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Abstract. We discuss the long time behavior of a two-dimensional reflected diffusion in the unit square and investigate more
specifically the hitting time of a neighborhood of the origin.

We distinguish three different regimes depending on the sign of the correlation coefficient of the diffusion matrix at the point 0.
For a positive correlation coefficient, the expectation of the hitting time is uniformly bounded as the neighborhood shrinks. For
a negative one, the expectation explodes in a polynomial way as the diameter of the neighborhood vanishes. In the null case, the
expectation explodes at a logarithmic rate. As a by-product, we establish in the different cases the attainability or nonattainability
of the origin for the reflected process.

From a practical point of view, the considered hitting time appears as a deadlock time in various resource sharing problems.

Résumé. Nous étudions le comportement en temps long d’une diffusion réfléchie à valeurs dans le carré unité et nous focalisons
plus précisément sur le temps d’atteinte d’un voisinage de l’origine.

Nous distinguons trois régimes différents, selon le signe du coefficient de corrélation de la matrice de diffusion prise au point 0.
Pour un coefficient de corrélation strictement positif, l’espérance du temps d’atteinte reste bornée lorsque le voisinage se rétrécit.
Pour un coefficient strictement négatif, l’espérance explose à vitesse polynomiale lorsque le diamètre du voisinage tend vers zéro.
Dans le cas d’un coefficient nul, l’espérance diverge à vitesse logarithmique. Au passage, nous établissons selon les cas la possibilité
ou l’impossibilité pour la diffusion réfléchie d’atteindre l’origine.

D’un point de vue pratique, le temps d’atteinte considéré apparaît comme un instant de blocage dans différents problèmes de
partage de ressource.
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Keywords: Reflected diffusions; Hitting times; Lyapunov functions; Distributed algorithms

1. Introduction

Background

In the papers [12,24] and [22], Tanaka, Lions and Sznitman and Saisho investigate the strong solvability of stochastic
differential equations with reflection on the boundary of a domain. In the normal reflection setting, pathwise existence
and uniqueness hold for systems driven by Lipschitz continuous coefficients and for domains that are convex (see
[24]) or that satisfy both a uniform exterior sphere condition and a uniform interior cone condition ([12] and [22]).
Compared to the usual Itô case, the basic dynamics for a reflected stochastic differential equation (RSDE in short)
involve an additional pushing process of bounded variation that prevents the diffusion to escape from the underlying
domain. A typical example of this kind is given by the Brownian local time that keeps the reflected Brownian motion
in the nonnegative half-plane. The formulation of the reflection phenomenon in terms of pushing processes or of local
times is inherited from the earlier definition of the Skorokhod problem and turns out to be very handy (think, for
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example, of the proof of the Feynman–Kac formula for the Neumann problem). In this paper, we provide another
example of application of this technology to investigate the long time behavior of a two-dimensional diffusion process
with normal reflection on the boundary of the unit square.

Two-dimensional reflected processes have been widely studied for twenty years. In [26], Varadhan and Williams
investigate a submartingale problem for the two-dimensional Brownian motion with an oblique reflection on the
boundary of a wedge of angle ξ . They discuss the unique solvability of the problem and the attainability of the
corner by the underlying process in terms of the ratio α ≡ (θ1 + θ2)/ξ , θ1 and θ2 denoting the angles of reflection
(with respect to the underlying normal vectors). For α � 0, the process doesn’t reach the corner; for 0 < α < 2, the
process reaches the corner, but the amount of time that the process is at the corner is zero; and, for α � 2, the process
reaches the corner and remains there. In [27], Williams shows that the process is transient for α < 0 and is recurrent
in the sense of Harris for 0 � α < 2. The escape rate in the transient framework is investigated in [6]. In [28] and
[5], Williams and DeBlassie prove that the Brownian motion in a wedge admits a semimartingale representation for
α < 1 and α � 2. Finally, Menshikov and Williams [18] and Balaji and Ramasubramanian [1] discuss the passage time
moments: denoting by τρ , ρ > 0, the hitting time of the ball of radius ρ centered at the corner of the wedge, they prove
that E[τp

ρ ] < +∞ for α > 0 and p < α/2, E[τp
ρ ] = +∞ for α > 0, p > α/2 and ρ small enough, and E[τp

ρ ] = +∞
for α = 0, p > 0 and ρ small enough. The monograph by Fayolle, Malyshev and Menshikov [7] focuses on the
time-discrete counterpart (see Section 3.3 therein).

Objective and main results

Our own situation is slightly different: the underlying process, denoted in the sequel by (Xt )t�0, may possess a
nonconstant drift and a nonconstant covariance matrix. Moreover, it evolves in the unit square, which is compact. The
reflection on the boundary occurs along the inward normal vector, so that the pathwise existence and uniqueness of
the process follow from [24]. In light of the previous paragraph, we then ask the following questions: assuming that
the underlying diffusion matrix is uniformly elliptic, so that (Xt )t�0 is recurrent in the sense of Harris, is the hitting
time of the origin (or more generally of every corner of the square) finite, and if so, is it of finite expectation? More
generally, how does the hitting time of a small neighborhood of the origin behave as its diameter tends to zero?

As an answer, we exhibit in this paper a local criterion. More precisely, we show that the expectation of the hitting
time of a neighborhood of the origin highly depends on the correlation coefficient s of a(0), the diffusion matrix at the
origin. When positive, the expectation remains bounded as the neighborhood shrinks. In the opposite case, it is finite
for every neighborhood but tends to the infinity as the diameter tends to zero: at a logarithmic rate if s is zero and at a
polynomial rate if s is negative. As a by-product, we derive the following rule for the initial problem: the hitting time
of the origin is of finite expectation for a positive correlation coefficient and is almost surely infinite in the other cases.

The proof is inspired by the recurrence and transience analysis for a classical diffusion process and relies on the
construction of suitable Lyapunov functionals for the reflected process. To this end, we benefit from the work of
Varadhan and Williams [26]: we successfully transport, by a linear mapping, the original problem from the square to
a wedge W and then bring back from the wedge to the square the Lyapunov functions used in [26] to investigate the
reflected Brownian motion. The form of the wedge W as well as the angles of reflection are given by the correlation
coefficient s of the covariance matrix a(0): the underlying angle ξ is equal to arccos(−s) and the parameter α to
2 − π/ arccos(−s). In particular, α is always less than 1 and

α ∈]0,1[⇔ s > 0, α = 0 ⇔ s = 0, α < 0 ⇔ s < 0.

The classification we give for the behavior of the reflected diffusion in the square is coherent with the classification of
the reflected Brownian motion in W . On the one hand, the reflected Brownian motion in W may be seen as the image,
by a linear mapping, of the solution of a RSDE in the orthant. For this reason, we expect the reflected Brownian motion
to be a semimartingale. By [28] and [5], it actually is. On the other hand, the different regimes for the expectation of the
hitting time, by (Xt )t�0, of a neighborhood of the origin correspond to the recurrence and transience properties of the
reflected Brownian motion in W . For s > 0, the expectation of the hitting time remains bounded as the neighborhood
shrinks and the corresponding Brownian motion reaches the corner of W . In the case s = 0, the expectation explodes
in a logarithmic way; the corresponding reflected Brownian motion does not reach the corner but is recurrent in the
sense of Harris. In the case s < 0, the expectation explodes in a polynomial way: the Brownian motion in W does not
reach the corner and is transient.
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The extension to the upper dimensional framework remains open. In [11], Kwon and Williams investigate the
reflected Brownian motion in a cone, in dimension greater than or equal to three, and extend to this setting the results
of Varadhan and Williams [26]. For the moment, we do not know if this work might be adapted to the analysis of a
reflected diffusion in a hypercube. There are two main difficulties: first, the basis of the cone, in [11], is assumed to
be of class C 3, whereas the boundary of the hypercube is just Lipschitz continuous; second, the Lyapunov functions
exhibited by Kwon and Williams are not explicit, as in the two-dimensional framework. There are other works on
reflected processes in high dimension, but we are not able at this time, to connect them to our purpose: the weak
existence and uniqueness (i.e., à la Varadhan and Williams) of reflected processes in polyhedra are discussed, among
others, in [3,4,20,21,25]; for the pathwise analysis, we refer to the recent work [19] and to the references therein.

Application

The paper is motivated by concrete applications to resource sharing problems arising in data processing or in mathe-
matical finance. Consider, for example, the “banker algorithm”: two customers C1 and C2 share a finite amount ρN ,
1 < ρ < 2, of money lent by a banker, the maximum need for each of them being worth N . At a discrete time n,
the sum granted to C1 and C2 is represented by the position Xn of a Markov process living inside the square of size
N without the right upper triangle [(N, (ρ − 1)N), ((ρ − 1)N,N), (N,N)]. The process is reflected on the sides of
the square and absorbed on the hypotenuse of the triangle, that is, on the line segment between (0, ρN) and (ρN,0):
when X hits the line segment, the allocation system stops since the available resource is exhausted. In other words,
the hitting time of the line segment appears as a deadlock time for the allocation system and its evaluation constitutes
a relevant challenge.

In a series of papers due (among others) to Louchard et al. [13–15] and to Maier et al. [16] and [17] and more
recently to Guillotin and Schott [9] and Comets, Delarue and Schott [2], it is shown in various contexts how to reduce,
through a normalization procedure of factor N , the analysis for large values of N to an absorption problem for a
reflected diffusion process living in the unit square. The absorption occurs on the right upper triangle [(1, ρ − 1), (ρ −
1,1), (1,1)], that is on the right upper triangle delimited by the line segment [(0, ρ), (ρ,0)]: it is a neighborhood
of (1,1) with radius 2 − ρ. Therefore, the situation in the limit framework corresponds, up to a rotation of center
(1/2,1/2) and of angle π, to the one investigated in the paper. When the diffusion matrix of the limit RSDE is
diagonal and constant and the drift is null, several explicit computations in terms of Bessel functions are conceivable
for the mean of the hitting time (see [15]). In the general case, this strategy fails and our current work provides relevant
estimates, especially for ρ close to two.

Organization

The proof is organized as follows. In Section 2, we expose the basic background for our analysis as well as the main
result of the paper. The proof is given in Section 3.

2. Notation and main results

For d � 1, 〈·, ·〉 and | · | denote the Euclidean scalar product and the Euclidean norm on R
d and, for x ∈ R

d and r > 0,
B(x, r) denotes the (open) Euclidean ball of center x and radius r .

2.1. Reflected SDE

Let M2(R) denote the set of 2 × 2 real matrices. We consider, for a given triple (κ,λ,Λ) ∈ (R∗+)3, a couple of
κ-Lipschitz continuous coefficients (b, σ ) : [0,1]2 → R

2 × M2(R) such that for all (ξ, x) ∈ (R2)2:

λ|ξ |2 �
〈
ξ, a(x)ξ

〉
� Λ|ξ |2,

where a(x) denotes the symmetric positive matrix σσ ∗(x).
Let (�, A,P) be a probability space endowed with a two-dimensional Brownian motion (Bt )t�0, whose natural

filtration, augmented with P-null sets, is denoted by (Ft )t�0. We consider the RSDE with normal reflection on the
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boundary of the unit square [0,1]2 associated to the pair (b, σ ) and to an initial condition x0 ∈ [0,1]2 \ {0}. In
other words, we are seeking a triple (X,H,K) of continuous and (Ft )t�0-adapted processes with values in [0,1]2 ×
(R+)2 × (R+)2 such that:

RSDE(1) The coordinates of H and K are nondecreasing processes.
RSDE(2) For i ∈ {1,2}, the ith coordinate process Hi is nonincreasing on the set {t � 0,Xi

t > 0} and the ith coordi-
nate process Ki is nonincreasing on the set {t � 0,Xi

t < 1}, so that:

∀t � 0,

∫ t

0
1{Xi

r>0} dHi
r = 0,

∫ t

0
1{Xi

r<1} dKi
r = 0.

RSDE(3) X is an Itô process satisfying for t � 0:

dXt = b(Xt )dt + σ(Xt )dBt + dHt − dKt, with X0 = x0.

Thanks to Theorem 4.1 in [24], the equation RSDE(1-2-3) admits a unique solution (set, for i = 1,2, dHi
t =

1{Xi
t =0} dφi

t and dKi
t = −1{Xi

t =1} dφi
t under the notations of [24]).

We remind the reader of the Itô rule for (Xt )t�0. For a function f of class C 2 on [0,1]2, we have for all t � 0,

df (Xt ) = 1

2

2∑
i,j=1

ai,j (Xt )
∂2f

∂xi ∂xj

(Xt )dt +
2∑

i=1

bi(Xt )
∂f

∂xi

(Xt )dt + 〈∇f (Xt ), σ (Xt )dBt

〉

+ ∂f

∂x1

(
0,X2

t

)
dH 1

t + ∂f

∂x2

(
X1

t ,0
)

dH 2
t − ∂f

∂x1

(
1,X2

t

)
dK1

t − ∂f

∂x2

(
X1

t ,1
)

dK2
t .

We are now interested in the attainability of the origin or more generally of a small neighborhood of the origin for
the process X.

2.2. Harris recurrence

In the previous framework, our first question is: is the process X Harris recurrent?
Due to the uniform ellipticity of the matrix a, it actually is: the process X hits with probability one every Borel

subset of [0,1]2 of nonzero Lebesgue measure, so that the hitting time of every neighborhood of the origin is almost-
surely finite.

2.3. Absorption at or around the origin

Now, our second question is: does the process X hit the origin? Or more generally, how does the hitting time of a
small neighborhood of the origin behave as its diameter decreases?

To answer the second question, we focus on the expectation of the hitting time of a small neighborhood of the
origin and investigate its behavior as the neighborhood shrinks. We then derive as by-product the attainability or
nonattainability of (0,0).

In practical applications (up to a rotation of center (1/2,1/2), see the references mentioned in Introduction), the
neighborhood is delimited by the line of equation x1 + x2 = ρ, for 0 < ρ < 1. We thus focus on the hitting time
Tρ ≡ inf{t � 0,X1

t + X2
t � ρ} and more specifically on E(Tρ). It is then plain to bound the expectation of the hitting

time of any other small neighborhood of the origin by the expectations of Tρ′ and Tρ′′ , for two suitable parameters ρ′
and ρ′′. Of course, if ρ > (x0)1 + (x0)2, E(Tρ) = 0.

In this paper, we manage to distinguish three different asymptotic regimes for the expectation E(Tρ) as the para-
meter ρ tends to zero, each of these regimes depending on the covariance matrix a(0), and more precisely, on the sign
of its off-diagonal components. Indeed, the matrix a(0) can be written:

a(0) =
(

ρ2
1 sρ1ρ2

sρ1ρ2 ρ2
2

)
, (2.1)
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with ρ1, ρ2 > 0 and s ∈]−1,1[ (since a is uniformly elliptic). It admits two eigenvalues:{
λ1 = [

ρ2
1 + ρ2

2 + δ
]
/2,

λ2 = [
ρ2

1 + ρ2
2 − δ

]
/2,

with δ ≡ (
ρ4

1 + ρ4
2 − 2

(
1 − 2s2)ρ2

1ρ2
2

)1/2
. (2.2)

We denote by E1 and E2 the associated eigenvectors (up to a multiplicative constant). For s 
= 0, E1 =
(1, (2sρ1ρ2)

−1(δ + ρ2
2 − ρ2

1))t and E2 = (−(2sρ1ρ2)
−1(δ + ρ2

2 − ρ2
1),1)t . Since δ + ρ2

2 − ρ2
1 � 0, the signs of

the nontrivial coordinates of E1 and E2 are given by the sign of s. The main eigenvector (i.e., E1) has two positive
components for s > 0, and a positive one and a negative one for s < 0. Of course, if s vanishes, E1 and E2 are equal
to the vectors of the canonical basis.

The three different regimes for E(Tρ) can be distinguished as follows:

Positive case. If s > 0, the main eigenvector of a(0) (i.e., E1) is globally oriented from (0,0) to the neighborhood of
the corner (1,1), or, up to a change of sign, from (1,1) to the origin, and thus tends to push the reflected diffusion
towards the absorption area. The reflection on the boundary cancels most of the effects of the second eigenvalue and
keeps on bringing back the diffusion towards the main axis. As a consequence, the hitting time of the border line is
rather small and the following asymptotic holds for the diffusion:

sup
0<ρ<1

E(Tρ) < +∞.

We illustrate this phenomenon when b vanishes and a is the constant matrix given by ρ1 = ρ2 = 1 and s = 0.9 by
plotting below (see Fig. 1, first case) a simulated trajectory of the reflected diffusion process, starting from (1,1) at
time 0, and running from time 0 to time 5 in the box [0,1]2. The algorithm used to simulate the reflected process is
given in Słomiński [23]. The eigenvector E1 is equal to (1,1)t .

Negative case. If s < 0, the main eigenvector of a(0) is globally oriented from (1,0) to the neighborhood of the
corner (0,1) and attracts the diffusion away from the border line. Again, the reflection on the boundary cancels most
of the effects of the second eigenvalue, and thus, acts now as a trap: the diffusion stays for a long time along the main
axis and hardly touches the boundary. The hitting time satisfies the following asymptotic behavior:

∃c1 � 1, ∃c2 > 0, ∀ρ ∈]0,1[, c−1
1 ρ−c2 − c1 � E(Tρ) � c1ρ

−c2 + c1.

This point is illustrated by the second case in Fig. 1 when b vanishes and a is equal to the constant matrix given by
ρ1 = ρ2 = 1 and s = −0.9 (again, x0 = (1,1)). The eigenvector E1 is given, in this case, by (1,−1)t .

Null case. The case s = 0 is intermediate. Eigenvectors are parallel to the axes and the behavior of the diffusion is
close to the behavior of the two-dimensional Brownian motion. We have

∃c1 � 1, ∀ρ ∈]0,1[, −c−1
1 ln(ρ) − c1 � E(Tρ) � −c1 ln(ρ) + c1.

This is illustrated by the third point in Fig. 1 when b vanishes and a is equal to the identity matrix (x0 = (1,1)).

Fig. 1. Trajectories of the reflected process in function of s.
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2.4. Main results

The following theorem summarizes the different cases detailed in the previous subsection:

Theorem 2.1. There exists a constant D � 1, depending only on the known parameters λ, Λ, K , ρ1, ρ2 and s, such
that, for all ρ ∈]0,1[,

if s > 0, E(Tρ) � D,

if s < 0, D−1ρα − D|x0|α � E(Tρ) � Dρα + D, with α ≡ 2 − π

arccos(−s)
< 0,

if s = 0, −D−1 ln(ρ) + D
[
ln

(|x0|
) − 1

]
� E(Tρ) � −D ln(ρ) + D.

We emphasize that D does not depend on x0.
As a by-product of the proof of Theorem 2.1, we can establish the following criterion for the attainability of the

origin:

Proposition 2.2. Denote by T0 the first hitting time of the origin by the process X. Then, E(T0) < +∞ if s > 0 and
P{T0 = +∞} = 1 if s � 0.

3. Proofs

In the whole proof of Theorem 2.1 and Proposition 2.2, the constants appearing in various estimates only depend on
the known parameters λ,Λ,K, ρ1, ρ2 and s. Even if denoted by the same letter, their values may vary from line to
line.

The common approach to investigate the recurrence and transience properties of a diffusion process is exposed in
[8], Ch. IX. The strategy consists in exhibiting superharmonic functions (or equivalently subharmonic functions) for
the generator of the diffusion process: these supersolutions (or subsolutions) play the role of Lyapunov functions (see
[10], Ch. I, for the definition of a Lyapunov function for an ordinary differential equation). In our framework, the
generator is given by:

L ≡ 1

2

2∑
i,j=1

ai,j (·) ∂2

∂xi ∂xj

+
2∑

i=1

bi(·) ∂

∂xi

.

We are then seeking a supersolution (resp. subsolution) h ∈ C 2([0,1]2 \ {0}) satisfying

Lh(x) � (resp. �) C, x ∈ [0,1]2 \ {0}, (3.1)

for a constant C > 0, verifying a zero Neumann boundary condition on the edges ](0,0), (0,1)] and ](0,0), (1,0)],
that is

∂h

∂x1
(0, x2) = 0 for 0 < x2 � 1,

(3.2)
∂h

∂x2
(x1,0) = 0 for 0 < x1 � 1,

and having positive (resp. negative) derivatives along the outward normal vectors on the other sides, that is

∂h

∂x1
(1, x2) > (resp. <)0 for 0 < x2 � 1,

(3.3)
∂h

∂x2
(x1,1) > (resp. <)0 for 0 < x1 � 1.
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If we can find such a function h, we deduce by the Itô formula and (3.1), (3.2) and (3.3)

E
(
h(XTρ )

) − E
(
h(X0)

)
� (resp. �)CE(Tρ).

The asymptotic trend of E(Tρ) is then given by the growth of h at the origin. The growth at the origin of the
supersolution (resp. subsolution) that we construct in the sequel is governed by the sign of s: it is bounded if s > 0, it
is of logarithmic growth if s = 0 (i.e. |h(x)| � | ln(|x|)| for |x| small: ∃c � 1, c−1| ln(|x|)| � |h(x)| � c| ln(|x|)| for |x|
small) and it is of polynomial growth, with exponent α, if s < 0 (i.e. |h(x)| � |x|α for |x| small). This classification
coincides with the one given in the statement of Theorem 2.1.

We proceed in two steps to construct h. Using the results of Varadhan and Williams [26], we manage to construct a
superharmonic (resp. subharmonic) function f on [0,1]2 \ {0} satisfying a zero Neumann boundary condition on the
edges ](0,0), (0,1)] and ](0,0), (1,0)] and having negative derivatives along the outward normal vectors on the other
sides. The growth of f is governed at the origin by the sign of s, as explained for h.

Moreover, we exhibit a bounded Lyapunov function g on [0,1]2 satisfying

Lg(x) � (resp. �)C, x ∈ [0,1]2 \ {0},
for a constant C > 0, verifying a zero Neumann boundary condition on the edges [(0,0), (0,1)] and [(0,0), (1,0)]
and having positive derivatives along the outward normal vectors on the other sides.

We then construct h as a linear combination of f and g.

3.1. Harmonic function for the reflected Brownian motion in a wedge

We remind the reader of the results established in [26]. For an angle ξ ∈]0,2π[, let W denote the subset of R
2 given,

in polar coordinates, by W ≡ {(r, θ),0 � θ � ξ, r � 0}, and let ∂W1 ≡ {(r, θ), θ = 0, r � 0} and ∂W2 ≡ {(r, θ), θ =
ξ, r � 0} denote the two sides of the boundary of W . For j = 1,2, let nj denote the unit inward normal vector to
∂Wj .

For j = 1,2, we are given a unit vector vj such that 〈vj , nj 〉 > 0: the angle between nj and vj , measured such that
it is positive if and only if vj points towards the origin, is denoted by θj (see Fig. 2).

Then, the function ψ given, in polar coordinates, by ψ(r, θ) ≡ rα cos(αθ −θ1) for (r, θ) ∈ W , with α ≡ (θ1 +θ2)/ξ ,
satisfies, if α 
= 0, the Neumann problem �ψ = 0 in W \{0}, with the boundary conditions 〈v1,∇ψ〉 = 0 on ∂W1 \{0}
and 〈v2,∇ψ〉 = 0 on ∂W2 \ {0} (∇ and � denote the gradient and Laplace operators).

3.2. Transposition of the original problem to a wedge

We set a0 ≡ a(0) and we consider, for the operator
∑2

i,j=1(a0)i,j [∂2/∂xi ∂xj ], the associated Neumann problem in

the orthant W0 ≡ {x ∈ R
2, x1, x2 � 0} with a zero boundary condition on the sides. With a suitable change of variable,

we now reduce this Neumann problem to a Neumann problem in a wedge for the Laplace operator.

Fig. 2. Wedge W .
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The matrix a−1
0 has the form

a−1
0 = (

1 − s2)−1
(

ρ−2
1 −sρ−1

1 ρ−1
2

−sρ−1
1 ρ−1

2 ρ−2
2

)
.

We denote by ς ≡ a
−1/2
0 the symmetric square root of a−1

0 . We can associate to ς the norm:

∀x ∈ R
2, r(x) ≡ |ςx| = [〈

x, a−1
0 x

〉]1/2 = (
1 − s2)−1/2[

ρ−2
1 x2

1 + ρ−2
2 x2

2 − 2sρ−1
1 ρ−1

2 x1x2
]1/2

.

By ellipticity of a, we deduce that

∀x ∈ R
2, Λ−1/2|x| � r(x) � λ−1/2|x|. (3.4)

Setting u1 ≡ ςe1/|ςe1| and u2 ≡ ςe2/|ςe2|, the image of the wedge W0 by the matrix ς may be expressed as
ς W0 = {λu1 + μu2, λ,μ � 0}. Since ς is a positive symmetric matrix, we can prove that the angle (u1, u2) belongs
to ]0,π[. Indeed, we can find an orthogonal matrix M such that

ς = MDM∗, D ≡
(

λ
−1/2
1 0

0 λ
−1/2
2

)
,

λ1 and λ2 being the eigenvalues of a0 (see (2.2)). The angle (M∗e1,M
∗e2) is equal to π/2. Since the diagonal coeffi-

cients of D are positive, we easily deduce that the angle (DM∗e1,DM∗e2) belongs to ]0,π[. Since M is orthogonal,
the angle (u1, u2), which is equal to the angle (MDM∗e1,MDM∗e2), belongs to ]0,π[. In particular, the angle
(u1, u2) is equal to ξ ≡ arccos(〈u1, u2〉) = arccos(−s).

Moreover, 〈u1, e1〉 = 〈ςe1, e1〉 > 0, 〈u2, e2〉 = 〈ςe2, e2〉 > 0 and 〈u1, e2〉 = (|ςe2|/|ςe1|)〈u2, e1〉 so that 〈u1, e2〉
and 〈u2, e1〉 have the same sign (see Fig. 3).

We denote by W the wedge formed by the vectors u1 and u2. The inward normal vectors to the two sides are
denoted by n1 and n2 (n1 is the unitary orthogonal vector to u1 generating a positive angle with it and n2 is the unitary
orthogonal vector to u2 generating a negative angle with it, see Fig. 3). Along the side generated by u1, the vector u2
plays the role of the vector v1 in the description of Section 3.1. Similarly, the vector u1 plays, along the side generated
by u2, the role of the vector v2. Moreover, the angle θ1 between the vectors n1 and u2 is equal to the angle θ2 between
the vectors n2 and u1 and their common value is θ1 = θ2 = ξ − π/2.

The parameter α introduced in the previous subsection is equal, in this setting, to α = 2−π/ξ = 2−π/ arccos(−s).
It is plain to prove that

α < 0 ⇔ s < 0, α = 0 ⇔ s = 0, α > 0 ⇔ s > 0.

We denote by (y1, y2) the Cartesian coordinates and by (r, θ) the polar coordinates in the basis (u1, n1), and we
set ψ(r, θ) ≡ rα cos(αθ − θ1). By Section 3.1, we deduce that ψ satisfies, if s 
= 0, the Neumann problem �ψ = 0

Fig. 3. Image of the wedge W0 by ς .
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in W \ {0}, with the boundary conditions 〈u2,∇ψ〉 = 0 on ∂W1 \ {0} and 〈u1,∇ψ〉 = 0 on ∂W2 \ {0} (recall that the
Laplace operator � is independent of the choice of the Cartesian coordinates).

We assume for a while that s 
= 0. For x ∈ W0, we set ϕ(x) ≡ ψ(ςx). We let the reader check that, for x ∈ W0 \{0},
∇ϕ(x) = ς∇ψ(ςx) and ∇2ϕ(x) = ς∇2ψ(ςx)ς (∇2ϕ stands for the Hessian matrix of ϕ). The function ϕ may be
expressed as

ϕ(x) = [
r(x)

]α cos
(
αθ(x) − θ1

)
,

θ(x) denoting the angle of ςx in the basis (u1, n1).
The function ϕ satisfies the Neumann problem:

2∑
i,j=1

(a0)i,j
∂2ϕ

∂xi ∂xj

(x) = 0 for x ∈ W0 \ {0}, (3.5)

with the boundary conditions 〈e2,∇ϕ(x)〉 = 0 if x1 > 0 and x2 = 0 and 〈e1,∇ϕ(x)〉 = 0 if x2 > 0 and x1 = 0.

Proposition 3.1. Assume that s 
= 0. Then, there exists a constant η � 1 such that

∀x ∈ W0 \ {0},

⎧⎪⎨
⎪⎩

η−1
[
r(x)

]α � ϕ(x) �
[
r(x)

]α
,

η−1
[
r(x)

]α−1 �
∣∣∇ϕ(x)

∣∣ � η
[
r(x)

]α−1
,∣∣∇2ϕ(x)

∣∣ � η
[
r(x)

]α−2
.

Moreover,

α inf
x2∈[0,1]

∂ϕ

∂x1
(1, x2) > 0, α inf

x1∈[0,1]
∂ϕ

∂x2
(x1,1) > 0.

Proof. We first establish the bounds for the function ϕ and its derivatives. The upper bound for ϕ is obvious. We prove
the lower bound. By construction, we know that, for all x ∈ W0 \ {0}, 0 � θ(x) � ξ . If α > 0, −θ1 � αθ(x) − θ1 �
αξ − θ1, that is π/2 − ξ � αθ(x) − θ1 � ξ − π/2 (θ1 = ξ − π/2 and α = 2 − π/ξ ). We deduce the lower bound for
α > 0. The same argument holds for α < 0.

We now prove the bounds for the gradient of ϕ. By ellipticity of the matrix ς , it is sufficient to investigate ∇ψ . We
denote by ∇yψ = (∂ψ/∂y1, ∂ψ/∂y2), with ∂ψ/∂y1 = 〈∇ψ,u1〉 and ∂ψ/∂y2 = 〈∇ψ,n1〉, the coordinates of ∇ψ in
the basis (u1, n1). For a point y ∈ W \ {0}, we can express ∇yψ(y) in terms of the polar coordinates (r, θ) of y, r > 0
and 0 � θ � ξ . We obtain:

∇yψ(r, θ) =
(

cos(θ) − sin(θ)

sin(θ) cos(θ)

)(
∂rψ(r, θ)

r−1∂θψ(r, θ)

)
.

Since ∂rψ(r, θ) = αrα−1 cos(αθ − θ1) and ∂θψ(r, θ) = −αrα sin(αθ − θ1), we obtain the following expression (in
polar coordinates) for ∇yψ :

∇yψ(r, θ) = αrα−1
(

cos(θ) cos(αθ − θ1) + sin(θ) sin(αθ − θ1)

sin(θ) cos(αθ − θ1) − cos(θ) sin(αθ − θ1)

)

= αrα−1
(

cos[(α − 1)θ − θ1]
− sin[(α − 1)θ − θ1]

)
. (3.6)

The bounds for |∇ϕ| easily follows (r = |y| = |ςx| = r(x)). By a similar argument, we establish the bound for the
second-order derivatives of ϕ.

We now investigate the sign of α[∂ϕ/∂x1](x) = α〈∇ϕ(x), e1〉 for x1 = 1 and 0 � x2 � 1. It is sufficient to investi-
gate the sign of α〈∇ψ(y), ςe1〉 for y = ςx, that is the sign of α〈∇ψ(y),u1〉. We denote to this end by (r, θ) the polar
coordinates of y. We deduce from (3.6) that

α
〈∇yψ(r, θ), u1

〉 = α2rα−1 cos
[
(α − 1)θ − θ1

]
.
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Fig. 4. Angle χ .

Since x1 = 1 and 0 � x2 � 1, there exists 0 < χ < ξ such that 0 � θ � χ (see Fig. 4). Moreover, α − 1 = 1 −π/ξ < 0
because ξ < π. We deduce that

−π

2
= (α − 1)ξ − θ1 < (α − 1)χ − θ1 � (α − 1)θ − θ1 � −θ1 = π

2
− ξ <

π

2
.

We deduce that

α inf
x2∈[0,1]

∂ϕ

∂x1
(1, x2) > 0.

We investigate in the same way the sign of α[∂ϕ/∂x2](x) for x2 = 1 and 0 � x1 � 1. Again, it is sufficient to investi-
gate the sign of α〈∇ψ(y),u2〉 for y = ςx. The polar coordinates of y are denoted by (r, θ), with r > 0 and χ � θ � ξ .
We deduce from (3.6):

α
〈∇ψ(r, θ), u2

〉 = α2rα−1 cos
[
(α − 1)θ + ξ − θ1

]
.

As above,

−π

2
< ξ − π

2
= αξ − θ1 � (α − 1)θ + ξ − θ1 � (α − 1)χ + ξ − θ1 < ξ − θ1 = π

2
.

We deduce that

α inf
x1∈[0,1]

∂ϕ

∂x2
(x1,1) > 0. �

We now investigate the case s = 0. We let the reader check.

Proposition 3.2. Assume that s = 0. Then, the function ϕ(x) ≡ − ln(r(x)) + ln(r(1,1)), with r(x) ≡ (ρ−2
1 x2

1 +
ρ−2

2 x2
2)1/2, is nonnegative on the square [0,1]2 and satisfies

2∑
i,j=1

(a0)i,j
∂2ϕ

∂xi ∂xj

(x) = 0 for x ∈ W0 \ {0},

with the boundary conditions 〈e1,∇ϕ(x)〉 = 0 if x1 = 0 and x2 > 0 and 〈e2,∇ϕ(x)〉 = 0 if x2 = 0 and x1 > 0. There
exists a constant η � 1 such that

∀x ∈ W0 \ {0},
{

η−1
[
r(x)

]−1 �
∣∣∇ϕ(x)

∣∣ � η
[
r(x)

]−1
,∣∣∇2ϕ(x)

∣∣ � η
[
r(x)

]−2
.
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Moreover,

inf
x2∈[0,1]

∂ϕ

∂x1
(1, x2) < 0, inf

x1∈[0,1]
∂ϕ

∂x2
(x1,1) < 0.

3.3. Lyapunov functions

For all N � 1, we set ζN ≡ inf{t � 0, |Xt | � N−1}.

Proposition 3.3. If α > 0, there exist a local martingale (Mt)t�0, a smooth function F from R
∗+ to R and two

constants c > 0 and γ > 0 such that, for all r > 0, r exp(−γ r1/α) � F(r) � r , for all N � 1, (Mt)0�t�ζN
is square

integrable, and for all t ∈ [0, ζN ],
d
[−F

(
ϕ(Xt )

)]
� dMt + c

(
dK1

t + dK2
t

)
.

If α < 0, there exist a local martingale (M̂t )t�0, a smooth function F̂ from R
∗+ to R and two constants ĉ > 0 and

γ̂ > 0 such that, for all r > 0, γ̂ (r − 1)+ � F̂ (r) � r , for all N � 1, (M̂t )0�t�ζN
is square integrable, and for all

t ∈ [0, ζN ],
dF̂

(
ϕ(Xt)

)
� dM̂t + ĉ

(
dK1

t + dK2
t

)
.

Moreover, setting m = inf[0,1]2\{0} ϕ > 0, there exist a square integrable martingale (M̌t )t�0, a smooth function F̌

from R
∗+ to R and two constants č > 0 and γ̌ > 0 such that, for all r � m, r − m � F̌ (r) � γ̌ r , for all N � 1,

(M̌t )0�t�ζN
is square integrable, and for all t ∈ [0, ζN ],

dF̌
(
ϕ(Xt)

)
� dM̌t + č

(
dK1

t + dK2
t

)
.

Proof. In a first time, we do not take into account the sign of α. Whatever the sign of α is, the function ϕ is smooth
on W0 \ {0} and we can apply the Itô formula to (ϕ(Xt ))0�t�ζN

. For a fixed N � 1 and for all t ∈ [0, ζN ], we deduce
from (3.5) and from the Neumann boundary condition satisfied by ϕ:

dϕ(Xt) = 〈∇ϕ(Xt), b(Xt )
〉
dt + 1

2

2∑
i,j=1

ai,j (Xt )
∂2ϕ

∂xi ∂xj

(Xt )dt

+ 〈∇ϕ(Xt), σ (Xt )dBt

〉 + 〈∇ϕ(Xt),dHt

〉 − 〈∇ϕ(Xt),dKt

〉
= 〈∇ϕ(Xt), b(Xt )

〉
dt + 1

2

2∑
i,j=1

[
ai,j (Xt ) − ai,j (0)

] ∂2ϕ

∂xi ∂xj

(Xt )dt

+ 〈∇ϕ(Xt), σ (Xt )dBt

〉 − 〈∇ϕ(Xt),dKt

〉
. (3.7)

By the Lipschitz continuity of a and the boundedness of b, and by Proposition 3.1, we can find a bounded function Γ

from R
2 to R, independent of N , such that

dϕ(Xt) = (
ϕ(Xt )

)(α−1)/α
Γ (Xt )dt + 〈∇ϕ(Xt), σ (Xt )dBt

〉 − 〈∇ϕ(Xt),dKt

〉
.

Let F be a smooth function from R
∗+ to R. Again, the Itô formula yields for all t ∈ [0, ζN ]:

dF
(
ϕ(Xt)

) = F ′(ϕ(Xt )
)(

ϕ(Xt)
)(α−1)/α

Γ (Xt )dt

+ 1

2
F ′′(ϕ(Xt )

)〈∇ϕ(Xt), a(Xt )∇ϕ(Xt)
〉
dt

+ F ′(ϕ(Xt )
)〈∇ϕ(Xt), σ (Xt )dBt

〉 − F ′(ϕ(Xt)
)〈∇ϕ(Xt),dKt

〉
.
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For a real C, we choose F ′(r) = exp(Cr1/α) for r > 0, so that F ′′(r) = (C/α)r1/α−1 exp(Cr1/α). We obtain for all
t ∈ [0, ζN ]:

dF
(
ϕ(Xt)

) = exp
(
C

(
ϕ(Xt)

)1/α)[(
ϕ(Xt)

)(α−1)/α
Γ (Xt )

+ (
C/(2α)

)(
ϕ(Xt)

)(1−α)/α 〈∇ϕ(Xt), a(Xt )∇ϕ(Xt)
〉]

dt

+ exp
(
C

(
ϕ(Xt)

)1/α)[〈∇ϕ(Xt), σ (Xt )dBt

〉 − 〈∇ϕ(Xt),dKt

〉]
. (3.8)

We now assume that α > 0. By Proposition 3.1 and (3.8), we can find a constant C < 0, independent of N , such that,
for all t ∈ [0, ζN ],

dF
(
ϕ(Xt)

)
� exp

(
C

(
ϕ(Xt)

)1/α)[〈∇ϕ(Xt), σ (Xt )dBt

〉 − 〈∇ϕ(Xt),dKt

〉]
= exp

(
C

(
ϕ(Xt)

)1/α)[〈∇ϕ(Xt), σ (Xt )dBt

〉 − ∂ϕ

∂x1

(
1,X2

t

)
dK1

t − ∂ϕ

∂x2

(
X1

t ,1
)

dK2
t

]
.

By Proposition 3.1, we can find a constant c > 0, independent of N , such that, for all t ∈ [0, ζN ],
d
[−F

(
ϕ(Xt )

)]
� − exp

(
C

(
ϕ(Xt)

)1/α)〈∇ϕ(Xt), σ (Xt )dBt

〉 + c
(
dK1

t + dK2
t

)
.

Moreover, we can choose F(r) = ∫ r

0 exp(Cs1/α)ds. Then, for all r > 0, we have

r exp
(
Cr1/α

)
� F(r) � r.

This completes the proof in the case α > 0.
We turn to the case α < 0. By Proposition 3.1 and (3.8), we can find a constant C < 0, independent of N , such that,

for all t ∈ [0, ζN ],
dF

(
ϕ(Xt)

)
� exp

(
C

(
ϕ(Xt)

)1/α)[〈∇ϕ(Xt), σ (Xt )dBt

〉 − 〈∇ϕ(Xt),dKt

〉]
.

By Proposition 3.1, we can find a constant c > 0, independent of N , such that, for all t ∈ [0, ζN ],
dF

(
ϕ(Xt)

)
� exp

(
C

(
ϕ(Xt)

)1/α)〈∇ϕ(Xt), σ (Xt )dBt

〉 + c
(
dK1

t + dK2
t

)
.

Choosing F(r) = ∫ r

0 exp(Cs1/α)ds, we have for all r > 0

(r − 1)+ exp(C) � F(r) � r.

This completes the proof of the lower bound in the case α < 0.
We finally prove the upper bound. By Proposition 3.1 and (3.8), we can find a constant C > 0, independent of N ,

such that, for all t ∈ [0, ζN ],
dF

(
ϕ(Xt)

)
� exp

(
C

(
ϕ(Xt)

)1/α)[〈∇ϕ(Xt), σ (Xt )dBt

〉 − 〈∇ϕ(Xt),dKt

〉]
.

By Proposition 3.1, we can find a constant d > 0, independent of N , such that, for all t ∈ [0, ζN ],
dF

(
ϕ(Xt)

)
� exp

(
C

(
ϕ(Xt)

)1/α)〈∇ϕ(Xt), σ (Xt )dBt

〉 + d
(
dK1

t + dK2
t

)
.

Choosing F(r) = ∫ r

m
exp(Cs1/α)ds, we have for all r � m

r − m � F(r) � r exp
(
Cm1/α

)
.

This completes the proof. �

We now investigate the case α = 0.
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Proposition 3.4. If α = 0, there exist a local martingale (M̂t )t�0, a smooth function F̂ from R
∗+ to R and two

constants ĉ > 0 and γ̂ > 0 such that, for all r > 0, γ̂ r � F̂ (r) � r , for all N � 1, (M̂t )0�t�ζN
is square integrable,

and for all t ∈ [0, ζN ],
dF̂

(
ϕ(Xt)

)
� dM̂t + ĉ

(
dK1

t + dK2
t

)
.

Moreover, there exist a square integrable martingale (M̌t )t�0, a smooth function F̌ from R+ to R and two constants
č > 0 and γ̌ > 0 such that, for all r > 0, r � F̌ (r) � γ̌ r , for all N � 1, (M̌t )0�t�ζN

is square integrable, and for all
t ∈ [0, ζN ],

dF̌
(
ϕ(Xt)

)
� dM̌t + č

(
dK1

t + dK2
t

)
.

Proof. We follow the proof of Proposition 3.3. Applying the Itô formula to (ϕ(Xt ))0�t�ζN
, N � 1, we obtain (3.7).

By Proposition 3.2, we can find a bounded function Γ from R
2 to R, independent of N , such that for all t ∈ [0, ζN ],

dϕ(Xt) = exp
(
ϕ(Xt )

)
Γ (Xt )dt + 〈∇ϕ(Xt), σ (Xt )dBt

〉 − 〈∇ϕ(Xt),dKt

〉
.

For a real C, we consider a smooth function F from R
∗+ to R such that F ′(r) = exp(C exp(−r)). The Itô formula

yields for all t ∈ [0, ζN ]:
dF

(
ϕ(Xt)

) = exp
(
C exp

(−ϕ(Xt)
))[

exp
(
ϕ(Xt )

)
Γ (Xt ) − (C/2) exp

(−ϕ(Xt)
)〈∇ϕ(Xt), a(Xt )∇ϕ(Xt)

〉]
dt

+ exp
(
C exp

(−ϕ(Xt)
))[〈∇ϕ(Xt), σ (Xt )dBt

〉 − 〈∇ϕ(Xt),dKt

〉]
. (3.9)

By Proposition 3.2, we can find two constants C < 0 and c > 0, independent of N , such that

dF
(
ϕ(Xt)

)
� exp

(
C exp

(−ϕ(Xt)
))〈∇ϕ(Xt), σ (Xt )dBt

〉 + c
(
dK1

t + dK2
t

)
.

Choosing F(r) = ∫ r

0 exp(C exp(−s))ds, we have for all r > 0,

exp(C)r � F(r) � r.

This completes the proof of the lower bound.
We prove the upper bound in the same way. By Proposition 3.2 and (3.9), we can find two constants C > 0 and

c > 0, independent of N , such that

dF
(
ϕ(Xt)

)
� exp

(
C exp

(−ϕ(Xt)
))〈∇ϕ(Xt), σ (Xt )dBt

〉 + c
(
dK1

t + dK2
t

)
.

Choosing F(r) = ∫ r

0 exp(C exp(−s))ds, we have for all r > 0,

r � F(r) � exp(C)r.

This completes the proof. �

Proposition 3.5. We set, for all t � 0, St ≡ |Xt |2 (so that 0 � St � 2). Then, there exist a square integrable martingale
(N̂t )t�0, a smooth function Ĝ : R+ → R and two constants Ĉ � 1 and δ̂ � 1, such that, for all 0 � r � 2, r � Ĝ(r) �
δ̂r , and for all t � 0,

dĜ(St ) � Ĉ−1 dt + dN̂t − Ĉ
(
dK1

t + dK2
t

)
.

Moreover, there exist a square integrable martingale (Ňt )t�0, a smooth function Ǧ : R+ → R and two constants Č � 1
and δ̌ � 1, such that, for all 0 � r � 2, δ̌−1r � Ǧ(r) � r , and for all t � 0,

dǦ(St ) � Č dt + dŇt − Č−1(dK1
t + dK2

t

)
.
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Proof. The function q :x ∈ R
2 �→ |x|2 satisfies [∂q/∂x1](0, x2) = 0 and [∂q/∂x1](1, x2) = 2 for x2 ∈ R and

[∂q/∂x2](x1,0) = 0 and [∂q/∂x2](x1,1) = 2 for x1 ∈ R. By the Lipschitz property of a and by the boundedness
of b, we can find a bounded function � from R

2 to R, such that, for t � 0,

dSt = trace
(
a(Xt )

)
dt + 2

〈
Xt, b(Xt )

〉
dt − 2

[
dK1

t + dK2
t

] + 2
〈
Xt,σ (Xt )dBt

〉
= trace

(
a(0)

)
dt + �(Xt)S

1/2
t dt − 2

[
dK1

t + dK2
t

] + 2
〈
Xt,σ (Xt )dBt

〉
.

For a given D ∈ R, we set, for all r � 0, G(r) = ∫ r

0 exp(Dv1/2)dv. For all r � 0, G′(r) = exp(Dr1/2) and, for all
r > 0, G′′(r) = (D/2)r−1/2G′(r).

For r ∈ [0,2], r � G(r) � r exp(21/2D) if D � 0 and r exp(21/2D) � G(r) � r if D � 0. Moreover, for all t � 0,

dG(St ) = G′(St ) trace
(
a(0)

)
dt + G′(St )

[
DS

−1/2
t

∣∣σ ∗(Xt )Xt

∣∣2 + �(Xt)S
1/2
t

]
dt

− 2G′(St )
[
dK1

t + dK2
t

] + 2G′(St )
〈
Xt,σ (Xt )dBt

〉
.

For D = −λ−1‖�‖∞,

dG(St ) �
(
ρ2

1 + ρ2
2

)
dt − 2 exp

(−21/2λ−1‖�‖∞
)[

dK1
t + dK2

t

] + 2 exp
(
DS

1/2
t

)〈
Xt,σ (Xt )dBt

〉
.

For D = λ−1‖�‖∞,

dG(St ) �
(
ρ2

1 + ρ2
2

)
dt − 2 exp

(
21/2λ−1‖�‖∞

)[
dK1

t + dK2
t

] + 2 exp
(
DS

1/2
t

)〈
Xt,σ (Xt )dBt

〉
.

This completes the proof. �

3.4. Proof of Theorem 2.1

To establish Theorem 2.1, it is sufficient to investigate the asymptotic behavior of E(ζN) as N → +∞. Indeed, we
can easily check that there exists a parameter β > 1 such that, for ρ > 0, ζ�βρ−1� � Tρ � ζ�β−1ρ−1�.

We start with the case α > 0. By Proposition 3.3, there exist a local martingale (Mt)t�0, a smooth function F

from R
∗+ to R and two constants c > 0 and γ > 0 such that, for all r > 0, r exp(−γ r1/α) � F(r) � r , for all N � 1,

(Mt)0�t�ζN
is square integrable, and for all t ∈ [0, ζN ],

d
[−F

(
ϕ(Xt )

)]
� dMt + c

(
dK1

t + dK2
t

)
. (3.10)

Moreover, by Proposition 3.5, we can find a square integrable martingale (N̂t )t�0, a smooth function Ĝ : R+ → R,
two constants Ĉ � 1 and δ̂ � 1 such that, for all 0 � r � 2, r � Ĝ(r) � δ̂r , and for all t � 0,

dĜ(St ) � Ĉ−1 dt + dN̂t − Ĉ
(
dK1

t + dK2
t

)
. (3.11)

Gathering (3.10) and (3.11), we obtain, for all N � 1 and t � 0,

E
[−ĈF

(
ϕ(Xt∧ζN

)
) + cĜ(St∧ζN

)
] − E

[−ĈF
(
ϕ(X0)

) + cĜ(S0)
]
� cĈ−1

E[t ∧ ζN ].
Using (3.4), Proposition 3.1 (growth of ϕ) and the bounds for F and Ĝ and letting t → +∞, we deduce that for all
N � 1,

cĈ−1
E[ζN ] � 2cδ̂ + Ĉ

(
ϕ(X0)

)α � 2cδ̂ + 2α/2Ĉλ−α/2.

This completes the proof for α > 0.
We now investigate the case α < 0. By Proposition 3.3, there exist a local martingale (M̂t )t�0, a smooth function

F̂ from R
∗+ to R and two constants ĉ > 0 and γ̂ > 0 such that, for all r > 0, γ̂ (r − 1)+ � F̂ (r) � r , for all N � 1,

(M̂t )0�t�ζN
is square integrable, and for all t ∈ [0, ζN ],

dF̂
(
ϕ(Xt)

)
� dM̂t + ĉ

(
dK1

t + dK2
t

)
. (3.12)
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Gathering (3.12) and (3.11), we deduce that for, all t � 0,

E
[
ĈF̂

(
ϕ(Xt∧ζN

)
) + ĉĜ(St∧ζN

)
] − E

[
ĈF̂

(
ϕ(X0)

) + ĉĜ(S0)
]
� ĉĈ−1

E[t ∧ ζN ].

Using (3.4), Proposition 3.1 and the bounds for F̂ and Ĝ and letting t → +∞, we deduce that

ĉĈ−1
E[ζN ] � Ĉλ−α/2N−α + 2ĉδ̂.

This proves the upper bound for E[ζN ].
We now establish the lower bound. By Proposition 3.3, there exist a local martingale (M̌t )t�0, a smooth function F̌

from R
∗+ to R and two constants č > 0 and γ̌ > 0 such that, for all r � m, r −m � F̌ (r) � γ̌ r (with m = inf[0,1]2\{0} ϕ),

for all N � 1, (Mt)0�t�ζN
is square integrable, and for all t ∈ [0, ζN ],

dF̌
(
ϕ(Xt)

)
� dM̌t + č

(
dK1

t + dK2
t

)
. (3.13)

By Proposition 3.5, we can find a square integrable martingale (Ňt )t�0, a smooth function Ǧ from R+ to R and two
constants Č � 1 and δ̌ � 1, such that, for all r � 0, δ̌−1r � Ǧ(r) � r , and for all t � 0,

dǦ(St ) � Č dt + dŇt − Č−1(dK1
t + dK2

t

)
. (3.14)

Gathering (3.13) and (3.14), we obtain, for all t � 0,

E
[
Č−1F̌

(
ϕ(Xt∧ζN

)
) + čǦ(St∧ζN

)
] − E

[
Č−1F̌

(
ϕ(X0)

) + čǦ(S0)
]
� čČE[t ∧ ζN ]. (3.15)

Using (3.4), Proposition 3.1 and the bounds for F̌ and Ǧ, we deduce that

čČE[ζN ] � Č−1(η−1Λ−α/2N−α − m
) − Č−1γ̌ λ−α/2|X0|α − 2č.

This completes the proof for α < 0. We can investigate in the same way the case α = 0 by means of Proposition 3.4.

3.5. Proof of Proposition 2.2

For s > 0, the assertion follows from Theorem 2.1 and from the Beppo–Levi theorem. For s < 0, (3.15) yields

Č−1(η−1Λ−α/2N−α − m
)
P{ζN � t} � čČt + Č−1γ̌ λ−α/2|X0|α + 2č.

As N → +∞, ζN → T0 almost surely, so that P{T0 � t} = 0 for all t � 0. A similar argument holds for s = 0.
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