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Abstract. This paper is devoted to establish an invariance principle where the limit process is a multifractional Gaussian process
with a multifractional function which takes its values in (1/2,1). Some properties, such as regularity and local self-similarity of
this process are studied. Moreover the limit process is compared to the multifractional Brownian motion.

Résumé. Ce papier a pour but d’établir un principe d’invariance dont le processus limite est gaussien et multifractionnaire avec
une fonction de Hurst à valeurs dans (1/2,1). Des propriétés telles que la régularité et l’autosimilarité locale de ce processus sont
étudiées. De plus, le processus limite est comparé au mouvement brownien multifractionnaire.
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1. Introduction

Fractional and multifractional processes or fields have been extensively studied because they provide relevant models
in many situations such as mathematical finance, network traffic, physics, and other fields related to applied mathe-
matics. See, e.g., [10] for a convenient reference.

The most famous and simplest fractional process is fractional Brownian motion which has been introduced by
Mandelbrot and Van Ness [12]. For a fixed H ∈ (0,1), it can be defined as a centered Gaussian process WH with
covariance

E
[
WH (t)WH (s)

] = E[WH (1)2]
2

(|t |2H + |s|2H − |t − s|2H
)
.

Its main properties, which depend on H , are the following.

• WH is self-similar with index H .
• WH admits H as Hölder exponent at each point.
• If H > 1/2 the increments of WH (which are stationary) satisfy the long-range dependence relation as n → ∞

E
[
WH (1)

(
WH (n + 1) − WH (n)

)] ∼ H(2H − 1)E
[
WH (1)2]n2H−2. (1)
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Let us focus on this last property. Notice that the sequence of the increments of fractional Brownian motion called the
fractional white noise is not the only Gaussian sequence with long-range dependence (see, for instance, [15], p. 336).
However, the fractional white noise serves as a universal Gaussian model for long-range stationary phenomena. This
is due to the invariance principle, which was established in [9,15].

Theorem 1 (Invariance principle). Let H belong to (1/2,1), and {Xn}n∈N be a stationary sequence of centered
Gaussian random variables with covariance satisfying when n → ∞

E[X0Xn] ∼ cn2H−2,

with c > 0. Then defining for every t > 0,

SN(t) = 1

NH

�Nt�∑
n=1

Xn,

the finite-dimensional distributions of SN converge to those of c0WH as N goes to ∞, where WH is a fractional
Brownian motion of index H and c2

0 = H−1(2H − 1)−1c.

In the previous statement, �x� denotes the integer part of the real number x.

One of the main drawbacks of fractional Brownian motion for applications lies in the homogeneity of its properties,
due to the fact that its pointwise Hölder exponent is constant. Hence, multifractional processes and fields, for instance,
the multifractional Brownian motion, have been introduced and attracted attention [3,4,6,8,11,13]. Multifractional
processes have locally the same properties as the fractional processes, but not globally. In fact their properties are
not governed by a constant exponent H ∈ (0,1), but by a (0,1)-valued function h which is called the multifractional
function. For instance, multifractional processes are locally self-similar and their pointwise Hölder exponents vary
along the trajectory.

Because they take into account the variations of properties such as regularity, multifractional processes with a
(1/2,1)-valued multifractional function could be relevant alternatives to fractional processes with H ∈ (1/2,1) to
provide models for long-range phenomena [2]. The main aim of this paper is to prove the existence of multifractional
Gaussian processes which can serve as universal Gaussian models for long-range dependence. More precisely, we
establish an invariance principle where the limit process is a multifractional Gaussian process with long-range incre-
ments. A study of these processes is developed. Besides local self-similarity and Hölder regularity, a representation
result is given.

Maybe the most famous multifractional process is the multifractional Brownian motion. In this paper, we also
compare as much as possible the limit processes we obtain with the multifractional Brownian motion.

In Section 2, we recall the definition and some properties of the multifractional Brownian motion. The main result
of this paper is established in Section 3. Section 4 deals with local self-similarity and regularity properties of the limit
processes which are obtained in the main result. In Section 5, we give a representation of the limit processes. This
representation allows us to justify a universal property for the limit processes. Finally, we give in Section 6 some
applications of our results, in particular, an extension of results of [14]. The proof of some technical lemmas are
postponed to the Appendices.

Notation

• For two random processes (or fields) Z1 and Z2, we denote by Z1 =D Z2, the fact that the finite dimensional
margins of Z1 are equal in distribution to those of Z2.

• For a random process (or field) Z̃ and a sequence {ZN }N∈N (resp. {Zε}ε>0) of random processes (or fields), we
denote by limD

N→∞ ZN = Z̃ (resp. limD
ε→0 Zε = Z̃) the fact that the finite-dimensional distributions of ZN (resp.

Zε) converge to those of Z̃ as N goes to ∞ (resp. ε goes to 0).
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2. Some preliminaries on multifractional Gaussian processes

Multifractional Brownian motion was the first multifractional Gaussian process introduced, independently in [6]
and [13].

Let B(dξ) be a Brownian measure and B̂(dx) be its Fourier transform (See [15], Chapter 7 for more details).
Multifractional Brownian motion with a multifractional function h : [0,∞) → (0,1) can be defined for every t by

Wh(t) = 1

C(h(t))

∫ ∞

−∞
e−ixt − 1

|x|h(t)+1/2
B̂(dx) (2)

following [6]. The constant C(h(t)) is such that E[Wh(1)2] = 1. In this case, the covariance of the multifractional
Brownian motion is given for every t and s by [2]

E
[
Wh(t)Wh(s)

] = D
(
h(t), h(s)

)(|t |h(t)+h(s) + |s|h(t)+h(s) − |t − s|h(t)+h(s)
)
, (3)

where for every H1,H2

D(H1,H2) =
√

�(2H1 + 1)�(2H2 + 1) sin(πH1) sin(πH2)

2�(H1 + H2 + 1) sin(π(H1 + H2)/2)
.

Now we assume that h is β-Hölder continuous and

suph < β. (4)

Then multifractional Brownian motion has locally the same properties as fractional Brownian motion. Multifractional
Brownian motion is locally self-similar, that is, for every t ≥ 0,

lim
ε→0

{
Wh(t + εu) − Wh(t)

εh(t)

}
u≥0

= {
Wh(t)(u)

}
u≥0,

where the convergence is in distribution in the space of continuous functions endowed with the topology of the uniform
convergence on compact sets, and for every t its Hölder pointwise exponent αWh

(t) is almost surely equal to h(t).

3. The main result

In this paper, we consider a centered Gaussian field X = {Xn(H),H ∈ (1/2,1), n ∈ N}, and two real numbers a and b

such that 1/2 < a ≤ b < 1. We also consider a continuous function h : R → [a, b] ⊂ (1/2,1). For every n,N ∈ N and
t > 0, we define hN

n = h(n/N) and

SN
h (t) =

�Nt�∑
n=1

Xn(h
N
n )

NhN
n

.

Our aim is to study the asymptotic behavior of {SN
h }N∈N as N goes to ∞. We will use the following assumptions.

• Assumption (i) For every M > 0, the map

(j, k,H1,H2) �→ E
[
Xj(H1)Xk(H2)

]
is bounded on {(j, k) ∈ N

2, |j − k| ≤ M} × [a, b]2.
• Assumption (ii) There exists a continuous function R : [a, b]2 → (0,∞) such that

lim
j−k→∞ sup

(H1,H2)∈[a,b]2

∣∣(j − k)2−H1−H2E
[
Xj(H1)Xk(H2)

] − R(H1,H2)
∣∣ = 0. (5)
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Assumption (ii) expresses that the field is asymptotically stationary and fractional for each H . Hence, for a fixed H ,
the random sequence n �→ Xn(H) satisfies the classical invariance principle.

For a centered Gaussian field, X = {Xn(H),H ∈ (1/2,1), n ∈ N} satisfying Assumption (ii); the function R in
Assumption (ii) will be called the asymptotic covariance of X. More generally, a measurable and bounded function
R : [a, b]2 → (0,∞) such that there exists a centered Gaussian field X = {Xn(H),H ∈ (1/2,1), n ∈ N} satisfying
Assumption (ii) with R as asymptotic covariance will be called an asymptotic covariance.

Fix an asymptotic covariance R. We denote by GR the space of all centered Gaussian fields {Xn(H)}n,H satisfying
Assumptions (i) and (ii) with R as asymptotic covariance. We define for every t, s,H1,H2

R(t, s;H1,H2) = R(H1,H2)1t≥s + R(H2,H1)1t<s, (6)

and the function

R∗ : [0,∞)2 → R,

(θ, σ ) �→ R
(
θ, σ ;h(θ),h(σ )

)|θ − σ |h(θ)+h(σ )−2. (7)

Let us remark the symmetric property fulfilled by R: for every t, s,H1,H2,

R(t, s;H1,H2) = R(s, t;H2,H1).

Let us also note that R∗ is locally integrable. Indeed, by the boundedness of R, on every compact set K ⊂ [0,∞)2

there exists a constant c = cK, such that for every (θ, σ ) ∈ K satisfying θ �= σ∣∣R∗(θ, σ )
∣∣ ≤ c × (|θ − σ |2a−2 + |θ − σ |2b−2). (8)

Theorem 2. Under Assumptions (i) and (ii), when N goes to ∞, the finite-dimensional distributions of SN
h converge

to those of a centered Gaussian process S̃h with covariance given for t, s ≥ 0 by:

E
[
S̃h(t)S̃h(s)

] =
∫ t

0
dθ

∫ s

0
dσ R

(
θ, σ ;h(θ),h(σ )

)|θ − σ |h(θ)+h(σ )−2

=
∫ t

0
dθ

∫ s

0
dσ R∗(θ, σ ), (9)

where the integral in the right-hand side of (9) is always defined.

Proof. For every n and N, we define Xn,N := Xn(h
N
n )/NhN

n and we let for every t, s ≥ 0

I (s, t) =
∫ t

0
dθ

∫ s

0
dσ R∗(θ, σ ). (10)

Because {Xn(H)}n,H is a centered Gaussian field, it is enough to show that for every t, s ≥ 0:

lim
N→∞ E

[
SN

h (t)SN
h (s)

] = lim
N→∞

�Nt�∑
j=1

�Ns�∑
k=1

E[Xk,NXj,N ] = I (t, s).

Formula (5) deals with the asymptotic behavior of E[Xj(H1)Xk(H2)] when j − k goes to +∞. Moreover, it also
gives

lim
j−k→−∞ sup

(H1,H2)∈[a,b]2

∣∣(k − j)2−H1−H2E
[
Xj(H1)Xk(H2)

] − R(H2,H1)
∣∣ = 0, (11)

so that we can write for every j , k (with j �= k), H1 and H2

E
[
Xj(H1)Xk(H2)

] = |j − k|H1+H2−2(R(j, k;H1,H2) + r0(j, k;H1,H2)
)
, (12)
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where

lim|j−k|→∞ sup
(H1,H2)∈[a,b]2

r0(j, k;H1,H2) = 0.

Let η > 0. Following (12) and the fact that a ≤ h ≤ b, there exists an integer M = Mη such that for |j − k| > M and
for every N ,

1

N2
R∗

(
j

N
,

k

N

)
− η

N2

∣∣∣∣j − k

N

∣∣∣∣hN
j +hN

k −2

≤ E[Xk,NXj,N ] ≤ 1

N2
R∗

(
j

N
,

k

N

)
+ η

N2

∣∣∣∣j − k

N

∣∣∣∣hN
j +hN

k −2

. (13)

Thanks to Lemma 2 (see the Appendix),

I (s, t) − ηJ (s, t) ≤ lim inf
N→∞

�Nt�∑
j=1

�Ns�∑
k=1

E[Xk,NXj,N ]1|j−k|>M

≤ lim sup
N→∞

�Nt�∑
j=1

�Ns�∑
k=1

E[Xk,NXj,N ]1|j−k|>M ≤ I (s, t) + ηJ (s, t), (14)

where

J (s, t) =
∫ t

0
dθ

∫ s

0
dσ |θ − σ |h(θ)+h(σ )−2. (15)

Now we deal with
∑�Nt�

j=1

∑�Ns�
k=1 E[Xk,NXj,N ]1|j−k|≤M . From Assumption (i) and a ≤ h ≤ b, we get for every j , k

and N∣∣E[Xk,NXj,N ]∣∣ ≤ 1

N
hN

j +hN
k

sup
(H1,H2)∈[a,b]2

∣∣E[
Xj(H1)Xk(H2)

]∣∣
≤ 1

N2a
sup

(H1,H2)∈[a,b]2

∣∣E[
Xj(H1)Xk(H2)

]∣∣, (16)

where sup(H1,H2)∈[a,b]2 |E[Xj(H1)Xk(H2)]| < ∞. Moreover,

�Nt�∑
j=1

�Ns�∑
k=1

1|j−k|≤M ≤ [
N(t + s)

]
(1 + 2M). (17)

Hence, combining (16) with (17) and using 2a > 1, we get

lim
N→∞

�Nt�∑
j=1

�Ns�∑
k=1

E[Xk,NXj,N ]1|j−k|≤M = 0. (18)

Combining with (14) and letting η → 0, we obtain for every t and s,

lim
N→∞E

[
SN

h (t)SN
h (s)

] = I (t, s).

Hence, the finite-dimensional distributions of SN
h converge to those of a centered Gaussian process S̃h with covariance

E[S̃h(t)S̃h(s)] = I (t, s). �
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4. Properties of the limit process

In this section, we study some properties of the limit process obtained in Theorem 2. First we deal with local self-
similarity.

Proposition 1. We assume that h is Hölder continuous. Then the process S̃h is locally self-similar, more precisely

D
lim
ε→0

{
S̃h(t + εu) − S̃h(t)

εh(t)

}
t,u≥0

= {
T (t, u)

}
t,u≥0 = T , (19)

and the tangent process T is the centered Gaussian field with covariance

E
[

T (t, u)T (s, v)
] =

{
R(h(t),h(t))

4h(t)2−2h(t)

(|u|2h(t) + |v|2h(t) − |u − v|2h(t)
)

if t = s,

0 if t �= s.

Moreover, for every t , as ε → 0, the field {(S̃h(t + εu) − S̃h(t))/ε
h(t)}u≥0 converges in distribution in the space of

continuous functions endowed with the topology of the uniform convergence to T (t, ·) which is a fractional Brownian
motion, such that E[T (t,1)2] = R(h(t), h(t))/(2h(t)2 − h(t)) with Hurst index h(t).

Proof. We have

E

[
(S̃h(t + εu) − S̃h(t))(S̃h(s + εv) − S̃h(s))

εh(t)+h(s)

]
= 1

εh(t)+h(s)

∫ t+εu

t

dθ

∫ s+εv

s

dσ R∗(θ, σ )

= 1

εh(t)+h(s)−2

∫ u

0
dθ

∫ v

0
dσ R∗(t + εθ, s + εσ )

=
∫ u

0
dθ

∫ v

0
dσ R#(t, s, θ, σ, ε),

where

R#(t, s, θ, σ, ε) = 1

εh(t)+h(s)−2
R∗(t + εθ, s + εσ ).

First, we assume that t = s. We have

R#(t, t, θ, σ, ε) = εh(t+εθ)+h(t+εσ )−2h(t)

× R
(
t + εθ, t + εσ,h(t + εθ),h(t + εσ )

)|θ − σ |h(t+εθ)+h(t+εσ )−2. (20)

Since R is continuous, when ε → 0 we have for θ �= σ

R
(
t + εθ, t + εσ,h(t + εθ),h(t + εσ )

)|θ − σ |h(t+εθ)+h(t+εσ )−2

→ R
(
h(t), h(t)

)|θ − σ |2h(t)−2. (21)

Moreover, h is Hölder continuous, so there exist αh > 0 and ch > 0 such that for every θ ∈ [0, u] and σ ∈ [0, v]∣∣h(t + εθ) − h(t)
∣∣ ≤ chε

αhuαh and
∣∣h(t + εσ ) − h(t)

∣∣ ≤ chε
αhvαh . (22)

Hence, when ε → 0 we have

εh(t+εθ)+h(t+εσ )−2h(t) = exp
((

h(t + εθ) + h(t + εσ ) − 2h(t)
)

log(ε)
) → 1. (23)
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Combining (20), (21) and (23) we obtain that for every t and almost every θ and σ , when ε → 0 we have

R#(t, t, θ, σ, ε) → R
(
h(t), h(t)

)|θ − σ |2h(t)−2. (24)

Note that because (22) the convergence (23) is uniform in (θ, σ ) ∈ [0, u] × [0, v]. Then using (20) and the fact that R

is bounded, we prove that there exists a constant c such that for every ε, t and almost every (θ, σ ) ∈ [0, u] × [0, v] we
have

R#(t, t, θ, σ, ε) ≤ c × (|θ − σ |2b−2 + |θ − σ |2a−2). (25)

Applying bounded convergence theorem and using (24) and (25), we get that the finite margins of {(S̃h(t + εu) −
S̃h(t))/ε

h(t)}u≥0 converge to those of T (t, ·) as ε → 0. It remains to prove the tightness. Let u ≤ v such that |u −
v| ≤ 1. We have

E

[(
S̃h(t + εu) − S̃h(t)

εh(t)
− S̃h(t + εv) − S̃h(t)

εh(t)

)2]
= 1

ε2h(t)
E

[(
S̃h(t + εu) − S̃h(t + εv)

)2] = 1

ε2h(t)

∫ t+εu

t+εv

dθ

∫ t+εu

t+εv

dσ R∗(θ, σ )

≤ sup |R|
∫ u

v

dθ

∫ u

v

dσ |θ − σ |2a−2 ≤ sup |R|
2a(2a − 1)

|u − v|2a.

Then by Kolmogorov criterium, the tightness holds.
Now we assume that t �= s. We have

R#(t, s, θ, σ, ε) = ε2−h(t)−h(s)R
(
t + εθ, s + εσ,h(t + εθ),h(s + εσ )

)
× ∣∣t − s + ε(θ − σ)

∣∣h(t+εθ)+h(s+εσ )−2
. (26)

Because t �= s we can check that for every θ and σ we have as ε → 0 that

R#(t, s, θ, σ, ε) → 0, (27)

and for ε sufficiently small, R#(t, s, θ, σ, ε) is uniformly bounded for (θ, σ ) ∈ [0, u] × [0, v]. Then by the bounded
convergence theorem, we conclude the proof. �

It is classical to deduce pointwise Hölder continuity from local self-similarity [5].

Proposition 2. The process S̃h admits a continuous modification. Moreover, if we assume that h is Hölder continuous,
then for every t0 ∈ R+ the pointwise Hölder exponent αS̃h

(t0) of S̃h is almost surely equal to h(t0).

Proof. We deduce as in [5] from Proposition 1 that αS̃h
(t0) ≤ h(t0). Now we prove that αS̃h

(t0) ≥ h(t0). We let
0 < η ≤ 1/2. For every s and t ∈ [t0 − η, t0 + η] such that s < t , we have

E
[(

S̃h(t) − S̃h(s)
)2] ≤ sup |R|

∫ t

s

dθ

∫ t

s

dσ |θ − σ |2 inf[s,t] h−2

≤ sup |R||t − s|2 inf[s,t] h ≤ sup |R||t − s|2 inf[t0−η,t0+η] h.

By the fact that S̃h is Gaussian and applying Kolmogorov theorem [7], we get that αS̃h
(t0) ≥ inf[t0−η,t0+η] h for every

0 < η ≤ 1/2. Then letting η → 0 and using the continuity of h, we get αS̃h
(t0) ≥ h(t0), and hence αS̃h

(t0) = h(t0). �

Please remark these properties are true even if (4) is not fulfilled.
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5. A representation of the limit process

The aim of this subsection is to give a representation of the limit process S̃h obtained from Theorem 2. This represen-
tation uses a universal Gaussian process that we introduce in the following section.

5.1. An universal Gaussian field

Here we consider a centered Gaussian field X = {Xn(H)}n,H . We define SN(t,H) for every N , t and H by

SN(t,H) = 1

NH

�Nt�∑
n=1

Xn(H). (28)

Theorem 3. Let R be an asymptotic covariance and {Xn(H)}n,H ∈ GR be a centered Gaussian field. Then as N

goes to ∞, the finite-dimensional distributions of {SN(t,H)}t,H converge to those of a centered Gaussian field
{W̃ (t,H)}t,H with covariance given for every H1, H2, t and s by

E
[
W̃ (t,H1)W̃ (s,H2)

] = R(H2,H1)

(H1 + H2)(H1 + H2 − 1)
sH1+H2

+ R(H1,H2)

(H1 + H2)(H1 + H2 − 1)
tH1+H2

− R(t, s;H1,H2)

(H1 + H2)(H1 + H2 − 1)
|t − s|H1+H2 . (29)

Proof. We have for every H1,H2, t, s,

E
[
SN(t,H1)S

N(s,H2)
] = 1

NH1+H2

�Nt�∑
j=1

�Ns�∑
k=1

E
[
Xk(H1)Xj (H2)

]
,

and we let

K(s, t) =
∫ t

0
dθ

∫ s

0
dσ R(θ, σ ;H1,H2)|θ − σ |H1+H2−2.

Let η > 0. Using (12) and a ≤ h ≤ b, there exists an integer M = Mη such that for |j − k| > M and every N ,

1

N2
R(j, k;H1,H2)

∣∣∣∣j − k

N

∣∣∣∣H1+H2−2

− η

N2

∣∣∣∣j − k

N

∣∣∣∣H1+H2−2

≤ E
[
Xk(H1)Xj (H2)

]
≤ 1

N2
R(j, k;H1,H2)

∣∣∣∣j − k

N

∣∣∣∣H1+H2−2

+ η

N2

∣∣∣∣j − k

N

∣∣∣∣H1+H2−2

. (30)

Because of Lemma 2,

K(s, t) − ηL(s, t) ≤ lim inf
N→∞

�Nt�∑
j=1

�Ns�∑
k=1

E
[
Xk(H1)Xj (H2)

]
1|j−k|>M

≤ lim sup
N→∞

�Nt�∑
j=1

�Ns�∑
k=1

E
[
Xk(H1)Xj (H2)

]
1|j−k|>M ≤ K(s, t) + ηL(s, t), (31)
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where

L(s, t) =
∫ t

0
dθ

∫ s

0
dσ |θ − σ |H1+H2−2. (32)

We can conclude as the end of the proof of Theorem 2, we get that

lim
N→∞E

[
SN(t,H1)S

N(s,H2)
] =

∫ t

0
dθ

∫ s

0
dσ |θ − σ |H1+H2−2 R(θ, σ ;H1,H2).

Then by a direct computation of these last integrals, we get the convergence to a covariance given by (29). �

It is classical to give an alternative form of Theorem 1 which is based on a renormalization group (see, for instance,
[15], pages 338–339). Now we propose this alternative approach for Theorem 3.

We fix an asymptotic covariance R. Because of Theorem 3, there exists a process W̃ = {W̃ (t,H)}t,H , which is
unique in distribution, such that for every {Xn(H)}n,H ∈ GR

D
lim

N→∞

{
1

NH

�Nt�∑
n=1

Xn(H)

}
t,H

= {
W̃ (t,H)

}
t,H

.

We have the equality in distribution for every α > 0{
W̃ (αt,H)

}
t,H

= {
αH W̃(t,H)

}
t,H

. (33)

We define the field Z = {Zn(H)}n,H for every n and H by

Zn(H) = W̃ (n,H) − W̃ (n − 1,H).

It can be verified that {Zn(H)}n,H ∈ GR .
Now we define the renormalization semi-group TN for every N . We let for every X ∈ GR

TNX = {
(TNX)n(H)

}
n,H

, (34)

where for every n,H ,

(TNX)n(H) = 1

NH

(n+1)N∑
j=nN+1

Xn(H). (35)

Because of (33), Z is a fixed point in GR of TN for every N . Moreover, for every X in GR we have by Theorem 3

D
lim

N→∞
{
(TNX)n(H)

}
n,H

= {
Zn(H)

}
n,H

.

Finally, we have proved the following result.

Theorem 4. The renormalization semi-group TN admits the field Z as unique fixed point in the space GR .

5.2. Representation theorem

Here we consider an asymptotic covariance R, a field X ∈ GR and a continuous multifractional function h : R+ →
[a, b] ⊂ (1/2,1). Recall that by Theorem 2, there exists a multifractional process S̃h such that

D
lim

N→∞

{�Nt�∑
n=1

Xn(h
N
n )

NhN
n

}
t

= {
S̃h(t)

}
t
,
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and thanks to Theorem 3, there exists a field W̃ such that

D
lim

N→∞

{
1

NH

�Nt�∑
n=1

Xn(H)

}
t,H

= {
W̃ (t,H)

}
t,H

.

In this section, a representation theorem establishes the link between the process S̃h and the field W̃ .

Theorem 5. We assume that the function R is three times continuously differentiable and the function h is two times
continuously differentiable. Then we have the following equality in distribution

{
S̃h(t)

}
t≥0 =

{
W̃

(
t, h(t)

) −
∫ t

0
h′(θ)

∂W̃ (θ,H)

∂H

∣∣∣∣
H=h(θ)

dθ

}
t≥0

, (36)

where the right-hand side of (36) is always defined.

Proof. We can deduce from the assumptions of the theorem and Kolmogorov’s criterium that the sample paths of
(t,H) �→ W̃ (t,H) are (almost surely and up to a modification) continuous with respect to the first variable and two
times continuously differentiable with respect to the second variable. Hence, in particular, the right-hand side of (36)
is always defined.

Now we deal with (36). We consider the field {Zn(H)}n,H defined in previous subsection for every n and H by
Zn(H) = W̃ (n,H) − W̃ (n − 1,H). On one hand, because of Theorem 2, we have

D
lim

N→∞

{�Nt�∑
n=1

Zn(h
N
n )

NhN
n

}
t≥0

= {
S̃h(t)

}
t≥0. (37)

On the other hand, we shall prove that

D
lim

N→∞

{�Nt�∑
n=1

Zn(h
N
n )

NhN
n

}
t≥0

=
{
W̃

(
t, h(t)

) −
∫ t

0
h′(θ)

∂W̃

∂H

(
θ,h(θ)

)
dθ

}
t≥0

, (38)

which, combined with (37), proves (36). We have{�Nt�∑
n=1

Zn(h
N
n )

NhN
n

}
t≥0

=
{�Nt�∑

n=1

1

NhN
n

(
W̃

(
n,hN

n

) − W̃
(
n − 1, hN

n

))}
t≥0

=D
{�Nt�∑

n=1

(
W̃

(
n

N
,hN

n

)
− W̃

(
n − 1

N
,hN

n

))}
t≥0

= {
IN

1 (t) − IN
2 (t)

}
t≥0, (39)

where for every t and N

IN
1 (t) =

�Nt�∑
n=1

(
W̃

(
n

N
,hN

n

)
− W̃

(
n − 1

N
,hN

n−1

))
= W̃

(�Nt�
N

,hN
�Nt�

)
,

and

IN
2 (t) =

�Nt�∑
n=1

(
W̃

(
n − 1

N
,hN

n

)
− W̃

(
n − 1

N
,hN

n−1

))
.
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Almost surely,

lim
N→∞ IN

1 (t) = W̃
(
t, h(t)

)
and thanks to Lemma 3 and regularity of W̃ and h,

lim
N→∞ IN

2 (t) =
∫ t

0
h′(θ)

∂W̃

∂H

(
θ,h(θ)

)
dθ.

Combined with (39), this proves (38) and concludes the proof. �

6. Examples

In this section, we give some examples of multifractional processes S̃h that we can obtain from Theorem 2 as limits
of sequences {SN

h }N for a multifractional function h : [0,∞) → [a, b] ⊂ (1/2,1). In all this section, we assume that h

is Hölder continuous.

6.1. Fractional white noise model

Let us first consider the case of the multifractional Brownian motion, which at first motivated this article. In constrast
to fractional Gaussian noise, which is the fixed point of the renormalization semi-group, it is not the case for the
increments of multifractional Brownian motion. In this example, we investigate what is the limit for increments of
multifractional Brownian motion. More precisely, let us consider for every t ∈ R

WH (t) = 1

C(H)

∫ ∞

−∞
e−itx − 1

|x|H+1/2
B̂(dx), (40)

where B̂ is the Fourier transform of a real Gaussian measure B and the constant C(H) can be written as

C(H)2 =
∫ ∞

−∞
|e−ix − 1|2
|x|2H+1

dx = π

H�(2H) sin(πH)
.

Please note that for each H, WH is a standard fractional Brownian motion. Moreover, if h : [0,∞) → (1/2,1) is a
multifractional function, then t �→ Wh(t)(t) is a multifractional Brownian motion. We let

Xn(H) = WH (n + 1) − WH (n).

We compute the covariance between Xj(H1) and Xk(H2) for every j , k, H1 and H2:

E
[
Xj(H1)Xk(H2)

] = C((H1 + H2)/2)2

C(H1)C(H2)
|j − k|H1+H2 (41)

×
(∣∣∣∣1 + 1

j − k

∣∣∣∣H1+H2

+
∣∣∣∣1 − 1

j − k

∣∣∣∣H1+H2

− 2

)
. (42)

By a Taylor formula, we get as u → 0

|1 + u|H1+H2 = 1 + (H1 + H2)u + 1

2
(H1 + H2)(H1 + H2 − 1)u2 + O

(
u3), (43)

where the O is uniform in (H1,H2) ∈ [a, b]2 because 1/2 < a < b < 1. Combining (41) and (43), we get that the
asymptotic covariance R of {Xn(H)}n,H can be written as

R(H1,H2) = (H1 + H2)(H1 + H2 − 1)
C((H1 + H2)/2)2

C(H1)C(H2)
.
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Applying Theorem 2, we get that (SN
h )N converges to the process S̃h with covariance

E
[
S̃h(t)S̃h(s)

] =
∫ t

0
dθ

∫ s

0
dσ |θ − σ |h(θ)+h(σ )−2(h(θ) + h(σ )

)
× (

h(θ) + h(σ ) − 1
)C((h(θ) + h(σ ))/2)2

C(h(θ))C(h(σ ))
.

Now we assume that h is continuously differentiable. Using Theorem 5, we can write S̃h as the sum of a multifractional
Brownian motion (defined by (2)) and a continuously differentiable process:

S̃h(t) = Wh(t)(t) −
∫ t

0
h′(θ)

∂WH (θ)

∂H

∣∣∣
H=h(θ)

dθ. (44)

Moreover, we can obtain from (40) the harmonizable representation of the limit process S̃h:

S̃h(t) =
∫ ∞

−∞

{
(eitx − 1)

C(h(t))|x|h(t)+1/2

−
∫ t

0

(eiθx − 1)

|x|h(θ)+1/2

(
log |x|

C(h(θ))
− C′(h(θ))

C(h(θ))2

)
h′(θ)dθ

}
B̂(dx). (45)

Note that to establish (45) rigorously, we use the fact that the map f �→ ∫ ∞
−∞ f (x)B̂(dx) is an isometry (in particular,∫ ∞

−∞ |f (x)|2 dx = E[| ∫ ∞
−∞ f (x)B̂(dx)|2] ), and the expression of the covariance of the derivative ∂WH /∂H (see,

e.g., [1]).

6.2. Fractional ARIMA model

In the study of the previous example, we have obtained a symmetric asymptotic covariance R. In this section, we
present a model for which this symmetric property is not satisfied. We also aim to generalize results in [14], where
an invariance principle is established for a class of nonstationary processes with long memory. These processes are
generalizations of FARIMA process. At the end of Section 1, the authors wonder if one can extend their results in a
continuous time setup. Here we address this question in the Gaussian case.

Let d ∈ (0,1/2). We consider the (Gaussian) fractional ARIMA model (FARIMA in short) defined for every n ∈ N

by (see, for instance, [15])

Φd
n =

∞∑
l=0

�(d + l)

l!�(d)
gn−l , (46)

where {gl}l∈Z are i.i.d. standard normal random variables. Here we let Xn(H) = Φ
H−1/2
n . We first establish a lemma.

Lemma 1. As n → ∞, we have

sup
d1,d2∈[a−1/2,b−1/2]

∣∣∣∣∣n1−d1−d2

∞∑
l=1

�(d1 + n + l)

(n + l)!
�(d2 + l)

l! −
∫ ∞

0
(1 + u)d1−1ud2−1 du

∣∣∣∣∣ → 0.

Proof. We have∣∣∣∣∣n1−d1−d2

∞∑
l=1

�(d1 + n + l)

(n + l)!
�(d2 + l)

l! −
∫ ∞

0
(1 + u)d1−1ud2−1 du

∣∣∣∣∣
≤ γ1(d1, d2, n) + γ2(d1, d2, n) + γ3(d1, d2, n),
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where

γ1(d1, d2, n) =
∣∣∣∣∣n1−d1−d2

∞∑
l=1

�(d1 + n + l)

(n + l)!
{

�(d2 + l)

l! − ld2−1
}∣∣∣∣∣,

γ2(d1, d2, n) =
∣∣∣∣∣n1−d1−d2

∞∑
l=1

ld2−1
{

�(d1 + n + l)

(n + l)! − (l + n)d1−1
}∣∣∣∣∣,

γ3(d1, d2, n) =
∣∣∣∣∣1

n

∞∑
l=1

(
1 + l

n

)d1−1(
l

n

)d2−1

−
∫ ∞

0
(1 + u)d1−1ud2−1 du

∣∣∣∣∣.
Let us begin with γ3. The function fd1,d2 :u �→ (1 + u)d1−1ud2−1 is decreasing on [0,∞) so we have∫ ∞

1/n

fd1,d2(u)du ≤ 1

n

∞∑
l=1

fd1,d2

(
l

n

)
≤

∫ ∞

0
fd1,d2(u)du.

Hence,

sup
d1,d2

γ3(d1, d2, n) ≤ 1

(a − 1/2)na−1/2
−→
n→∞ 0.

Now we deal with γ2. Using Stirling formula, �(z) ∼z→∞
√

2πe−zzz−1/2, we have for every η > 0 that there exists
Mη depending only on η, a and b such that for every l ≥ Mη∣∣∣∣�(d1 + l)

l! − ld1−1
∣∣∣∣ ≤ ηld1−1e1−d1 .

We get for every n ≥ Mη

γ2(d1, d2, n) ≤ n1−d1−d2

∞∑
l=1

∣∣∣∣ld2−1
{

�(d1 + n + l)

(n + l)! − (l + n)d1−1
}∣∣∣∣

≤ ηn1−d1−d2

∞∑
l=1

ld2−1(l + n)d1−1.

So, for every η > 0, lim supn→∞ supd1,d2
γ2(d1, d2, n) ≤ ηS where S = supd1,d2

∫ ∞
0 fd1,d2(u)du < ∞. Hence,

limn→∞ supd1,d2
γ2(d1, d2, n) = 0. We use a similar argument for γ1. �

Using Lemma 1, the function R is

R(H1,H2) = �

(
H1 − 1

2

)−1

�

(
H2 − 1

2

)−1 ∫ ∞

0
(1 + u)H1−3/2uH2−3/2 du

= 1

π
sin

(
π

(
H1 − 1

2

))
�(2 − H1 − H2),

and the limit process S̃h has the covariance

E
[
S̃h(t)S̃h(s)

] =
∫ t

0
dθ

∫ s

0
dσ

|θ − σ |h(θ)+h(σ )−2

�(h(θ) − 1/2)�(h(σ ) − 1/2)

×
∫ ∞

0
(1 + u)h(θ∨σ)−3/2uh(θ∧σ)−3/2 du
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= 1

π

∫ t

0
dθ

∫ s

0
dσ |θ − σ |h(θ)+h(σ )−2 sin

(
π

(
h(θ ∨ σ) − 1

2

))
× �(2 − h(θ) − h(σ ))

�(h(θ) − 1/2)�(h(σ ) − 1/2)
.

Appendix. Riemann sum convergence type lemma

Lemma 2. Let t , s ≥ 0, G : [0, t] × [0, s] → R be a continuous function and M > 1. We have

lim
N→∞

1

N2

�Nt�∑
j=1

�Ns�∑
k=1

G

(
j

N
,

k

N

)∣∣∣∣j − k

N

∣∣∣∣hN
k +hN

j −2

1|j−k|>M =
∫ t

0
dθ

∫ s

0
dσ G(θ,σ )|θ − σ |h(θ)+h(σ )−2, (47)

where the integral in the right-hand side of (47) is always defined.

Proof. We let for every j, k,N and (θ, σ ) ∈ (
j−1
N

,
j
N

] × ( k−1
N

, k
N

]

GN(θ,σ ) := G

(
j

N
,

k

N

)∣∣∣∣j − k

N

∣∣∣∣hN
k +hN

j −2

1|j−k|>M.

Notice that∫ t

0
dθ

∫ s

0
dσ GN(θ,σ ) = 1

N2

�Nt�∑
j=1

�Ns�∑
k=1

G

(
j

N
,

k

N

)∣∣∣∣j − k

N

∣∣∣∣hN
k +hN

j −2

1|j−k|>M,

hence, it suffices to prove

lim
N→∞

∫ t

0
dθ

∫ s

0
dσ GN(θ,σ ) =

∫ t

0
dθ

∫ s

0
dσ G(θ,σ )|θ − σ |h(θ)+h(σ )−2. (48)

We shall use a dominated convergence argument. Since G is continuous, then for almost every (θ, σ ) ∈ [0, t] × [0, s],
lim

N→∞GN(θ,σ ) = G(θ,σ )|θ − σ |h(θ)+h(σ )−2. (49)

It remains to establish the boundedness of |GN | by an integrable function. Since G is bounded, then for every (θ, σ ) ∈
(
j−1
N

,
j
N

] × ( k−1
N

, k
N

]

∣∣GN(θ,σ )
∣∣ ≤ sup |G|

(∣∣∣∣j − k

N

∣∣∣∣2a−2

+
∣∣∣∣j − k

N

∣∣∣∣2b−2)
and since |j − k| > M > 1,

|θ − σ | ≤
∣∣∣∣j − k

N

∣∣∣∣ + 1

N
≤ 2

∣∣∣∣j − k

N

∣∣∣∣,
hence, for almost every (θ, σ ) ∈ [0, t] × [0, s]∣∣GN(θ,σ )

∣∣ ≤ sup |G|(|θ − σ |2a−2 + |θ − σ |2b−2).
The map (θ, σ ) �→ |θ − σ |2a−2 + |θ − σ |2b−2 is integrable on [0, t] × [0, s], then thanks to (49) and dominated
convergence, we get (48), which proves (47). �
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Lemma 3. Let a < b ∈ R and two functions f : R+ × [a, b] → R and h : R+ → [a, b]. We assume that h is two times
continuously differentiable and f is two times continuously differentiable with respect to its second variable. Then for
every t ≥ 0, we have

lim
N→∞

�Nt�∑
n=1

(
f

(
n − 1

N
,h

(
n

N

))
− f

(
n − 1

N
,h

(
n − 1

N

)))
=

∫ t

0
h′(θ) ∂2f

(
θ,h(θ)

)
dθ.

Proof. By the Taylor formula, for every n and N , there exists tn,N ∈ [(n − 1)/N,n/N ] such that

f

(
n − 1

N
,h

(
n

N

))
− f

(
n − 1

N
,h

(
n − 1

N

))
= 1

N
h′

(
n − 1

N

)
∂2f

(
n − 1

N
,h

(
n − 1

N

))
+ 1

N2
En,N , (50)

where

En,N = h′′(tn,N ) ∂2f

(
n − 1

N
,h(tn,N )

)
+ (

h′(tn,N )
)2

∂2
2f

(
n − 1

N
,h(tn,N )

)
.

Thanks to the regularity properties of h and f, there exists C > 0 such that for every n and N , |En,N | ≤ C. Then using
(50), ∣∣∣∣∣

�Nt�∑
n=1

(
f

(
n − 1

N
,h

(
n

N

))
− f

(
n − 1

N
,h

(
n − 1

N

)))

− 1

N

�Nt�∑
n=1

h′
(

n − 1

N

)
∂2f

(
n − 1

N
,h

(
n − 1

N

))∣∣∣∣∣ ≤ Ct

N
. (51)

We conclude the proof by combining classical Riemann sums convergence with (51). �
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