U ⊆ Rn(m+1). If the sum
∑r

i=1 biỸi with bi ∈ C∞(U), i = 1, . . . , r , is again a diagonal extension then the functions bi

are necessarily the pull-back by πm of a family of functions in C∞(πm(U)). More specifically, if (q
j
a ; j = 1, . . . , n;a =

0, . . . ,m) are coordinates for Rn(m+1), then the functions {bi}i=1,...,r do not depend on (q
j

0 ; j = 1, . . . , n).

Proof. Using the coordinates (qj ; j = 1, . . . , n) for Rn, there exists a family of functions A
j
i ∈ C∞(Rn), i ∈

{1, . . . , r}, j ∈ {1, . . . , n}, such that the vector fields {Y1, . . . , Yr} ⊂ X(Rn) can be written as

Yi(q) =
n∑

j=1

A
j
i (q)

∂

∂qj

which implies that the diagonal extensions have the expression

Ỹi (q0, . . . , qm) =
m∑

a=0

n∑
j=1

A
j
i (qa)

∂

∂q
j
a

.

Then, if we assume that

r∑
i=1

bi(q0, . . . , qm)Ỹi(q0, . . . , qm) =
r∑

i=1

m∑
a=0

n∑
j=1

bi(q0, . . . , qm)A
j
i (qa)

∂

∂q
j
a

is a diagonal extension on U , then there exist some functions {Bi}i=1,...,r ⊂ C∞(Rn) such that

r∑
i=1

bi(q0, . . . , qm)A
j
i (qa)

∣∣∣∣∣
U

= Bj (qa)|U , a = 0, . . . ,m, j = 1, . . . , n.

That is, the r functions bi(q0, . . . , qm) solve the following subsystem of linear equations⎛⎜⎜⎝
A(q0)

A(q1)
...

A(qm)

⎞⎟⎟⎠
⎛⎝b1(q0, . . . , qm)

...

br (q0, . . . , qm)

⎞⎠=

⎛⎜⎜⎝
B(q0)

B(q1)
...

B(qm)

⎞⎟⎟⎠ , (3.6)

where A and B are the n(m + 1) × r and n(m + 1) × 1 matrices, respectively, defined as A(qa)ij = Ai
j (qa) and

B(qa)i = Bi(qa), a = 0, . . . ,m. Now, the hypothesis on the linear independence of {T πm(Ỹ1), . . . , T πm(Ỹr )} implies
that the rank of the matrix (A(q1), . . . , A(qm)) is r ≤ nm and hence (3.6) has a unique solution which coincides with
the unique solution of the system⎛⎝ A(q1)

...

A(qm)

⎞⎠⎛⎝b1(q0, . . . , qm)
...

br (q0, . . . , qm)

⎞⎠=
⎛⎝ B(q1)

...

B(qm)

⎞⎠ . (3.7)

Since there is no dependence on the coordinates q0 in the augmented matrix associated to the system (3.7), its solution
(b1, . . . , br ) does not therefore depend on q0, as required. �

Suppose now that the stochastic differential equation (3.2) admits a superposition rule and that we are in the
hypotheses of the theorem. We start by emphasizing that since the vector fields {S̃1(X, ·), . . . , S̃l(X, ·)} are, by hy-
pothesis, tangent to the elements of the family G then their flows leave invariant those submanifolds and hence, the
Stefan–Sussmann extension D̃′ of D̃ is also tangent to the elements of G . This argument guarantees that, given the
regular leaf (G0)z of G0, then there exists an element Gz in G that contains it.

Now since p = (z,p1, . . . , pm) ∈ Rn(m+1) belongs to a regular leaf (G0)z of G0, then there is an open neighbor-
hood U of p where we can choose (taking regular foliation coordinates) a family of linearly independent vector
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fields {Ỹ1, . . . , Ỹr} ⊂ X(Rn(m+1)) that span the tangent spaces to the leaves of G0 ∩ U . The vector fields {Ỹ1, . . . , Ỹr}
can be chosen as the diagonal extensions of r vector fields {Y1, . . . , Yr} ⊂ X(Rn), since the Stefan–Sussmann ex-
tension D̃′ = span{T F̃T · S̃i (X, ·) | i ∈ {1, . . . , l}, F̃T ∈ GD} of D̃ is made of diagonal extensions. Indeed, in order
to see that D̃′ is spanned by diagonal extensions, it suffices to notice that the flow F̃t of the diagonal extension
Ỹ ∈ X(Rn(m+1)) of a vector field Y ∈ X(Rn) is F̃t (q0, . . . , qm) = (Ft (q0), . . . ,Ft (qm)), with Ft the flow of Y ; hence

TqF̃t

(
Ỹ (q)

) = (Tq0Ft × · · · × TqmFt )
(
Ỹ (q)

)
= (

Tq0Ft

(
Y(q0)

)
, . . . , TqmFt

(
Y(qm)

))= ˜(
T Ft (Y )

)
(q)

is again a diagonal extension. Given that by (2.4) diagonal extensions form an algebra, the statement follows.
Moreover, since the distribution D̃′|U is regular and integrable then it is necessarily integrable in the sense of

Frobenius, that is, there exist functions {ck
ij }i,j,k=1,...,r ⊂ C∞(Rn(m+1)) such that

[Ỹj , Ỹi] =
r∑

k=1

ck
ji Ỹk. (3.8)

Now, as [Ỹj , Ỹi] = ˜[Yj ,Yi], we conclude that
∑r

k=1 ck
ji Ỹk is a diagonal extension. Also, as the projection πm is a local

diffeomorphism when restricted to U ∩ Gz, the family of vectors {T πm(Ỹ1), . . . , T πm(Ỹr )} is necessarily linearly
independent. In these circumstances Lemma 3.2 implies that the coefficients {ck

ij }i,j,k=1,...,r do not depend on the

first n coordinates q
j

0 , j = 1, . . . , n. We now apply π0
Rn (see (2.5)) on both sides of (3.8) and we obtain

[Yj ,Yi](v) =
r∑

k=1

ck
ji(q1, . . . , qm)Yk(v), (3.9)

where v ∈ V := π0
Rn(U) and (q1, . . . , qm) ∈ Rnm is any arbitrary point such that (v, q1, . . . , qm) ∈ U . Since the left-

hand side of (3.9) does not depend on (q1, . . . , qm) then the dependence of the coefficients ck
ji(q1, . . . , qm) on those

coordinates is necessarily trivial which allows us to conclude that {Y1, . . . , Yr} close a Lie algebra.
Finally, since the vector fields S̃j (X, ·) are tangent to G0, j = 1, . . . , l, then there is a family of X-dependent

functions bi
j (X, ·) ∈ C∞(U) such that

S̃j (X,q) =
r∑

i=1

bi
j (X,q)Ỹi(q)

for any q ∈ U . As S̃j (X, ·) is also a diagonal extension, we can use again Lemma 3.2 in order to prove that the
functions {bi

j }i=1,...,r
j=1,...,l do not depend on q0. Consequently,

S̃j (X,q) =
r∑

i=1

bi
j

(
X, (q1, . . . , qm)

)
Ỹi (p). (3.10)

As we did in the previous paragraph, we apply π0
Rn on both sides of (3.10)

Sj (X,v) =
r∑

i=1

bi
j

(
X, (q1, . . . , qm)

)
Yi(v)

for any v ∈ V . Again, we realize that since the left-hand side of this equation is independent of (q1, . . . , qm), the
dependence of the functions bi

j on the coordinates (q1, . . . , qm) is necessarily trivial, which yields expression (3.4). �
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Remark 3.3. Theorem 3.1 is a generalization for stochastic differential equations of the classical Lie–Scheffers
theorem stated for time-dependent ordinary differential equations. That theorem claims that a differential equa-
tion ẏ = Y(t, y) on Rn given by a time-dependent vector field Y(t, ·) ∈ X(Rn), t ∈ R, admits a superposition rule
if and only if Y can be locally written in the form Y(t, y) = ∑r

i=1 f i(t)Yi(y), where {f i}i=1,...,r ⊂ C∞(R) and
{Y1, . . . , Yr} ⊂ X(Rn) form a (real) Lie subalgebra of (X(M), [·, ·]) (see [4] and [3]). In relation to the traditional
presentation of the Lie–Scheffers theorem, our Theorem 3.1:

(i) Weakens the hypotheses under which we can guarantee the existence of superposition rules. The involutivity of
the vector fields {Y1, . . . , Yr} is, in general, less restrictive than requiring that they form a Lie algebra over the reals.
We know a posteriori by the second part of Theorem 3.1 that, around regular points, if there exists a superposition
rule, the components {S1, . . . , Sl} of the Stratonovich operator can also be expressed in terms of a family of vector
fields that close a Lie algebra.

(ii) Carefully spells out the regularity conditions under which we have a converse; those conditions are only
vaguely evoked in the already cited deterministic papers.

(iii) It is worth noticing that, apart from the two points that we just explained, Theorem 3.1 cannot be seen as a
mere transcription of the deterministic Lie–Scheffers theorem into the context of Stratonovich stochastic integration
by using the so-called Malliavin’s Transfer Principle [22] due to the purely stochastic conditions that appear in the
statement of the theorem. Those additional requirements have to do with the tangency of the diagonal extensions of
the components of the Stratonovich operator to the family of submanifolds associated to the superposition rule (see
also Remark 2.5).

Remark 3.4. An interesting research problem would be the formulation of a Lie–Scheffers theorem in the context of
Rough Paths Theory [21]. Such result seems to us plausible and would yield Theorem 3.1 as a particular case.

In the next corollary, we show for the sake of completeness how the classical statement of the Lie–Scheffers
theorem (generalized to SDEs) can be easily obtained out of Theorem 3.1.

Corollary 3.5. Using the notation in Theorem 3.1, suppose that the X-dependent family of vector fields {S1(X, ·), . . . ,
Sl(X, ·)} that define the stochastic differential equation (2.1) can be expressed as

Sj (X, z) =
r∑

i=1

bi
j (X)Yi(z) ∈ TzRn, bi

j ∈ C∞(
Rl
)
, z ∈ Rn.

Let Lie{Y1, . . . , Yr } be the real Lie subalgebra of (X(Rn), [·, ·]) generated by the family {Y1, . . . , Yr} ⊂ X(Rn). If
Lie{Y1, . . . , Yr } is finite dimensional then (2.1) has a superposition rule.

Proof. Let D and D2 be the generalized distributions associated with the families of vector fields D = {Y1, . . . , Yr}
and D2 = Lie{Y1, . . . , Yr}, respectively. Observe that if D(z) � D2(z), z ∈ Rn, then since Lie{Y1, . . . , Yr } is finite
dimensional, we can always complete the family {Y1, . . . , Yr} with a finite number of vectors {Z1, . . . ,Zs} ⊂ D such
that D(z) = D2(z). We then write the X-dependent vector fields {S1(X, ·), . . . , Sl(X, ·)} as

Sj (X, z) =
r∑

i=1

bi
j (X)Yi(z) +

s∑
k=1

ak
j (X)Zk(z), z ∈ Rn,

with ak
j = 0 for any j = 1, . . . , l and any k = 1, . . . , s. Therefore, we may simply suppose that D(z) =

span{Lie{Y1, . . . , Yr}(z)}, z ∈ Rn and since D2 is trivially involutive, the corollary follows from Theorem 3.1(i). �

4. Lie–Scheffers systems and stochastic differential equations on Lie groups and homogeneous spaces

The Lie–Scheffers systems that are defined by a set of vector fields that generate a finite dimensional Lie algebra, that
is, those that satisfy the hypothesis of Corollary 3.5 or of Theorem 5.1 can be reformulated in the language of group
actions. More specifically, as we see in the next proposition, such systems come down locally to studying the solutions
of an equivalent Lie–Scheffers system on a Lie group.
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Proposition 4.1. Consider a stochastic differential equation that satisfies the hypotheses of Corollary 3.5. Let z ∈ M

be a point such that there exists a neighborhood V of z in which the dimension of Lie{Y1, . . . , Yr} is constant. Then,
shrinking V if necessary, there exists a Lie group G such that dim(G) = dim(Lie{Y1, . . . , Yr}|V ), a group action
Ξ :G × V → V , and Lie algebra elements {ξ1, . . . , ξr} ⊂ g such that

Yi(z) = ξM
i (z) := d

dt

∣∣∣∣
t=0

Ξ
(
exp(tξi), z

)
, z ∈ V. (4.1)

Moreover, the solution starting at z ∈ M of the restriction to V of the stochastic differential equation may be expressed
as

Γ z
t = Ξ(gt , z), (4.2)

where gt : R+ × Ω → G is the semimartingale solution of the stochastic differential equation on G

δgt =
r∑

i=1

ξG
i (gt ) δXi

t (4.3)

with initial condition gt=0 = e a.s.

Proof. Since the statement of the proposition is local we can always assume that the vector fields {Y1, . . . , Yr} are
complete by multiplying them by a compactly supported bump function and by restricting ourselves to an open
neighborhood V consistent with that construction. In that situation and if dim(Lie{Y1, . . . , Yr}|V ) < ∞, Palais showed
in [23] (see corollary in p. 97 and Theorem III in p. 95) that there exists a unique connected Lie group G contained
in the group of diffeomorphisms of M and a left action Ξ :G × M → M such that (4.1) holds and TeΞz :g →
Lie{Y1, . . . , Yr }(z) is an isomorphism, for any z ∈ V .

Let now gt : R+ × Ω → G be the solution semimartingale of the stochastic differential equation on G

δgt =
r∑

i=1

ξG
i (gt ) δXi

t , (4.4)

where ξG
i ∈ X(G) denotes the right-invariant infinitesimal generator associated to ξi ∈ g via the left translations

of G on G. Given that any two infinitesimal generators ξG and ξM , ξ ∈ g, are related by the formula TgΞz(ξ
G) =

ξM(Ξ(g, z)), g ∈ G, z ∈ V , it is straightforward to verify that if gt is a solution of (4.3) with initial condition gt=0 = e

a.s., then

Γ z
t = Ξ(gt , z),

is the solution of δΓt =∑r
i=1 Yi(Γt )δX

i
t such that Γ0 = z, a.s. �

Remark 4.2. Observe that (4.2) may be understood as a general reformulation of (5.2) (see also [2], Theorem 19).
Processes of the type Γ z

t = Ξ(gt , z) defined using a group action are sometimes called one point motions [19].

The proposition that we just proved shows that for Lie–Scheffers systems defined by vector fields that generate a
finite dimensional Lie algebra g, it is the associated Lie–Scheffers system on the Lie group G (4.3) that really matters.
This is the subject of the rest of this section.

Stochastic differential equations on Lie groups

Let now G be an arbitrary connected Lie group and g its Lie algebra. Let {ξ1, . . . , ξl} and {ε1, . . . , εl} be dual bases
of g and g∗, respectively. Left (respectively, right) translations on G will be denoted by L :G × G → G (respectively,
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R :G × G → G). With the same notation that we have used so far, let

S(μ,g) :Tμg � g −→ TgG,
(4.5)

η �−→
l∑

i=1

ξG
i (g)

〈
εi, η

〉= ηG(g)

be a Stratonovich operator from g to G, where ηG denotes the infinitesimal generator associated to the G-action on
itself by left translations. Consider the stochastic differential equation associated to (4.5),

δgt =
l∑

i=1

ξG
i (gt ) δXi

t (4.6)

for some driving noise (semimartingale) X : R+ ×Ω → g. Using the equivariance of the vector fields ξG ∈ X(G) with
respect to right translations, that is, ThRg(ξ

G(h)) = ξG(Rg(h)) for any g, h ∈ G, and ξ ∈ g, it is immediate to check
that if Γ e is the solution of (4.6) with initial condition Γ e

t=0 = e a.s., then the solution Γ
g
t starting at g ∈ G is given

by

Γ
g
t = LΓ e

t
g = Rg

(
Γ e

t

)
. (4.7)

In other words, the stochastic differential equation (4.6) has a superposition rule in the sense of Definition 2.1 and the
superposition function Φ is given by

Φ :G × G −→ G,

(h,g) �−→ Lhg = Rgh.

It is also worth noticing that (4.6) is stochastically complete ([9], Chapter VII, Section 6) since it is a left-invariant
system. Therefore any solution of (4.6) is defined for all (t,ω) ∈ R+ ×Ω and, consequently, so is any one point motion
and, in particular, any solution of any Lie–Scheffers system on a manifold M which can be globally considered as
induced by a group action Ξ :G × M → M .

Lévy processes and Lie–Scheffers systems

This is an important class of Lie group valued stochastic processes and, as we will now see, a class of examples of
Lie–Scheffers systems. Recall that a continuous process g : R+ × Ω → G is called a right Lévy process if, for any
0 = t0 < t1 < t2 < · · · < tn, the increments

gt0, gt0g
−1
t1

, gt1g
−1
t2

, . . . , gtn−1g
−1
tn

(4.8)

are independent and stationary. This means that the random variables in (4.8) are mutually independent and that their
distributions only depend on the differences ti − ti−1, i ∈ {1, . . . , n}. If gt0 �= e a.s., we define ge

t = gtg
−1
t0

, which is a
right Lévy process starting at the identity.

We are now going to see that continuous Lévy processes and Lie–Scheffers systems are closely related. First of
all, recall that any right Lévy process on a locally compact topological group with a countable basis of open sets is
a Markov process with a right-invariant Feller transition semigroup {Pt }t∈R+ given by Ptf (g) := E[f (ge

t g)], g ∈ G,
where f :G → R is any measurable function. Conversely, any rightinvariant continuous Markov process is a right
Lévy process ([19], Proposition 1.2). Moreover, if g : R+ × Ω → G is a right Lévy process, then there exists an l-
dimensional Brownian motion B : R+ × Ω → Rl with respect to the natural filtration {F e

t }t∈R+ of the process ge
t ,

l = dim(g), with covariance matrix (aij )i,j=1,...,l and some constants {ci}i=1,...,l such that

f (gt ) = f (g0) +
l∑

i=1

∫ t

0
ξG
i [f ](gs) δBi

s +
l∑

i=1

ci

∫ t

0
ξG
i [f ](gs)ds
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for any f ∈ C2(G) and where, as before, {ξ1, . . . , ξl} is a basis of g ([19], Theorem 1.2). This expression amounts to
saying that the Lévy process g : R+ × Ω → G satisfies the stochastic differential equation

δgt =
l∑

i=1

ciξ
G
i (gs) δs +

l∑
i=1

ξG
i (gs) δBi

s ,

and hence by Corollary 3.5 we can conclude that any continuous right Lévy process is a solution of a right-invariant
Lie–Scheffers system. Additionally, it can be shown in this context (see [19], Theorem 1.2) that one point motions
obtained out of a G-action Ξ :G × M → M are Markov processes with Feller transition semigroup {P M

t }t∈R+

P M
t f (z) = E

[
f
(
Ξ
(
ge

t , z
))]

, z ∈ M, f ∈ C(M).

Lie–Scheffers systems on homogeneous spaces

Let H ⊂ G be a closed subgroup of G and consider the homogeneous space G/H = {gH | g ∈ G} with the unique
smooth structure that makes the projection πH :G → G/H into a submersion. The group G acts on G/H via the
map λ :G × G/H → G/H on G/H defined by (h, gH) �→ (hg)H . It is immediate to check that the infinitesimal
generators associated to the left G-actions on G and on G/H are πH -related, that is,

TgπH

(
ξG(g)

)= ξG/H
(
πH (g)

)
for any g ∈ G, any ξ ∈ g, and where ξG/H (gH) = d

dt
|t=0λexp(tξ)(gH). This straightforward observation has as an

immediate consequence the next proposition:

Proposition 4.3. Let X :R+ × Ω → g be a g-valued semimartingale, G a Lie group, and H ⊂ G a closed subgroup.
Let Γ be a solution of the Lie–Scheffers system defined by X and the Stratonovich operator (4.5) with initial condition
Γt=0. Then, πH (Γ ) is a solution of the Lie–Scheffers system on G/H

δΓ =
l∑

j=1

ξ
G/H
j (Γ t ) δX

j
t (4.9)

with initial condition πH (Γt=0).

Observe that since the Stratonovich operator (4.5) is right-invariant by the action of G, and therefore H -invariant,
and that since this action is free and proper, the previous proposition can be seen as a particular case of the Reduction
theorem in [18]. The next theorem is a transcription of the Reconstruction theorem in [18] into the present context
and describes how to construct solutions in the opposite direction, that is, it tells us how to construct a solution Γ of
the Lie–Scheffers system (4.6) out of the solutions of two other dimensionally smaller Lie–Scheffers systems: first, a
solution of the reduced system (4.9) and second, another solution of a new Lie–Scheffers system, now on H .

Theorem 4.4. Let X : R+ × Ω → g be a g-valued semimartingale, G a Lie group, H ⊂ G a closed subgroup, and S

the Stratonovich operator defined in (4.5). Let R :H × G → G be the (right) action of H on G by right translations
and A an auxiliary principal connection on πH :G → G/H . Then, any solution Γ of the system (4.6) can be written
in the form

Γt = Rht gt = gtht .

In this statement, g : R+ ×Ω → G is a G-valued semimartingale horizontal with respect to A, i.e.,
∫ 〈A,δgt 〉 = 0 ∈ g,

gt=0 = Γt=0, and such that πH (gt ) is a solution of the reduced system (4.9). On the other hand, h : R+ × Ω → H is
an H -valued semimartingale that satisfies the stochastic differential equation

δht = R̃(Yt , ht ) δYt (4.10)
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with initial condition ht=0 = e, and associated to the Stratonovich operator

R̃(ξ, h) :Tξh −→ ThH,
(4.11)

η �−→ TeRh(η) = ηH (h)

and the stochastic component Y : R+ × Ω → h given by

Y =
l∑

i=1

∫
Agt

(
ξG
i (gt )

)
δXi.

Proof. See [18], Theorem 3.2 and Proposition 3.4. �

4.1. The Wei–Norman method for solving stochastic Lie–Scheffers systems

The method that we are going to develop in this subsection is a generalization to stochastic systems of the one proposed
by Wei and Norman in [27,28] in order to solve by quadratures time evolution equations of the form dUt

dt
= HtUt that

appear in quantum mechanics, where both Ut and Ht are bounded linear operators on a suitable Hilbert space. This
method has already been adapted by Cariñena and Ramos [6] to the study of deterministic Lie–Scheffers systems on
Lie groups and it is their approach that we will follow. As we will see later on, the power of this method and the
ease of its implementation depends strongly on the algebraic structure of the Lie algebra g of the group G where the
solutions of the stochastic differential equation take values.

Let Γ : R × Ω → G be the solution of (4.6) such that Γt=0 = e ∈ G a.s.; we write it down in terms of second kind
canonical coordinates with respect to a basis {ξ1, . . . , ξl} of the Lie algebra g. That is,

Γt = exp
(
d1
t ξ1

) · · · exp
(
dl
t ξl

)
, (4.12)

where {d1
t , . . . , dl

t } is a family of real-valued semimartingales, di : R+ × Ω → R, such that di
t=0 = 0 a.s. for any

i = 1, . . . , l. Notice that the expression (4.12) is only valid up to the exit time of Γ from the neighborhood Ue of
e ∈ G where the second kind of canonical coordinates for G around the origin are valid. The key idea in this method
is that if the functions di were differentiable then

dΓt

dt
= TeRΓt

(
l∑

i=1

ḋ i
t

(∏
j<i

Ad
exp(d

j
t ξj )

)
ξi

)

(see [6], Eqs (33) and (34)), where Adg(η) ∈ g is the adjoint representation of G on g, g ∈ G, η ∈ g. In our setup we
obviously cannot invoke the differentiability of the functions di ; however, applying the Stratonovich differentiation
rules to (4.12) with di our real-valued semimartingales, i = 1, . . . , l, we have

δΓt = TeRΓt

(
l∑

i=1

δdi
t

(∏
j<i

Ad
exp(d

j
t ξj )

)
ξi

)
.

This expression implies that for any right-invariant one-form μG ∈ Ω(G), that is, μG(g) = T ∗
g Rg−1(μ) for any g ∈ G

and a fixed μ ∈ g∗,∫ 〈
μG, δΓ

〉= 〈
μ,

r∑
i=1

∫ (∏
j<i

Ad
exp(

∑l
j=1 d

j
t νj )

)
ξi δd

i
t

〉
. (4.13)

At the same time, it is clear that
∫ 〈μG, δΓ 〉 = 〈μ,X〉 and hence (4.13) implies that

X =
l∑

i=1

∫ (∏
j<i

Ad
exp(d

j
t ξj )

)
ξi δ di

t .
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Using the identity Adexp(η) = ead(η) =∑
n≥0

1
n! ad(η)◦ n· · · ◦ ad(η), for any η ∈ g, and writing X =∑l

i=1 Xiξi , we get
the relation

l∑
i=1

Xiξi =
l∑

i=1

∫ (∏
j<i

e ad(d
j
t ξj )

)
ξi δd

i
t . (4.14)

The system of stochastic differential equations (4.14) can be solved for the semimartingales di
t , i = 1, . . . ,m by

quadratures if the Lie algebra g is solvable (see [27,28]) and, in particular, for nilpotent Lie algebras. The solvable
case was extensively studied in [17] where similar conclusions were presented using a different approach.

As a simple example consider the affine group in one dimension A1, that is, the group of affine transformations of
the real line. Any element of A1 can be expressed as a pair of real numbers (a0, a1) with a1 �= 0 defining the affine
transformation x �→ a1x + a0. The product ∗ : A1 × A1 → A1 in A1 is

(a0, a1) ∗ (b0, b1) = (a0 + a1b0, a1b1).

If {ξ0 = (1,0), ξ1 = (0,1)} is a basis of the Lie algebra a1 of A1, it is immediate to check that

[ξ0, ξ1] = adξ0(ξ1) = −ξ0. (4.15)

Furthermore, the infinitesimal generators associated to the left action of A1 on itself are

ξ
A1
0 (x, y) = ∂

∂x
and ξ

A1
1 (x, y) = x

∂

∂x
+ y

∂

∂y
.

A typical Lie system on A1 would be, for instance, the following Stratonovich differential equation on the upper
half-plane H+ = {(x, y) ∈ R2 | y > 0},

δΓx = dt + Γx δBt , δΓy = Γy δBt

obtained as a particular case of (4.5) when G = A1 and X = (t,B), where B : R+ × Ω → R is a Brownian motion.
More generally, let X : R+ × Ω → a1 be an a1-valued semimartingale and write X = X0ξ0 + X1ξ1, with X0 and X1

real semimartingales. Then, using (4.15), (4.14) reads in this particular case

X0ξ0 + X1ξ1 =
∫

ξ0 δd0
t +

∫ (
ξ1 − d0

t ξ0
)
δd1

t =
(∫

δd0
t −

∫
d0
t δd1

t

)
ξ0 +

(∫
δd1

t

)
ξ1.

Putting together the terms that go both with ξ1 and ξ0, respectively, we obtain

d1
t = X1

t , d0
t = X0

t +
∫ t

0
d0
s δX1

s

and hence

d0
t = eX1

t

(∫ t

0
δX0

s e−X1
s

)
.

5. The flow of a stochastic Lie–Scheffers system

Theorem 3.1 claims, roughly speaking, that the stochastic system (2.1) admits a superposition rule (Φ, {Γ1, . . . ,Γm})
if the components of the Stratonovich operator S(x, z) :TxRl → TzRn, x ∈ Rl , p ∈ Rn, that define it may be written
as Sj (X, z) = ∑r

i=1 bi
j (X)Yi(z), where bi

j ∈ C∞(Rl ) and {Y1, . . . , Yr} ⊆ X(Rn) span an involutive distribution. The
converse of this statement is also true provided that, for a given initial condition z ∈ Rn, the point (z, (Γ1, . . . ,Γm)t=0)

is a regular point of the foliation G0 generated by the diagonal extensions of {S1(X, ·), . . . , Sm(X, ·)}. Notice that this
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is a reasonable condition since the set of regular points of a generalized foliation is open and dense ([8], Theorem 2.2).
Moreover, when this happens, the vector fields {Y1, . . . , Yr} form a real Lie algebra.

The condition on the vector fields {Y1, . . . , Yr} forming a real finite dimensional Lie algebra or, more generally,
dim(Lie{Y1, . . . , Yr}) < ∞, are particularly appealing since these are algebraic requirements that we may expect to
be easily verified for stochastic differential equations of a certain type. Moreover, these conditions have consequences
that go beyond Corollary 3.5. More specifically, we will show that if dim(Lie{Y1, . . . , Yr }) < ∞, then the general
solution of a stochastic differential equation can be written by composing a deterministic function with a suitable
noise. In the following paragraphs we are going to give a precise meaning to this statement and will put it in the
context of well-known results available in the literature.

Traditionally, stochastic differential equations on a manifold M have been presented as

δΓt = Y0(Γt )dt +
r∑

i=1

Yi(Γt ) δBi
t , (5.1)

where {Y0, . . . , Yr} ⊆ X(M) and B : R+ × Ω → Rr is an r-dimensional Brownian motion defined on a standard
filtered probability space (Ω, Ft , P ). For the sake of having a more compact notation, we write B0

t := t . The flow
of such a stochastic differential equation may be locally written, that is, up to a given stopping time τ , by means of
a Taylor series expansion that comes out of Picard’s iterative method for solving stochastic differential equations. In
order to be more explicit we introduce some notation. Let J = {j1, . . . , jn}, ji ∈ {0, . . . , r}, 1 ≤ i ≤ n, be a multi-index
of size n. ‖J‖ will denote the degree of J that, by definition, is the size of J plus the number of zeros in the n-tuple
(j1, . . . , jn). For any J = {j1, . . . , jn}, we consider the iterated Stratonovich multiple integral

BJ
t =

∫
· · ·

∫
0<t1<···<tn<t

δB
j1
t1

· · · δB
jn
tn

.

In addition, YJ will denote

YJ := [
Yj1,

[
Yj2, . . . , [Yjn−1 , Yjn ]

]]
.

If Y ∈ X(M) is a vector field on the manifold M , we will use the following notation for its flow: exp(sY )(z) denotes
the solution at time s of the ordinary differential equation γ̇ = Y(γ ) with initial condition γ (0) = z. Then,

Theorem 5.1 ([2], Theorem 20). With the notation introduced so far, if dim(Lie{Y0, . . . , Yr}) < ∞ and span{Lie{Y0,

. . . , Yr }} has constant dimension on a neighborhood V of the point z ∈ M , then there exists a stopping time τ such
that the solution of (5.1) with initial condition z can be expressed as

Γ z
t = exp

( ∞∑
n=1

∑
‖J‖=n

βJ BJ
t

)
(z) (5.2)

up to time τ . In this expression, βJ :=∑
σ∈Sn

(−1)e(σ )

n2(n−1
e(σ ))

Yσ(J ), Sn denotes the permutation group of n elements, and e(σ )

is the cardinality of the set {j ∈ {1, . . . , n − 1}|σ(j) > σ(j + 1)}.

If the finiteness condition on the dimensionality of the Lie algebra generated by the vector fields is not available
but, nevertheless, {Y0, . . . , Yr} are Lipschitz vector fields, then the solution of (5.1) starting at z ∈ M can always be
approximated by a process like (5.2): if ζN

t denotes the finite sum
∑N

n=1
∑

‖J‖=n βJ BJ
t , then

Γ z
t = exp

(
ζN
t

)
(z) + tN/2RN(t),

where the error term RN(t) is bounded in probability when t tends to 0 ([7], Theorem 2.1). The expression (5.2)
also holds if instead of the hypotheses of Theorem 5.1 we require M to be an analytic manifold and {Y0, . . . , Yr} a
family of real analytic vector fields ([2], Theorem 10). An important consequence of Theorem 5.1 lies in the fact that
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the general solution of the stochastic differential equation (5.1) may be written, at least locally and up to a suitable
stopping time τ , as the composition of a deterministic and smooth function, namely, the flow exponential, with the
diffusion that defines the stochastic differential equation (see [15] for a complementary reading). From this point of
view, there is a strong resemblance between Theorem 5.1 and Theorem 3.1:

• First, by Corollary 3.5, all the systems that satisfy the hypotheses of Theorem 5.1 admit a superposition rule.
• Second, the superposition rule allows us to write any solution as a composition of the deterministic function and

the set of solutions {Γ1, . . . ,Γm} that are responsible for the stochastic behavior of the resulting flow.

We conclude by quoting two references that study the nilpotent case (that is, the Lie algebra Lie{Y0, . . . , Yr} is
nilpotent); this case has deserved special attention in the literature (see, e.g., [17]) because in that situation the Taylor
series expansion of the flow in terms of iterated integrals in (5.2) becomes finite. We also recommend the excellent
exposition in [1] for a complementary approach to the subject of Taylor series approximation of the general solution
of (5.1); in this book it is shown that, for instance, the Carnot group of depth N = dim(Lie{Y0, . . . , Yr}) can be
used in the nilpotent case to integrate the Lie algebra action of Lie{Y0, . . . , Yr} when one writes, as we did in the
previous section, a Lie–Scheffers system as a stochastic differential equation on a Lie group that acts on the manifold
in question.

6. Examples

6.1. Inhomogeneous linear systems

Let Ak : R → Mn(R) be an n × n time-dependent real matrix and Bk : R → Rn be a time-dependent vector for any
k = 1, . . . , l. Let X : R+ × Ω → Rl be a semimartingale. An inhomogeneus linear system is a system of stochastic
differential equations on Rn that may be written as

δΓt =
l∑

k=1

(
Ak(t)(Γt ) − Bk(t)

)
δXk

t . (6.1)

Let (q1, . . . , qn) be coordinates for Rn. It is an exercise to check that (6.1) can be equivalently written as

δΓt =
l∑

k=1

n∑
i,j=1

(Ak)
j
i (t)Y

i
j (Γt ) δXk

t +
l∑

k=1

n∑
i,j=1

(Bk)
j (t)Zj (Γt ) δXk

t ,

where the vector fields Y i
j , Zj ∈ X(Rn), i, j, k = 1, . . . , n, are given by

Y i
j = qi ∂

∂qj
, Zj = ∂

∂qj
.

Given that[
Y i

j , Y
k
l

]= δk
j Y

i
l − δi

l Y
k
j ,

[
Y i

j ,Zk

]= −δi
kZj and [Zi,Zj ] = 0

we see that the vectors {Y i
j ,Zk | i, j, k = 1, . . . , n} ⊂ X(Rn) span a Lie algebra isomorphic to the (n2 +n)-dimensional

Lie algebra of the group of affine transformations of Rn. Therefore, the system (6.1) satisfies the hypotheses of
Theorem 3.1 and hence it admits a superposition rule. In order to explicitly construct the superposition rule, let Γ ej

be the solution of the homogeneous part of (6.1),

δΓt =
l∑

k=1

Ak(t)(Γt ) δXk
t
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with initial solution Γ
ej

t=0 = ej ∈ Rn a.s., where ej = (0, j−1. . . ,0,1,0, . . . ,0) for any j = 1, . . . , n. Let Γ be a particular
solution of (6.1) with initial condition Γ t=0 = 0 ∈ Rn a.s. Then,

Γt =
n∑

j=1

zjΓ
ej

t + Γ t

is the general semimartingale solution of (6.1) starting at z = (z1, . . . , zn) ∈ Rn.

6.2. The stochastic exponential of a Lie group

Let G be a Lie group and g be its Lie algebra. Let {ξ1, . . . , ξl} be a basis of g and X : R+ ×Ω → g be a g-valued semi-
martingale. Observe that X can be written as X =∑r

i=1 ai
t ξi for a family of real semimartingales ai : R+ × Ω → R,

i = 1, . . . , l. Following [13] and [12], we define the (left) stochastic exponential E (X) : R+ × Ω → G of X as the
unique solution of the Lie–Scheffers system on G given by

δΓt =
l∑

i=1

(ξi)
G(Γt ) δai

t

with initial condition Γt=0 = e ∈ G a.s. Unlike the conventions used in Section 4, the vector fields (ξi)
G ∈ X(G) here

are not the right-invariant vector fields built from ξi , i = 1, . . . , l, but the left-invariant ones. That is,

(ξi)
G(g) = TeLg(ξi), g ∈ G.

Except for the fact that (ξi)
G ∈ X(G), i = 1, . . . , l, are now left-invariant, solving a Lie–Scheffers system on a Lie

group such as those presented in Section 4 amounts to computing the stochastic exponential of a given g-valued
semimartingale X.

The stochastic exponential establishes a bijection between g-valued local martingales and martingales on G with
respect to certain connections. Recall that, given an affine connection ∇ :X(M) × X(M) → X(M) on a manifold M ,
a M-valued semimartingale Γ : R+×Ω → M is said to be a ∇-martingale (or a martingale with respect to ∇) provided
that

f (Γ ) − f (Γt=0) − 1

2

∫
Hessf (dΓ,dΓ )

is a real local martingale for any f ∈ C∞(M), where Hessf :X(M) × X(M) → C∞(M) is the bilinear form defined
as

Hessf (Y,Z) = Y
[
Z[f ]]− ∇ZY [f ]

for any Y , Z ∈ X(M) (see [11], Chapter IV). When M = G is a Lie group, one can construct left-invariant connec-
tions ∇ by using bilinear skew-symmetric forms α :g × g → R on the Lie algebra g via the definition

∇ξGηG := α(ξ, η), ξ, η ∈ g.

The curves exp(tξ) ∈ G, where ξ ∈ g and exp :g → G is the Lie algebraic exponential, coincide with the geo-
desics c(t) with respect to these connections that start at e ∈ G and that satisfy ċ(0) = ξ . It can be shown ([12],
Lemma 1.4) that the connections built from α = 0 and α(ξ, η) = 1

2 [ξ, η] induce the same ∇-martingales on G. More-
over, with respect to these two connections, the set of ∇-martingales consists precisely of the processes of the form
Γ0 E (X) where X is a g-valued local martingale and Γ0 a G-valued F0-measurable random variable ([12], Proposi-
tion 1.9). This expression provides the bijection between g-valued local martingales and ∇-martingales on G that we
announced above.
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6.3. Geometric Brownian motion

Let (R+, ·) be the Abelian Lie group of strictly positive real numbers endowed with the standard product. Its Lie
algebra is simply R and, for any ξ ∈ R, the Lie algebra exponential coincides with the standard exponential, that is,
exp ξ = eξ ; consequently, the infinitesimal generator (right- or left-invariant) is

ξR+(q) = ξq for any q ∈ R.

Let G = R+× n· · · ×R+ be the Lie group constructed as the direct product of n copies of (R+, ·). Its product map · :
G × G → G is obviously (a1, . . . , an) · (b1, . . . , bm) = (a1b1, . . . , anbn), ai , bi ∈ R+ for any i = 1, . . . , n, and its

Lie algebra is g = T1R+× n· · · ×T1R+ � R× n· · · ×R = Rn. Let {ξi = (0, i−1. . .,0,1,0, . . . ,0) | i = 1, . . . , n} be the
canonical basis of g = Rn, μ = (μ1, . . . ,μn), σ = (σ 1, . . . , σ n) ∈ g a couple of elements of g, B : R+ × Ω → g a,
n-dimensional Brownian motion on some filtered probability space (Ω,P, {Ft }t∈R+), and consider the following
Lie–Scheffers system on G

δΓt =
(

μ − 1

2
σ 2
)G

(Γt )dt +
n∑

i=1

σ iξG
i (Γt ) δBi

t , (6.2)

where σ 2 = ((σ 1)2, . . . , (σ n)2). Using coordinates (q1, . . . , qn) in G we can rewrite (6.2) as

δqi
t =

(
μi − 1

2

(
σ i
)2
)

qi
t dt + σ iqi

t δBi
t , i = 1, . . . , n,

which may be rewritten in terms of Itô integrals as

dqi
t = μiqi

t dt + σ iqi
t dBi

t , i = 1, . . . , n. (6.3)

The solutions of the n-dimensional system of stochastic differential equation (6.3) are usually referred to as the
geometric Brownian motion which is well known for its use in the Black–Scholes theory of derivatives pricing as a
model for the time evolution of the prices of n assets in a complete and arbitrage-free financial market.

The well-known solution of the differential equation (6.3) can be easily obtained by using the stochastic version of
the Wei–Norman method that we introduced in Section 4.1. Indeed, let qt = exp(a1

t ξ1) · · · exp(an
t ξn) be the solution

of (6.3) starting at e = (1, . . . ,1) ∈ G, where ai : R+ × Ω → R are real semimartingales such that ai
t=0 = 0 a.s. for

any i = 1, . . . , n. Since the Lie algebra g of G is Abelian, and (6.2) is written in Lie–Scheffers form

δΓt =
l∑

i=1

ξG
i (Γt ) δXi

t

by taking the noise semimartingale X := ((μ1 − (σ 1)2

2 )t + σ 1B1
t , . . . , (μn − (σn)2

2 )t + σnBn
t ), Eq. (4.14) in the Wei–

Norman method reduces to

(
μ1 − (

σ 1)2
/2, . . . ,μn − (

σn
)2

/2
)
t + (

σ 1B1
t , . . . , σ nBn

t

)=
n∑

i=1

ξia
i
t ,

which implies that ai
t = (μi − (σ i)2/2)t + σ iBi

t for any i = 1, . . . , n. Now, since the exponential map is given by

exp :g −→ G = Rn+,

ξ =
n∑

i=1

ξ iξi �−→ (
eξ1

, . . . , eξn)
,
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where ex is the standard exponential function, we recover the well-known result that the general solution qt of (6.3)
starting at q0 ∈ Rn+ is

qt = (
q1

0 e(μ1−(σ 1)2/2)t+σ 1B1
t , . . . , qn

0 e(μn−(σn)2/2)t+σnBn
t
)
.

6.4. Brownian motion on reductive homogeneous spaces and symmetric spaces

Let G be a Lie group and H ⊆ G be a closed subgroup. We say that the homogeneous space M = G/H is reductive
if the Lie algebra g of G may be decomposed into as a direct sum g = h ⊕ m where h is the Lie algebra of H and m

is a subspace invariant under the action of AdH . That is, Adh(m) ⊆ m for any h ∈ H and, consequently, [h,m] ⊆ m.
Suppose now that the reductive homogeneous space M is Riemann manifold with Riemmanian metric η and that the
transitive action of G leaves the metric η-invariant. We want to define Brownian motions on (M,η) by reducing a
suitable process defined on G. The notation and most of the results in this example, in addition to a comprehensive
exposition on homogeneous spaces, can be found in [14] and [16]. The reader is encouraged to check with [10] to
learn more about the geometry of homogeneous spaces in the stochastic context.

We start by recalling that an M-valued process Γ is a Brownian motion whenever

f (Γ ) − f (Γ0) − 1

2

∫
�(f )(Γs)ds

is a real valued local semimartingale for any f ∈ C∞(M), where � denotes the Laplacian. As is widely known, the
Laplacian is defined as the trace of the Hessian associated to the Riemannian connection ∇ of η. That is,

�(f )(m) =
r∑

i=1

(LYi
◦ LYi

− ∇Yi
Yi)(f )(m),

where {Y1, . . . , Yr } ⊂ X(M) is family or vector field such that {Y1(m), . . . , Yr (m)} is an orthonormal basis of TmM ,
m ∈ M .

Let o ∈ M denote the equivalent class of H in M . We have assumed that (M,η) is a Riemann manifold with a
(left) G-invariant metric η. Since η is G-invariant and Φ is transitive, the only thing that really matters as far as the
characterization of η is concerned is the symmetric bilinear form ηo :ToM × ToM → ToM . It can be easily proved
that there is a natural one-to-one correspondence between the G-invariant Riemannian metrics η on M = G/H and
the AdH -invariant positive definite symmetric bilinear forms B on ToM = g/h ([16], Chapter X, Proposition 3.1).
The correspondence is given by

η
(
ξM

1 , ξM
2

)= B
(
Teπ(ξ1), Teπ(ξ2)

)
,

where ξ1, ξ2 ∈ g, π :G → G/H is the canonical submersion, and ξM ∈ X(M) denotes the infinitesimal generator
associated with ξ ∈ g. In addition, if M is reductive then the bilinear form B may be regarded as defined on m,
B :m × m → R, since ToM is naturally isomorphic to m, which is an AdH -invariant subspace of g. The Riemannian
connection ∇ of the metric η associated to such a bilinear form B is given by

∇ξM
1

ξM
2 = 1

2

[
ξM

1 , ξM
2

]+ (
U(ξ1, ξ2)

)M (6.4)

([16], Chapter X, Theorem 3.3). In this expression ξ1 and ξ2 belong to m and U :m × m → m is the bilinear mapping
defined by

2B
(
U(ξ1, ξ2), ξ3

)= B
(
ξ1, [ξ3,ξ2]m

)+ B
([ξ3,ξ1]m, ξ2

)
,

where [·, ·]m is such that [·, ·] = [·, ·]h + [·, ·]m with [·, ·]h ∈ h and [·, ·]m ∈ m. A consequence of (6.4) is that
the Laplacian � takes the expression �(f )(m) = ∑r

i=1(LξM
i

◦ LξM
i

+ U(ξi, ξi)
M)(f )(m), m ∈ M = G/K , where

{ξM
1 , . . . , ξM

r } is an orthonormal basis of TmM .
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The most important examples of reductive homogeneous spaces are symmetric spaces. In that case, G is the con-
nected component of the isometric group I (M) ⊆ Diff(M) of the symmetric space (M,η) containing e = Id. In order
to identify the symmetric space (M,η) with a reductive space, take o ∈ M a fixed point and let s be a geodesic symme-
try at o. Then the Lie group G acts on M transitively and, if H denotes the isotropy group of o, M is diffeomorphic to
G/H ([14], Chapter IV, Theorem 3.3). Suppose that dim(G) < ∞ and let σ :G → G be the involutive automorphism
of G defined by σ(g) = s ◦Φg ◦ s for any g ∈ G, where Φ :G×M → G denotes as usual the left action of G on M . It
is a matter of fact that Teσ :g → g induces an involutive automorphism of g. That is, Teσ ◦Teσ = Id but Teσ �= Id. Let
h and m be the eigenspaces of g associated with the eigenvalues 1 and −1 of Teσ , respectively, such that g = h ⊕ m.
It can be checked that h is a Lie subalgebra of g,

[h,h] ⊆ h, [h,m] ⊆ m, [m,m] ⊆ h,

and AdH (m) ⊆ m ([16], Chapter XI, Propositions 2.1 and 2.2). Moreover, the symmetric space G/K has a unique
affine connection ∇-invariant under the action of G. This is actually the Riemannian connection ([16], Chapter XI,
Theorem 3.3) so that (6.4) reads

∇ξM
1

ξM
2 = 0

for any pair of left-invariant vector fields ξM
1 and ξM

2 .
Returning to the general case, let {ξ1, . . . , ξr} be a basis of m such that {Teπ(ξ1), . . . , Teπ(ξr )} is an orthonormal

basis of To(G/K) with respect to ηo and let {ξG
1 , . . . , ξG

r } ⊂ X(G) be now the corresponding family of right-invariant
vector fields built from {ξ1, . . . , ξr}. Observe that {ξM

1 (m), . . . , ξM
r (m)} is an orthonormal basis of Tm(G/K) due

to the transitivity of the action and to the G-invariance of the metric η. Consider now the Stratonovich stochastic
differential equation

δgt =
r∑

i=1

ξG
i (gt ) δBi

t +
r∑

i=1

U(ξi, ξi)
G(gt )dt, (6.5)

where (B1
t , . . . ,Br

t ) is a Rr -valued Brownian motion. The stochastic system (6.5) is by definition K-invariant with
respect to the natural right action R :K × G → G, Rk(g) = gk for any g ∈ G and k ∈ K . In addition, it is straight-
forward to check that the projection π :G → G/K send any right-invariant vector field ξG ∈ X(G), ξ ∈ g, to the
infinitesimal generator ξM ∈ X(M) of the G-action Φ :G × M → M . Hence (6.5) projects to the stochastic system

δΓt =
r∑

i=1

ξM
i (Γt ) δBi

t +
r∑

i=1

U(ξi, ξi)
M(Γt )dt (6.6)

on M by Proposition 4.3. It is evident that the solutions of (6.6) have as a generator the second order differential
operator 1

2

∑r
i=1(LξM

i
◦ LξM

i
+ U(ξi, ξi)

M) and they are therefore Brownian motions.
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