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Abstract. In the regression model with errors in variables, we observe n i.i.d. copies of (Y,Z) satisfying Y = fθ0 (X) + ξ and

Z = X + ε involving independent and unobserved random variables X,ξ, ε plus a regression function fθ0 , known up to a finite
dimensional θ0. The common densities of the Xi ’s and of the ξi ’s are unknown, whereas the distribution of ε is completely known.

We aim at estimating the parameter θ0 by using the observations (Y1,Z1), . . . , (Yn,Zn). We propose an estimation procedure

based on the least square criterion S̃θ0,g(θ) = Eθ0,g[((Y − fθ (X))2w(X)] where w is a weight function to be chosen. We propose

an estimator and derive an upper bound for its risk that depends on the smoothness of the errors density pε and on the smoothness

properties of w(x)fθ (x). Furthermore, we give sufficient conditions that ensure that the parametric rate of convergence is achieved.

We provide practical recipes for the choice of w in the case of nonlinear regression functions which are smooth on pieces allowing

to gain in the order of the rate of convergence, up to the parametric rate in some cases. We also consider extensions of the estimation

procedure, in particular, when a choice of wθ depending on θ would be more appropriate.

Résumé. Dans le modèle de régression avec erreurs sur les variables, nous observons n v.a. i.i.d. de même loi que (Y,Z) satisfaisant

aux relations Y = fθ0(X) + ξ et Z = X + ε, où les v.a. X, ξ, ε sont indépendantes, pas observées, et la fonction de régression
fθ0 est connue à un paramètre de dimension finie θ0 près. Les densités de X et de ξ sont inconnues tandis que la loi de ε

est entièrement connue. Nous estimons le paramètre θ0 à partir des observations (Y1,Z1), . . . , (Yn,Zn). Nous proposons une

procédure d’estimation basée sur le critère des moindres carrés S̃θ0,g(θ) = Eθ0,g[((Y − fθ (X))2w(X)], où w est une fonction

de poids à choisir. Nous définissons l’estimateur et calculons la borne supérieure du risque de cet estimateur, qui dépend de la

régularité de la densité des erreurs pε et de la régularité en x de w(x)fθ (x). De plus, nous établissons des conditions suffisantes

pour que les estimateurs atteignent la vitesse paramétrique. Nous décrivons des méthodes pratiques pour le choix de x dans le

cas des fonctions de régression non-linéaires qui sont régulières par morceaux permettant de gagner des ordres de vitesse allant

jusqu’à la vitesse paramétrique dans certains cas. Nous considérons également des extensions de cette procédure d’estimation, en

particulier au cas où un choix de wθ dépendant de θ serait plus appropié.
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1. Introduction

We consider the regression model with errors in variables where one observes n independent and identically distributed
(i.i.d.) copies of (Y,Z) satisfying{

Y = fθ0(X) + ξ,

Z = X + ε,

involving independent and unobserved random variables X,ξ, ε, plus a regression function fθ0 known up to a finite
dimensional parameter θ0, belonging to the interior of a compact set of Θ ⊂ R

d . The common densities of the Xi ’s
and of the ξi ’s are unknown, with E(ξ) = 0, whereas the density of the errors εi ’s is completely known. In this context,
we aim at estimating the finite dimensional parameter θ0 in the presence of a functional nuisance parameter g, the
density of the X.

Previous known results

This model has been widely studied with first results written in the 1950’s (see, for instance, [28] or [20]). Most of the
results deal with linear models where

√
n-consistency, asymptotic normality, and efficiency have been studied. One

can cite among the others Bickel and Ritov [3], Bickel et al. [2], Cheng and van Ness [7], van der Vaart [31,32,30],
Murphy and van der Vaart [26]. The nonlinear models have been more recently considered starting with the case of
repeated measurement data as in [12,33,34], under additional assumptions as in [13,17,21,22,25] or by simulation (see
[5,18,19,24]). To our knowledge, the first consistent estimator in nonlinear regression models with errors in variables,
under nonparametric assumptions on the design density g has been proposed by Taupin [29] when the errors ε are
Gaussian and by Comte and Taupin [8] in the context of auto-regressive models with errors in variables for various
types of errors density pε . In those papers, the estimation procedure is based on the estimation of the modified least
square criterion E[(Y −E(fθ (X)|Z))2W(Z)] where the conditional expectation is estimated by using the observations
Z1, . . . ,Zn and where W is a compactly supported weight function. It is also stated that the rate of convergence, which
does not have an explicit form, depends on the smoothness of the regression function as well as the smoothness of pε

through the increase of the ratio (fθpε(z − ·))∗(t)/p∗
ε (t) as t goes to infinity. The parametric rate of convergence is

achieved in some specific examples, such as polynomial or exponential regression functions. The main drawback of
this estimator is that besides its complexity, its rate of convergence does not have an explicit form.

More recently, Hong and Tamer [16] propose a consistent estimator in the specific case where p∗
ε is of the form

p∗
ε (t) = 1/(1 + σ 2t2). Their estimation procedure strongly depends on this particular form of p∗

ε through the ratio
1/p∗

ε always appearing in errors in variables techniques. The extension of their method for other errors density pε

seems thus not obvious.

Our results

We propose here a new estimation procedure based on the least square criterion that is more general, explicit, natural,
and tractable than the one proposed by Taupin [29]. Moreover, it often provides better results and it allows to provide
sufficient conditions to achieve the parametric rate.

The procedure is based on the estimation, using the observations (Yi,Zi) for i = 1, . . . , n, of the least squares
criterion S̃θ0,g := Eθ0,g[(Y − fθ (X))2w(X)] where w is a positive weight function to be chosen.

In this context, we naturally define in Section 2 the estimator

θ̃1 = arg min
θ∈Θ

S̃n,1(θ) with S̃n,1(θ) = 1

n

n∑
i=1

∫ [(
Yi − fθ (x)

)2
w(x)

]
CnKn

(
Cn(x − Zi)

)
dx,

where Kn is a kernel such that its Fourier transform satisfies K∗
n(t) = K∗(t)/p∗

ε (tCn), for K∗ compactly supported. In
the literature, such a kernel Kn is commonly known as the deconvolution kernel. In the sequel, Cn is a sequence which
tends to ∞ and p∗ denotes the Fourier transform, defined by p∗(t) = ∫

eitxp(x)dx of an arbitrary square integrable
function p.
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We show in Section 3 that under classical identifiability, moment and smoothness assumptions, θ̃1 is a consistent
estimator of θ0 with a rate of convergence depending on two factors, the smoothness of (wfθ ), and the smoothness of
the errors density pε . This partly comes from the fact that this estimation procedure is based on the estimation of the
linear integral functional Eθ0,g(Yw(X)fθ (X)) and Eθ0,g(w(X)f 2

θ (X)) using the observations (Y1,Z1), . . . , (Yn,Zn),
that is, by recovering information on (Y,X) using the observation (Y,Z). More precisely, it depends on the smoothness
of w(x)∂fθ (x)/∂θ and w(x)∂(f 2

θ (x))/∂θ and the smoothness of the errors density pε(x), as a function of x through
the behavior of (w∂fθ/∂θ)∗(t)/p∗

ε (t), (w∂(f 2
θ )/∂θ)∗(t)/p∗

ε (t) as function of t → ∞. From this construction, we
derive sufficient conditions that ensure that θ̃1 achieves the parametric rate of convergence.

The rate of convergence of the proposed estimator is thoroughly studied for various smoothness properties of wfθ ,
wf 2

θ as well as their derivatives in θ as functions of x and for various errors’ densities pε . It appears that as for the
nonparametric estimation of the regression function in errors in variables models, the smoother is the noise density pε

the slower becomes the rate of convergence of estimators. Nevertheless, in examples we can considerably improve the
smoothness of the functions fθ and f 2

θ by multiplying them by a properly chosen weight function. This automatically
improves the rates of convergence of our estimator.

The conditions ensuring that the
√

n-consistency is achieved are also deeply studied. The main idea is that the
actual shape of the regression function matters less than its smoothness (compared to the noise smoothness). Those
conditions are illustrated through various examples of regression functions in Section 4. The point is that these condi-
tions allow to achieve

√
n-consistency in setups that were not known before.

This estimation procedure is used and extended to construct various other estimators.
Firstly, under conditions ensuring that Eθ0,g(Yw(X)fθ (X)) and Eθ0,g(w(X)f 2

θ (X)) are estimated at the parametric

rate
√

n, we propose in Section 5 a second estimator θ̃2 of θ0. In that case, the parametric rate of convergence for the
estimation of θ0 can be achieved and the asymptotic normality of this estimator is stated. The first estimator, θ̃1,
based on a deconvolution kernel is more general and applicable in all setups, but for specific regression functions, the
use of a deconvolution kernel is not required. In those cases, the second estimator is more simple. Nevertheless, the
conditions ensuring that Eθ0,g(Yw(X)fθ (X)) and Eθ0,g(w(X)f 2

θ (X)) are estimated at the parametric rate
√

n are not
always fulfilled.

Secondly, when the variance σ 2
ξ,2 = Var(ξ) is known, we propose in Section 6 another estimation criterion based

on wθ depending on θ . It allows to improve the rate of convergence of the estimators, by smoothing in a better manner
wθfθ . For a large class of regression functions, w not depending on θ works well, for instance for polynomial,
exponential, cosines regression functions as well as for regression functions fθ of the form fθ (x) = ϕ(θ)f (x). But
sometimes, the smoothing properties of w will be improved by taking w depending on θ , e.g., in the case where the
regression function has to be smoothed at some point related to θ .

In this context, we extend our procedure to the estimation of the least squares criterion

Sθ0,g := Eθ0,g

[(
Y − fθ (X)

)2
wθ(X)

] − σ 2
ξ,2Eθ0,g

[
wθ(X)

]
,

using the observations (Y1,Z1), . . . , (Yn,Zn), where wθ is a positive weight function, depending on θ , to be chosen
and where σ 2

ξ,2 = Var(ξ) is now supposed to be known. Using this criterion and analogously to the construction of θ̃1,

we propose to estimate θ0 by θ̂1 defined by

θ̂1 = arg min
θ∈Θ

Sn,1(θ) with Sn,1(θ) = 1

n

n∑
i=1

∫ [(
Yi − fθ (x)

)2 − σ 2
ξ,2

]
wθ(x)CnKn

(
Cn(x − Zi)

)
dx.

Under classical identifiability, moment and smoothness assumptions, the estimator θ̂1 is a consistent estimator of
θ0 with a rate of convergence depending on the smoothness of ∂(wθ (x)fθ (x))/∂θ , ∂(wθ (x)f 2

θ (x))/∂θ and on the
smoothness of the errors density pε(x), as functions of x. From this construction, we derive sufficient conditions that
ensure that θ̂1 achieves the parametric rate of convergence.

As for the first extension, we propose another estimator θ̂2 of θ0 based on Sθ0,g achieving
√

n-consistency un-

der constructive conditions ensuring that Eθ0,g(Y
2wθ(X)), Eθ0,g(Ywθ (X)fθ (X)) and Eθ0,g(wθ (X)f 2

θ (X)) can be
estimated at the parametric rate

√
n.
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Let us have a look to the properties of our estimator in the context studied by Hong and Tamer [16]. Our estimation
procedure, more general, allows to recover

√
n-consistency, in the case of noise densities satisfying p∗

ε (t) = c|t |−2(1+
o(1)) as |t | → ∞ with regression functions fθ having derivatives in θ up to order 3, twice continuously differentiable
functions of x.

The drawback of smoothing by multiplication is that for particular regression functions, we can obtain infinitely
differentiable functions but not analytic ones. In such a case, and if the noise has an analytic density, the parametric
rate of convergence can not be attained by our method. Nevertheless, the smoothing technique significantly improves
the rate by using a clever choice of weight function w.

The main question that remains open is: Is it possible to construct a
√

n-consistent estimator of θ0 for all regression
functions and without any restriction on the smoothness of the errors density?

The paper is organized as follows. Section 2 presents the estimation procedure and Section 3 gives the asymptotic
properties of this estimator. Those asymptotic properties and practical recipes are illustrated through examples in
Section 4. Section 5 presents another estimator and Section 6 gives extensions of the two former estimators, illustrated
by examples in Section 7.

The proofs can be found in Section 8 with technical lemmas presented in the Appendix.

2. The estimation procedure

Notations

We denote by x_ the negative part of x, ‖ ϕ ‖2
2=

∫
ϕ2(x)dx, ‖ ϕ ‖∞= supx∈R |ϕ(x)|. In the same way, p 	 q(z) =∫

p(z − x)q(x)dx denotes the convolution of two square integrable functions p and q . The variance Var(ξ) = E(ξ2)

is denoted by σ 2
ξ,2 and E(ξ4) = σ 4

ξ,4. For θ ∈ R
d , ‖ θ ‖2


2=
∑d

k=1 θ2
k and θ	 is the transpose matrix of θ .

From now, P, E, and Var denote the probability Pθ0,g , the expected value Eθ0,g and, respectively, the variance
Varθ0,g , when the underlying and unknown true parameters are θ0 and g.

The starting point of the estimation procedure is to construct an estimator based on the observations (Yi,Zi) for
i = 1, . . . , n, of the least square criterion

S̃θ0,g(θ) = E
[(

Y − fθ (X)
)2

w(X)
]
, (2.1)

where w is a positive weight function to be suitably chosen.
This estimation procedure requires the following assumptions.
Smoothness and moment assumptions

(A1) For any θ in Θ , the function θ 
→ fθ admits continuous derivatives with respect to θ up to the order 3.
(A2) The quantities E[w2(X)(Y − fθ (X))4] and their derivatives with respect to θ up to order 2 are finite.

We denote by G the set of densities g such that (A2) holds. We subsequently assume that there exist two constants
C(f 2

θ0) and C(fθ0), depending only on θ0 through the functions f 2
θ0 and fθ0 , respectively, such that

(A3) supg∈G ‖ f 2
θ0g ‖2

2≤ C(f 2
θ0), supg∈G ‖ fθ0g ‖2

2≤ C(fθ0).

(A4) supθ∈Θ |wfθ |, |w| and supθ∈Θ |wf 2
θ | belong to L1(R).

Identifiability assumptions

(II1) The quantity S̃θ0,g(θ) = σ 2
ξ,2E(w(X)) + E[(fθ0(X) − fθ (X))2w(X)] admits one unique minimum at θ = θ0.

(II2) For all θ ∈ Θ the matrix S̃
(2)

θ0,g
(θ) = ∂2Sθ0,g(θ)/∂θ2 exists and the matrix

S̃
(2)

θ0,g

(
θ0) = E

[
2w(X)

(
∂fθ (X)

∂θ

∣∣∣∣
θ=θ0

)(
∂fθ (X)

∂θ

∣∣∣∣
θ=θ0

)	]
is positive definite.
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2.1. Construction of the estimator

We denote by fY,X and fY,Z the joint densities of (Y,X) and respectively of (Y,Z) satisfying in this model,

fY,X(y, x) = g(x)pξ

(
y − fθ0(x)

)
and fY,Z(y, z) = fY,X(y, ·) 	 pε(z). (2.2)

Write S̃θ0,g(θ) as

S̃θ0,g(θ) = E
[(

Y − fθ (X)
)2

w(X)
] =

∫ (
y − fθ (x)

)2
w(x)fY,X(y, x)dy dx.

We consider pε that satisfies the following assumption.

(N1) The density pε belongs to L2(R) and for all x ∈ R,p∗
ε (x) �= 0.

The assumption (N1) is quite usual in density deconvolution.
According to (2.2) and under (N1), we naturally propose to estimate S̃θ0,g(θ) by

S̃n,1(θ) = 1

n

n∑
i=1

∫ (
Yi − fθ (x)

)2
w(x)Kn,Cn(x − Zi)dx = 1

n

n∑
i=1

(
(Yi − fθ )

2w
)
	 Kn,Cn(Zi), (2.3)

where Kn,Cn(·) = CnKn(Cn·) is a deconvolution kernel defined via its Fourier transform, such that
∫

Kn(x)dx = 1
and

K∗
n,Cn

(t) = K∗
Cn

(t)

p∗
ε (t)

= K∗(t/Cn)

p∗
ε (t)

, (2.4)

with K∗ compactly supported satisfying |1 − K∗(t)| ≤ 1|t |≥1.
Using this empirical criterion, we propose to estimate θ0 by

θ̃1 = arg min
θ∈Θ

S̃n,1(θ). (2.5)

3. Asymptotic properties

3.1. General results for the risk of θ̃1

We say that a function ψ ∈ L1(R) satisfies (3.6) if for a sequence Cn and under previous notation we have

min
q=1,2

∥∥ψ∗(K∗
Cn

− 1
)∥∥2

q
+ n−1 min

q=1,2

∥∥∥∥ψ∗K∗
Cn

p∗
ε

∥∥∥∥2

q

= o(1). (3.6)

Theorem 3.1. Let θ̃1 = θ̃1(Cn) be defined by (2.5) under the assumptions (II1), (II2), (N1), (A1)–(A3) and (A4).

(1) For all of the sequences Cn such that w, wfθ and wf 2
θ and their first derivatives with respect to θ satisfy (3.6),

E(‖θ̃1 − θ0‖2

2) = o(1), as n → ∞ and θ̃1 = θ̃1(Cn) is a consistent estimator of θ0.

(2) Assume, moreover, that for all θ ∈ Θ , w, fθw and f 2
θ w and their derivatives up to order 3 with respect to θ satisfy

(3.6). Then E(‖ θ̃1 − θ0 ‖2

2) = O(ϕ̃2

n) with ϕ̃n = ‖(ϕ̃n,j )‖
2 , ϕ̃2
n,j = B̃2

n,j (θ
0) + Ṽn,j (θ

0)/n, j = 1, . . . , d , where

B̃n,j (θ) = min
{
B̃

[1]
n,j (θ),B

[2]
n,j (θ)

}
and Ṽn,j (θ) = min

{
Ṽ

[1]
n,j (θ), Ṽ

[2]
n,j (θ)

}
and for q = 1,2

B̃
[q]
n,j (θ) =

∥∥∥∥(
∂(wfθ )

∂θj

)∗(
K∗

Cn
− 1

)∥∥∥∥2

q

+
∥∥∥∥(

∂(wf 2
θ )

∂θj

)∗(
K∗

Cn
− 1

)∥∥∥∥2

q
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and

Ṽ
[q]
n,j (θ) =

∥∥∥∥(
∂(wfθ )

∂θj

)∗ K∗
Cn

p∗
ε

∥∥∥∥2

q

+
∥∥∥∥(

∂(wf 2
θ )

∂θj

)∗ K∗
Cn

p∗
ε

∥∥∥∥2

q

.

Remark 3.1. It is noteworthy that for any integrable ψ , one can always find a sequence Cn such that (3.6) holds.

Remark 3.2. The terms B̃2
n,j and Ṽn,j /n are, respectively, the squared bias and variance terms with as in density

deconvolution, bigger variance for smoother error density pε and smaller bias for smoother (wfθ ).

As we can see, the rate of convergence for estimating θ0 is given by both the smoothness of the errors density pε

and the smoothness of fθw; more precisely by the smoothness of ∂(fθw)/∂θ and ∂(f 2
θ w)/∂θ , as functions of x.

Those smoothness properties are described in both cases, by the asymptotic behavior of the Fourier transforms. The
slower rates are obtained for the smoother errors density pε , for instance for Gaussian ε’s. Nevertheless, those rates
are improved with a proper choice of w such that (wfθ ), (wf 2

θ ) and their derivatives with respect to θ are smooth
enough. In this context, the parametric rate of convergence is achieved as soon as the derivatives with respect to θ , of
(wfθ ) and (wf 2

θ ) as functions of x are smoother than the errors density pε .

3.2. Consequence: sufficient conditions to obtain the parametric rate of convergence

We say that the conditions (C1)–(C3) hold if there exists a weight function w such that for all θ ∈ Θ ,

(C1) the functions (wfθ ) and (wf 2
θ ) belong to L1(R), and the functions supθ w∗/p∗

ε , supθ (fθw)∗/p∗
ε , supθ (f

2
θ w)∗/

p∗
ε belong to L1(R) ∩ L2(R);

(C2) the functions supθ∈Θ(
∂(fθw)

∂θ
)∗/p∗

ε and supθ∈Θ(
∂(f 2

θ w)

∂θ
)∗/p∗

ε belong to L1(R) ∩ L2(R);
(C3) the functions (

∂2(fθw)

∂θ2 )∗/p∗
ε and (

∂2(f 2
θ w)

∂θ2 )∗/p∗
ε belong to L1(R) ∩ L2(R).

Theorem 3.2. Consider model (1.1) under the assumptions (A1)–(A4), (II1), (II2), (N1) and the conditions (C1)–(C3).
Consider Cn such that for all θ ∈ Θ , fθw, f 2

θ w and their derivatives up to order 3 satisfy (3.6). Then θ̃1 defined by

(2.5) is a
√

n-consistent estimator of θ0 which satisfies moreover that
√

n(θ̃1 −θ0)
L→

n→∞N (0, �̃1), with �̃1 that equals

(
E

[
2w(X)

(
∂fθ (X)

∂θ

)(
∂fθ (X)

∂θ

)	]∣∣∣∣
θ=θ0

)−1

�̃0,1

(
E

[
2w(X)

(
∂fθ (X)

∂θ

)(
∂fθ (X)

∂θ

)	]∣∣∣∣
θ=θ0

)−1

,

where �̃0,1 is given by

(2π)−2
E

{[∫ (
∂(f 2

θ w − 2Yfθw)

∂θ

∣∣∣∣
θ=θ0

)∗
(u)

e−iuZ

p∗
ε (u)

du

][∫ (
∂(f 2

θ w − 2Yfθw)

∂θ

∣∣∣∣
θ=θ0

)∗
(u)

e−iuZ

p∗
ε (u)

du

]	}
.

3.3. Resulting rates for general smoothness classes

We now precise the asymptotic properties of θ̃1 when the decrease of these Fourier transforms are quantified through
the following assumptions.

(N2) There exist positive constants C(pε),C(pε),β, ρ,α, and u0 such that

C(pε) ≤ ∣∣p∗
ε (u)

∣∣|u|α exp
(
β|u|ρ) ≤ C(pε) for all |u| ≥ u0.

If ρ > 0 in (N2), then the noise is called exponential noise or super smooth noise. And if ρ = 0 in (N2), then by
convention β = 0, α > 1 and the noise is called polynomial noise or ordinary smooth.

The smoothness properties of functions involving the regression function are also given by the asymptotic behavior
of the Fourier transforms described as follows.
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(R1) A function f satisfies (R1) if f belongs to L1(R) ∩ L2(R) and if there exist a, b, r, and u0 ≥ 0 such that
L(f ) ≤ |f ∗(u)||u|a exp(b|u|r ) ≤ L(f ) < ∞ for all |u| ≥ u0.

If r = 0 in (R1) then by convention b = 0 and the function f is called ordinary smooth. If r > 0, the function f is
called super smooth.

Corollary 3.1. Under the assumptions of Theorem 3.1, assume that pε satisfies (N2) and that for all θ ∈ Θ , (fθw),
(f 2

θ w) and their derivatives with respect to θj , j = 1, . . . , d up to order 3, satisfy (R1).

(1) For all the sequences Cn such that

C(2α−2a+1−ρ)
n exp

{−2bCr
n + 2βCρ

n

}
/n = o(1) as n → +∞, (3.7)

E(‖θ̃1 − θ0‖2

2) = O(ϕ̃2

n) = o(1) as n → ∞ and θ̃1 = θ̃1(Cn) is a consistent estimator of θ0.

(2) Moreover, ϕ̃2
n is given by Table 1, according to values of parameters a, b, r,α,β and ρ.

4. Examples and methodological advice (1)

In this section, we propose a deep study of the asymptotic properties of the estimator through various examples of
regression functions. We show that for many regression functions the practitioner may encounter there are a few simple
smoothing weight functions to choose so that the rates improve significantly, up to parametric rate in many cases. This
new procedure allows to achieve the parametric rate of convergence in lot of examples and especially in examples
where the previously known estimator proposed in [29] does not. In all of these examples, the noise distribution is
arbitrary, as far as it satisfies (N1) and (N2) with ρ ≤ 2. The two first examples simply show that this new and more
general estimation procedure allows to recover previous known results in simple cases. The other examples provide
new results that underlie the improvement due to this method.

Example 1 (Polynomial regression function). Let fθ be of the form fθ (x) = ∑p

k=1 θkx
k and pε satisfying (N2) with

ρ ≤ 2. Assume that E(Y 2) < ∞ and that E(Z2p) < ∞. Let K be such K∗(t) = 1|t |≤1 and let w(x) = exp{−x2/(4β)}.
Then conditions (C1)–(C3) are satisfied. Consequently, the estimator θ̃1 is a

√
n-consistent and asymptotically

Gaussian estimator of θ0.

Table 1
Rates of convergence ϕ̃2

n of θ̃1

pε

ρ = 0 in (N2) ρ > 0 in (N2)
ordinary smooth super smooth

wf
θ0 (R1) a < α + 1/2 n−(2a−1)/(2α)

b = r = 0 (logn)−(2a−1)/ρ

Sobolev a ≥ α + 1/2 n−1

(R1)r > 0 n−1 r < ρ (logn)A(a,r,ρ) exp{−2b(
logn
2β

)r/ρ }

C∞ r = ρ b < β
(logn)A(a,r,ρ)+2αb/(βr)

nb/β

b = β,a < α + 1/2 (logn)(2α−2a+1)/r

n

b = β,a ≥ α + 1/2 n−1

b > β n−1

r > ρ n−1

Where A(a, r, ρ) = (−2a + 1 − r + (1 − r)−)/ρ.
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Remark 4.1. In this example, one can also choose w ≡ 1, provided that the kernel K has finite absolute moments of
order p and satisfies

∫
urK(u)du = 0, for r = 1, . . . , p. With these choices of w and K , θ̃1 remains a

√
n-consistent

and asymptotically Gaussian estimator of θ0.

The
√

n-consistency as well as the asymptotic normality was already achieved with different estimators, in the lin-
ear case (see, e.g., [2,3,26,31,32]). In polynomial case, other

√
n-consistent estimators already exist, without proving

the asymptotic normality (see, e.g. [29] and [8]) or in the polynomial functional errors in variables model, with fixed
and not random Xi ’s (see, e.g., [14,15] or [6]). It is noteworthy that our new estimation procedure, quite more simple
and natural than the one proposed in [29], also provides the

√
n-consistency in this simple case.

Example 2 (Exponential regression function). Let fθ be of the form fθ (x) = exp(θx) and pε satisfying (N2)
with ρ ≤ 2. Assume that E(Y 2) < ∞ and that E[exp(2θ0Z)] < ∞. Let K be such K∗(t) = 1|t |≤1 and let w(x) =
exp{−x2/(4β)}. Then the conditions (C1)–(C3) are satisfied and the estimator θ̃1 is a

√
n-consistent and asymptoti-

cally Gaussian estimator of θ0. Once again, this new estimation procedure allows to achieve the
√

n-consistency and
the asymptotic normality in a simple example where a other

√
n-consistent estimator is already known (see [29]).

Example 3 (Cosines regression function). Let fθ be of the form fθ (x) = ∑d
j=1 θj cos(jx) and pε satisfying (N2)

with ρ ≤ 2. Let K be such K∗(t) = 1|t |≤1 and let w(x) = exp{−x2/(4β)}. Then the conditions (C1)–(C3) are satisfied
and the estimator θ̃1 is a

√
n-consistent and asymptotically Gaussian estimator of θ0.

Remark 4.2. This example has already been considered in [29] and [8], but the
√

n-consistency as well as the asymp-
totic normality is new in this context. More precisely, the estimator constructed in [29] has a rate of convergence of
order exp(

√
logn)/n for Gaussian errors.

Example 4 (Cauchy regression function 1). Consider model (1.1) with fθ (x) = θ/(1 + x2) satisfying (R1) with
a = 0, b = 1/2 and r = 1 and pε satisfying (N2) with ρ ≤ 2. Let K be such K∗(t) = 1|t |≤1 and let w(x) = (1 +
x2)4 exp{−x2/(4β)}. With our choice of w, the functions fθw, f 2

θ w and their derivatives in θ up to order 3 satisfy
(R1) with ρ < r = 2 or ρ = r = 2 and b > β . Consequently, the conditions (C1)–(C3) are satisfied and the estimator
θ̃1 is a

√
n-consistent and asymptotically Gaussian estimator of θ0.

This simple example underlies the importance of the smoothing weight function w in the construction of θ̃1. Indeed,
for a Gaussian noise ε, without a smoothing function w in front of the regression function, Theorem 3.1 predicts (as
for the estimator in [29]) a rate of convergence of order exp(−√

logn) instead of the parametric rate of convergence.

Example 5 (Laplace regression function). Consider model (1.1) with fθ (x) = θf (x) and f (x) = exp(−|x|/2). The
Fourier transform of f and hence of fθ is slowly decaying, like |u|−2 as |u| → ∞. The estimator θ̃1 with w ≡ 1 would
not provide

√
n consistent estimator for smoother noise densities (as soon as |p∗

ε (u)| ≤ o(|u|−2) with |u| → ∞).
A closer look tells us that fθ and its derivative in θ is C∞ except at one point x = 0. Therefore, a proper choice of w

can smooth out at 0 and make wfθ , wf 2
θ and their derivatives in θ infinitely differentiable functions in x. With such

a choice of the weight function w, the estimator θ̃1 attains the parametric rate of convergence for a large set of noise
densities, such that pε satisfies (N2) for some 0 < ρ < 1. Even if ρ ≥ 1 and the noise is smoother than that (e.g.,
Gaussian for ρ = 2), the rate of θ̃1 is much faster when using our choice of w then it would be for w ≡ 1 or when
using the estimator proposed in [29].

Let us be more precise on the suitable choice of w and define

Ψa,b(x) = exp

(
− 1

(x − a)R(b − x)R

)
I[a,b](x), (4.1)

where −∞ < a < b < ∞ are fixed and R > 0. Following Lepski and Levit [23] and Fedoryuk [11], p. 346, Theo-
rem 7.3, the Fourier transform of this function is such that∣∣Ψ ∗

a,b(u)
∣∣ ≤ c exp

(−C|u|R/(R+1)
)

as |u| → ∞
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and c,C > 0 are constants. Then take w like Ψ0,100 or Ψ−100,0 or their sum (for a R > 0 large enough).
Another way to smooth without restraining to compact support is the following. Let w(x) = exp(−1/|x|2R) a

weight function which smoothes at 0 as R > 0 is large.
We can vary the coefficient in the exponential in the expression of w and check that fθw, f 2

θ w and their derivatives
up to order 3 satisfy (R1) with the same r = R/(R + 1) closer to 1 as R becomes large and b > 0.

If the noise satisfies (N2) with 0 ≤ ρ < 1, then we find R large enough such that r = R/(R + 1) > ρ, and thus
the conditions (C1)–(C3) are satisfied. Consequently, the estimator θ̃1 is a

√
n-consistent and asymptotically Gaussian

estimator of θ0.
If ρ ≥ 1, for this choice of w, then

E
∥∥θ̃1 − θ0

∥∥2

2 = O(1)(logn)(1−2a−r)/ρ exp

{−2b
(
logn/(2β)

)r/ρ}
.

Note that for the same regression functions with f (x) = exp(|x|) we can multiply the previous weight function w by
exp(−4|x|) or by exp(−x2) in order to solve integrability problems without changing the previous conclusions.

Example 6 (Irregular regression function). Consider model (1.1) with fθ (x) = θ1[−1,1](x) and pε satisfying (N2).
Let K be such that K∗(t) = 1|t |≤1 and take w = Ψ−1,1 for a R > 0 defined by (4.1).

If ρ = 0 in (N2), then the conditions (C1)–(C3) are satisfied. Consequently, the estimator θ̃1 is a
√

n-consistent and
asymptotically Gaussian estimator of θ0.

If ρ > 0, then the best rate for estimating θ0 is obtained by choosing w = Ψ−1,1 with R > 0 sufficiently large such
that wfθ and wf 2

θ satisfy (R1) with 0 < r = R/(R + 1) < 1 as close to 1 as needed.
It follows that if 0 < ρ < 1, then we can find w = Ψ−1,1 (with R large enough) satisfying (R1) with

r = R/(R + 1) > ρ, and hence the conditions (C4)–(C7) as well as conditions (C1)–(C3) are satisfied. Thus, θ̃1 is
a

√
n-consistent and asymptotically Gaussian estimator of θ0. Whereas, if ρ ≥ 1, for a suitably chosen w, then

E
∥∥θ̃1 − θ0

∥∥2

2 = O(1)(logn)(1−2a−r)/ρ exp

{−2b
(
logn/(2β)

)r/ρ}
.

Example 7 (Polygonal regression function). Consider model (1.1) with fθ (x) = θ0 + θ1x + θ2(x − a)+ + θ3|x − b|3
and pε satisfying (N2). Let K be such K∗(t) = 1|t |≤1. This regression function is C∞ except at points a and b where
it is not differentiable. For R > 0, let w(x) = Ψa−100,a(x) + Ψa,b(x) + Ψb,b+100(x), with Ψ defined in (4.1). The idea
is that we can truncate the regression function (say on the interval [a − 100, b + 100], or larger) in order to smooth
out at points a, b and the end points of the support of w.

If the noise satisfies (N2) with 0 ≤ ρ < 1, then take R large enough such that r = R/(R + 1) > ρ, and thus the
conditions (C1)–(C3) are satisfied. Consequently, the estimator θ̃1 is a

√
n-consistent and asymptotically Gaussian

estimator of θ0.
If ρ ≥ 1 in (N2), according to Table 1

E
∥∥θ̃1 − θ0

∥∥2

2 = O(1)(logn)(1−2a−r)/ρ exp

{−2b(logn/(2β))r/ρ
}
.

Comments on the examples 5, 6 and 7
In those three examples, θ̃1 achieves the

√
n-rate of convergence provided that pε is ordinary smooth or super smooth

with an exponent ρ < 1. But, fθw will satisfy (R1) with r at most such that r < 1 and it seems, therefore, impossible
to have (wθfθ )

∗/p∗
ε in L1(R) if the εi ’s are Gaussian. For this regression functions, if the εi ’s are Gaussian, the least

square criterion can not be estimated with the parametric rate of convergence, and hence could probably not provide
a

√
n-consistent estimator of θ0 in this context. Nevertheless, even in cases where the parametric rate of convergence

seems not achievable by such an estimator, the resulting rate of the risk of θ̃1 is clearly infinitely faster than the
logarithmic rate we could have without a proper of w or by using the estimator proposed by Taupin [29].
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5. Second estimation procedure and comments on the conditions ensuring the
√

n-consistency

5.1. Construction and study of the risk of a second estimator

We now propose another estimator of θ0, based on sufficient conditions allowing to construct directly a
√

n-consistent
estimator of S̃θ0,g defined in (2.1), based on (Yi,Zi), i = 1, . . . , n.

We say that the conditions (C4)–(C7) hold if there exists a weight function w and there exist functions Φ̃θ,ε,j ,
j = 1,2,3 not depending on g, such that for all θ ∈ Θ and for all g

(C4)
∫

y2w(x)fY,X(y, x)dy dx =
∫

y2Φ̃θ,ε,3(z)fY,Z(y, z)dy dz,

∫
yfθ (x)w(x)fY,X(y, x)dy dx =

∫
yΦ̃θ,ε,2(z)fY,Z dy dz

and
∫

w(x)f 2
θ (x)g(x)dx =

∫
Φ̃θ,ε,1(z)h(z)dz;

(C5) For j = 1,2,3,E[supθ∈Θ | ∂Φ̃θ,ε,j (Z)

∂θ
|] < ∞;

(C6) For j = 1,2,3 and for all θ ∈ Θ,E[| ∂Φ̃θ,ε,j

∂θ
(Z)|2] < ∞;

(C7) For j = 1,2,3 and for all θ ∈ Θ,E[| ∂2Φ̃θ,ε,j

∂θ2 (Z)|] < ∞.

Note that Φ̃θ,ε,3 exists as soon as the chosen weight function w is smoother than pε in the way that w∗/p∗
ε belongs

to L1(R). Furthermore, Φ̃θ,ε,3 ≡ Φ̃ε,3 does not depend on θ . We refer to Section 5.2 for details on how to construct
such functions Φ̃θ,ε,j .

Under (C4)–(C7), we propose to estimate S̃θ0,g(θ) by

S̃n,2(θ) = 1

n

n∑
i=1

[(
Y 2

i Φθ,ε,3(Zi) − 2YiΦθ,ε,2(Zi) + Φθ,ε,1(Zi)
]
, (5.2)

and hence θ0 is estimated by

θ̃2 = arg min
θ∈Θ

S̃n,2(θ). (5.3)

Remark 5.1. The main difficulty for finding such functions Φ̃θ,ε,j lies in the constraint that we expect that they do not
depend on the unknown density g. If we relax this constraint, obviously there are a lot of solutions.

Theorem 5.1. Consider model (1.1) under the assumptions (A1)–(A4), (II1), (II2), (N1) and the conditions (C4)–(C7).

Then θ̃2, defined by (5.3) is a
√

n-consistent estimator of θ0 which satisfies moreover that
√

n(θ̃2 −θ0)
L→

n→∞ N (0, �̃2),

with �̃2 that equals(
E

[
2w(X)

(
∂fθ (X)

∂θ

)(
∂fθ (X)

∂θ

)	]∣∣∣∣
θ=θ0

)−1

�̃0,2

(
E

[
2w(X)

(
∂fθ (X)

∂θ

)(
∂fθ (X)

∂θ

)	]∣∣∣∣
θ=θ0

)−1

,

where �̃0,2 equals

E

[(
∂(Φ̃θ,ε,1(Z) − 2YΦ̃θ,ε,2(Z))

∂θ

∣∣∣∣
θ=θ0

)(
∂(Φ̃θ,ε,1(Z) − 2YΦ̃θ,ε,2(Z))

∂θ

∣∣∣∣
θ=θ0

)	]
.
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Remark 5.2. In the Example 2, one can also choose w ≡ 1 and use that

E
[
exp(θX)

] = E[exp(θZ)]
E[exp(θε)] .

This implies that if we denote by

Φ̃θ,ε,1(Z) = exp(2θZ)

E[exp(2θε)] and Φ̃θ,ε,2(Z) = exp(θZ)

E[exp(θε)]

then Eh[Φ̃θ,ε,1(Z)] = Eg[f 2
θ (X)] and Eθ0,h[YΦ̃θ,ε,2(Z)] = Eθ0,g[Yfθ (X)].

Consequently, S̃n,2 satisfies

S̃n,2(θ) = 1

n

n∑
i=1

[
Yi − exp(θZi)

E[exp(θε)]
]2

= 1

n

n∑
i=1

[
Y 2

i − 2YiΦ̃θ,ε,2(Zi) + Φ̃θ,ε,1(Zi)
]
. (5.4)

In this case θ̃2 is also a
√

n-consistent and asymptotically Gaussian estimator of θ0.

Remark 5.3. In the Example 3, one can also choose w ≡ 1 and use that E[exp(ijX)] = E[exp(ijZ)]/E[exp(ijε)].
This implies that if we denote by

Φ̃θ,ε,1(Z) = 1

4

{
1 +

d∑
j=1

θ2
j

[
exp(2ijZ)

p∗
ε (2j)

+ exp(−2ijZ)

p∗
ε (−2j)

]

+
d∑

j=1

∑
k �=j

θj θk

[
exp(i(j + k)Z)

p∗
ε (j + k)

+ exp(−i(j + k)Z)

p∗
ε (−(j + k))

+ exp(i(j − k)Z)

p∗
ε (j − k)

+ exp(i(−j + k)Z)

p∗
ε (−j + k)

]}

and

Φ̃θ,ε,2(Z) = 1

2

[
exp(ijZ)

p∗
ε (j)

+ exp(−ijZ)

p∗
ε (−j)

]
then E[Φ̃θ,ε,1(Z)] = E[f 2

θ (X)] and E[YΦ̃θ,ε,2(Z)] = E[Yfθ (X)]. Consequently, S̃n,2 satisfies

S̃n,2(θ) = 1

n

n∑
i=1

[
Y 2

i − 2YiΦ̃θ,ε,2(Zi) + Φ̃θ,ε,1(Zi)
]
. (5.5)

In this case θ̃2 with w ≡ 1 is again a
√

n-consistent and asymptotically Gaussian estimator of θ0. In the same way,
θ̃1 with w ≡ 1 is again a

√
n-consistent and asymptotically Gaussian estimator of θ0.

Remark 5.4. Consider the Example 4. If we choose w as for θ̃1, then the conditions (C4)–(C7) are fulfilled and θ̃2

is a
√

n-consistent and asymptotically Gaussian estimator of θ0. Consequently, in this example, the conditions (5.1)
given in [9] and [10] are not satisfied when our conditions (C4)–(C7) hold. Hence our estimation procedure provides
a

√
n-consistent estimator when the estimation procedure in [10] and [9] fails.

5.2. Comments on the conditions ensuring the
√

n-consistency

Comment 1. Let us briefly compare the conditions (C1)–(C3) to the conditions (C4)–(C7). It is noteworthy that the
conditions (C4)–(C7) are more general. For instance condition (C1) implies (C4), with Φ̃θ,ε,j defined by Φ̃∗

θ,ε,1 =
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(wf 2
θ )∗/p∗

ε , Φ̃∗
θ,ε,2 = (wfθ )

∗/p∗
ε and Φ̃∗

θ,ε,3 = w∗/p∗
ε . This comes from the following equalities E[Φ̃θ,ε,1(Z)] =

E[(wf 2
θ )(X)],

E
[
Y 2Φ̃θ,ε,3(Z)

] = E
[
f 2

θ0(X)Φ̃θ,ε,3(Z)
] + σ 2

ξ,2E
[
Φ̃θ,ε,3(Z)

]
= 〈

f 2
θ0

g, Φ̃θ,ε,3 	 pε

〉 + σ 2
ξ,2〈g, Φ̃θ,ε,3 	 pε〉

= (2π)−1〈(f 2
θ0

g
)∗

, (Φ̃θ,ε,3)
∗p∗

ε

〉 + σ 2
ξ,2(2π)−1〈g∗, (Φ̃θ,ε,3)

∗p∗
ε

〉
= 〈

f 2
θ0g,w

〉 + σ 2
ξ,2〈g,w〉 = E

[
Y 2w(X)

]
and

E
[
YΦ̃θ,ε,2(Z)

] = 〈
fθ0g, Φ̃θ,ε,2 	 pε

〉 = (2π)−1〈(fθ0g)∗, (Φ̃θ,ε,2)
∗p∗

ε

〉
= 〈fθ0g,fθw〉 = E

[
Y(wfθ )(X)

]
.

But in the condition (C4), fθw, f 2
θ w and w are not necessarily in L1(R). Consequently, under (C1)–(C3), the con-

ditions (C1)–(C4) hold and, by denoting Φ̃θ,ε,1 = (wf 2
θ )∗/p∗

ε , Φ̃θ,ε,2 = (wfθ )
∗/p∗

ε and Φ̃θ,ε,3 = w∗/p∗
ε , we get that

�̃0,1 = �̃0,2 with �̃0,1 and �̃0,2 defined in Theorems 3.2 and 5.1. Nevertheless, the conditions (C1)–(C3) are more
tractable and constructive conditions.

Comment 2. The conditions (C4)–(C7) have to be related to the conditions given in [9,10] and [1] in the context of the
functional errors in variables model with X1, . . . ,Xn not random. In both mentionned papers, in order to construct√

n-consistent estimator, they assume that there exist two functions φ1 and φ2 such that

E
(
φ1(x + ε, θ)

) = fθ (x) and E
(
φ2(x + ε, θ)

) = f 2
θ (x). (5.1)

Clearly our conditions (C4)–(C7) are less restrictive than the condition (5.1), and hence they allow to achieve the
parametric rate of convergence for various type of regression functions, by using the possibility of the choice of the
weight function wθ .

For instance, let us reconsider Example 4 where fθ (x) = θ/(1 + x2) and pε is the Gaussian density. Then the
conditions given in [9] and [10] are not fulfilled. Whereas E[fθ (X)w(X)] and E[f 2

θ (X)w(X)] can be estimated with
the parametric rate of convergence, by taking w(x) = (1+x2)4 exp(−x2/(4β)). It follows from the fact that condition
(C4)–(C7) are fulfilled in this special example (see previous comment for the construction of auxiliary functions Φ̃θ,ε,j ,
j = 1 to 3 appearing in the condition). Nevertheless, such weight function are not always available, and, therefore,
those conditions (C4)–(C7) are not always fulfilled.

6. Extensions of previous estimation procedures

In the estimation procedure previously presented, the weight function is used in order to make wfθ , wf 2
θ integrable

and also in order to get smooth wfθ , wf 2
θ and derivatives in θ . In a large class of regression functions, the weight

function can smooth these functions without depending on θ . Sometimes, the smoothing properties and hence the rate
of convergence are improved by making w to depend on θ . It appears, in particular, when the points where we need
to smooth are related to θ .

The second estimation procedure uses an estimator based on the observations (Yi,Zi), i = 1, . . . , n, of the least
square contrast

Sθ0,g(θ) = E
[((

Y − fθ (X)
)2 − σ 2

ξ,2

)
wθ(X)

]
, (6.1)

where wθ is a positive weight function to be suitably chosen. This criterion, which requires the knowledge of Var(ξ),
actually writes E[((fθ0(X) − fθ (X))2wθ(X)] and it is minimized in θ = θ0 for any positive weight function wθ .
Subsequently, we consider the following assumptions.
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Identifiability and moment assumptions

(I21) The variance σ 2
ξ,2 = Var(ξi) is known.

(I22) The quantity Sθ0,g(θ) = E[wθ(X)(Y − fθ (X))2] − σ 2
ξ,2E(wθ (X)) admits one unique minimum at θ = θ0.

(I23) For all θ ∈ Θ the matrix S
(2)

θ0,g
(θ) = ∂2Sθ0,g(θ)/∂θ2 exists and

S
(2)

θ0,g

(
θ0) = E

[
2wθ0(X)

(
∂fθ (X)

∂θ

∣∣∣∣
θ=θ0

)(
∂fθ (X)

∂θ

∣∣∣∣
θ=θ0

)	]
is positive definite.

(A5) The quantities E[w2
θ (X)(Y − fθ (X))4] and their derivatives up to order 2 with respect to θ are finite.

According to (2.2), Sθ0,g(θ) is naturally estimated by the empirical criterion

Sn,1(θ) = 1

n

n∑
i=1

∫ [(
Yi − fθ (x)

)2 − σ 2
ξ,2

]
wθ(x)Kn,Cn

(
Cn(x − Zi)

)
dx, (6.2)

where Kn,Cn(·) = CnKn(Cn·) is a deconvolution kernel satisfying (2.4). Using this empirical criterion, under (N1),
we propose to estimate θ0 by

θ̂1 = arg min
θ∈Θ

Sn,1(θ). (6.3)

Theorem 6.1. Let θ̂1 = θ̂1(Cn) be defined by (6.3) under the assumptions (I21)–(I23), (N1), (A1)–(A4) and (A5) with
w replaced by wθ .

(1) Then for all of the sequences Cn such that for all θ ∈ Θ , fθwθ and f 2
θ wθ satisfy (3.6), E(‖θ̂1(Cn)−θ0‖2


2) = o(1),

as n → ∞ and θ̂1(Cn) is a consistent estimator of θ0.

(2) Assume moreover that for all θ ∈ Θ , fθwθ and f 2
θ wθ and their derivatives up to order 3 with respect to θ

satisfy (3.6). Then E(‖θ̂1 − θ0‖2

2) = O(ϕ2

n) with ϕn given ϕn = ‖(ϕn,j )‖
2 with ϕ2
n,j = B2

n,j (θ
0) + Vn,j (θ

0)/n,
j = 1, . . . , d , where

Bn,j (θ) = min
{
B

[1]
n,j (θ),B

[2]
n,j (θ)

}
and Vn,j (θ) = min

{
V

[1]
n,j (θ),V

[2]
n,j (θ)

}
,

B
[q]
n,j =

∥∥∥∥(
∂(wθ)

∂θj

)∗(
K∗

Cn
− 1

)∥∥∥∥2

q

+
∥∥∥∥(

∂(fθwθ )

∂θj

)∗(
K∗

Cn
− 1

)∥∥∥∥2

q

+
∥∥∥∥(

∂(f 2
θ wθ )

∂θj

)∗(
K∗

Cn
− 1

)∥∥∥∥2

q

and

V
[q]
n,j (θ) =

∥∥∥∥(
∂(wθ)

∂θj

)∗ K∗
Cn

p∗
ε

∥∥∥∥2

q

+
∥∥∥∥(

∂(fθwθ )

∂θj

)∗ K∗
Cn

p∗
ε

∥∥∥∥2

q

+
∥∥∥∥(

∂(f 2
θ wθ )

∂θj

)∗ K∗
Cn

p∗
ε

∥∥∥∥2

q

.

Remark 6.1. The Remark 3.2 is still valid.

6.1. Consequence: a sufficient condition to obtain the parametric rate of convergence with θ̂1

We say that the conditions (C8)–(C10) hold if there exists a weight function wθ such that for all θ ∈ Θ ,

(C8) the functions (wθfθ ), (wθ ) and (wθf
2
θ ) belong to L1(R) and the functions (wθ )

∗/p∗
ε ,

supθ (fθwθ )
∗/p∗

ε , supθ (f
2
θ wθ )

∗/p∗
ε belong to L1(R) ∩ L2(R);

(C9) the functions supθ∈Θ(∂wθ

∂θ
)∗/p∗

ε , supθ∈Θ(
∂(fθwθ )

∂θ
)∗/p∗

ε and supθ∈Θ(
∂(f 2

θ wθ )

∂θ
)∗/p∗

ε belong to L1(R) ∩ L2(R);
(C10) the functions ( ∂2wθ

∂θ2 )∗/p∗
ε , (

∂2(fθwθ )

∂θ2 )∗/p∗
ε and (

∂2(f 2
θ wθ )

∂θ2 )∗/p∗
ε belong to L1(R) ∩ L2(R).
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Theorem 6.2. Consider model (1.1) under the assumptions (I21)–(I23), (N1), (A1)–(A4) for w replaced by wθ and
under (A5), (C8)–(C10). Then θ̂1 defined by (6.3) is a

√
n-consistent estimator of θ0 which satisfies moreover that√

n(θ̂1 − θ0)
L→

n→∞ N (0,�1), with �1 that equals

(
E

[
2wθ(X)

(
∂fθ (X)

∂θ

)(
∂fθ (X)

∂θ

)	]∣∣∣∣
θ=θ0

)−1

�0,1

(
E

[
2wθ(X)

(
∂fθ (X)

∂θ

)(
∂fθ (X)

∂θ

)	]∣∣∣∣
θ=θ0

)−1

,

where

�0,1 = (2π)−2
E

{[∫ (
∂[f 2

θ wθ − 2Yfθwθ + (Y 2 − σ 2
ξ,2)wθ ]

∂θ

∣∣∣∣
θ=θ0

)∗
(u)

e−iuZ

p∗
ε (u)

du

]

×
[∫ (

∂[f 2
θ wθ − 2Yfθwθ + (Y 2 − σ 2

ξ,2)wθ ]
∂θ

∣∣∣∣
θ=θ0

)∗
(u)

e−iuZ

p∗
ε (u)

du

]	}
.

The resulting rate when (fθwθ ) and (f 2
θ wθ ), as well as their derivatives with respect to θ up to order 3 satisfy (R1),

are given in the following corollary.

Corollary 6.1. Under the assumptions of Theorem 6.1, assume that pε satisfies (N2) and that for all θ ∈ Θ , (fθwθ )

and (f 2
θ wθ ) and their derivatives with respect to θ up to order 3, satisfy (R1). Then Corollary 3.1 still holds with wfθ

replaced by wθfθ .

6.2. Construction and study of the risk of the estimator θ̂2

In the same spirit as θ̂1, we propose another estimator whose construction is based on sufficient conditions allowing
to construct a direct and

√
n-consistent estimator of Sθ0,g(θ) defined in (6.1), using the observations (Yi,Zi), i =

1, . . . , n.
We say that the conditions (C11)–(C14) hold if there exists a weight function wθ and there exist three functions

Φθ,ε,j , j = 1, . . . ,3, not depending on g such that for all θ ∈ Θ and for all g

(C11)
∫

wθ(x)g(x)dx =
∫

Φθ,ε,3(z)h(z)dz,

∫
yfθ (x)wθ (x)fY,X(y, x)dy dx =

∫
yΦθ,ε,2(z)fY,Z(y, z)dy dz

and
∫

wθ(x)f 2
θ (x)g(x)dx =

∫
Φθ,ε,1(z)h(z)dz;

(C12) For j = 1,2,3,E[supθ∈Θ | ∂Φθ,ε,j

∂θ
(Z)|] < ∞;

(C13) For j = 1,2,3, and for all θ ∈ Θ,E[| ∂Φθ,ε,j

∂θ
(Z)|2] < ∞;

(C14) For j = 1,2,3, and for all θ ∈ Θ,E[| ∂2Φθ,ε,j

∂θ2 (Z)|] < ∞.

Under (C11)–(C14), we propose to estimate Sθ0,g(θ) by

Sn,2(θ) = 1

n

n∑
i=1

[(
Y 2

i − σ 2
ξ,2

)
Φθ,ε,3(Zi) − 2YiΦθ,ε,2(Zi) + Φθ,ε,1(Zi)

]
. (6.4)

Using this empirical criterion we propose to estimate θ0 by

θ̂2 = arg min
θ∈Θ

Sn,2(θ). (6.5)

We refer to Section 5.2 for details on how to construct such functions Φθ,ε,j , j = 1, . . . ,3.
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Remark 6.2. As in the first estimation procedure (see Remark 5.1), the main difficulty for finding such function Φθ,ε,j

lies in the constraint that we expect that they do not depend on the unknown density g. If we relax this constraint,
obviously there are a lot of solutions.

6.3. Asymptotic properties of the estimator θ̂2

Theorem 6.3. Consider the model (1.1) under the assumptions (A1)–(A5), (I21)–(I23), (N1) and the conditions
(C11)–(C14). Then θ̂2, defined by (6.5) is a

√
n-consistent estimator of θ0 which satisfies moreover that

√
n(θ̂2 −

θ0)
L→

n→∞ N (0,�2), with �2 that equals

(
E

[
2wθ(X)

(
∂fθ (X)

∂θ

)(
∂fθ (X)

∂θ

)	]∣∣∣
θ=θ0

)−1

�0,2

(
E

[
2wθ(X)

(
∂fθ (X)

∂θ

)(
∂fθ (X)

∂θ

)	]∣∣∣
θ=θ0

)−1

,

where �0,2 equals

E

[(
∂(Φθ,ε,1(Z) − 2YΦθ,ε,2(Z) + (Y 2 − σ 2

ξ,2)Φθ0,ε,3(Z))

∂θ

∣∣∣
θ=θ0

)

×
(

∂(Φθ,ε,1(Z) − 2YΦθ,ε,2(Z) + (Y 2 − σ 2
ξ,2)Φθ0,ε,3(Z))

∂θ

∣∣∣
θ=θ0

)	]
.

Remark 6.3. Also note that by denoting Φθ,ε,1 = (wθf
2
θ )∗/p∗

ε , Φθ,ε,2 = (wθfθ )
∗/p∗

ε and Φθ,ε,3 = w∗
θ /p

∗
ε , we get

that �0,1 = �0,2 with �0,1 defined in Theorem 6.2.

Remark 6.4. The same comparison between (C11)–(C14) and (C8)–(C10) holds with w replaced by wθ and with the
Φθ,ε,j defined by Φ∗

θ,ε,1 = (wθf
2
θ )∗/p∗

ε , Φ∗
θ,ε,2 = (wθfθ )

∗/p∗
ε and Φ∗

θ,ε,3 = (fθwθ )
∗/p∗

ε (See Section 5.2).

7. Examples and methodological advice (2)

Example 8 (Growth curves 1). Consider the Model (1.1) with known σ 2
ξ,2, fθ (x) = θ1/(1 + θ2 exp(θ3x)) and pε

satisfying (N2) with ρ ≤ 2. Let K∗(t) = 1|t |≤1 and let wθ(x) = (1+θ2 exp(θ3x))4 exp{−x2/(4β)}. Then the conditions
(C8)–(C10) as well as conditions (C11)–(C14) are satisfied. Consequently, the estimators θ̂1 and θ̂2 are

√
n-consistent

and asymptotically Gaussian estimators of θ0, with the same asymptotic variance.

Example 9 (Growth curve 2). Consider the Model (1.1) with known σ 2
ξ,2, fθ (x) = θ2 + (θ1 − θ2)/(1 + exp(θ3 + θ4x))

and pε satisfying (N2) with ρ ≤ 2. Let K be such K∗(t) = 1|t |≤1 and let wθ(x) = (1+exp(θ3 +θ4x))4 exp{−x2/(4β)}.
Then the conditions (C8)–(C10) as well as conditions (C11)–(C14) are satisfied. Consequently, the estimators θ̂1 and
θ̂2 are

√
n-consistent and asymptotically Gaussian estimators of θ0, with the same asymptotic variance.

Example 10 (Cauchy regression function 2). Consider the model (1.1) with known σ 2
ξ,2, fθ (x) = 1/(1 + θx2) and

pε satisfying (N2) with ρ ≤ 2. Let K be such K∗(t) = 1|t |≤1 and let wθ(x) = (1 + θx2)2 exp{−x2/(4β)}. Then the
conditions (C8)–(C10) as well as conditions (C11)–(C14) are satisfied. Consequently, the estimators θ̂1 and θ̂2 are√

n-consistent and asymptotically Gaussian estimators of θ0, with the same asymptotic variance.

In these three last examples, we see the importance of the weight function wθ , with the improvement of the rate
of convergence by taking wθ depending on θ . Clearly, for such regression function, the estimator in [29] does not
achieve the parametric rate of convergence whereas, θ̂1 or θ̂2 do.
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8. Proofs of theorems

We only detail the proof of Theorems 6.1, 6.2 and 6.3 as well as Corollary 6.1. The proofs of Theorems 3.1, 3.2, and
5.1 and Corollary 3.1 follow the same lines with wθ replaced by w and by putting σξ,2 = 0 in the proofs (and only
in the proofs). In the sequel, we denote by C an absolute constant whose value may vary from one line to the other,
and we always mention the dependency of a constant C with respect to parameters. For instance C(a, b) stands for a
constant depending on a and b.

8.1. Proof of (1) of Theorem 6.1

The main point of the proof consists in showing that for any θ in Θ , E[(Sn,1(θ) − Sθ0,g(θ))2] = o(1), with Sθ0,g(θ)

admitting a unique minimum in θ = θ0. The second part of the proof consists in studying ω2(n,ρ) defined as

ω2(n,ρ) = sup
{∣∣Sn,1(θ) − Sn,1(θ

′)
∣∣: ∥∥θ − θ ′∥∥


2 ≤ ρ
}
.

By using the regularity assumptions on the regression function f , we state that there exist two sequences ρk and εk

tending to 0, such that for all k ∈ N

lim
n→∞ P

[
ω2(n,ρk) > εk

] = 0 and that E
[(

ω2(n,ρk)
)2] = O(ρ2

k ). (8.1)

Let us start with the proof of

E
[(

Sn,1(θ) − Sθ0,g(θ)
)2] = o(1), for any θ ∈ Θ and as n → ∞. (8.2)

We have to check successively that for any θ ∈ Θ,

E
[
Sn,1(θ)

] − Sθ0,g(θ) = o(1) and Var
(
Sn,1(θ)

) = o(1), as n → ∞. (8.3)

For both the bias and the variance, we give two upper bounds, based on the two following applications of the
Hölder’s inequality∣∣〈ϕ1, ϕ2〉

∣∣ ≤ ‖ϕ1‖2‖ϕ2‖2 and
∣∣〈ϕ1, ϕ2〉

∣∣ ≤ ‖ϕ1‖∞‖ϕ2‖1. (8.4)

Proof of the first part of (8.3). According to Lemma A.2, we have

E
[
Sn,1(θ)

] = E
[(

(Y − fθ )
2wθ − σ 2

ξ,2wθ

)
	 Kn,Cn(Z)

]
= E

[(
Y 2 − σ 2

ξ,2

)
wθ 	 KCn(X)

] − 2E
[
Y(fθwθ ) 	 KCn(X)

] + E
[(

f 2
θ wθ

)
	 KCn(X)

]
,

and hence

E
[
Sn,1(θ)

] − Sθ0,g(θ) = (2π)−1〈(f 2
θ0g

)∗
,w∗

θ

(
K∗

Cn
(·) − 1

)〉 − π−1〈(fθ0g)∗, (fθwθ )
∗(K∗

Cn
− 1

)〉
+ (2π)−1〈g∗,

(
f 2

θ wθ

)∗(
K∗

Cn
− 1

)〉
.

Consequently, under the assumption (A3), |E[Sn,1(θ)] − Sθ0,g(θ)|2 = o(1). Indeed, according to (8.4), a first upper
bound of |E[Sn,1(θ)] − Sθ0,g(θ)| is given by

(2π)−1
∥∥(

f 2
θ0g

)∗∥∥
2

∥∥w∗
θ

(
K∗

Cn
− 1

)∥∥
2 + π−1

∥∥(fθ0g)∗
∥∥

2

∥∥(fθwθ )
∗(K∗

Cn
− 1

)∥∥
2

+ (2π)−1‖g∗‖2
∥∥(

f 2
θ wθ

)∗(
K∗

Cn
− 1

)∥∥
2

and hence∣∣E[
Sn,1(θ)

] − Sθ0,g(θ)
∣∣2

≤ C(fθ0,wθ )
[∥∥w∗

θ

(
K∗

Cn
− 1

)∥∥2
2 + ∥∥(wθfθ )

∗(K∗
Cn

− 1
)∥∥2

2 + ∥∥(
wθf

2
θ

)∗(
K∗

Cn
− 1

)∥∥2
2

]
. (8.5)
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And according to the second part of (8.4) we also have that |E[Sn,1(θ)] − Sθ0,g(θ)| is bounded by

(2π)−1
∥∥(

f 2
θ0g

)∗∥∥∞
∥∥w∗

θ

(
K∗

Cn
− 1

)∥∥
1 + π−1

∥∥(fθ0g)∗
∥∥∞

∥∥(fθwθ )
∗(K∗

Cn
− 1

)∥∥
1

+ (2π)−1
∥∥g∗∥∥∞

∥∥(
f 2

θ wθ

)∗(
K∗

Cn
− 1

)∥∥
1

and hence∣∣E[
Sn,1(θ)

] − Sθ0,g(θ)
∣∣2

≤ C(fθ0,wθ )
[∥∥w∗

θ

(
K∗

Cn
− 1

)∥∥2
1 + ∥∥(wθfθ )

∗(K∗
Cn

− 1
)∥∥2

1 + ∥∥(
wθf

2
θ

)∗(
K∗

Cn
− 1

)∥∥2
1

]
. (8.6)

Consequently, by combining the two bounds (8.5) and (8.6), we get that |E[Sn,1(θ)] − Sθ0,g(θ)|2 is bounded by

C(fθ0,wθ )min
{∥∥w∗

θ

(
K∗

Cn
− 1

)∥∥2
2 + ∥∥(wθfθ )

∗(K∗
Cn

− 1
)∥∥2

2 + ∥∥(
wθf

2
θ

)∗(
K∗

Cn
− 1

)∥∥2
2,∥∥w∗

θ

(
K∗

Cn
− 1

)∥∥2
1 + ∥∥(wθfθ )

∗(K∗
Cn

− 1
)∥∥2

1 + ∥∥(
wθf

2
θ

)∗(
K∗

Cn
− 1

)∥∥2
1

}
that is by applying Lemma A.1,∣∣E[

Sn,1(θ)
] − Sθ0,g(θ)

∣∣2 ≤ C(fθ0 ,wθ , b, r)C
−2a+(1−r)+(1−r)−
n e−2bCr

n ,

and the first part of (8.3) follows. �

Proof of the second part of (8.3). Since the variables are i.i.d. random variables, the stochastic term on the left-hand
side in (8.3) has variance

Var
[
Sn,1(θ)

] ≤ n−1
E

[∣∣((Y − fθ )
2wθ − σ 2

ξ,2wθ

)
	 Kn,Cn(Z)

∣∣2]
≤ 3n−1{

E
[(

Y 4 + σ 4
ξ,2

)∣∣wθ 	 Kn,Cn(Z)
∣∣2] + 4E

[
Y 2

∣∣(fθwθ ) 	 Kn,Cn(Z)
∣∣2]

+ E
[∣∣(f 2

θ wθ ) 	 Kn,Cn(Z)
∣∣2]}

≤
(

C

n

){
E

[
f 4

θ0(X)(wθ 	 Kn,Cn)
2(Z)

] + (
E

(
ξ4) + σ 4

ξ,2

)
E

[
(wθ 	 Kn,Cn)

2(Z)
]

+ E
[
f 2

θ0(X)
(
(fθwθ ) 	 Kn,Cn(Z)

)2] + E
[((

f 2
θ wθ

)
	 Kn,Cn(Z)

)2]}
,

that is, according to Lemma A.2

Var
[
Sn,1(θ)

] ≤
(

C

n

){〈((
f 4

θ0g
)
	 pε

)
, (wθ 	 Kn,Cn)

2〉 + (
E

(
ξ4) + σ 4

ξ,2

)〈
(g 	 pε), (wθ 	 Kn,Cn)

2〉
+ 〈((

f 2
θ0g

)
	 pε

)
,
(
(fθwθ ) 	 Kn,Cn

)2〉 + σ 2
ξ,2

〈
(g 	 pε),

(
(fθwθ ) 	 Kn,Cn

)2〉
+ 〈

(g 	 pε),
((

f 2
θ wθ

)
	 Kn,Cn

)2〉}
.

On one hand, according to (8.4), under the assumption (A3),

Var
[
Sn,1(θ)

] ≤
(

C

n

){[∥∥(
f 4

θ0g
)
	 pε

∥∥∞ + (
E

(
ξ4) + σ 4

ξ,2

)‖g 	 pε‖∞
]‖wθ 	 Kn,Cn‖2

2

+ [∥∥(
f 2

θ0g
)
	 pε

∥∥∞ + σ 2
ξ,2‖g 	 pε‖∞

]∥∥(fθwθ ) 	 Kn,Cn

∥∥2
2

+ ‖g 	 pε‖∞
∥∥(

f 2
θ wθ

)
	 Kn,Cn

∥∥2
2

}
,
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and we get that

Var
[
Sn,1(θ)

] ≤ C
(
σ 2

ξ,2, σξ,4, fθ ,wθ ,pε

)
n−1

[∥∥∥∥(wθ )
∗ K∗

Cn

p∗
ε

∥∥∥∥2

2
+

∥∥∥∥(fθwθ )
∗ K∗

Cn

p∗
ε

∥∥∥∥2

2
+

∥∥∥∥(
f 2

θ wθ

)∗ K∗
Cn

p∗
ε

∥∥∥∥2

2

]
. (8.7)

On the other hand, again applying (8.4) under the assumption (A3), we have

Var
[
Sn,1(θ)

] ≤ C

n

{[∥∥(
f 4

θ0g
)
	 pε

∥∥
1 + (

E
(
ξ4) + σ 4

ξ,2

)‖g 	 pε‖1
]‖wθ 	 Kn,Cn‖2∞

+ [∥∥(
f 2

θ0g
)
	 pε

∥∥
1 + σ 2

ξ,2‖g 	 pε‖1
]∥∥(fθwθ ) 	 Kn,Cn

∥∥2
∞

+ ‖g 	 pε‖1
∥∥(

f 2
θ wθ

)
	 Kn,Cn

∥∥2
∞

}
,

and hence we get that

Var
[
Sn,1(θ)

] ≤ C
(
σ 2

ξ,2, σξ,4, fθ ,wθ ,pε

)
n−1

[∥∥∥∥(wθ )
∗ K∗

Cn

p∗
ε

∥∥∥∥2

1
+

∥∥∥∥(fθwθ )
∗ K∗

Cn

p∗
ε

∥∥∥∥2

1
+

∥∥∥∥(
f 2

θ wθ

)∗ K∗
Cn

p∗
ε

∥∥∥∥2

1

]
. (8.8)

By combining (8.7) and (8.8) and by applying Lemma A.1 in the Appendix, we get that under assumption (A3),
Var[Sn,1(θ)] is bounded by

n−1C
(
σ 2

ξ , σξ,4, fθ ,wθ ,pε

) × min

{∥∥∥∥(wθ )
∗ K∗

Cn

p∗
ε

∥∥∥∥2

2
+

∥∥∥∥(fθwθ )
∗ K∗

Cn

p∗
ε

∥∥∥∥2

2
+

∥∥∥∥(
f 2

θ wθ

)∗ K∗
Cn

p∗
ε

∥∥∥∥2

2
,

∥∥∥∥(wθ )
∗ K∗

Cn

p∗
ε

∥∥∥∥2

1
+

∥∥∥∥(fθwθ )
∗ K∗

Cn

p∗
ε

∥∥∥∥2

1
+

∥∥∥∥(
f 2

θ wθ

)∗ K∗
Cn

p∗
ε

∥∥∥∥2

1

}
.

In other words,

Var
[
Sn,1(θ)

] ≤ C
(
σ 2

ξ , σξ,4, fθ ,wθ ,pε

)
max

[
1,C

2α−2a+(1−ρ)+(1−ρ)−
n e−2bCr

n+2βC
ρ
n
]
/n,

and under (3.7), then (8.2) is proved.
It remains now to check that there exists two sequences ρk and εk tending to 0, such that (8.1) holds. First write

that

∣∣Sn,1(θ) − Sn,1
(
θ ′)∣∣ =

∣∣∣∣∣2

n

n∑
i=1

Yi

[
(fθ ′wθ ′ − fθwθ)

]
	 Kn,Cn(Zi) − 1

n

n∑
i=1

[(
f 2

θ ′wθ ′ − f 2
θ wθ

)]
	 Kn,Cn(Zi)

− 1

n

n∑
i=1

(
Y 2

i − σ 2
ξ,2

)[wθ ′ − wθ ] 	 Kn,Cn(Zi)

∣∣∣∣∣
=

∣∣∣∣∣2

n

n∑
i=1

(
θ ′ − θ

)	
(

∂[Yifθwθ + f 2
θ wθ − (Y 2

i − σ 2
ξ,2)wθ ]

∂θ

∣∣∣∣
θ=θ̄

)
	 Kn,Cn(Zi)

∣∣∣∣∣,
where ‖θ̄‖
2 ≤ ‖θ − θ ′‖
2 . It follows that for ‖θ − θ ′‖
2 ≤ ρk ,

∣∣Sn,1(θ) − Sn,1
(
θ ′)∣∣ ≤ 2ρk

n

∥∥∥∥∥
n∑

i=1

(
∂[Yifθwθ + f 2

θ wθ + (Y 2
i − σ 2

ξ,2)wθ ]
∂θ

∣∣∣∣
θ=θ̄

)
	 Kn,Cn(Zi)

∥∥∥∥∥

2

.

Hence (8.1) holds since for Cn satisfying (3.7), by using the same arguments as for the proof of (8.2), we have that
for all θ ∈ Θ

E

[∥∥∥∥∥n−1
n∑

i=1

(
∂[Yifθwθ + f 2

θ wθ + (Y 2
i − σ 2

ξ,2)wθ ]
∂θ

)
	 Kn,Cn(Zi)

∥∥∥∥∥
2


2

]
= O(1),



New M-estimators in semi-parametric regression with errors in variables 411

and hence for all k ∈ N, E[sup‖θ ′−θ‖

2 ≤ρk

|Sn,1(θ) − Sn,1(θ
′)|] = O(ρk) as n → ∞. �

8.2. Proofs of (2) of Theorem 6.1 and Corollary 6.1

If we denote by S
(1)
n,1 and S

(2)
n,1 the first and second derivatives of Sn,1(θ) with respect to θ , by using classical Taylor

expansion based on the smoothness properties of θ 
→ wθfθ and the consistency of θ̂1, we obtain that

0 = S
(1)
n,1(θ̂1) = S

(1)
n,1

(
θ0) + S

(2)
n,1

(
θ0)(θ̂1 − θ0) + Rn,1

(
θ̂1 − θ0),

with Rn,1 defined by

Rn,1 =
∫ 1

0

[
S

(2)
n,1

(
θ0 + s

(
θ̂1 − θ0)) − S

(2)
n,1

(
θ0)]ds. (8.9)

This implies that

θ̂1 − θ0 = −[
S

(2)
n,1

(
θ0) + Rn,1

]−1
S

(1)
n,1

(
θ0). (8.10)

Consequently, we have to check the four following points.

(i) E[(S(1)
n,1(θ

0) − S
(1)

θ0,g
(θ0))(S

(1)
n,1(θ

0) − S
(1)

θ0,g
(θ0))	] = O[ϕnϕ

	
n ].

(ii) E[‖S(2)
n,1(θ

0) − S
(2)

θ0,g
(θ0)‖2


2] = o(1).

(iii) Rn,1 defined in (8.9) satisfies E(‖Rn,1‖2

2) = o(1) as n → ∞.

(iv) E‖θ̂1 − θ0‖2

2 ≤ 4E[(S(1)

n,1(θ
0))	[(S(2)

θ0,g
(θ0))−1]	(S

(2)

θ0,g
(θ0))−1S

(1)
n,1(θ

0)] + o(ϕ2
n).

The rate of convergence of θ̂1 is thus given by the order of S
(1)
n,1(θ

0) − S
(1)

θ0,g
(θ0) = S

(1)
n,1(θ

0).

Proof of (i). Write that

S
(1)
n,1(θ) = ∂

∂θ

(
1

n

n∑
i=1

[(
(Yi − fθ )

2 − σ 2
ξ,2

)
wθ

]
	 Kn,Cn(Zi) − E

[((
Y − fθ (X)

)2 − σ 2
ξ,2

)
wθ(X)

])

= 1

n

n∑
i=1

(
∂[((Yi − fθ )

2 − σ 2
ξ,2)wθ ]

∂θ

)
	 Kn,Cn(Zi) − E

[
∂[((Y − fθ (X))2 − σ 2

ξ,2)wθ (X)]
∂θ

]
.

Study of the bias. According to Lemma A.2, E[S(1)
n,1(θ

0)] is equal to

−2E

[
fθ0(X)

(
∂(fθwθ )

∂θ
	 KCn(X) − ∂(fθwθ )

∂θ
(X)

)]
+ E

[
∂(f 2

θ wθ )

∂θ
	 KCn(X) − ∂(f 2

θ wθ )

∂θ
(X)

]
+ E

[
f 2

θ0(X)

(
∂wθ

∂θ
	 KCn(X) − ∂wθ

∂θ
(X)

)]
,

that is

E
[
S

(1)
n,1

(
θ0)] = −2

〈
(fθ0g)∗,

(
∂(fθwθ )

∂θ

∣∣∣∣
θ=θ0

)∗(
K∗

Cn
− 1

)〉

+
〈
g∗,

(
∂(f 2

θ wθ )

∂θ

∣∣∣∣
θ=θ0

)∗(
K∗

Cn
− 1

)〉
+

〈(
f 2

θ0g
)∗

,

(
∂wθ

∂θ

∣∣∣∣
θ=θ0

)∗(
K∗

Cn
− 1

)〉
.
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On one hand, according to (8.4), under the assumption (A3), the bias is bounded in the following way∣∣∣∣E[
∂Sn,1(θ)

∂θj

]
θ=θ0

∣∣∣∣ ≤ π−1
∥∥(fθ0g)∗

∥∥
2

∥∥∥∥(
∂(fθwθ )

∂θj

∣∣∣∣
θ=θ0

)∗(
K∗

Cn
− 1

)∥∥∥∥
2

+ (2π)−1
∥∥g∗∥∥

2

∥∥∥∥(
∂(f 2

θ wθ )

∂θj

∣∣∣∣
θ=θ0

)∗(
K∗

Cn
− 1

)∥∥∥∥
2

+ (2π)−1
∥∥(

f 2
θ0g

)∗∥∥
2

∥∥∥∥(
∂wθ

∂θj

∣∣∣∣
θ=θ0

)∗(
K∗

Cn
− 1

)∥∥∥∥
2

and consequently,∣∣∣∣E[(
∂Sn,1(θ)

∂θj

∣∣∣∣
θ=θ0

)]∣∣∣∣ ≤ C(fθ0 ,wθ0,pε)

[∥∥∥∥(
∂(wθ )

∂θj

∣∣∣∣
θ=θ0

)∗(
K∗

Cn
− 1

)∥∥∥∥
2

(8.11)

+
∥∥∥∥(

∂(wθfθ )

∂θj

∣∣∣∣
θ=θ0

)∗(
K∗

Cn
− 1

)∥∥∥∥
2
+

∥∥∥∥(
∂(wθf

2
θ )

∂θj

∣∣∣∣
θ=θ0

)∗(
K∗

Cn
− 1

)∥∥∥∥
2

]
.

And, on the other hand, the bias can also be bounded in the following way∣∣∣∣E[
∂Sn,1(θ)

∂θj

]
θ=θ0

∣∣∣∣ ≤ π−1
∥∥(fθ0g)∗

∥∥∞

∥∥∥∥(
∂(fθwθ )

∂θj

∣∣∣∣
θ=θ0

)∗(
K∗

Cn
− 1

)∥∥∥∥
1

+ (2π)−1
∥∥g∗∥∥∞

∥∥∥∥(
∂(f 2

θ wθ )

∂θj

∣∣∣∣
θ=θ0

)∗(
K∗

Cn
− 1

)∥∥∥∥
1

+ (2π)−1
∥∥(

f 2
θ0g

)∗∥∥∞

∥∥∥∥(
∂wθ

∂θj

∣∣∣∣
θ=θ0

)∗(
K∗

Cn
− 1

)∥∥∥∥
1

and consequently,∣∣∣∣E[(
∂Sn,1(θ)

∂θj

∣∣∣∣
θ=θ0

)]∣∣∣∣ ≤ C(fθ0 ,wθ0,pε)

[∥∥∥∥(
∂(wθ )

∂θj

∣∣∣∣
θ=θ0

)∗(
K∗

Cn
− 1

)∥∥∥∥
1

(8.12)

+
∥∥∥∥(

∂(wθfθ )

∂θj

∣∣∣∣
θ=θ0

)∗(
K∗

Cn
− 1

)∥∥∥∥
1
+

∥∥∥∥(
∂(wθf

2
θ )

∂θj

∣∣∣∣
θ=θ0

)∗(
K∗

Cn
− 1

)∥∥∥∥
1

]
.

By combining (8.11) and (8.12), we get that∣∣∣∣E[(
∂Sn,1(θ)

∂θj

∣∣∣∣
θ=θ0

)]∣∣∣∣ ≤ C(fθ0 ,wθ0,pε)min
[
B

[1]
n,j

(
θ0),B[2]

n,j

(
θ0)],

with B
[q]
n,j (θ

0), q = 1,2 defined in Theorem 6.1.
Consequently, by applying Lemma A.1, we obtain that

E
2
[(

∂Sn,1(θ)

∂θj

∣∣∣
θ=θ0

)]
≤ C

(1)
b2

(fθ0 ,wθ0,pε, b, r)C
−2a+(1−r)+(1−r)−
n e−2bCr

n .

Study of the variance. For the variance term, it is easy to see that

Var

(
∂Sn,1(θ)

∂θj

∣∣∣∣
θ=θ0

)
≤ C

n
E

[(
∂[−2Yifθwθ + f 2

θ wθ + (Y 2
i − σ 2

ξ,2)wθ ]
∂θj

∣∣∣∣
θ=θ0

)
	 Kn,Cn(Zi)

]2

,
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that is, according to Lemma A.2, Var(∂Sn,1(θ)/∂θj |θ=θ0) equals

C + o(1)

n

{〈((
f 2

θ0 + σ 2
ξ,2

)
g
)
	 pε,

((
∂(fθwθ )

∂θj

∣∣∣∣
θ=θ0

)
	 Kn,Cn

)2〉

+
〈((

f 4
θ0 + σξ,4 + 4f 2

θ0σ
2
ξ,2 − σ 4

ξ,2 + 4fθ0σξ,3
)
g
)
	 pε,

((
∂wθ

∂θj

∣∣∣∣
θ=θ0

)
	 Kn,Cn

)2〉

+
〈
g 	 pε,

((
∂(f 2

θ wθ )

∂θj

∣∣∣∣
θ=θ0

)
	 Kn,Cn

)2〉}
.

It follows that according to (8.4), Var(∂Sn,1(θ)/∂θj |θ=θ0) is less than

C

n

{[
σ 2

ξ,2‖g 	 pε‖∞ + ∥∥(
f 2

θ0g
)
	 pε

∥∥∞
]∥∥∥∥(

∂(fθwθ )

∂θj

∣∣∣∣
θ=θ0

)
	 Kn,Cn

∥∥∥∥2

2

+ ∥∥((
f 4

θ0 + σξ,4 + 4f 2
θ0σ

2
ξ,2 − σ 4

ξ,2 + 4fθ0σξ,3
)
g
)
	 pε

∥∥∞

∥∥∥∥(
∂wθ

∂θj

∣∣∣∣
θ=θ0

)
	 Kn,Cn

∥∥∥∥2

2

+ ‖g 	 pε‖∞
∥∥∥∥(

∂(f 2
θ wθ )

∂θj

∣∣∣∣
θ=θ0

)
	 Kn,Cn

∥∥∥∥2

2

}
,

that is

Var

(
∂Sn,1(θ)

∂θj

∣∣∣∣
θ=θ0

)
≤

C(σ 2
ξ,2, fθ0, f

(1)

θ0,j
,wθ0,pε)

n

[∥∥∥∥(
∂(wθ )

∂θj

∣∣∣∣
θ=θ0

)∗ K∗
Cn

p∗
ε

∥∥∥∥2

2
(8.13)

+
∥∥∥∥(

∂(fθwθ )

∂θj

∣∣∣∣
θ=θ0

)∗ K∗
Cn

p∗
ε

∥∥∥∥2

2
+

∥∥∥∥(
∂(f 2

θ wθ )

∂θj

∣∣∣∣
θ=θ0

)∗ K∗
Cn

p∗
ε

∥∥∥∥2

2

]
.

And once again, according to (8.4), another bound the variance term can be obtained to get that Var(∂Sn,1(θ)/

∂θj |θ=θ0) is bounded by

C

n

{[
σ 2

ξ,2‖g 	 pε‖1 + ∥∥(
f 2

θ0g
)
	 pε

∥∥
1

]∥∥∥∥(
∂(fθwθ )

∂θj

∣∣∣∣
θ=θ0

)
	 Kn,Cn

∥∥∥∥2

∞

+ ‖g 	 pε‖1

∥∥∥∥(
∂(f 2

θ wθ )

∂θj

∣∣∣∣
θ=θ0

)
	 Kn,Cn

∥∥∥∥2

∞

+ ∥∥((
f 4

θ0 + σξ,4 + 4f 2
θ0σ

2
ξ,2 − σ 4

ξ,2 + 4fθ0σξ,3
)
g
)
	 pε

∥∥
1

∥∥∥∥(
∂wθ

∂θj

∣∣∣∣
θ=θ0

)
	 Kn,Cn

∥∥∥∥2

∞

}
,

that is

Var

(
∂Sn,1(θ)

∂θj

∣∣∣∣
θ=θ0

)
≤

C(σ 2
ξ,2, fθ0, f

(1)

θ0,j
,wθ0,pε)

n

[∥∥∥∥(
∂(wθ)

∂θj

∣∣∣∣
θ=θ0

)∗ K∗
Cn

p∗
ε

∥∥∥∥2

1
(8.14)

+
∥∥∥∥(

∂(fθwθ )

∂θj

∣∣∣∣
θ=θ0

)∗ K∗
Cn

p∗
ε

∥∥∥∥2

1
+

∥∥∥∥(
∂(f 2

θ wθ )

∂θj

∣∣∣∣
θ=θ0

)∗ K∗
Cn

p∗
ε

∥∥∥∥2

1

]
.

By combining (8.13) and (8.14), we get that

Var

(
∂Sn,1(θ)

∂θj

∣∣∣∣
θ=θ0

)
≤

C(σ 2
ξ,2, fθ0, f

(1)

θ0,j
,wθ0,pε)

n
min

{
V

[1]
n,j

(
θ0),V [2]

n,j

(
θ0)},
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with V
[q]
n,j , q = 1,2 defined in Theorem 6.1. By applying Lemma A.1, we get that

Var

(
∂Sn,1(θ)

∂θj

∣∣∣∣
θ=θ0

)
≤

Cv2(σ
2
ξ,2, fθ0f

(1)

θ0,j
,wθ0,pε)

n
max

[
1,C

2α−2a+(1−ρ)+(1−ρ)−
n exp

{−2bCr
n + 2βCρ

n

}]
.

The rate of convergence of θ̂1 denoting by ϕnϕ
	
n corresponds to the best choice for the sequence C∗

n , minimizing

the sum of the variance Var[S(1)
n,1(θ

0)] and the square of the bias (E[S(1)
n,1(θ

0)]− S(1)(θ0))(E[S(1)
n,1(θ

0)]− S(1)(θ0))	 =
(E[S(1)

n,1(θ
0)])(E[S(1)

n,1(θ
0)])	.

Polynomial noise (see (N2) with β = ρ = 0).
• If for j = 1, . . . ,m, ∂(fθwθ )/∂θj |θ=θ0 , ∂wθ/∂θj |θ=θ0 and ∂(f 2

θ wθ )/∂θj |θ=θ0 satisfy (R1) with r = 0, then∣∣∣∣E[
∂Sn,1(θ)

∂θj

∣∣∣∣
θ=θ0

]∣∣∣∣2

≤ Cb2

(
fθ0 ,wθ0, b, σ 2

ξ,2

)
C−2a+1

n ,

and

Var

(
∂Sn,1(θ)

∂θj

∣∣∣∣
θ=θ0

)
≤ Cv2

(
E

(
f 2

θ0(X)
)
, σ 2

ξ,2, f
(1)

θ0 , fθ0 ,wθ0,pε

)
max

[
1,C2α−2a+1

n

]
/n.

It follows that if r = 0 and a < α + 1/2 then

C∗
n = n1/(2α) and ϕ2

n = O
(
n(1−2a)/(2α)

)
. (8.15)

If r = 0 and a ≥ α + 1/2, then

C∗
n = n1/(2a−1) and ϕ2

n = O
(
n−1).

• If for j = 1, . . . ,m, ∂(fθwθ )/∂θj |θ=θ0 , ∂wθ/∂θj |θ=θ0 and ∂(f 2
θ wθ )/∂θj |θ=θ0 satisfy (R1) with r > 0, then∣∣∣∣E[

∂Sn,1(θ)

∂θj

∣∣∣∣
θ=θ0

]∣∣∣∣2

≤ Cb2

(
fθ0 , σ

2
ξ,2, f

(1)

θ0 ,wθ0

)
C

−2a+(1−r)+(1−r)−
n exp

{−2bCr
n

}
and

Var

(
∂Sn,1(θ)

∂θj

∣∣∣∣
θ=θ0

)
≤ Cv2(fθ0, σ 2

ξ,2, f
(1)

θ0 ,wθ0,pε)

n
.

It follows that

C∗
n =

[
logn

2b
+ −2a + (1 − r) + (1 − r)−

2br
log

(
logn

2b

)]1/r

and ϕ2
n = O

(
n−1). (8.16)

Exponential noise (see (N2) with ρ > 0).
• If for j = 1, . . . ,m, ∂(fθwθ )/∂θj |θ=θ0 , ∂wθ/∂θj |θ=θ0 and ∂(f 2

θ wθ )/∂θj |θ=θ0 satisfy (R1) with r = 0, then∣∣∣∣E[
∂Sn,1(θ)

∂θj

∣∣∣∣
θ=θ0

]∣∣∣∣2

≤ Cb2

(
fθ0 , σ

2
ξ,2, f

(1)

θ0 ,wθ0

)
C−2a+1

n ,

and

Var

(
∂Sn,1(θ)

∂θj

∣∣∣∣
θ=θ0

)
≤ Cv2

(
fθ0, σ

2
ξ,2, f

(1)

θ0 ,wθ0,pε

)
C

2α−2a+(1−ρ)+(1−ρ)−
n

exp{2βC
ρ
n }

n
.
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It follows that

C∗
n =

[
logn

2β
− 2α + (1 − ρ)−

2ρβ
log

(
logn

2β

)]1/ρ

and ϕ2
n = O

[(
logn

2β

)(1−2a)/ρ]
. (8.17)

• If for j = 1, . . . ,m, ∂(fθwθ )/∂θj |θ=θ0 , ∂wθ/∂θj |θ=θ0 and ∂(f 2
θ wθ )/∂θj |θ=θ0 satisfy (R1) with r > 0 and

{r > ρ} or {r = ρ and b > β} or {r = ρ, b = β and a ≥ α + 1/2} then∣∣∣∣E[
∂Sn,1(θ)

∂θj

∣∣∣∣
θ=θ0

]∣∣∣∣2

≤ Cb2

(
E

(
f 2

θ0(X)
)
, σ 2

ξ,2,L
(
f

(1)

θ0 wθ0

)
,L

(
fθ0f

(1)

θ0 wθ0

))
C

−2a+(1−r)+(1−r)−
n exp{−2bCr

n},

and

Var

(
∂Sn,1(θ)

∂θj

∣∣∣∣
θ=θ0

)
≤ Cv2

(
E

(
f 2

θ0(X)
)
, σ 2

ξ,2,L
(
f

(1)

θ0 wθ0

)
,L

(
fθ0f

(1)

θ0 wθ0

))
/n.

It follows that

C∗
n =

[
logn

2b
+ −2a + (1 − r) + (1 − r)−

2br
log

(
logn

2b

)]1/r

and ϕ2
n = O

(
n−1). (8.18)

• If for j = 1, . . . ,m, ∂(fθwθ )/∂θj |θ=θ0 , ∂wθ/∂θj |θ=θ0 and ∂(f 2
θ wθ )/∂θj |θ=θ0 satisfy (R1) with r > 0 and r ≤ ρ

or r = ρ and b < β then∣∣∣∣E[
∂Sn,1(θ)

∂θj

∣∣∣∣
θ=θ0

]∣∣∣∣2

≤ Cb

(
E

(
f 2

θ0(X)
)
, σ 2

ξ,2,L
(
f

(1)

θ0 wθ0

)
,L

(
fθ0f

(1)

θ0 wθ0

))
C

−2a+(1−r)+(1−r)−
n exp

{−2bCr
n

}
and

Var

(
∂Sn,1(θ)

∂θj

∣∣∣∣
θ=θ0

)
≤ Cv2

(
E

(
f 2

θ0(X)
)
, σ 2

ξ,2,L
(
f

(1)

θ0 wθ0

)
,L

(
fθ0f

(1)

θ0 wθ0

))
× C

2α−2a+(1−ρ)+(1−ρ)−
n exp

{−2bCr
n + 2βCρ

n

}
/n.

It follows that the bias is by a logarithmic factor larger than the variance and

C∗
n =

[
logn

2β
− 2α + (1 − ρ)− − (1 − r)−

2ρβ
log

(
logn

2β

)]1/ρ

and

ϕ2
n = O

[
(logn)(−2a+(1−r)+(1−r)−)/ρ exp

{
−2b

(
logn

2β

)r/ρ}]
.

If r = ρ, b = β and a < α + 1/2 then

Var

(
∂Sn,1(θ)

∂θj

∣∣∣∣
θ=θ0

)
≤ Cv2

(
E

(
f 2

θ0(X)
)
, σ 2

ξ,2,L
(
f

(1)

θ0 wθ0

)
,L

(
fθ0f

(1)

θ0 wθ0

))C2α−2a+1
n

n
.

The resulting rate is thus ϕ2
n = O[(logn)(2α−2a+1)/r/n]. �

Proof of (ii). By using that

(
S

(2)
n,1(θ)

)
j,k

= −2

n

n∑
i=1

(
−2Yi

∂2(fθwθ )

∂θj ∂θk

+ ∂2(f 2
θ wθ )

∂θj ∂θk

+ (
Y 2

i − σ 2
ξ,2

) ∂2wθ

∂θj ∂θk

)∣∣∣∣
θ=θ0

	 Kn,Cn(Zi), (8.19)
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we write S
(2)
n,1(θ

0) − S
(2)

θ0,g
(θ0) = A0 + A1 + A2 + A3 with

A0 = E
(
S

(2)
n,1

(
θ0)) − S

(2)

θ0,g

(
θ0),

A1 = −2

n

n∑
i=1

Yi

(
∂2(fθwθ )

∂θj ∂θk

∣∣∣∣
θ=θ0

)
	 Kn,Cn(Zi) − E

[
Yi

(
∂2(fθwθ )

∂θj ∂θk

(X)

∣∣∣∣
θ=θ0

)]
,

A2 = 1

n

n∑
i=1

(
∂2(f 2

θ wθ )

∂θj ∂θk

∣∣∣∣
θ=θ0

)
	 Kn,Cn(Zi) − E

[(
∂2(f 2

θ wθ )

∂θj ∂θk

(X)

∣∣∣∣
θ=θ0

)]
,

A3 = 1

n

n∑
i=1

(
Y 2

i − σ 2
ξ,2

)( ∂2wθ

∂θj ∂θk

∣∣∣∣
θ=θ0

)
	 Kn,Cn(Zi) − E

[(
Y 2

i − σ 2
ξ,2

)( ∂2wθ

∂θj ∂θk

(X)

∣∣∣∣
θ=θ0

)]
.

As soon as wθfθ and wθf
2
θ and their derivatives up to order 2, satisfy (R1), then for Cn satisfying that (3.7), we get

that A0 = o(1) and Aj = op(1) as n → ∞ for j = 1, . . . ,3, and (ii) is proved. �

Proof of (iii). Again using (8.19), the smoothness properties of the derivatives of wθfθ and wθf
2
θ up to order 3 and

the consistency of θ̂1, we get that ‖Rn,1‖
2 = op(1) as n → ∞. �

Proof of (iv). Let us introduce the random event En = ⋂
j,k En,j,k, where

En,j,k =
{
ω such that

∣∣∣∣∂2Sθ0,g(θ)

∂θj ∂θk

∣∣∣∣
θ=θ0

− ∂2Sn,1(θ,ω)

∂θj ∂θk

∣∣∣∣
θ=θ0

+ (Rn,1)j,k(ω)

∣∣∣∣ ≤ 1

2

∂2Sθ0,g(θ)

∂θj ∂θk

∣∣∣∣
θ=θ0

}
.

According to (8.10) and (8.9), we have

E
∥∥θ̂1 − θ0

∥∥2

2 = E

[∥∥θ̂1 − θ0
∥∥2


21En

] + E
[∥∥θ̂1 − θ0

∥∥2

21Ec

n

]
≤ E

[∥∥θ̂1 − θ0
∥∥2


21En

] + 2 sup
θ∈Θ

‖θ‖2

2Pθ0,g

(
Ec

n

)
≤ E

[(
S

(1)
n,1(θ

0)
)	[(

S
(2)
n,1(θ

0) + Rn,1
)−1]	(

S
(2)
n,1

(
θ0) + Rn,1

)−1
S

(1)
n,1

(
θ0)1En

]
+ 2 sup

θ∈Θ

‖θ‖2

2Pθ0,g

(
Ec

n

)
≤ C42m2

sup
j,k

∣∣∣∣∂2Sθ0,g(θ)

∂θj ∂θk

∣∣∣∣
θ=θ0

∣∣∣∣−2

E
[(

S
(1)
n,1

(
θ0))	

S
(1)
n,1

(
θ0)] + 2 sup

θ∈Θ

‖θ‖2

2Pθ0,g

(
Ec

n

)
≤ C42m2

sup
j,k

∣∣∣∣∂2Sθ0,g(θ)

∂θj ∂θk

∣∣∣∣
θ=θ0

∣∣∣∣−2

ϕ2
n + 2 sup

θ∈Θ

‖θ‖2

2Pθ0,g

(
Ec

n

)
.

It remains thus to show that Pθ0,g(E
c
n) = o(ϕ2

n) with

sup
j,k

E

[(
∂2(Sn,1(θ) − Sθ0,g(θ))

∂θj ∂θk

∣∣∣∣
θ=θ0

)2]
≤ ϕ2

n.

By Markov’s inequality, for a p > 2,

Pθ0,g(E
c
n) ≤

m∑
j=1

m∑
k=1

Pθ0,g

(
Ec

n,j,k

)
,
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with

Pθ0,g

(
Ec

n,j,k

) ≤ E

[∣∣∣∣(∂2(Sθ0,g(θ) − Sn,1(θ))

∂θj ∂θk

∣∣∣∣
θ=θ0

)
+ (Rn,1)j,k

∣∣∣∣p]

≤ 2p−1
∣∣∣∣(∂2Sθ0,g(θ)

∂θj ∂θk

∣∣∣∣
θ=θ0

)
− E

[(
∂2Sn,1(θ)

∂θj ∂θk

∣∣∣∣
θ=θ0

)]∣∣∣∣p
+ 2p−1

E

[∣∣∣∣E(
∂2Sn,1(θ)

∂θj ∂θk

∣∣∣∣
θ=θ0

)
−

(
∂2Sn,1(θ)

∂θj ∂θk

∣∣∣∣
θ=θ0

)
+ (Rn,1)j,k

∣∣∣∣p]
.

In other words,

Pθ0,g

(
Ec

n,j,k

) ≤ 2p−1
∣∣∣∣(∂2Sθ0,g(θ)

∂θj ∂θk

∣∣∣∣
θ=θ0

)
− E

[(
∂2Sn,1(θ)

∂θj ∂θk

∣∣∣∣
θ=θ0

)]∣∣∣∣p
+ 22p−2

{
E

[∣∣∣∣E(
∂2Sn,1(θ)

∂θj ∂θk

∣∣∣∣
θ=θ0

)
−

(
∂2Sn,1(θ)

∂θj ∂θk

∣∣∣∣
θ=θ0

)∣∣∣∣p]
+ 22p−2

E
∣∣(Rn,1)j,k

∣∣p}
.

Now we apply the Rosenthal’s inequality to the sum of centered variables(
∂2Sn,1(θ)

∂θj ∂θk

∣∣∣∣
θ=θ0

)
− E

[(
∂2Sn,1(θ)

∂θj ∂θk

∣∣∣∣
θ=θ0

)]
= n−1

n∑
i=1

Wn,i,j,k,

where Wn,i,j,k equals(
∂2[−2Yifθwθ + f 2

θ wθ + (Y 2
i − σ 2

ξ,2)wθ ]
∂θj ∂θk

∣∣∣∣
θ=θ0

)
	 Kn,Cn(Zi)

− 2E

[(
∂2[−2Yifθwθ + f 2

θ wθ + (Y 2
i − σ 2

ξ,2)wθ ]
∂θj ∂θk

∣∣∣∣
θ=θ0

)
	 Kn,Cn(Zi)

]
.

Lemma 8.1 (Rosenthal’s inequality [27]). For U1, . . . ,Un, be n independent centered random variables, there exists
a constant C(p) such that for p ≥ 1,

E

[∣∣∣∣∣
n∑

i=1

Ui

∣∣∣∣∣
p]

≤ C(p)

[
n∑

i=1

E
[|Ui |p

] +
(

n∑
i=1

E
[
U2

i

])p/2]
. (8.20)

Consequently,

E

[∣∣∣∣(∂2Sn,1(θ)

∂θj ∂θk

∣∣∣∣
θ=θ0

)
− E

((
∂2Sn,1(θ)

∂θj ∂θk

∣∣∣∣
θ=θ0

))∣∣∣∣p]
≤ C(p)

[
n1−p

E|Wn,1,j,k|p + n−p/2
E

p/2|Wn,1,j,k|2
]
.

Take p = 4 to get that

E

[∣∣∣∣(∂2Sn,1(θ)

∂θj ∂θk

∣∣∣∣
θ=θ0

)
− E

((
∂2Sn,1(θ)

∂θj ∂θk

∣∣∣∣
θ=θ0

))∣∣∣∣4]
≤ C(4)

[
n−3

E|Wn,1|4 + n−2
E

2|Wn,1|2
]
.

Therefore, under the conditions ensuring that (E[S(2)

θ0,g
(θ0) − S

(2)
n,1(θ

0)]2)j,k = o(1), we have

(
E

[
S

(2)
n,1

(
θ0) − S

(2)

θ0,g

(
θ0)]4)

j,k
= O

(
ϕ4

n

) = o
(
ϕ2

n

)
.
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Now, by using the definition of Rn,1 combined with (8.19) and the smoothness properties of the derivatives of (wθfθ )

and (wθf
2
θ ) up to order 3, we get that E((Rn,1)

4
j,k) = o(‖θ̂1 − θ0‖4


2), and we conclude that

E
∥∥θ̂1 − θ0

∥∥2

2 ≤ 4E

[(
S

(1)
n,1

(
θ0))	[(

S
(2)

θ0,g

(
θ0))−1]	(

S
(2)

θ0,g

(
θ0))−1

S
(1)
n,1

(
θ0)]

+ o
(
ϕ2

n

) + o
(
E

[∥∥θ̂1 − θ0
∥∥4


2

])
. �

8.3. Proof of Theorem 6.2

The proof of Theorem 6.2 follows from Theorem 6.1 from the conditions (C8)–(C10) and from the central limit
theorem with the Lindeberg condition (see, for instance, [4]). The main point of the proof lies in the proof
of

√
nS

(1)
n,1

(
θ0) L→

n→∞ N (0,�0,1), (8.21)

where �0,1 is defined in Theorem 6.2. We start by writing that

√
nS

(1)
n,1

(
θ0) = √

n
[
S

(1)
n,1

(
θ0) − S

(1)

θ0,g

(
θ0)]

= √
n
[
S

(1)
n,1

(
θ0) − E

(
S

(1)
n,1

(
θ0))] + √

n
[
E

(
S

(1)
n,1

(
θ0)) − S

(1)

θ0,g

(
θ0)]

=
n∑

i=1

Vn,i√
n

+ √
n
[
E

(
S

(1)
n,1

(
θ0)) − S

(1)

θ0,g

(
θ0)].

where

Vn,i = ∂[((Yi − fθ )
2 − σ 2

ξ,2)wθ ]
∂θ

∣∣∣∣
θ=θ0

	 Kn,Cn(Zi) − E

(
∂[((Yi − fθ )

2 − σ 2
ξ,2)wθ ]

∂θ

∣∣∣∣
θ=θ0

	 Kn,Cn(Zi)

)
.

The proof of (8.21) follows from the three points

(A-1) n−1 ∑n
i=1 Vn,iV

	
n,i

P→
n→∞ �̃0,1;

(A-2) For all ε > 0, n−1 ∑n
i=1 Vn,iV

	
n,i1‖Vn,i‖
2 >ε

√
n

P→
n→∞ 0;

(A-3)
√

n[E(S̃
(1)
n,1(θ

0)) − S
(1)

θ0,g
(θ0)] →

n→∞ 0.

Proof of (A-1). The conditions (C8)–(C10) ensure that Vn,j = O(1) for j = 1, . . . , d . Hence, (A-1) is checked. �

Proof of (A-2). It suffices to prove that for all ε > 0 and for all j = 1, . . . , d ,

E

[
n−1

n∑
i=1

(Vn,i,j )
21|Vn,i,j |>ε

√
n

]
= o(1),

where Vn,i,j is the j th coordinate of the vector Vn,i . Now (A-2) is checked by writing that under (A5) and
(C8)–(C10),

n−1
n∑

i=1

E
[
(Vn,i,j )

21|Vn,i,j |>ε
√

n

] ≤ 1

n
√

nε

n∑
i=1

E|Vn,i,j |3

≤ 1√
nε

× O(1). �
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Proof of (A-3). Conditions (C8)–(C10) ensure that for all Cn the variance term Vn,j = O(1) for j = 1, . . . , d . Hence,
it is possible to choose Cn such that (A-3) is checked. �

8.4. Proof of Theorem 6.3

As for the proof of Theorem 6.1, the main point of the proof consists in showing that for any θ ∈ Θ , E[(Sn,2(θ) −
Sθ0,g(θ))2] = o(1), with Sθ0,g(θ) admitting a unique minimum in θ = θ0. The second part of the proof consists in
studying ω1(n,ρ) defined as ω1(n,ρ) = sup{|Sn,2(θ) − Sn,2(θ

′)|: ‖θ − θ ′‖2 ≤ ρ}. By using the regularity assump-
tions on the regression function f , we state that there exists two sequences ρk and εk tending to 0, such that for
all k ∈ N,

lim
n→∞P

[
ω1(n,ρk) > εk

] = 0 and that E
[(

ω1(n,ρk)
)2] = O

(
ρ2

k

)
. (8.22)

Under the conditions (C11)-(C13) and by applying the law of large numbers, we get that for any θ ∈ Θ , E[(Sn,2(θ) −
Sθ0,g(θ))2] = o(1) as n → ∞ and E[(Sn,2(θ)−Sn,2(θ

′))2] = o(1) and consequently, θ̂2 is a consistent estimator of θ0.
By using classical Taylor expansion based on the smoothness properties of the regression function, with respect to θ

and the consistency of θ̂2, we get that 0 = S
(1)
n,2(θ̂1) = S

(1)
n,2(θ

0)+S
(2)
n,2(θ

0)(θ̂2 − θ0)+Rn,2(θ̂2 − θ0), with Rn,2 defined
by

Rn,2 =
∫ 1

0

[
S

(2)
n,2

(
θ0 + s

(
θ̂2 − θ0))θ̂ − S

(2)
n,2

(
θ0)]ds. (8.23)

This implies that θ̂2 − θ0 = −[S(2)
n,2(θ

0) + Rn,2]−1S
(1)
n,2(θ

0). The
√

n-consistency and the asymptotic normality follow

by applying the central limit theorem with the Lindeberg condition to S
(1)
n,2(θ

0) to get that
√

nS
(1)
n,2(θ

0)
L→

n→∞ N (0,

�0,2).

Appendix: Technical lemmas

Lemma A.1. Let ϕ a function such that ϕ belongs to L2(R) satisfying (R1). Then∫
|u|≥Cn

∣∣ϕ∗(u)
∣∣du ≤ L(ϕ)

R(a, b, r)
C−a+1−r

n exp
{−bCr

n

}
. (A.1)

Furthermore, if pε satisfies (N2), then∫
|u|≤Cn

|ϕ∗(u)|
|p∗

ε (u)| du ≤ L(ϕ)

R(α,β,ρ, a, b, r)C(pε)
max

[
1,Cα−a+1−ρ

n exp
{−bCr

n + βCρ
n

}]
.

Lemma A.2. Let ϕ such that E(|ϕ(Y,X)|) is finite and let Φ such that E(|Φ(U)|) is finite. Then

E
[
ϕ(Y,X)Φ 	 Kn,Cn(U)

] = E
[
ϕ(Y,X)Φ 	 KCn(X)

] = 〈
ϕ(y, ·)fY,X(y, ·),Φ 	 KCn

〉
and

E
[
ϕ(Y,X)Φ 	 Kn,Cn(U)

]2 =
∫ 〈(

ϕ(x, ·)fY,X(x, ·)) 	 fε, (Φ 	 Kn,Cn)
2〉dx.

Proof. If we denote by fY,Z,X the joint distribution of (Y,Z,X), then

fY,Z,X(y, z, x) = fY,X(y, x)fε(z − x) and fY,Z(y, z) = fY,X(y, ·) 	 fε(z).
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By construction Kn,Cn 	 pε = KCn , and hence Parseval’s formula

E
[
ϕ(Y,X)Φ 	 Kn,Cn(Z)

] =
∫ ∫

ϕ(y, x)fY,X(y, x)

∫
Φ 	 Kn,Cn(z)fε(z − x)dzdy dx

= (2π)−1
∫ ∫

ϕ(y, x)fY,X(y, x)

∫
Φ∗(u)

K∗
Cn

(u)

f ∗
ε (u)

f ∗
ε (u)e−iux dudy dx

=
∫ ∫

ϕ(y, x)fY,X(y, x)

∫
Φ(z)KCn(x − z)dzdy dx.

The second equality follows by writing that

E
[
ϕ(Y,X)Φ 	 Kn,Cn(Z)

]2 =
∫ ∫ ∫

ϕ(y, x)
(
Φ 	 Kn,Cn(z)

)2
fY,X(y, x)fε(z − x)dy dzdx

=
∫ ∫ ∫

ϕ(y, x)
(
Φ 	 Kn,Cn(z)

)2
fY,X(y, x)fε(z − x)dy dzdx

=
∫ 〈(

ϕ(y, ·)fY,X(y, ·)) 	 fε, (Φ 	 Kn,Cn)
2〉dy. �
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