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Abstract

In this paper a new estimator for the transition density π of an homogeneous Markov chain is considered. We introduce an
original contrast derived from regression framework and we use a model selection method to estimate π under mild conditions.

The resulting estimate is adaptive with an optimal rate of convergence over a large range of anisotropic Besov spaces B
(α1,α2)
2,∞ .

Some simulations are also presented.
© 2006 Elsevier Masson SAS. All rights reserved.

Résumé

Dans cet article, on considère un nouvel estimateur de la densité de transition π d’une chaîne de Markov homogène. Pour cela,
on introduit un contraste original issu de la théorie de la régression et on utilise une méthode de sélection de modèles pour estimer π

sous des conditions peu restrictives. L’estimateur obtenu est adaptatif et la vitesse de convergence est optimale pour une importante

classe d’espaces de Besov anisotropes B
(α1,α2)
2,∞ . On présente également des simulations.

© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

We consider (Xi) a homogeneous Markov chain. The purpose of this paper is to estimate the transition density
of such a chain. This quantity allows to comprehend the form of dependence between variables and is defined by
π(x, y)dy = P(Xi+1 ∈ dy | Xi = x). It enables also to compute other quantities, like E[F(Xi+1) | Xi = x] for
example. As many authors, we choose for this a nonparametric approach. Roussas [25] first studies an estimator of the
transition density of a Markov chain. He proves the consistency and the asymptotic normality of a kernel estimator for
chains satisfying a strong condition known as Doeblin’s hypothesis. In Bosq [9], an estimator by projection is studied
in a mixing framework and the consistence is also proved. Basu and Sahoo [5] establish a Berry–Essen inequality
for a kernel estimator under an assumption introduced by Rosenblatt, weaker than the Doeblin’s hypothesis. Athreya
and Atuncar [2] improve the result of Roussas since they only need the Harris recurrence of the Markov chain. Other
authors are interested in the estimation of the transition density in the non-stationary case: Doukhan and Ghindès [16]
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bound the integrated risk for any initial distribution. In [18], recursive estimators for a non-stationary Markov chain
are described. More recently, Clemençon [11] computes the lower bound of the minimax Lp risk and describes a
quotient estimator using wavelets. Lacour [20] finds an estimator by projection with model selection that reaches the
optimal rate of convergence.

All these authors have estimated π by observing that π = g/f where g is the density of (Xi,Xi+1) and f the
stationary density. If ĝ and f̂ are estimators of g and f , then an estimator of π can be obtained by writing π̂ = ĝ/f̂ .
But this method has the drawback that the resulting rate of convergence depends on the regularity of f . And the
stationary density f can be less regular than the transition density.

The aim here is to find an estimator π̃ of π from the observations X1, . . . ,Xn+1 such that the order of the L2 risk
depends only on the regularity of π and is optimal.

Clémençon [11] introduces an estimation procedure based on an analogy with the regression framework using the
thresholding of wavelets coefficients for regular Markov chains. We propose in this paper an other method based on
regression, which improves the rate and has the advantage to be really computable. Indeed, this method allows to
reach the optimal rate of convergence, without the logarithmic loss obtained by Clémençon [11] and can be applied
to β-mixing Markov chains (the notion of “regular” Markov chains in [11] is equivalent to �-mixing and is then a
stronger assumption). We use model selection via penalization as described in [4] with a new contrast inspired by the
classical regression contrast. To deal with the dependence we use auxiliary variables X∗

i as in [27]. But contrary to
most cases in such estimation procedure, our penalty does not contain any mixing term and is entirely computable.

In addition, we consider transition densities belonging to anisotropic Besov spaces, i.e. with different regulari-
ties with respect to the two directions. Our projection spaces (piecewise polynomials, trigonometric polynomials or
wavelets) have different dimensions in the two directions and the procedure selects automatically both well fitted
dimensions. A lower bound for the rate of convergence on anisotropic Besov balls is proved, which shows that our
estimation procedure is optimal in a minimax sense.

The paper is organized as follows. First, we present the assumptions on the Markov chain and on the collections
of models. We also give examples of chains and models. Section 3 is devoted to estimation procedure and the link
with classical regression. The bound on the empirical risk is established in Section 4 and the L2 control is studied in
Section 5. We compute both upper bound and lower bound for the mean integrated squared error. In Section 6, some
simulation results are given. The proofs are gathered in the last section.

2. Assumptions

2.1. Assumptions on the Markov chain

We consider an irreducible Markov chain (Xn) taking its values in the real line R. We suppose that (Xn) is positive
recurrent, i.e. it admits a stationary probability measure μ (for more details, we refer to [21]). We assume that the
distribution μ has a density f with respect to the Lebesgue measure and that the transition kernel P(x,A) = P(Xi+1 ∈
A|Xi = x) has also a density, denoted by π . Since the number of observations is finite, π is estimated on a compact
set A = A1 × A2 only. More precisely, the Markov process is supposed to satisfy the following assumptions:

A1. (Xn) is irreducible and positive recurrent.
A2. The distribution of X0 is equal to μ , thus the chain is (strictly) stationary.
A3. The transition density π is bounded on A, i.e. ‖π‖∞ := sup(x,y)∈A |π(x, y)| < ∞.
A4. The stationary density f verifies ‖f ‖∞ := supx∈A1

|f (x)| < ∞ and there exists a positive real f0 such that, for
all x in A1, f (x) � f0.

A5. The chain is geometrically β-mixing (βq � e−γ q ), or arithmetically β-mixing (βq � q−γ ).

Since (Xi) is a stationary Markov chain, the β-mixing is very explicit, the mixing coefficients can be written:

βq =
∫ ∥∥P q(x, ·) − μ

∥∥
TVf (x)dx (1)

where ‖ · ‖TV is the total variation norm (see [15]).
Notice that we distinguish the sets A1 and A2 in this work because the two directions x and y in π(x, y) do not

play the same role, but in practice A1 and A2 will be equal and identical or close to the value domain of the chain.
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2.2. Examples of chains

A lot of processes verify the previous assumptions, as (classical or more general) autoregressive processes, or
diffusions. Here we give a nonexhaustive list of such chains.

2.2.1. Diffusion processes
We consider the process (XiΔ)1�i�n where Δ > 0 is the observation step and (Xt )t�0 is defined by

dXt = b(Xt )dt + σ(Xt )dWt

where W is the standard Brownian motion, b is a locally bounded Borel function and σ an uniformly continuous
function. We suppose that the drift function b and the diffusion coefficient σ satisfy the following conditions, given
in [24] (Proposition 1):

(1) there exists λ−, λ+ such that ∀x �= 0, 0 < λ− < σ 2(x) < λ+,
(2) there exists M0 � 0, α > −1 and r > 0 such that

∀|x| � M0, xb(x) � −r|x|α+1.

Then, if X0 follows the stationary distribution, the discretized process (XiΔ)1�i�n satisfies Assumptions A1–A5.
Note that the mixing is geometrical as soon as α � 0. The continuity of the transition density ensures that Assump-
tion A3 holds. Moreover, we can write

f (x) = 1

Mσ 2(x)
exp

[
2

x∫
0

b(u)

σ 2(u)
du

]

with M such that
∫

f = 1. Consequently Assumption A4 is verified with

‖f ‖∞ � 1

Mλ−
exp

[
2

λ−
sup
x∈A1

x∫
0

b(u)du

]
and f0 � 1

Mλ+
exp

[
2

λ+
inf

x∈A1

x∫
0

b(u)du

]
.

2.2.2. Nonlinear AR(1) processes
Let us consider the following process

Xn = ϕ(Xn−1) + εXn−1,n

where εx,n has a positive density lx with respect to the Lebesgue measure, which does not depend on n. We suppose
that the following conditions are verified:

(1) There exist M > 0 and ρ < 1 such that, for all |x| > M , |ϕ(x)| < ρ|x| and sup|x|�M |ϕ(x)| < ∞.

(2) There exist l0 > 0, l1 > 0 such that ∀x, y l0 � lx(y) � l1.

Then Mokkadem [22] proves that the chain is Harris recurrent and geometrically ergodic. It implies that Assumptions
A1 and A5 are satisfied. Moreover π(x, y) = lx(y − ϕ(x)) and f (y) = ∫

f (x)π(x, y)dx and then Assumptions A3,
A4 hold with f0 � l0 and ‖f ‖∞ � ‖π‖∞ � l1.

2.2.3. ARX(1,1) models
The nonlinear process ARX(1,1) is defined by

Xn = F(Xn−1,Zn) + ξn

where F is bounded and (ξn), (Zn) are independent sequences of i.i.d. random variables with E|ξn| < ∞. We suppose
that the distribution of Zn has a positive density l with respect to the Lebesgue measure. Assume that there exist ρ < 1,
a locally bounded and measurable function h : R �→ R

+ such that Eh(Zn) < ∞ and positive constants M,c such that

∀∣∣(u, v)
∣∣ > M

∣∣F(u, v)
∣∣ < ρ|u| + h(v) − c and sup

∣∣F(x)
∣∣ < ∞.
|x|�M
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Then Doukhan [15] proves (p. 102) that (Xn) is a geometrically β-mixing process. We can write

π(x, y) =
∫

l(z)fξ

(
y − F(x, z)

)
dz

where fξ is the density of ξn. So, if we assume furthermore that there exist a0, a1 > 0 such that a0 � fξ � a1, then
Assumptions A3, A4 are verified with f0 � a0 and ‖f ‖∞ � ‖π‖∞ � a1.

2.2.4. ARCH processes
The model is

Xn+1 = F(Xn) + G(Xn)εn+1

where F and G are continuous functions and for all x, G(x) �= 0. We suppose that the distribution of εn has a positive
density l with respect to the Lebesgue measure and that there exists s � 1 such that E|εn|s < ∞. The chain (Xn)

satisfies Assumptions A1 and A5 if (see [1]):

lim sup
|x|→∞

|F(x)| + |G(x)|(E|εn|s)1/s

|x| < 1. (2)

In addition, we assume that ∀x l0 � l(x) � l1. Then Assumption A3 is verified with ‖π‖∞ � l1/ infx∈A1 G(x). And
Assumption A4 holds with f0 � l0

∫
f G−1 and ‖f ‖∞ � l1

∫
f G−1.

2.3. Assumptions on the models

In order to estimate π , we need to introduce a collection {Sm,m ∈ Mn} of spaces, that we call models. For each
m = (m1,m2), Sm is a space of functions with support in A defined from two spaces: Fm1 and Hm2 . Fm1 is a subspace
of (L2 ∩ L∞)(R) spanned by an orthonormal basis (ϕm

j )j∈Jm with |Jm| = Dm1 such that, for all j , the support of ϕm
j

is included in A1. In the same way Hm2 is a subspace of (L2 ∩ L∞)(R) spanned by an orthonormal basis (ψm
k )k∈Km

with |Km| = Dm2 such that, for all k, the support of ψm
k is included in A2. Here j and k are not necessarily integers,

it can be couples of integers as in the case of a piecewise polynomial space. Then, we define

Sm = Fm1 ⊗ Hm2 =
{
t, t (x, y) =

∑
j∈Jm

∑
k∈Km

am
j,kϕ

m
j (x)ψm

k (y)

}
.

The assumptions on the models are the following:

M1. For all m2, Dm2 � n1/3 and Dn := maxm∈Mn
Dm1 � n1/3.

M2. There exist positive reals φ1, φ2 such that, for all u in Fm1 , ‖u‖2∞ � φ1Dm1

∫
u2, and for all v in Hm2 ,

supx∈A2
|v(x)|2 � φ2Dm2

∫
v2. By letting φ0 = √

φ1φ2, that leads to

∀t ∈ Sm ‖t‖∞ � φ0
√

Dm1Dm2 ‖t‖ (3)

where ‖t‖2 = ∫
R2 t2(x, y)dx dy.

M3. Dm1 � Dm′
1
⇒ Fm1 ⊂ Fm′

1
and Dm2 � Dm′

2
⇒ Hm2 ⊂ Hm′

2
.

The first assumption guarantees that dimSm = Dm1Dm2 � n2/3 � n where n is the number of observations. The
condition M2 implies a useful link between the L2 norm and the infinite norm. The third assumption ensures that,
for m and m′ in Mn, Sm + Sm′ is included in a model (since Sm + Sm′ ⊂ Sm′′ with Dm′′

1
= max(Dm1,Dm′

1
) and

Dm′′
2
= max(Dm2 ,Dm′

2
)). We denote by S the space with maximal dimension among the (Sm)m∈Mn

. Thus for all m

in Mn, Sm ⊂ S .

2.4. Examples of models

We show here that Assumptions M1–M3 are not too restrictive. Indeed, they are verified for the spaces Fm1

(and Hm ) spanned by the following bases (see [4]):
2
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• Trigonometric basis: for A = [0,1], 〈ϕ0, . . . , ϕm1−1〉 with ϕ0 = 1[0,1], ϕ2j (x) = √
2 cos(2πjx) 1[0,1](x),

ϕ2j−1(x) = √
2 sin(2πjx)1[0,1](x) for j � 1. For this model Dm1 = m1 and φ1 = 2 hold.

• Histogram basis: for A = [0,1], 〈ϕ1, . . . , ϕ2m1 〉 with ϕj = 2m1/21[(j−1)/2m1 ,j/2m1 [ for j = 1, . . . ,2m1 . Here
Dm1 = 2m1 , φ1 = 1.

• Regular piecewise polynomial basis: for A = [0,1], polynomials of degree 0, . . . , r (where r is fixed) on each
interval [(l − 1)/2D, l/2D[, l = 1, . . . ,2D . In this case, m1 = (D, r), Jm = {j = (l, d), 1 � l � 2D,0 � d � r},
Dm1 = (r + 1)2D . We can put φ1 = √

r + 1.
• Regular wavelet basis: 〈Ψlk, l = −1, . . . ,m1, k ∈ Λ(l)〉 where Ψ−1,k points out the translates of the father wavelet

and Ψlk(x) = 2l/2Ψ (2lx − k) where Ψ is the mother wavelet. We assume that the support of the wavelets is
included in A1 and that Ψ−1 belongs to the Sobolev space Wr

2 .

3. Estimation procedure

3.1. Definition of the contrast

To estimate the function π , we define the contrast

γn(t) = 1

n

n∑
i=1

[∫
R

t2(Xi, y)dy − 2t (Xi,Xi+1)

]
. (4)

We choose this contrast because

Eγn(t) = ‖t − π‖2
f − ‖π‖2

f

where

‖t‖2
f =

∫
R2

t2(x, y)f (x)dx dy.

Therefore γn(t) is the empirical counterpart of the ‖ · ‖f -distance between t and f and the minimization of this
contrast comes down to minimize ‖t − π‖f . This contrast is new but is actually connected with the one used in
regression problems, as we will see in the next subsection.

We want to estimate π by minimizing this contrast on Sm. Let t (x, y) = ∑
j∈Jm

∑
k∈Km

aj,kϕ
m
j (x)ψm

k (y) a func-
tion in Sm. Then, if Am denotes the matrix (aj,k)j∈Jm,k∈Km ,

∀j0 ∀k0
∂γn(t)

∂aj0,k0

= 0 ⇔ GmAm = Zm,

where⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Gm =
(

1

n

n∑
i=1

ϕm
j (Xi)ϕ

m
l (Xi)

)
j,l∈Jm

,

Zm =
(

1

n

n∑
i=1

ϕm
j (Xi)ψ

m
k (Xi+1)

)
j∈Jm, k∈Km

.

Indeed,

∂γn(t)

∂aj0,k0

= 0 ⇔
∑
j∈Jm

aj,k0

1

n

n∑
i=1

ϕm
j (Xi)ϕ

m
j0

(Xi) = 1

n

n∑
i=1

ϕm
j0

(Xi)ψ
m
k0

(Xi+1). (5)

We cannot define a unique minimizer of the contrast γn(t), since Gm is not necessarily invertible. For example,
Gm is not invertible if there exists j0 in Jm such that there is no observation in the support of ϕj0 (Gm has a null
column). This phenomenon happens when localized bases (as histogram bases or piecewise polynomial bases) are
used. However, the following proposition will enable us to define an estimator:
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Proposition 1.

∀j0 ∀k0
∂γn(t)

∂aj0,k0

= 0 ⇔ ∀y
(
t (Xi, y)

)
1�i�n

= PW

((∑
k

ψm
k (Xi+1)ψ

m
k (y)

)
1�i�n

)

where PW denotes the orthogonal projection on W = {(t (Xi, y))1�i�n, t ∈ Sm}.

Thus the minimization of γn(t) leads to a unique vector (π̂m(Xi, y))1�i�n defined as the projection of
(
∑

k ψk(Xi+1)ψk(y))1�i�n on W . The associated function π̂m(· , ·) is not defined uniquely but we can choose a
function π̂m in Sm whose values at (Xi, y) are fixed according to Proposition 1. For the sake of simplicity, we denote

π̂m = arg min
t∈Sm

γn(t).

This underlying function is more a theoretical tool and the estimator is actually the vector (π̂m(Xi, y))1�i�n. This
remark leads to consider the risk defined with the empirical norm

‖t‖n =
(

1

n

n∑
i=1

∫
R

t2(Xi, y)dy

)1/2

. (6)

This norm is the natural distance in this problem and we can notice that if t is deterministic with support included in
A1 × R

f0‖t‖2 � E‖t‖2
n = ‖t‖2

f � ‖f ‖∞‖t‖2

and then the mean of this empirical norm is equivalent to the L2 norm ‖ · ‖.

3.2. Link with classical regression

Let us fix k in Km and let

Yi,k = ψm
k (Xi+1) for i ∈ {1, . . . , n},

tk(x) =
∫

t (x, y)ψm
k (y)dy for all t in L2(

R
2).

Actually, Yi,k and tk depend on m but we do not mention this for the sake of simplicity. For the same reason, we
denote in this subsection ψm

k by ψk and ϕm
j by ϕj . Then, if t belongs to Sm,

t (x, y) =
∑
j∈Jm

∑
k∈Km

(∫
t (x′, y′)ϕj (x

′)ψk(y
′)dx′dy′

)
ϕj (x)ψk(y)

=
∑

k∈Km

∑
j∈Jm

(∫
tk(x

′)ϕj (x
′)dx′

)
ϕj (x)ψk(y) =

∑
k∈Km

tk(x)ψk(y)

and then, by replacing this expression of t in γn(t), we obtain

γn(t) = 1

n

n∑
i=1

[∫ ∑
k,k′

tk(Xi)tk′(Xi)ψk(y)ψk′(y)dy − 2
∑

k

tk(Xi)ψk(Xi+1)

]

= 1

n

n∑
i=1

∑
k∈Km

[
t2
k (Xi) − 2tk(Xi)Yi,k

] = 1

n

n∑
i=1

∑
k∈Km

[
tk(Xi) − Yi,k

]2 − Y 2
i,k.

Consequently

min
t∈Sm

γn(t) =
∑

min
tk∈Fm1

1

n

n∑[
tk(Xi) − Yi,k

]2 − Y 2
i,k.
k∈Km i=1
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We recognize, for all k, the least squares contrast, which is used in regression problems. Here the regression
function is πk = ∫

π(· , y)ψk(y)dy which verifies

Yi,k = πk(Xi) + εi,k (7)

where

εi,k = ψk(Xi+1) − E
[
ψk(Xi+1)|Xi

]
. (8)

The estimator π̂m can be written as
∑

k∈Km
π̂k(x)ψk(y) where π̂k is the classical least squares estimator for the

regression model (7) (as previously, only the vector (π̂k(Xi))1�i�n is uniquely defined).
This regression model is used in Clémençon [11] to estimate the transition density. In the same manner, we could

use here the contrast γ
(k)
n (t) = 1

n

∑n
i=1[ψk(Xi+1)− t (Xi)]2 to take advantage of analogy with regression. This method

allows to have a good estimation of the projection of π on some Sm by estimating first each πk , but does not provide
an adaptive method. Model selection requires a more global contrast, as described in (4).

3.3. Definition of the estimator

We have then an estimator of π for all Sm. Let now

m̂ = arg min
m∈Mn

{
γn(π̂m) + pen(m)

}
where pen is a penalty function to be specified later. Then we can define π̃ = π̂m̂ and compute the empirical mean
integrated squared error E‖π − π̃‖2

n where ‖ · ‖n is the empirical norm defined in (6).

4. Calculation of the risk

For a function h and a subspace S, let

d(h,S) = inf
g∈S

‖h − g‖ = inf
g∈S

(∫∫ ∣∣h(x, y) − g(x, y)
∣∣2 dx dy

)1/2

.

With an inequality of Talagrand [26], we can prove the following result.

Theorem 2. We consider a Markov chain satisfying Assumptions A1–A5 (with γ > 14 in the case of an arithmeti-
cal mixing). We consider π̃ the estimator of the transition density π described in Section 3 with models verifying
Assumptions M1–M3 and the following penalty:

pen(m) = K0‖π‖∞
Dm1Dm2

n
(9)

where K0 is a numerical constant. Then

E‖π1A − π̃‖2
n � C inf

m∈Mn

{
d2(π1A,Sm) + pen(m)

}+ C′

n

where C = max(5‖f ‖∞,6) and C′ is a constant depending on φ1, φ2,‖π‖∞, f0, ‖f ‖∞, γ .

The constant K0 in the penalty is purely numerical (we can choose K0 = 45). We observe that the term ‖π‖∞
appears in the penalty although it is unknown. Nevertheless it can be replaced by any bound of ‖π‖∞. Moreover, it
is possible to use ‖π̂‖∞ where π̂ is some estimator of π . This method of random penalty (specifically with infinite
norm) is successfully used in [7] and [12] for example, and can be applied here even if it means considering π regular
enough. This is proved in Appendix A.

It is relevant to notice that the penalty term does not contain any mixing term and is then entirely computable. It
is in fact related to martingale properties of the underlying empirical processes. The constant K0 is a fixed universal
numerical constant; for practical purposes, it is adjusted by simulations.

We are now interested in the rate of convergence of the risk. We consider that π restricted to A belongs to the
anisotropic Besov space on A with regularity α = (α1, α2). Note that if π belongs to Bα (R2), then π restricted to
2,∞
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A belongs to Bα
2,∞(A). Let us recall the definition of Bα

2,∞(A). Let e1 and e2 be the canonical basis vectors in R
2 and

for i = 1,2, Ar
h,i = {x ∈ R

2;x, x + hei, . . . , x + rhei ∈ A}. Next, for x in Ar
h,i , let

Δr
h,ig(x) =

r∑
k=0

(−1)r−k

(
r

k

)
g(x + khei)

the r th difference operator with step h. For t > 0, the directional moduli of smoothness are given by

ωri,i(g, t) = sup
|h|�t

( ∫
A

ri
h,i

∣∣Δri
h,ig(x)

∣∣2 dx

)1/2

.

We say that g is in the Besov space Bα
2,∞(A) if

sup
t>0

2∑
i=1

t−αi ωri ,i (g, t) < ∞

for ri integers larger than αi . The transition density π can thus have different smoothness properties with respect to
different directions. The procedure described here allows an adaptation of the approximation space to each directional
regularity. More precisely, if α2 > α1 for example, the estimator chooses a space of dimension Dm2 = D

α1/α2
m1 < Dm1

for the second direction, where π is more regular. We can thus write the following corollary.

Corollary 3. We suppose that π restricted to A belongs to the anisotropic Besov space Bα
2,∞(A) with regularity

α = (α1, α2) such that α1 − 2α2 + 2α1α2 > 0 and α2 − 2α1 + 2α1α2 > 0. We consider the spaces described in
Section 2.4 (with the regularity r of the polynomials and the wavelets larger than αi −1). Then, under the assumptions
of Theorem 2,

E‖π1A − π̃‖2
n = O

(
n− 2ᾱ

2ᾱ+2
)
.

where ᾱ is the harmonic mean of α1 and α2.

The harmonic mean of α1 and α2 is the real ᾱ such that 2/ᾱ = 1/α1 + 1/α2. Note that the condition α1 − 2α2 +
2α1α2 > 0 is ensured as soon as α1 � 1 and the condition α2 − 2α1 + 2α1α2 > 0 as soon as α2 � 1.

Thus we obtain the rate of convergence n− 2ᾱ
2ᾱ+2 , which is optimal in the minimax sense (see Section 5.3 for the

lower bound).

5. L2 control

5.1. Estimation procedure

Although the empirical norm is the more natural in this problem, we are interested in a L2 control of the risk. For
this, the estimation procedure must be modified. We truncate the previous estimator in the following way:

π̃∗ =
{

π̃ if ‖π̃‖ � kn,

0 else
(10)

with kn = n2/3.

5.2. Calculation of the L2 risk

We obtain in this framework a result similar to Theorem 2.

Theorem 4. We consider a Markov chain satisfying Assumptions A1–A5 (with γ > 20 in the case of an arithmetical
mixing). We consider π̃∗ the estimator of the transition density π described in Section 5.1. Then

E‖π̃∗ − π1A‖2 � C inf
{
d2(π1A,Sm) + pen(m)

}+ C′
m∈Mn n
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where C = max(36f −1
0 ‖f ‖∞ + 2,36f −1

0 ) and C′ is a constant depending on φ1, φ2,‖π‖∞,‖π‖, f0,‖f ‖∞, γ .

If π is regular, we can state the following corollary:

Corollary 5. We suppose that the restriction of π to A belongs to the anisotropic Besov space Bα
2,∞(A) with regularity

α = (α1, α2) such that α1 − 2α2 + 2α1α2 > 0 and α2 − 2α1 + 2α1α2 > 0. We consider the spaces described in
Section 2.4 (with the regularity r of the polynomials and the wavelets larger than αi −1). Then, under the assumptions
of Theorem 4,

E‖π1A − π̃∗‖2 = O
(
n− 2ᾱ

2ᾱ+2
)
.

where ᾱ is the harmonic mean of α1 and α2.

The same rate of convergence is then achieved with the L2 norm instead of the empirical norm. And the procedure
allows to adapt automatically the two dimensions of the projection spaces to the regularities α1 and α2 of the transition

density π . If α1 = 1 we recognize the rate n
− α2

3α2+1 established by Birgé [6] with metrical arguments. The optimality
is proved in the following subsection.

If α1 = α2 = α (“classical” Besov space), then ᾱ = α and our result is thus an improvement of the one of Clé-

mençon [11], whose procedure achieves only the rate (log(n)/n)
2α

2α+2 and allows to use only wavelets. We can observe
that in this case, the condition α1 − 2α2 + 2α1α2 > 0 is equivalent to α > 1/2 and so is verified if the function π is
regular enough.

Actually, in the case α1 = α2, an estimation with isotropic spaces (Dm1 = Dm2 ) is preferable. Indeed, in this
framework, the models are nested and so we can consider spaces with larger dimension (D2

m � n instead of D2
m �

n2/3). Then Corollary 3 is valid whatever α > 0. Moreover, for the arithmetic mixing, assumption γ > 6 is sufficient.

5.3. Lower bound

We denote by ‖ · ‖A the norm in L2(A), i.e. ‖g‖A = (
∫
A

|g|2)1/2. We set

B = {π transition density on R of a positive recurrent Markov chain such that ‖π‖Bα
2,∞(A) � L}

and Eπ the expectation corresponding to the distribution of X1, . . . ,Xn if the true transition density of the Markov
chain is π and the initial distribution is the stationary distribution.

Theorem 6. There exists a positive constant C such that, if n is large enough,

inf
π̂n

sup
π∈B

Eπ‖π̂n − π‖2
A � Cn− 2ᾱ

2ᾱ+2

where the infimum is taken over all estimators π̂n of π based on the observations X1, . . . ,Xn+1.

So the lower bound in [11] is generalized for the case α1 �= α2. It shows that our procedure reaches the optimal
minimax rate, whatever the regularity of π , without needing to know α.

6. Simulations

To evaluate the performance of our method, we simulate a Markov chain with a known transition density and then
we estimate this density and compare the two functions for different values of n. The estimation procedure is easy, we
can decompose it in some steps:

• find the coefficients matrix Am for each m = (m1,m2),
• compute γn(π̂m) = Tr(tAmGmAm − 2 tZmAm),
• find m̂ such that γn(π̂m) + pen(m) is minimum,
• compute π̂m̂.
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For the first step, we use two different kinds of bases: the histogram bases and the trigonometric bases, as described
in Section 2.4. We renormalize these bases so that they are defined on the estimation domain A instead of [0,1]2. For
the third step, we choose pen(m) = 0.5Dm1Dm2/n.

We consider three Markov chains:
• An autoregressive process defined by Xn+1 = aXn + b + εn+1, where the εn are i.i.d. centered Gaussian random
variables with variance σ 2. The stationary distribution of this process is a Gaussian with mean b/(1 − a) and with
variance σ 2/(1 − a2). The transition density is π(x, y) = ϕ(y − ax − b) where ϕ(z) = 1/(σ

√
2π) exp(−z2/2σ 2)

is the density of a standard Gaussian. Here we choose a = 0.5, b = 3, σ = 1 and we note this process AR(1). It is
estimated on [4,8]2.
• A discrete radial Ornstein–Uhlenbeck process, i.e. the Euclidean norm of a vector (ξ1, ξ2, ξ3) whose components
are i.i.d. processes satisfying, for j = 1,2,3, ξ

j

n+1 = aξ
j
n + βε

j
n where ε

j
n are i.i.d. standard Gaussian. This process is

studied in detail in [10]. Its transition density is

π(x, y) = 1y>0 exp

(
−y2 + a2x2

2β2

)
I1/2

(
axy

β2

)
y

β2

√
y

ax

where I1/2 is the Bessel function with index 1/2. The stationary density of this chain is

f (x) = 1x>0 exp
{−x2/2ρ2}2x2/

(
ρ3

√
2π

)
with ρ2 = β2/(1 − a2). We choose a = 0.5, β = 3 and we denote this process by

√
CIR since it is the square root of

a Cox–Ingersoll–Ross process. The estimation domain is [2,10]2.
• An ARCH process defined by Xn+1 = sin(Xn) + (cos(Xn) + 3)εn+1 where the εn+1 are i.i.d. standard Gaussian.
We verify that the condition (2) is satisfied. Here the transition density is

π(x, y) = ϕ

(
y − sin(x)

cos(x) + 3

)
1

cos(x) + 3

and we estimate this chain on [−6,6]2.
We can illustrate the results by some figures. Fig. 1 shows the surface z = π(x, y) and the estimated surface

z = π̃ (x, y). We use a histogram basis and we see that the procedure chooses different dimensions on the abscissa
and on the ordinate since the estimator is constant on rectangles instead of squares. Fig. 2 presents sections of this
kind of surfaces for the AR(1) process estimated with trigonometric bases. We can see the curves z = π(4.6, y) versus
z = π̃(4.6, y) and the curves z = π(x,5) versus z = π̃ (x,5). The second section shows that it may exist some edge
effects due to the mixed control of the two directions.

Fig. 1. Estimator (light surface) and true function (dark surface) for a
√

CIR process estimated with a histogram basis, n = 1000.
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x = 4.6 y = 5

Fig. 2. Sections for AR(1) process estimated with a trigonometric basis, n = 1000, dark line: true function, light line: estimator.

Table 1
Empirical risk E‖π − π̃‖2

n for simulated data with pen(m) = 0.5Dm1Dm2/n, averaged over N = 200 samples

Law n

50 100 250 500 1000 basis

AR(1) 0.067 0.055 0.043 0.038 0.033 H
0.096 0.081 0.063 0.054 0.045 T√

CIR 0.026 0.023 0.019 0.016 0.014 H
0.019 0.015 0.009 0.007 0.006 T

ARCH 0.031 0.027 0.016 0.015 0.014 H
0.020 0.012 0.008 0.007 0.007 T

H: histogram basis, T: trigonometric basis.

Table 2
L2 risk E‖π − π̃∗‖2 for simulated data with pen(m) = 0.5Dm1Dm2/n, averaged over N = 200 samples

Law n

50 100 250 500 1000 basis

AR(1) 0.242 0.189 0.132 0.109 0.085 H
0.438 0.357 0.253 0.213 0.180 T√

CIR 0.152 0.130 0.094 0.066 0.054 H
0.152 0.123 0.072 0.052 0.046 T

ARCH 0.367 0.303 0.168 0.156 0.144 H
0.249 0.137 0.096 0.092 0.090 T

H: histogram basis, T: trigonometric basis.

Table 3
L2(f (x)dx dy) risk E‖π − π̃∗‖2

f
for simulated data with pen(m) = 0.5Dm1Dm2/n, averaged over N = 200 samples

Law n

50 100 250 500 1000 basis

AR(1) 0.052 0.038 0.026 0.020 0.015 H
0.081 0.069 0.046 0.037 0.031 T√

CIR 0.016 0.014 0.010 0.006 0.004 H
0.018 0.012 0.008 0.006 0.004 T

H: histogram basis, T: trigonometric basis.
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For more precise results, empirical risk and L2 risk are given respectively in Tables 1 and 2.
We observe that the results are better when we consider the empirical norm. It was expectable, given that this norm

is adapted to the studied problem. Actually the better norm to evaluate the distance between π and its estimator is the
norm ‖ · ‖f . Table 3 shows that the errors in this case are very satisfactory.

So the results are roughly good but we cannot pretend that a basis among the others gives better results. We can
then imagine a mixed strategy, i.e. a procedure which uses several kinds of bases and which can choose the best basis.
These techniques are successfully used in a regression framework by Comte and Rozenholc [13,14].

7. Proofs

7.1. Proof of Proposition 1

Equality (5) yields, by multiplying by ψm
k0

(y),

∑
j∈Jm

aj,k0

n∑
i=1

ϕm
j (Xi)ψ

m
k0

(y)ϕm
j0

(Xi) =
n∑

i=1

ϕm
j0

(Xi)ψ
m
k0

(Xi+1)ψ
m
k0

(y).

Then, we sum over k0 in Km:

n∑
i=1

t (Xi, y)ϕm
j0

(Xi) =
n∑

i=1

∑
k0∈Km

ψm
k0

(Xi+1)ψ
m
k0

(y)ϕm
j0

(Xi).

If we multiply this equality by a′
j0,k

ψm
k (y) and if we sum over k ∈ Km and j0 ∈ Jm, we obtain

n∑
i=1

[
t (Xi, y) −

∑
k0∈Km

ψm
k0

(Xi+1)ψ
m
k0

(y)

] ∑
k∈Km

∑
j0∈Jm

a′
j0,k

ϕm
j0

(Xi)ψ
m
k (y) = 0

i.e.
n∑

i=1

[
t (Xi, y) −

∑
k0∈Km

ψm
k0

(Xi+1)ψ
m
k0

(y)

]
u(Xi, y) = 0

for all u in Sm. So the vector (t (Xi, y) − ∑
k∈Km

ψm
k (Xi+1)ψ

m
k (y))1�i�n is orthogonal to each vector in W . Since

t (Xi, y) belongs to W , the proposition is proved.

7.2. Proof of Theorem 2

For ρ a real larger than 1, let

Ωρ = {∀t ∈ S ‖t‖2
f � ρ‖t‖2

n

}
.

In the case of an arithmetical mixing, since γ > 14, there exists a real c such that⎧⎪⎨
⎪⎩

0 < c <
1

6
,

γ c >
7

3
.

We set in this case qn = 1
2�nc�. In the case of a geometrical mixing, we set qn = 1

2�c ln(n)� where c is a real larger
than 7/3γ .

For the sake of simplicity, we suppose that n = 4pnqn, with pn an integer. Let for i = 1, . . . , n/2, Ui =
(X2i−1,X2i ).
Let {

Al = (U2lqn+1, . . . ,U(2l+1)qn), l = 0, . . . , pn − 1,

B = (U , . . . ,U ), l = 0, . . . , p − 1.
l (2l+1)qn+1 (2l+2)qn n
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We use now the mixing assumption A5. As in Viennet [27] we can build a sequence (A∗
l ) such that⎧⎨

⎩
Al and A∗

l have the same distribution,

A∗
l and A∗

l′ are independent if l �= l′,
P (Al �= A∗

l ) � β2qn .

In the same way, we build (B∗
l ) and we define for any l ∈ {0, . . . , pn − 1},

A∗
l = (

U∗
2lqn+1, . . . ,U

∗
(2l+1)qn

)
, B∗

l = (
U∗

(2l+1)qn+1, . . . ,U
∗
(2l+2)qn

)
so that the sequence (U∗

1 , . . . ,U∗
n/2) and then the sequence (X∗

1, . . . ,X∗
n) are well defined.

Let now Vi = (X2i ,X2i+1) for i = 1, . . . , n/2 and{
Cl = (V2lqn+1, . . . , V(2l+1)qn), l = 0, . . . , pn − 1,

Dl = (V(2l+1)qn+1, . . . , V(2l+2)qn), l = 0, . . . , pn − 1.

We can build (V ∗∗
1 , . . . , V ∗∗

n/2) and then (X∗∗
2 , . . . ,X∗∗

n+1) such that⎧⎪⎨
⎪⎩

Cl and C∗∗
l have the same distribution,

C∗∗
l and C∗∗

l′ are independent if l �= l′,
P (Cl �= C∗∗

l ) � β2qn .

We put X∗
n+1 = Xn+1 and X∗∗

1 = X1. Now let

Ω∗ = {∀i Xi = X∗
i = X∗∗

i

}
and Ω∗

ρ = Ωρ ∩ Ω∗.

We denote by πm the orthogonal projection of π on Sm. Now,

E‖π̃ − π1A‖2
n = E

(‖π̃ − π1A‖2
n1Ω∗

ρ

)+ E
(‖π̃ − π1A‖2

n1Ω∗c
ρ

)
(11)

To bound the first term, we observe that for all s, t

γn(t) − γn(s) = ‖t − π‖2
n − ‖s − π‖2

n − 2Zn(t − s)

where

Zn(t) = 1

n

n∑
i=1

{
t (Xi,Xi+1) −

∫
R

t (Xi, y)π(Xi, y)dy

}
.

Since ‖t − π‖2
n = ‖t − π1A‖2

n + ‖π1Ac‖2
n, we can write

γn(t) − γn(s) = ‖t − π1A‖2
n − ‖s − π1A‖2

n − 2Zn(t − s).

The definition of m̂ gives, for some fixed m ∈ Mn,

γn(π̃) + pen(m̂) � γn(πm) + pen(m).

And then

‖π̃ − π1A‖2
n � ‖πm − π1A‖2

n + 2Zn(π̃ − πm) + pen(m) − pen(m̂)

� ‖πm − π1A‖2
n + 2‖π̃ − πm‖f sup

t∈Bf (m̂)

Zn(t) + pen(m) − pen(m̂)

where, for all m′, Bf (m′) = {t ∈ Sm + Sm′, ‖t‖f = 1}. Let θ a real larger than 2ρ and p(· , ·) a function such that
θp(m,m′) � pen(m) + pen(m′). Then

‖π̃ − π1A‖2
n1Ω∗

ρ
� ‖πm − π1A‖2

n + 1

θ
‖π̃ − πm‖2

f 1Ω∗
ρ

+ 2 pen(m)

+ θ
∑

m′∈Mn

[
sup

t∈Bf (m′)
Z2

n(t) − p(m,m′)
]
+1Ω∗

ρ
. (12)

But ‖π̃ − πm‖2 1Ω∗ � ρ‖π̃ − πm‖2
n1Ω∗ � 2ρ‖π̃ − π1A‖2

n1Ω∗ + 2ρ‖π1A − πm‖2
n.
f ρ ρ ρ
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Then, inequality (12) becomes

‖π̃ − π1A‖2
n1Ω∗

ρ

(
1 − 2ρ

θ

)
�

(
1 + 2ρ

θ

)
‖πm − π1A‖2

n + 2 pen(m)

+ θ
∑

m′∈Mn

[
sup

t∈Bf (m′)
Z2

n(t) − p(m,m′)
]
+1Ω∗

ρ

so

E
(‖π̃ − π1A‖2

n1Ω∗
ρ

)
� θ + 2ρ

θ − 2ρ
E‖π1A − πm‖2

n + 2θ

θ − 2ρ
pen(m)

+ θ2

θ − 2ρ

∑
m′∈Mn

E

([
sup

t∈Bf (m′)
Z2

n(t) − p(m,m′)
]
+1Ω∗

ρ

)
. (13)

We now use the following proposition:

Proposition 7. Let

p(m,m′) = 10‖π‖∞
D(m,m′)

n

where D(m,m′) denotes the dimension of Sm +Sm′ . Then, under the assumptions of Theorem 2, there exists a constant
C1 such that∑

m′∈Mn

E

([
sup

t∈Bf (m′)
Z2

n(t) − p(m,m′)
]
+1Ω∗

)
� C1

n
. (14)

Then, with θ = 3ρ, inequalities (13) and (14) yield

E
(‖π̃ − π1A‖2

n1Ω∗
ρ

)
� 5‖f ‖∞‖πm − π1A‖2 + 6 pen(m) + 9ρC1

n
. (15)

The penalty term pen(m) has to verify pen(m)+pen(m′) � 30ρ‖π‖∞D(m,m′)/n i.e. 30ρ‖π‖∞dim(Sm +Sm′) �
pen(m) + pen(m′). We choose ρ = 3/2 and so pen(m) = 45‖π‖∞Dm1Dm2/n.

To bound the second term in (11), we recall (see Section 3) that (π̂m̂(Xi, y))1�i�n is the orthogonal projection of
(
∑

k ψk(Xi+1)ψk(y))1�i�n on

W = {(
t (Xi, y)

)
1�i�n

, t ∈ Sm̂

}
where ψk = ψm̂

k . Thus, since PW denotes the orthogonal projection on W , using (7), (8)

(
π̂m̂(Xi, y)

)
1�i�n

= PW

((∑
k

ψk(Xi+1)ψk(y)

)
1�i�n

)

= PW

((∑
k

πk(Xi)ψk(y)

)
1�i�n

)
+ PW

((∑
k

εi,kψk(y)

)
1�i�n

)

= PW

(
π1A(Xi, y)

)
1�i�n

+ PW

((∑
k

εi,kψk(y)

)
1�i�n

)
.

We denote by ‖ · ‖Rn the Euclidean norm in R
n, by X the vector (Xi)1�i�n and by εk the vector (εi,k)1�i�n. Thus

‖π1A − π̂m̂‖2
n = 1

n

∫ ∥∥∥∥π1A(X,y) − PW

(
π1A(X,y)

)− PW

(∑
k

εkψk(y)

)∥∥∥∥
2

Rn

dy

= 1

n

∫ ∥∥π1A(X,y) − PW

(
π1A(X,y)

)∥∥2
Rn dy + 1

n

∫ ∥∥∥∥PW

(∑
εkψk(y)

)∥∥∥∥
2

Rn

dy
k
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� 1

n

∫ ∥∥π1A(X,y)
∥∥2

Rn dy + 1

n

∫ ∥∥∥∥∑
k

εkψk(y)

∥∥∥∥
2

Rn

dy

� 1

n

n∑
i=1

‖π‖∞
∫

π(Xi, y)dy + 1

n

n∑
i=1

∫ [∑
k

εi,kψk(y)

]2

dy

� ‖π‖∞ + 1

n

n∑
i=1

∑
k

ε2
i,k.

But Assumption M2 implies ‖∑k∈Km̂
ψ2

k ‖∞ � φ2Dm̂2 . So, using (8),

ε2
i,k � 2ψ2

k (Xi+1) + 2E
[
ψk(Xi+1)|Xi

]2

and ∑
k

ε2
i,k � 2

∑
k

ψ2
k (Xi+1) + 2E

[∑
k

ψ2
k (Xi+1)|Xi

]
� 4φ2Dm̂2 .

Thus we obtain

‖π1A − π̂m̂‖2
n � ‖π‖∞ + 4φ2Dm̂2 � ‖π‖∞ + 4φ2n

1/3 (16)

and, by taking the expectation, E(‖π1A − π̂m̂‖2
n1Ω∗c

ρ
) � (‖π‖∞ + 4φ2n

1/3)P (Ω∗c
ρ ).

We now remark that P(Ω∗c
ρ ) = P(Ω∗c) + P(Ωc

ρ ∩ Ω∗). In the geometric case β2qn � e−γ c ln(n) � n−γ c and in the
other case β2qn � (2qn)

−γ � n−γ c . Then

P(Ω∗c) � 4pnβ2qn � n1−cγ .

But we have choose c such that cγ > 7/3 and so P(Ω∗c) � n−4/3. Now we will use the following proposition:

Proposition 8. Let ρ > 1. Then, under the assumptions of Theorems 2 or 4, there exists C2 > 0 such that

P
(
Ωc

ρ ∩ Ω∗) � C2/n7/3.

This proposition implies that E(‖π1A − π̂m̂‖2
n1Ω∗c

ρ
) � C3/n.

Now we use (15) and we observe that this inequality holds for all m in Mn, so

E‖π̃ − π1A‖2
n � C inf

m∈Mn

(‖π1A − πm‖2 + pen(m)
)+ C4

n

with C = max(5‖f ‖∞,6).

7.3. Proof of Corollary 3

To control the bias term, we use the following lemma

Lemma 9. Let πA belong to Bα
2,∞(A). We consider that S′

m is one of the following spaces on A:

• a space of piecewise polynomials of degrees bounded by si > αi −1 (i = 1,2) based on a partition with rectangles
of vertices 1/Dm1 and 1/Dm2 ,

• a linear span of {φλψμ,λ ∈ ⋃m1
0 Λ(j),μ ∈ ⋃m2

0 M(k)} where {φλ} and {ψμ} are orthonormal wavelet bases of
respective regularities s1 > α1 − 1 and s2 > α2 − 1 (here Dmi

= 2mi , i = 1,2),
• the space of trigonometric polynomials with degree smaller than Dm1 in the first direction and smaller than Dm2

in the second direction.
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Let π ′
m be the orthogonal projection of πA on S′

m. Then, there exists a positive constant C0 such that(∫
A

|πA − π ′
m|2

)1/2

� C0
[
D−α1

m1
+ D−α2

m2

]
.

Proof. It is proved in [19] for S′
m a space of wavelets or polynomials and in [23] (pp. 191 and 200) for a space of

trigonometric polynomials that(∫
A

|πA − π ′
m|2

)1/2

� C
[
ωs1+1,1

(
π,D−1

m1

)+ ωs2+1,2
(
π,D−1

m2

)]
.

The definition of Bα
2,∞(A) implies (

∫
A

|πA − π ′
m|2)1/2 � C0[D−α1

m1 + D
−α2
m2 ]. �

If we choose for S′
m the set of the restrictions to A of the functions of Sm and πA the restriction of π to A, we can

apply Lemma 9. But π ′
m is also the restriction to A of πm so that

‖π1A − πm‖ � C0
[
D−α1

m1
+ D−α2

m2

]
.

According to Theorem 2

E‖π̃ − π1A‖2
n � C′′ inf

m∈Mn

{
D−2α1

m1
+ D−2α2

m2
+ Dm1Dm2

n

}
.

In particular, if m∗ is such that Dm∗
1
= �n

α2
α1+α2+2α1α2 � and Dm∗

2
= �(Dm∗

1
)α1/α2� then

E‖π̃ − π1A‖2
n � C′′′

{
D

−2α1
m∗

1
+

D
1+α1/α2
m∗

1

n

}
= O

(
n

− 2α1α2
α1+α2+2α1α2

)
.

But the harmonic mean of α1 and α2 is ᾱ = 2α1α2/(α1 + α2). Then E‖π̃ − π1A‖2
n = O(n− 2ᾱ

2ᾱ+2 ).
The condition Dm1 � n1/3 allows this choice of m only if α2

α1+α2+2α1α2
< 1

3 i.e. if α1 − 2α2 + 2α1α2 > 0. In the
same manner, the condition α2 − 2α1 + 2α1α2 > 0 must be verified.

7.4. Proof of Theorem 4

We use the same notations as for the proof of Theorem 2. Let us write

E‖π̃∗ − π1A‖2 = B1 + B2 + B3

with ⎧⎪⎪⎨
⎪⎪⎩

B1 = E
(‖π̃∗ − π1A‖21Ω∗

ρ
1‖π̃‖�kn

)
,

B2 = E
(‖π̃∗ − π1A‖21Ω∗

ρ
1‖π̃‖>kn

)
,

B3 = E
(‖π̃∗ − π1A‖21Ω∗c

ρ

)
.

To bound the first term, we observe that for all m ∈ Mn, on Ω∗
ρ , ‖π̃ − πm‖2 � f −1

0 ρ‖π̃ − πm‖2
n. Then

‖π̃ − π1A‖21Ω∗
ρ

� 2‖π̃ − πm‖21Ω∗
ρ

+ 2‖πm − π1A‖2

� 2f −1
0 ρ‖π̃ − πm‖2

n1Ω∗
ρ

+ 2‖πm − π1A‖2

� 2f −1
0 ρ

{
2‖π̃ − π1A‖2

n1Ω∗
ρ

+ 2‖πm − π1A‖2
n

}+ 2‖πm − π1A‖2.

Thus

B1 � E
(‖π̃ − π1A‖21Ω∗

)
� 4f −1ρE

(‖π̃ − π1A‖2
n1Ω∗

)+ (
4f −1ρ‖f ‖∞ + 2

)‖πm − π1A‖2.

ρ 0 ρ 0
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But, using (15), we obtain

B1 �
(
24f −1

0 ρ‖f ‖∞ + 2
)‖πm − π1A‖2 + 24f −1

0 ρ pen(m) + 36f −1
0 ρ2 C1

n
.

Since ρ = 3/2, by setting C = max(36f −1
0 ‖f ‖∞ + 1,36f −1

0 ),

B1 � C
{‖πm − π1A‖2 + pen(m)

}+ 81f −1
0 C1

n

for all m ∈Mn.
Next, the definition of π̃∗ and the Markov inequality provide

B2 � E
(‖π1A‖21Ω∗

ρ
1‖π̃‖>kn

)
� ‖π‖2

E(‖π̃‖21Ω∗
ρ
)

k2
n

. (17)

But ‖π̃‖21Ω∗
ρ

� ρf −1
0 ‖π̃‖2

n � 2ρf −1
0 (‖π̃ − π1A‖2

n + ‖π1A‖2
n). Now we use (16) to state

‖π̃‖21Ω∗
ρ

� 2ρf −1
0

(‖π‖∞ + 4φ2n
1/3 + ‖π1A‖2

n

)
� 2ρf −1

0

(
‖π‖∞ + 4φ2n

1/3 + 1

n

n∑
i=1

‖π‖∞
∫

π(Xi, y)dy

)

� 2ρf −1
0

(
2‖π‖∞ + 4φ2n

1/3).
Then, since kn = n2/3, (17) becomes

B2 � ‖π‖2 2ρf −1
0 (2‖π‖∞ + 4φ2n

1/3)

k2
n

� 4ρf −1
0 ‖π‖2

(‖π‖∞
n4/3

+ 2φ2

n

)
.

Lastly

B3 � E
(
2
(‖π̃∗‖2 + ‖π1A‖2)1Ω∗c

ρ

)
� 2

(
k2
n + ‖π‖2)P (

Ω∗c
ρ

)
.

We now remark that P(Ω∗c
ρ ) = P(Ω∗c) + P(Ωc

ρ ∩ Ω∗). In the geometric case β2qn � e−γ c ln(n) � n−γ c and in the
other case β2qn � (2qn)

−γ � n−γ c . Then

P
(
Ω∗c

)
� 4pnβ2qn � n1−cγ .

But, if γ > 20 in the arithmetic case, we can choose c such that cγ > 10/3 and so P(Ω∗c) � n−7/3. Then, using
Proposition 8,

B3 � 2
(
n4/3 + ‖π‖2)1 + C2

n7/3
� 2(C2 + 1)(1 + ‖π‖2)

n
.

7.5. Proof of Theorem 6

Let ψ be a very regular wavelet with compact support. For J = (j1, j2) ∈ Z
2 to be chosen below and K = (k1, k2) ∈

Z
2, we set

ψJK(x, y) = 2(j1+j2)/2ψ
(
2j1x − k1

)
ψ
(
2j2y − k2

)
.

Let π0(x, y) = c01B(y) with B a compact set such that A ⊂ B × B and |B| � 2|A|1/2/L, and c0 = |B|−1. So π0 is a
transition density with ‖π0‖Bα

2,∞(A) � L/2. Now we set RJ the maximal subset of Z
2 such that

Supp(ψJK) ⊂ A ∀K ∈ RJ , Supp(ψJK) ∩ Supp(ψJK ′) = ∅ if K �= K ′.
The cardinal of RJ is |RJ | = c2j1+j2 , with c a positive constant which depends only on A and the support of ψ . Let,
for all ε = (εK) ∈ {−1,1}|RJ |,

πε = π0 + 1√
n

∑
εKψJK.
K∈RJ
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Let us denote by G the set of all such πε . Since
∫

ψ = 0 and π0 is a transition density, for all x in R,∫
πε(x, y)dy = 1.

Additionally πε(x, y) = π0(x, y) � 0 if (x, y) /∈ A, and if (x, y) ∈ A: πε � c0 − 2(j1+j2)/2‖ψ‖2∞/
√

n and then
πε(x, y) � c0/2 > 0 as soon as(

2j1+j2

n

)1/2

� c0

2‖ψ‖2∞
. (18)

Thus, if (18) holds, πε(x, y) � (c0/2)1B(y) for all x, y. It implies that the underlying Markov chain is Doeblin
recurrent and then positive recurrent. We verify that f = c01B is the stationary density. To prove that πε ∈ B, we
still have to compute ‖πε‖Bα

2,∞(A). Hochmuth [19] proves that for ψ smooth enough ‖∑K∈RJ
εKψJK‖Bα

2,∞(A) �
(2j1α1 + 2j2α2)‖∑K∈RJ

εKψJK‖A. Since∥∥∥∥ ∑
K∈RJ

εKψJK

∥∥∥∥
2

A

=
∑

K∈RJ

|εK |2 = c2j1+j2,

then

‖πε‖Bα
2,q (A) � L

2
+ 2j1α1 + 2j2α2

√
n

c1/22(j1+j2)/2.

From now on, we suppose that Condition C is verified where

Condition C:
(2j1α1 + 2j2α2)2(j1+j2)/2

√
n

� L

2c1/2
.

It entails in particular that (18) holds if j1 and j2 are great enough. Then for all ε, πε ∈ B. We now use Lemma 10.2
p. 160 in Härdle et al. [17]. The likelihood ratio can be written

Λn(πε∗K
,πε) =

n∏
i=1

πε∗K
(Xi,Xi+1)

πε(Xi,Xi+1)
.

Note that πε(Xi,Xi+1) > 0 Pπε - and Pπε∗K
-almost surely (actually the chain “lives” on B). Then

log
(
Λn(πε∗K

,πε)
) =

n∑
i=1

log

(
1 − 2√

n

εKψJK(Xi,Xi+1)

πε(Xi,Xi+1)

)
.

We set UJK(Xi,Xi+1) = −εKψJK(Xi,Xi+1)/πε(Xi,Xi+1) so that

log
(
Λn(πε∗K

,πε)
) =

n∑
i=1

log

(
1 + 2√

n
UJK(Xi,Xi+1)

)

=
n∑

i=1

{
θ

(
2√
n
UJK(Xi,Xi+1)

)
+ 2√

n
UJK(Xi,Xi+1) − 2

n
U2

JK(Xi,Xi+1)

}

= un + vn − wn

with θ the function defined by θ(u) = log(1 + u) − u + u2/2. Now we prove the three following assertions

1◦
Eπε (|un|) = Eπε (|

∑n
i=1 θ( 2√

n
UJK(Xi,Xi+1))|) →

n→∞0,

2◦
Eπε (wn) = Eπε (

2
n

∑n
i=1 U2

JK(Xi,Xi+1)) � 4,

3◦
Eπε (v

2
n) = Eπε (

4 |∑n
UJK(Xi,Xi+1)|2) � 8.
n i=1
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1◦: First we observe that∥∥∥∥ 2√
n
UJK

∥∥∥∥∞
� 2√

n

2(j1+j2)/2‖ψ‖2∞
c0/2

= O

(
2(j1+j2)/2

√
n

)

and 2(j1+j2)/n → 0 since Condition C holds. So there exists some integer n0 such that ∀n � n0, ∀x, y,∣∣θ(2UJK(x, y)/
√

n
)∣∣ � ∣∣2UJK(x, y)/

√
n
∣∣3.

But ∫∫ ∣∣∣∣2UJK(x, y)√
n

∣∣∣∣
3

f (x)πε(x, y)dx dy = 8

n
√

n

∫∫ |ψJK(x, y)|3
πε(x, y)2

f (x)dx dy

� 8

n
√

n

2(j1+j2)/2‖ψ‖2∞c0

(c0/2)2

∫∫
ψJK(x, y)2 dx dy

� 32‖ψ‖2∞
c0n

(
2(j1+j2)

n

)1/2

.

Then

Eπε |un| �
n∑

i=1

32‖ψ‖2∞
c0n

(
2(j1+j2)

n

)1/2

−→
n→∞0.

2◦: We bound the expectation of UJK(Xi,Xi+1)
2:

Eπε

(
UJK(Xi,Xi+1)

2) =
∫∫

ψ2
JK(x, y)

πε(x, y)
f (x)dx dy � c0

∫∫
A

ψ2
JK(x, y)

c0/2
dx dy � 2. (19)

And then Eπε (wn) = Eπε ((2/n)
∑n

i=1 UJK(Xi,Xi+1)
2) � 4.

3◦: We observe that Eπε (UJK(Xi,Xi+1)|X1, . . . ,Xi) = 0 and thus
∑n

i=1 UJK(Xi,Xi+1) is a martingale. A classic
property of square integrable martingales involves

Eπε

([
n∑

i=1

UJK(Xi,Xi+1)

]2)
=

n∑
i=1

Eπε

[
UJK(Xi,Xi+1)

2].
Thus, using (19), Eπε (v

2
n) = (4/n)

∑n
i=1 Eπε [UJK(Xi,Xi+1)

2] � 8.
We deduce easily from the three previous assertions 1◦, 2◦ and 3◦ that there exists λ > 0 and p0 such that

Pπε (Λn(πε∗K
,πε) > e−λ) � p0. Thus, according to Lemma 10.2 in [17],

max
πε∈G

Eπε‖π̂n − πε‖2
A � |RJ |

2
δ2 e−λp0

where δ = infε �=ε′ ‖πε − πε′ ‖A/2 = ‖εKψJK/
√

n‖A = 1/
√

n.
Now for all n we choose J = J (n) = (j1(n), j2(n)) such that

c1/2 � 2j1n
− α2

α1+α2+2α1α2 � c1 and c2/2 � 2j2n
− α1

α1+α2+2α1α2 � c2

with c1 and c2 such that (c
α1
1 + c

α2
2 )

√
c1c2 � L/(2c1/2) so that Condition C is satisfied. Moreover, we have

|RJ |δ2 � cc1c2

4
n

α2+α1
α1+α2+2α1α2

−1 � cc1c2

4
n

−2α1α2
α1+α2+2α1α2 .

Thus

max
πε∈G

Eπε‖π̂n − πε‖2
A � ce−λp0c1c2

8
n

−2α1α2
α1+α2+2α1α2 .

And then for all estimator

sup
π∈B

Eπ‖π̂n − π‖2
A � Cn− 2ᾱ

2ᾱ+2

with C = ce−λp0c1c2/8.
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7.6. Proof of Proposition 7

Let⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Γi(t) = t (Xi,Xi+1) −
∫

t (Xi, y)π(Xi, y)dy,

Γ ∗
i (t) = t

(
X∗

i ,X
∗
i+1

)−
∫

t
(
X∗

i , y
)
π
(
X∗

i , y
)

dy,

Γ ∗∗
i (t) = t

(
X∗∗

i ,X∗∗
i+1

)−
∫

t
(
X∗∗

i , y
)
π
(
X∗∗

i , y
)

dy.

We now define Z∗
n(t):

Z∗
n(t) = 1

n

∑
i odd

Γ ∗
i (t) + 1

n

∑
i even

Γ ∗∗
i (t).

Let us remark that Z∗
n(t)1Ω∗ = Zn(t)1Ω∗ . Next we split each of these terms:

Z∗
n,1(t) = 1

n

pn−1∑
l=0

2(2l+1)qn−1∑
i=4lqn+1, i odd

Γ ∗
i (t), Z∗

n,2(t) = 1

n

pn−1∑
l=0

2(2l+2)qn−1∑
i=2(2l+1)qn+1, i odd

Γ ∗
i (t),

Z∗
n,3(t) = 1

n

pn−1∑
l=0

2(2l+1)qn∑
i=4lqn+2, i even

Γ ∗∗
i (t), Z∗

n,4(t) = 1

n

pn−1∑
l=0

2(2l+2)qn∑
i=2(2l+1)qn+2, i even

Γ ∗∗
i (t).

We use the following lemma:

Lemma 10. (Talagrand [26]) Let U0, . . . ,UN−1 i.i.d. variables and (ζt )t∈B a set of functions.
Let G(t) = 1

N

∑N−1
l=0 ζt (Ul ). We suppose that

(1) sup
t∈B

‖ζt‖∞ � M1, (2) E

(
sup
t∈B

∣∣G(t)
∣∣) � H, (3) sup

t∈B

Var
[
ζt (U0)

]
� v.

Then, there exists K > 0, K1 > 0, K2 > 0 such that

E

[
sup
t∈B

G2(t) − 10H 2
]
+ � K

[
v

N
e−K1

NH2
v + M2

1

N2
e
−K2

NH
M1

]
.

Here N = pn, B = Bf (m′) and for l ∈ {0, . . . , pn − 1}, Ul = (X∗
4lqn+1, . . . ,X

∗
2(2l+1)qn

),

ζt (x1, . . . , x2qn) = 1

qn

2qn−1∑
i=1, i odd

t (xi, xi+1) −
∫

t (xi, y)π(xi, y)dy.

Then

G(t) = 1

pn

pn−1∑
l=0

1

qn

2(2l+1)qn−1∑
i=4lqn+1, i odd

Γ ∗
i (t) = 4Z∗

n,1(t).

We now compute M1, H and v.
(1) We recall that Sm + Sm′ is included in the model Sm′′ with dimension max(Dm1,Dm′

1
)max(Dm2,Dm′

2
).

sup
t∈B

‖ζt‖∞ � sup
t∈B

‖t‖∞
1

qn

2qn−1∑
i=1, i odd

(
1 +

∫
π(xi, y)dy

)

� 2φ0

√
max(Dm1,Dm′

1
)max(Dm2 ,Dm′

2
)‖t‖ � 2φ0

n1/3.

f0
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Then we set M1 = (2φ0/f0)n
1/3.

(2) Since A0 and A∗
0 have the same distribution, ζt (U0) = 1

qn

∑2qn−1
i=1, i odd Γ ∗

i (t) has the same distribution than
1
qn

∑2qn−1
i=1, i odd Γi(t). We observe that E(Γi(t)|Xi) = 0 and then for all set I

E

([∑
i∈I

Γi(t)

]2)
= E

( ∑
i,j∈I

Γi(t)Γj (t)

)
= 2E

(∑
j<i

E
[
Γi(t)Γj (t)|Xi

])+
∑
i∈I

E
[
Γ 2

i (t)
]

= 2E

(∑
j<i

Γj (t)E
[
Γi(t)|Xi

])+
∑
i∈I

E
[
Γ 2

i (t)
] =

∑
i∈I

E
[
Γ 2

i (t)
]
.

In particular

Var
[
ζt (U0)

] = E

([
1

qn

2qn−1∑
i=1, i odd

Γi(t)

]2)
= 1

q2
n

2qn−1∑
i=1, i odd

E
[
Γ 2

i (t)
]

� 1

q2
n

2qn−1∑
i=1, i odd

E
[
t2(Xi,Xi+1)

]
� 1

qn

‖π‖∞‖t‖2
f .

Then v = ‖π‖∞/qn.
(3) Let (ϕ̄j ⊗ ψk)(j,k)∈Λ(m,m′) an orthonormal basis of (Sm + Sm′,‖ · ‖f ).

E

(
sup
t∈B

∣∣G2(t)
∣∣) �

∑
j,k

E
(
G2(ϕ̄j ⊗ ψk)

)

�
∑
j,k

1

p2
nq

2
n

E

([
pn−1∑
l=0

2(2l+1)qn−1∑
i=4lqn+1, i odd

Γ ∗
i (ϕ̄j ⊗ ψk)

]2)

�
∑
j,k

16

n2

pn−1∑
l=0

E

([ 2(2l+1)qn−1∑
i=4lqn+1, i odd

Γ ∗
i (ϕ̄j ⊗ ψk)

]2)

where we used the independence of the A∗
l . Now we can replace Γ ∗

i by Γi in the sum because Al and A∗
l have the

same distribution and we use as previously the martingale property of the Γi .

E

(
sup
t∈B

∣∣G2(t)
∣∣) �

∑
j,k

16

n2

pn−1∑
l=0

E

([ 2(2l+1)qn−1∑
i=4lqn+1, i odd

Γi(ϕ̄j ⊗ ψk)

]2)

�
∑
j,k

16

n2

pn−1∑
l=0

2(2l+1)qn−1∑
i=4lqn+1, i odd

E
(
Γ 2

i (ϕ̄j ⊗ ψk)
)

�
∑
j,k

4

n
‖π‖∞‖ϕ̄j ⊗ ψk‖2

f � 4‖π‖∞
D(m,m′)

n
.

Then

E
2
(

sup
t∈B

∣∣G(t)
∣∣) � 4‖π‖∞

D(m,m′)
n

and H 2 = 4‖π‖∞
D(m,m′)

n
.

According to Lemma 10, there exists K ′ > 0, K1 > 0, K ′
2 > 0 such that

E

[
sup

t∈Bf (m′)

(
4Z∗

n,1

)2
(t) − 10H 2

]
+ � K ′

[
1

n
e−K1D(m,m′) + n−4/3q2

ne−K ′
2n

1/6√D(m,m′)/qn

]
.

But qn � nc with c < 1 . So
6
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∑
m′∈Mn

E

[
sup

t∈Bf (m′)
Z∗2

n,1(t) − p(m,m′)
4

]
+

� K ′

n

[ ∑
m′∈Mn

e−K1D(m,m′) + n2c−1/3|Mn|e−K ′
2n

1/6−c

]
� A1

n
. (20)

In the same way,
∑

m′∈Mn
E[supt∈Bf (m′) Z

∗2
n,r (t) − p(m,m′)/4]+ � Ar/n for r = 2,3,4. And then

∑
m′∈Mn

E

([
sup

t∈Bf (m′)
Z2

n(t) − p(m,m′)
]
+1Ω∗

)
=

∑
m′∈Mn

E

([
sup

t∈Bf (m′)
Z∗2

n (t) − p(m,m′)
]
+1Ω∗

)
� C1

n
.

7.7. Proof of Proposition 8

First we observe that

P
(
Ωc

ρ ∩ Ω∗) � P

(
sup
t∈B

∣∣νn

(
t2)∣∣ > 1 − 1

ρ

)

where

νn(t) = 1

n

n∑
i=1

∫ [
t
(
X∗

i , y
)− E

(
t
(
X∗

i , y
))]

dy and B = {
t ∈ S, ‖t‖f = 1

}
.

But, if t (x, y) = ∑
j,k aj,kϕj (x)ψk(y), then

νn

(
t2) =

∑
j,j ′

∑
k

aj,kaj ′,k ν̄n(ϕjϕj ′)

where

ν̄n(u) = 1

n

n∑
i=1

[
u
(
X∗

i

)− E
(
u
(
X∗

i

))]
. (21)

Let bj = (
∑

k a2
j,k)

1/2, then |νn(t
2)| � ∑

j,j ′ bjbj ′ |ν̄n(ϕjϕj ′)| and, if t ∈ B,
∑

j b2
j = ∑

j

∑
k a2

j,k = ‖t‖2 � f −1
0 .

Thus

sup
t∈B

∣∣νn

(
t2)∣∣ � f −1

0 sup∑
b2
j =1

∑
j,l

bj bl

∣∣ν̄n(ϕjϕl)
∣∣.

Lemma 11. Let Bj,l = ‖ϕjϕl‖∞ and Vj,l = ‖ϕjϕl‖2. Let, for any symmetric matrix (Aj,l)

ρ̄(A) = sup∑
a2
j =1

∑
j,l

|ajal |Aj,l

and L(ϕ) = max{ρ̄2(V ), ρ̄(B)}. Then, if M2 is satisfied, L(ϕ) � φ1D2
n.

This lemma is proved in Baraud et al. [3].
Let

x = f 2
0 (1 − 1/ρ)2

40‖f ‖∞L(ϕ)
and Δ = {∀j∀l

∣∣ν̄n(ϕjϕl)
∣∣ � 4

[
Bj,lx + Vj,l

√
2‖f ‖∞x

]}
.

On Δ:

sup
t∈B

∣∣νn

(
t2)∣∣ � 4f −1

0 sup∑
b2
j =1

∑
j,l

bj bl

[
Bj,lx + Vj,l

√
2‖f ‖∞x

]

� 4f −1
0

[
ρ̄(B)x + ρ̄(V )

√
2‖f ‖∞x

]
�

(
1 − 1

ρ

)[
f0(1 − 1/ρ)

10‖f ‖∞
ρ̄(B)

L(ϕ)
+ 2√

5

(
ρ̄2(V )

L(ϕ)

)1/2]

�
(

1 − 1
)[

1 + 2√
]

�
(

1 − 1
)

.

ρ 10 5 ρ
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Then P(supt∈B |νn(t
2)| > 1 − 1/ρ) � P(Δc). But ν̄n(u) = 2ν̄n,1(u) + 2ν̄n,2(u) with

ν̄n,r (u) = 1

pn

pn−1∑
l=0

Yl,r (u), r = 1,2,

with ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Yl,1(u) = 1

2qn

2(2l+1)qn∑
i=4lqn+1

[
u
(
X∗

i

)− E
(
u
(
X∗

i

))]
,

Yl,2(u) = 1

2qn

2(2l+2)qn∑
i=2(2l+1)qn+1

[
u
(
X∗

i

)− E
(
u
(
X∗

i

))]
.

To bound P(ν̄n,1(ϕjϕl) � Bj,lx + Vj,l

√
2‖f ‖∞x), we will use the Bernstein inequality given in Birgé and Mas-

sart [8]. That is why we bound E|Yl,1(u)|m:

E
∣∣Yl,1(u)

∣∣m � 1

4q2
n

(
2‖u‖∞

)m−2
E

∣∣∣∣∣
2(2l+1)qn∑
i=4lqn+1

[
u
(
X∗

i

)− E
(
u
(
X∗

i

))]∣∣∣∣∣
2

�
(
2‖u‖∞

)m−2 1

4q2
n

E

∣∣∣∣∣
2(2l+1)qn∑
i=4lqn+1

[
u(Xi) − E

(
u(Xi)

)]∣∣∣∣∣
2

�
(
2‖u‖∞

)m−2 1

2qn

E

2(2l+1)qn∑
i=4lqn+1

∣∣u(X1) − E
(
u(X1)

)∣∣2
since X∗

i = Xi on Ω∗ and using an elementary convex inequality. Thus

E
∣∣Yl,1(u)

∣∣m �
(
2‖u‖∞

)m−2
E
∣∣u(X1) − E

(
u(X1)

)∣∣2 �
(
2‖u‖∞

)m−2
∫

u2(x)f (x)dx

� 2m−2(‖u‖∞
)m−2(√‖f ‖∞ ‖u‖)2

. (22)

With u = ϕjϕj ′ , E|Yl,1(ϕjϕj ′)|m � 2m−2(Bj,j ′)m−2(
√‖f ‖∞Vj,j ′)2. And then

P
(∣∣ν̄n,r (ϕjϕl)

∣∣ � Bj,lx + Vj,l

√
2‖f ‖∞x

)
� 2e−pnx.

Given that P(Ωc
ρ ∩ Ω∗) � P(Δc) = ∑

j,l P (|ν̄n(ϕjϕl)| > 4(Bj,lx + Vj,l

√
2‖f ‖∞x)),

P
(
Ωc

ρ ∩ Ω∗) � 4D2
n exp

{
−pnf

2
0 (1 − 1/ρ)2

40‖f ‖∞L(ϕ)

}

� 4n2/3 exp

{
−f 2

0 (1 − 1/ρ)2

160‖f ‖∞
n

qnL(ϕ)

}
.

But L(ϕ) � φ1D2
n � φ1n

2/3 and qn � n1/6 so

P
(
Ωc

ρ ∩ Ω∗) � 4n2/3 exp

{
−f 2

0 (1 − 1/ρ)2

160‖f ‖∞φ1
n1/6

}
� C

n7/3
. (23)
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Appendix A. Random penalty

Here we prove that Theorem 2 is valid with a penalty which does not depend on ‖π‖∞.

Theorem 12. We consider the following penalty:

pen(m) = K0‖π̂‖∞
Dm1Dm2

n

where K0 is a numerical constant and π̂ = π̂m∗ with Sm∗ a space of trigonometric polynomials such that

lnn � Dm1∗ = Dm2∗ � n1/6.

If the restriction of π to A belongs to B
(α1,α2)
2,∞ (A) with α1 > 3/2 and α2 > max( α1

2α1−3 , 3α1
2α1−1 ), then, under assump-

tions of Theorem 2, for n large enough,

E‖π1A − π̃‖2
n � C inf

m∈Mn

{
d2(π1A,Sm) + Dm1Dm2

n

}
+ C′

n
.

Remark 13. The condition on the regularity of π is verified for example if α1 > 2 and α2 > 2. If α1 = α2 = α, it is
equivalent to α > 2.

Proof. We recall that ‖π‖∞ denotes actually ‖π1A‖∞ and we introduce the following set:

Λ =
{∣∣∣∣ ‖π̂‖∞

‖π1A‖∞
− 1

∣∣∣∣ < 1

2

}
.

As previously, we decompose the space:

E‖π̃ − π1A‖2
n = E

(‖π̃ − π1A‖2
n1Ω∗

ρ∩Λ

)+ E
(‖π̃ − π1A‖2

n1Ω∗
ρ∩Λc

)+ E
(‖π̃ − π1A‖2

n1Ω∗c
ρ

)
.

We have already dealt with the third term. For the first term, we can proceed as in the proof of Theorem 2 as soon as

θp(m,m′) � pen(m) + pen(m′)

with θ = 3ρ = 9/2 and p(m,m′) = 10‖π‖∞D(m,m′)/n. But on Λ, ‖π‖∞ < 2‖π̂‖∞ and so

θp(m,m′) = 10θ‖π‖∞
D(m,m′)

n
� 20θ‖π̂‖∞

D(m,m′)
n

� 20θ‖π̂‖∞
Dm1Dm2

n
+ 20θ‖π̂‖∞

Dm′
1
Dm′

2

n
.

It is sufficient to set K0 = 20θ .
Now, inequality (16) gives

E
(‖π1A − π̂m̂‖2

n1Ω∗
ρ∩Λc

)
�

(‖π‖∞ + 4φ2n
1/3)P (

Ω∗
ρ ∩ Λc

)
.

It remains to prove that P(Ω∗
ρ ∩ Λc) � Cn−4/3 for some constant C.

P
(
Ω∗

ρ ∩ Λc
) = P

(∣∣‖π̂‖∞ − ‖π1A‖∞
∣∣1Ω∗

ρ
� ‖π‖∞/2

)
� P

(‖π̂ − π1A‖∞1Ω∗
ρ

� ‖π‖∞/2
)

� P
(‖π̂ − πm∗‖∞1Ω∗

ρ
� ‖π‖∞/4

)+ P
(‖πm∗ − π1A‖∞ � ‖π‖∞/4

)
� P

(
‖π̂ − πm∗‖1Ω∗

ρ
� ‖π‖∞

4φ0
√

Dm1∗Dm2∗

)
+ P

(‖πm∗ − π1A‖∞ � ‖π‖∞/4
)

since ‖π̂ − πm∗‖∞ � φ0
√

Dm∗1Dm∗2‖π̂ − πm∗‖.
Furthermore the inequality γn(π̂) � γn(πm∗) leads to

‖π̂ − π1A‖2
n � ‖πm∗ − π1A‖2

n + 1

θ ′ ‖π̂ − πm∗‖2
f + θ ′ sup

t∈B (m∗)

Z2
n(t)
f
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and then, on Ωρ ,

‖π̂ − πm∗‖2
f

(
1 − 2ρ

θ ′

)
� 4ρ‖πm∗ − π1A‖2

n + 2ρθ ′ sup
t∈Bf (m∗)

Z2
n(t)

so

‖π̂ − πm∗‖2 �
4ρθ ′f −1

0

θ ′ − 2ρ
‖πm∗ − π1A‖2

n + 2ρθ ′2f −1
0

θ ′ − 2ρ
sup

t∈Bf (m∗)

Z2
n(t)

� 12ρf −1
0 |A2|‖πm∗ − π1A‖2∞ + 18ρ2f −1

0 sup
t∈Bf (m∗)

Z2
n(t)

with θ ′ = 3ρ and by remarking that for t with support A, ‖t‖2
n � |A2|‖t‖2∞. Thus

P
(
Ω∗

ρ ∩ Λc
)
� P

(
sup

t∈Bf (m∗)

Z2
n(t)1Ω∗

ρ
� ‖π‖2∞

32φ2
0n1/3

1

18ρ2f −1
0

)

+ P

(
‖πm∗ − π1A‖2∞ � ‖π‖2∞

32φ2
0Dm1∗Dm2∗

1

12ρf −1
0 |A2|

)
+ P

(‖πm∗ − π1A‖∞ � ‖π‖∞/4
)

� P

(
sup

t∈Bf (m∗)

Z2
n(t)1Ω∗ � a

n1/3

)
+ P

(
Dm1∗Dm2∗‖πm∗ − π1A‖2∞ � b

)

+ P

(
‖πm∗ − π1A‖∞ � ‖π‖∞

4

)
(24)

with

a = ‖π‖2∞
32φ2

0

1

18ρ2f −1
0

and b = ‖π‖2∞
32φ2

0

1

12ρf −1
0 |A2|

.

We will first study the two last terms in (24). Since the restriction πA of π belongs to B
(α1,α2)
2,∞ (A), the embedding

theorem proved in Nikol’skiı̆ [23] p. 236 implies that πA belongs to B
(β1,β2)∞,∞ (A) with β1 = α1(1 − 1/ᾱ) and β2 =

α2(1 − 1/ᾱ). Then the approximation Lemma 9 (which is still valid for the trigonometric polynomial spaces with the
infinite norm instead of the L2 norm) yields to

‖πm∗ − π1A‖∞ � C
(
D

−β1
m1∗ + D

−β2
m2∗

)
.

And then, since Dm1∗ = Dm2∗,

Dm1∗Dm2∗‖πm∗ − π1A‖2∞ � C′(D2−2β1
m1∗ + D

2−2β2
m1∗

)
� C′((lnn)2−2β1 + (lnn)2−2β2

) → 0.

Indeed{
2 − 2β1 < 0 ⇔ 2α1α2 − 3α2 − α1 > 0,

2 − 2β2 < 0 ⇔ 2α1α2 − 3α1 − α2 > 0

and this double condition is ensured when α1 > 3/2 and α2 > max( α1
2α1−3 , 3α1

2α1−1 ). Consequently, for n large enough,

P
(
Dm1∗Dm2∗‖πm∗ − π1A‖2∞ � b

)+ P

(
‖πm∗ − π‖∞ � ‖π‖∞

4

)
= 0.

We will now prove that

P

(
sup

t∈B (m∗)

Z2
n(t)1Ω∗ � a

n1/3

)
� C

n4/3

f
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and then using (24), we will have P(Ω∗
ρ ∩ Λc) � Cn−4/3. We remark that, if (ϕj ⊗ ψk)j,k is a base of (Sm∗,‖ · ‖f ),

sup
t∈Bf (m∗)

Z2
n(t) �

∑
j,k

Z2
n(ϕj ⊗ ψk)

and we recall that, on Ω∗, Zn(t) = ∑4
r=1 Z∗

n,r (t) (see the proof of Proposition 7). So we are interested in

P

(
Z∗2

n,1(ϕj ⊗ ψk)1Ω∗ � a

4Dm1∗Dm2∗n1/3

)
.

Let x = Bn−2/3 with B such that 2f −2
0 B2 + 4‖π‖∞B � a/4 (for example B = inf(1, a/8(f −2

0 + 2‖π‖∞)). Then

(√
2‖π‖∞x +√

Dm1∗Dm2∗f
−1
0 x

)2 � a

4Dm1∗Dm2∗n1/3
.

So we will now bound P(Z∗
n,1(ϕj ⊗ψk)1Ω∗ �

√
2‖π‖∞x +√

Dm1∗Dm2∗f
−1
0 x) by using the Bernstein inequality

given in [8]. That is why we bound E| 1
4qn

∑2qn−1
i=1, i odd Γ ∗

i (t)|m for all integer m � 2,

E

∣∣∣∣∣ 1

4qn

2qn−1∑
i=1, i odd

Γ ∗
i (t)

∣∣∣∣∣
m

� (2‖t‖∞qn)
m−2

(4qn)m
E

∣∣∣∣∣
2qn−1∑

i=1, i odd

[
t
(
X∗

i ,X
∗
i+1

)−
∫

t
(
X∗

i , y
)
π
(
X∗

i , y
)

dy

]∣∣∣∣∣
2

�
(‖t‖∞

2

)m−2 1

16q2
n

E

∣∣∣∣∣
2qn−1∑

i=1, i odd

[
t (Xi,Xi+1) −

∫
t (Xi, y)π(Xi, y)dy

]∣∣∣∣∣
2

�
(‖t‖∞

2

)m−2 1

16

∫
t2(x, y)f (x)π(x, y)dx dy

� 1

2m+2

(‖t‖∞
)m−2‖π‖∞‖t‖2

f .

Then

E

∣∣∣∣∣ 1

4qn

2qn−1∑
i=1, i odd

Γi∗(ϕj ⊗ ψk)

∣∣∣∣∣
m

� 1

2m+2

(√
Dm1∗Dm2∗ f −1

0

)m−2‖π‖∞.

Thus the Bernstein inequality gives

P
(∣∣Z∗

n,1(ϕj ⊗ ψk)
∣∣ �

√
Dm1∗Dm2∗ f −1

0 x +√
2‖π‖∞x

)
� 2e−pnx.

Hence

P

(
sup

t∈Bf (m∗)

Z∗2
n,1(t)1Ω∗ � a

4n1/3

)
� 2Dm1∗Dm2∗ exp

{−pnBn−2/3}

� 2n2/3 exp

{
−B

4

n1/3

qn

}
.

But

2n2/3 exp

{
−B

4

n1/3

qn

}
� Cn−4/3

since qn � n1/6 and so

P

(
sup

t∈Bf (m∗)

Z2
n(t)1Ω∗ � a

n1/3

)
� 4C

n4/3
. �
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