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Abstract

In this paper the limit behavior of random mappings with n vertices is investigated. We first compute the asymptotic probability
that a fixed class of finite non-intersected subsets of vertices are located in different components and use this result to construct a
scheme of allocating particles with a related Markov chain. We then prove that the limit behavior of random mappings is actually
embedded in such a scheme in a certain way. As an application, we shall give the asymptotic moments of the size of the largest
component.
© 2006 Elsevier Masson SAS. All rights reserved.

Résumé

Dans cet article, nous étudions le comportement asymptotique des trasformations aléatoires à n vertex. A titre d’application nous
calculons les moments asymptotiques de la taille de la plus grande composante.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Let V be a set with n elements, say, V = {1,2, . . . , n}, and Ωn the set of all mappings on V , which includes nn

elements. Let Pn be the classical probability on Ωn. Any f ∈ Ωn induces a directed graph Gf with the set of vertices
V (Gf ) = V and edges E(Gf ) = {(u,f (u)): u ∈ V }. The space (Ωn,Pn) is called the space of random mappings or
random mapping graphs.

The most interesting problems on random mappings are their various asymptotic behavior, by which we means the
limit distribution of various graph structures, for example, number of components, size of component, etc., as n goes
to infinity. Most of papers on this field focused on these issues. In this paper we shall start with a direct computation of
asymptotic connection probability and use it to construct a scheme of allocating particles and a related Markov chain.
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We prove that asymptotic behaviors of random mappings may be represented in the Markov chain in certain sense.
Moreover we may use the limit theorems in theory of probability and powerful tools developed for martingales and
Markov chains. As a main result we shall give an explicit answer for the asymptotic moments and distribution of the
largest component size.

We should mention that in 1994, Aldous and Pitman [2], also see [6], proved that the uniform random mapping is
asymptotically the Brownian bridge in some sense, by which, various limit distributions were obtained. Comparing to
that, our approach is more direct and elementary, and involves less machinery.

Throughout the paper N denotes the set of natural numbers. For any n ∈ N, [n] = {1,2, . . . , n}. For any set A,
the notation |A| denotes the cardinality of A. A partition {A1, . . . ,Am} of a finite set U ⊂ N is said to be ordered if
minA1 < minA2 < · · · < minAm. The partition involved in this paper will always be ordered. The probability and
expectation are taken in the probability space of random mappings with n elements are written as Pn,En. The symbol
‘:=’ should be read as ‘is defined to be’. We shall briefly introduce our strategy as follows. The key is to relate this
asymptotics with that of a particular Chinese restaurant process. More precisely let (Ωn,Pn) be the probability space
of random mappings on [n] and Gn a sample. For N � n, let A1, . . . ,Am be an ordered partition of [N ]. Denote by
JA1 ⊕ · · · ⊕ JAm the event that i, j ∈ [N ] are connected if and only if they are in the same set Al . In other words,
JA1 ⊕ · · · ⊕ JAm is the event that the trace of the connected components of Gn on [N ] is the partition {A1, . . . ,Am}
(let us call this the N -trace of Gn). Now let (Zk)k�1 be the (0,1/2)-Chinese restaurant process and P its probability
(Zk is the label number of the table where the k-th customer is seated). Set

φA1,...,Am(·) :=
m∑

l=1

l · 1Al
.

The asymptotic connection of two models is the following (see Theorem 3.1, though it is actually proved in Section 2)

lim
n

Pn(JA1 ⊕ · · · ⊕ JAm) = P(Zk = φA1,...,Am(k), k = 1, . . . ,N).

(Roughly speaking, the asymptotic distribution of the N -trace of Gn is given by the distribution of Z1, . . . ,ZN .) We
then show in Theorem 3.2 that the asymptotic (n → ∞) “difference” between the cardinalities of the N -trace and those
of the connected components of Gn vanishes as N goes to infinity. By this way we obtain a connection between the
asymptotic of the cardinalities of the connected components of Gn and the process (Zk). As a consequence, we give
examples in Section 3 to show how to derive from this approach some known results as in Pittel [7], Stepanov [11],
Aldous and Pitman [2], etc. However the main application is Theorem 4.1 in which the asymptotic of all moments of
the r-th largest connected component of Gn is given.

2. The limit probability of connection

Two vertices i and j are connected if there is a path of edges, ignoring direction, connecting them. This naturally
induces a classification for each graph. Let U be a fixed subset of [n] and {A1,A2, . . . ,Am} a fixed partition of U .
Let JA1 ⊕ JA2 ⊕ · · · ⊕ JAm be the event that for any i, j ∈ U with i �= j , i and j are connected if and only if i, j ∈ Al

for some 1 � l � m. Set J d
m := J{1} ⊕ J{2} ⊕ · · · ⊕ J{m}. Let Yi = Yi(Gn) be the number of the vertices connected

with vertex i for any i ∈ V , and 1α be the indicator of α for any set α. In order to write with more convenience,
we also use the notation al := |Al | − 1 � 0 for each l,1 � l � m and set a := a1 + a2 + · · · + am � n − m; and
(x)r := x(x − 1) · · · (x − r + 1).

Lemma 2.1.

Pn(JA1 ⊕ JA2 ⊕ · · · ⊕ JAm) = 1

(n − m)a
En

(
m∏

l=1

(Yl)al
;J d

m

)
.

Proof. Let S = {JS1 ⊕ JS2 ⊕ · · · ⊕ JSm : S1, S2, . . . , Sm are mutually disjoint subsets of V and for 1 � l � m, l ∈ Sl

and |Sl | = |Al |}, a set of events. For any event α ∈ S ,

En(1α) = Pn(1α = 1) = Pn{α} = Pn(JA ⊕ JA ⊕ · · · ⊕ JAm).
1 2
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Hence

Pn(JA1 ⊕ JA2 ⊕ · · · ⊕ JAm) =
∑

α∈S En(1α)

|S| = En(
∑

α∈S 1α)

|S| .

On the other hand, a direct calculation gives that

|S| = (n − m)a

a1!a2! · · ·am!
and ∑

α∈S
1α =

{∏m
l=1

(Yl)al

al ! , if J d
m occurs,

0, otherwise.

Replacing them into the formula for Pn{JA1 ⊕ JA2 ⊕ · · · ⊕ JAm}, the conclusion follows. �
Refer to pages 129–137, [9] for the following lemma.

Lemma 2.2.

Pn{Gn is connected} = (n − 1)!
nn

n−1∑
j=0

nj

j ! ∼
√

π

2n
.

Lemma 2.3. For each 1 � l � m, let kl � 0, with k := k1 + k2 + · · · + km � n − m. Then

Pn

(
Y1 = k1, . . . , Ym = km;J d

m

) = (n − m)!
nn

(n − k − m)n−k−m

(n − k − m)!
m∏

l=1

kl∑
j=0

(kl + 1)j

j ! .

Proof. Set S := {JS1 ⊕ JS2 ⊕ · · · ⊕ JSm : S1, . . . , Sm are mutually disjoint and l ∈ Sl ⊂ V , |Sl | = kl + 1, for any
1 � l � m}, and for α = JS1 ⊕ JS2 ⊕ · · · ⊕ JSm ∈ S,1 � l � m we set l ∈ αl = Sl . And that α = Jα1 ⊕ Jα2 ⊕ · · · ⊕ Jαm

for α ∈ S . For Λ ⊂ V we set DΛ be the event that none of the vertices in Λ is connected with any vertex in V \Λ.
Then

Pn(Y1 = k1, . . . , Ym = km;J d
m) =

∑
α∈S

Pn(α;Y1 = k1, . . . , Ym = km)

=
∑
α∈S

Pn(Jα1 ⊕ Jα2 ⊕ · · · ⊕ Jαm;Y1 = k1, . . . , Ym = km)

=
∑
α∈S

Pn(Jα1 ⊕ Jα2 ⊕ · · · ⊕ Jαm;Dα1,Dα2, . . . ,Dαm)

=
∑
α∈S

Pn(Dα1Dα2 · · ·Dαm)Pn(Jα1 ⊕ Jα2 ⊕ · · · ⊕ Jαm | Dα1 ,Dα2, . . . ,Dαm)

=
∑
α∈S

Pn(Dα1Dα2 · · ·Dαm)

m∏
l=1

Pn(Jαl
|Dαl

).

By the definition of S and α, we know that kl = |αl | − 1 for each l,1 � l � m. It is easy to see that

|S| = (n − m)!
k1! · · ·km!(n − m − k)! , Pn(Dα1Dα2 · · ·Dαm) = (n − k − m)n−k−m

∏m
l=1(kl + 1)kl+1

nn
.

Employing Lemma 2.2 we know that for each l,1 � l � m it holds that

Pn(Jαl
|Dαl

) = kl !
(kl + 1)kl+1

kl∑
j=0

(kl + 1)j

j ! .

Substituting the m + 2 equations into Pn(Y1 = k1, . . . , Ym = km;J d
m), we shall have the conclusion directly. �
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Corollary 2.1. Let kl � 0, 1 � l � m. If k := k1 + k2 + · · · + km < n − m, then

Pn(Y1 = k1, . . . , Ym = km;J d
m) = 1

2mnm−1/2(n − k − m)1/2

(
1 − �k1,...,km + �2

n,k1,...,km

);
and if k = n − m, then

Pn

(
Y1 = k1, . . . , Ym = km;J d

m

) =
√

2π

2mnm−1/2

(
1 − �k1,...,km + �2

n,k1,...,km

)
,

where

�k1,...,km :=
m∑

l=1

2

3
√

2π(kl + 1)
and �2

n,k1,...,km
:= C−1

n − m − k
+ C0

n
+

m∑
l=1

Ci

kl + 1
,

with C−1,C0,Ci, . . . ,Cm being bounded functions which depend on n,m and k1, . . . , km. Note that we set C−1
n−m−k

= 0
if k = n − m.

Proof. We prove for the case k < n − m only. Employing the Stirling’s formula r! = (r/e)r
√

2πr eθr , where 1
12r+1 <

θr < 1
12r

, we get that

(n − m)!
nn

(n − k − m)n−k−m

(n − k − m)! = n1/2e−k−m

nm(n − k − m)1/2
eθn−θn−k−m

m−1∏
i=0

(
1 − i

n

)−1

.

Furthermore, we have the Ramanujan sequence [8]

1

2
er = 1 + r

1! + r2

2! + · · · + rr−1

(r − 1)! + γr

rr

r!
where γr is decreasing in r and of the form γr = 1

3 + 4
135(r+ηr )

with 2
21 � ηr � 8

45 . Then

m∏
l=1

kl∑
j=0

(kl + 1)j

j ! =
m∏

l=1

(
ekl+1

2
− γkl+1

(kl + 1)kl+1

(kl + 1)!
)

= ek+m

2m

m∏
l=1

(
1 − 2γkl+1√

2π(kl + 1)eθkl+1

)
.

After some simple but lengthy calculation, it follows that

eθn−θn−k−m

m−1∏
i=0

(
1 − i

n

)−1 m∏
l=1

(
1 − 2γkl+1√

2π(kl + 1) eθkl+1

)
= 1 − �k1,...,km + �2

n,k1,...,km

where �k1,...,km and �2
n,k1,...,km

are defined as above. Therefore, substituting the three equations above into Lemma 2.3,
we shall have

Pn

(
Y1 = k1, . . . , Ym = km;J d

m

) = 1

2mnm−1/2(n − k − m)1/2

(
1 − �k1,...,km + �2

n,k1,...,km

)
. �

The following two theorems give an explicit expression for connection probability and its exact asymptotic behav-
ior.

Theorem 2.1. Let A1,A2, . . . ,Am be a partition of a fixed set U ⊂ V . Then

Pn(JA1 ⊕ · · · ⊕ JAm) = (n − m − a)!
nn

n−m∑
k=0

∑
kl+···+km=k

(n − k − m)n−k−m

(n − k − m)!
m∏

l=1

(kl)al

kl∑
j=0

(kl + 1)j

j ! .

Proof. It is a direct consequence of Lemmas 2.1 and 2.3. �
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Theorem 2.2. Let A1,A2, . . . ,Am be a partition of a fixed set U ⊂ V . Then

Pn(JA1 ⊕ · · · ⊕ JAm)

= (2a1)!! · · · (2am)!!
(2m + 2a − 1)!! + (2a1)!! · · · (2am)!!

(2m + 2a − 2)!!

(
1 −

m∑
i=1

(2ai − 1)!!
(2ai)!!

)√
2π

6
n−1/2 + o

(
n−1/2),

and

Pn(JA1 ⊕ · · · ⊕ JAm) − Pn+1(JA1 ⊕ · · · ⊕ JAm)

= (2a1)!! · · · (2am)!!
(2m + 2a − 2)!!

(
1 −

m∑
i=1

(2ai − 1)!!
(2ai)!!

)√
2π

12
n−3/2 + o

(
n−3/2).

as n goes to infinity. Note that we set (−1)!! = 0!! = 1.

Proof. The case m = 1, a1 = 0 is trivial. We shall prove for case I: m = 1, a1 = 1 and case II: m = 2, a1 = a2 = 0. The
result for the rest cases can be proved by induction to m and the size of A1,A2, . . . ,Am, and we omit the procedure
which is something like the procedure that we shall do for case I and case II.

Case I: m = 1, a1 = 1. Without loss of generality, we set A1 = {1,2}. What we want to prove is that

Pn{J{1,2}} = 2

3
+

√
2π

12
n−1/2 + o

(
n−1/2),

Pn{J{1,2}} − Pn+1{J{1,2}} =
√

2π

24
n−3/2 + o

(
n−3/2).

Case II: m = 2, a1 = a2 = 0. Without lost of generality, we set A1 = {1} and A2 = {2}. What we want to prove is
that

Pn{J{1} ⊕ J{2}} = 1

3
−

√
2π

12
n−1/2 + o

(
n−1/2),

and

Pn{J{1} ⊕ J{2}} − Pn+1
{
J{1} ⊕ J{2}

} = −
√

2π

24
n−3/2 + o

(
n−3/2).

We prove for case I in three steps. At first we point out that Pn{J{1,2}} converges to 2
3 . Secondly we prove the

existence of limit T = limn→∞
√

n (Pn{J{1,2}} − 2/3) by induction on the base of limn→∞
√

n (Pn{J{1}} − 1) = 0.
At last we find out T , where we use the fact limn→∞

√
n (Pn{J{1}} − 1) = 0 again, and prove the monotonicity of

Pn{J{1,2}} at the same time. We prove for case II straightforward by using the previous results above for Pn{J{1,2}}. (It
may be seen as being proved by induction, too.)

Step 1. Using Theorem 2.1, we get

Pn{J{1,2}} = En(Y1)

n − 1
= (n − 2)!

nn

n−1∑
k=1

k(n − k − 1)n−k−1

(n − k − 1)!
k∑

j=0

(k + 1)j

j ! .

Set nΛk , for each n, k, n = 2,3, . . . and k = 0,1,2, . . . , n − 1,

nΛk = k

n − 1
Pn(Y1 = k) = (n − 2)!

nn

k(n − k − 1)n−k−1

(n − k − 1)!
k∑

j=0

(k + 1)j

j ! .

Then Pn{J{1,2}} = ∑n−1
k=1 nΛk . Employing Corollary 2.1, we get, for 0 � k � n − 2

nΛk = 1

2
√

n(n − 1)

k√
n − k − 1

(
1 − 2

3
√

2π(k + 1)
+ C−1

n − k − 1
+ C0

n
+ C1

k + 1

)
.

Therefore,
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Pn{J{1,2}} = P(Y1 = n − 1) +
n−2∑
k=0

nΛk ∼
n−2∑
k=0

1

2
√

n(n − 1)

k√
n − k − 1

∼ 1

2

1∫
0

x√
1 − x

dx = 2

3
.

Step 2. As it is known that Pn{J{1}} = 1, we get

(n − 1)

n−1∑
k=1

nΛk

k
=

n−1∑
k=1

Pn(Y1 = k) = Pn{J{1}} − Pn(Y1 = 0) = 1 + O
(
n−1).

We shall separate Pn{J{1,2}} into several parts.

Pn{J{1,2}} =
n−1∑
k=1

nΛk =
n−1∑
k=1

n − 1

k
nΛk −

n−1∑
k=1

n − k − 1

k
nΛk

= 1 −
n−1∑
k=1

√
n − k − 1

2
√

n(n − 1)

(
1 − 2

3
√

2π(k + 1)
+ C−1

n − k − 1
+ C0

n
+ C1

k + 1

)
+ O

(
n−1)

= 1 −
n−1∑
k=1

√
n − k − 1

2
√

n(n − 1)
+

n−1∑
k=1

√
n − k − 1

2
√

n(n − 1)

2

3
√

2π(k + 1)
+ o

(
n−1/2)

= 1 − 1

2

1∫
0

√
x dx + 1

3
√

2π

1∫
0

√
1 − x

x
dx · n−1/2 + o

(
n−1/2)

= 2

3
+

√
2π

12
n−1/2 + o

(
n−1/2).

Hence T = limn→∞
√

n (Pn{J{1,2}} − 2/3) exists and T =
√

2π
12 . However, it is not necessary to know the value of T .

What we need only at present is to know its existence, and we will calculate its value by solving out a equation. Such
method will do help when we prove the rest cases.

We compare n+1Λk+1 with nΛk , and get for each 1 � k � n − 1,

n+1Λk+1

nΛk

= k + 1

k

n − 1

n

e · nn+1

(n + 1)n+1

∑k+1
j=0

(k+2)j

j !
e
∑k

j=0
(k+1)j

j !

=
(

1 + 1

k

)(
1 − 3

2n
+ O

(
1

n2

))(
1 + 1

3(2π)1/2k3/2
+ Ck

k2

)
= 1 + 1

k
− 3

2n
+ 1

3(2π)1/2k3/2
+ Ck

k2
,

where Ck , which may vary from place to place, is a bounded function which depends on k. But it can be shown that

n3/2
n−1∑
k=1

nΛk

k3/2
∼

n−2∑
k=1

1

2
√

k(n − k − 1)
∼ 1

2

1∫
0

1√
x(1 − x)

dx = π

2

and
∑n−1

k=1
nΛk

k2 = o(n−3/2). Therefore,

n3/2
n−1∑
k=1

(n+1Λk+1 − nΛk) = n3/2
n−1∑
k=1

nΛk

k
− 3n1/2

2

n−1∑
k=1

nΛk + n3/2

3(2π)1/2

n−1∑
k=1

nΛk

k3/2
+ o(1)

= n1/2 − 3n1/2

2

(
2/3 + T · n−1/2) +

√
2π

12
+ o(1)

= −3
T +

√
2π + o(1).
2 12
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It follows that

n3/2(Pn+1{J{1,2}} − Pn{J{1,2}}
) = n3/2 · n+1Λ1 + n3/2

n−1∑
k=1

(n+1Λk+1 − nΛk) = −3

2
T +

√
2π

12
+ o(1).

On the other hand, we have

lim
n→∞

√
n

(
Pn{J{1,2}} − 2/3

) = 2 lim
n→∞n

√
n

(
Pn{J{1,2}} − Pn+1{J{1,2}}

)
,

since the existence of limn→∞ n
√

n(Pn{J{1,2}} − Pn+1{J{1,2}}). Therefore,

−T

2
= −3

2
T +

√
2π

12

and we get T = √
2π/12. For case II, it holds that Pn(J{1} ⊕ J{2}) = Pn(J{1}) − Pn(J{1,2}). Substituting the result of

case I into this, we draw out the conclusion for case II. �
The following two results are the direct consequences of Theorem 2.2.

Corollary 2.2.

(1) The probability that vertices in [m] are totally disconnected

Pn{J d
m} = Pn{J{1} ⊕ J{2} ⊕ · · · ⊕ J{m}} ∼ 1

(2m − 1)!! ;

(2) The probability that vertices in [m] are connected

Pn{J{1,2,...,m}} ∼ (2m − 2)!!
(2m − 1)!! .

Remark. At the end of this section, we would like to present a table of Monte Carlo simulation. In Table 1 we list some
numerical values concerning probability Pn{JA1 ⊕ JA2 ⊕ · · · ⊕ JAm} in some simple cases for comparing. ‘precise’
means ‘precise value’, ‘revised’ means ‘revised value’, ‘test’ means ‘test value’ and ‘limit’ means ‘limit value’. The
precise value is given by Theorem 2.1. The revised value is given by approximation

Table 1
Calculation of Pn{JA1 ⊕ JA2 ⊕ · · · ⊕ JAm }

P precise
n = 10

revised
n = 10

test
n = 10

precise
n = 50

revised
n = 50

precise
n = 100

revised
n = 100

limit
n → ∞

J{1,2} .7159 .7327 .7175 .6923 .6962 .6855 .6876 .6667
J{1,2,3} .5966 .6159 .5990 .5659 .5703 .5572 .5594 .5333

J{1,2,3,4} .5272 .5480 .5315 .4931 .4978 .4834 .4859 .4571
J{1,2,3,4,5} .4805 .5023 .4830 .4443 .4493 .4341 .4367 .4063
J{1} ⊕ J{2} .2841 .2673 .2825 .3077 .3038 .3145 .3124 .3333

J{1,2} ⊕ J{3} .1193 .1168 .1185 .1264 .1259 .1284 .1281 .1333
J{1,2} ⊕ J{3,4} .0365 – .0430 .0376 – .0378 – .0381
J{1,2,3} ⊕ J{4} .0694 .0679 .0675 .0728 .0725 .0737 .0736 .0762

J{1,2,3} ⊕ J{4,5} .0166 .0176 .0145 .0170 .0172 .0170 .0171 .0169
J{1,2,3,4} ⊕ J{5} .0467 .0456 .0485 .0488 .0485 .0493 .0492 .0508

J{1} ⊕ J{2} ⊕ J{3} .0454 .0336 .0445 .0548 .0519 .0578 .0562 .0667
J{1,2} ⊕ J{3} ⊕ J{4} .0135 .0108 .0120 .0160 .0154 .0168 .0164 .0190

J{1,2} ⊕ J{3,4} ⊕ J{5} .0032 .0029 .0045 .0037 .0036 .0038 .0038 .0042
J{1,2,3} ⊕ J{4} ⊕ J{5} .0060 .0047 .0055 .0071 .0068 .0074 .0073 .0085

J{1} ⊕ J{2} ⊕ J{3} ⊕ J{4} .0050 .0013 .0060 .0068 .0058 .0074 .0069 .0095
J{1,2} ⊕ J{3} ⊕ J{4} ⊕ J{5} .0011 .0004 .0000 .0015 .0013 .0017 .0016 .0021

J{1} ⊕ J{2} ⊕ J{3} ⊕ J{4} ⊕ J{5} .0004 −.0003 .0010 .0006 .0004 .0007 .0006 .0011
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Pn{JA1 ⊕ JA2 ⊕ · · · ⊕ JAm} ≈ (2a1)!! · · · (2am)!!
(2m + 2a − 1)!! + (2a1)!! · · · (2am)!!

(2m + 2a − 2)!!

(
1 −

m∑
i=1

(2ai − 1)!!
(2ai)!!

)√
2π

6
n−1/2.

The test value is given by the Monte Carlo simulation

Pn{JA1 ⊕ JA2 ⊕ · · · ⊕ JAm} ≈ times of the occurrence of JA1 ⊕ JA2 ⊕ · · · ⊕ JAm in N times

N

with N = 2000. The limit value is given by

Pn{JA1 ⊕ JA2 ⊕ · · · ⊕ JAm} → (2a1)!! · · · (2am)!!
(2m + 2a − 1)!! .

3. A related Markov chain and asymptotics of components

We shall present the essential relation between large components of a random mapping and large boxes of the
related scheme of allocation in this section. We first introduce a probability space which describes a scheme of allo-
cating particles and discuss interesting properties of some related random sequences. By Theorem 2.2 the following
lemma is direct.

Lemma 3.1. Assume that A1, . . . ,Am is a fixed partition of [N ]. Then

lim
n→∞ Pn{JA1 ⊕ · · · ⊕ JAm ⊕ J{N+1}|JA1 ⊕ · · · ⊕ JAm} = 1

2N + 1

and for l = 1, . . . ,m

lim
n→∞ Pn{JA1 ⊕ · · · ⊕ JAl−1 ⊕ JAl∪{N+1} ⊕ JAl+1 ⊕ · · · ⊕ JAm |JA1 ⊕ · · · ⊕ JAm} = 2|Al |

2N + 1
.

The lemma inspires us to consider a scheme of random allocating particles. There are different particles called
P1,P2, . . . and different boxes called B1,B2, . . . . The Pn and Bn are also called the n-th particle and n-th box. We
define the allocation by induction. First we place P1 into B1, and next we place P2 with probability 2

3 into B1 and
with probability 1

3 into B2. More generally, suppose that the first N particles have been placed. Let us place the next
particle. Let the first m boxes be non-empty and have q1, . . . , qm particles in boxes from 1 to m respectively. Then
N = q1 +· · ·+ qm. At the next time we place PN+1 into the Bl with probability 2ql

2N+1 for l = 1, . . . ,m and into Bm+1

with probability 1
2N+1 . More precisely we have a probability space (Ω,F ,P) and a sequence of random variables

{Zn}, which is defined by induction as follows

(1) Z1 = 1;
(2) Suppose that Z1, . . . ,ZN is defined for N � 1. Let m := max{Z1, . . . ,ZN } and qi := ∑N

k=1 1{Zk=i}. ZN+1 is
equal to i with probability 2qi

2N+1 for 1 � i � m and to m + 1 with probability 1
2N+1 , or in the form of conditional

expectation

P(ZN+1 = i|Z1, . . . ,ZN) = 2qi

2N + 1
1{1�i�m} + 1

2N + 1
1{i=m+1}.

The random variable ZN records the number labelled on the box where the N -th particle is placed. The property (2)
actually gives the conditional distribution of ZN+1 given {Z1, . . . ,ZN } which determines the law P. Let HN :=
σ(Z1, . . . ,ZN) the filtration of {ZN } and H∞ = σ(HN : N � 1). Assume again that A1, . . . ,Am is a fixed ordered
partition of [N ]. We denote by A1 ⊕ A2 ⊕ · · · ⊕ Am the event that for any i, j ∈ [N ], Pi and Pj are contained in
the same box if and only if i, j ∈ Al for some 1 � l � m. Actually the event A1 ⊕ · · · ⊕ Am determines the value of
Z1, . . . ,ZN and vice versa. Indeed if Z1, . . . ,Zn are given, then the partition is natural, and conversely if an ordered
partition is given as above, Zk = l if k ∈ Al . Then

HN = σ
(
A1 ⊕ · · · ⊕ Am: {A1, . . . ,Am} is a partition of [N ])

and A1 ⊕ · · · ⊕ Am is an atom of HN .
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This process is actually a particular case of so-called (α, θ)-Chinese restaurant process (see, e.g. Chapter 3, [6])
with α = 0 and θ = 1/2. By a direct calculation, it follows that

P{A1 ⊕ A2 ⊕ · · · ⊕ Am} = (2a1)!! · · · (2am)!!
(2N − 1)!! .

Therefore we have the following theorem which states that asymptotically the probability that vertices are connected
in a random mapping is equal to the probability that particles are placed in the same box in the above scheme of
allocating particles. This illustrates the essential connection between these two models.

Theorem 3.1. For any N and if A1, . . . ,Am is a partition of [N ], then

lim
n→∞ Pn{JA1 ⊕ · · · ⊕ JAm} = P{A1 ⊕ · · · ⊕ Am}.

Remark. For N � n, define similarly for random mapping graph

Hn,N := σ
(
JA1 ⊕ · · · ⊕ JAm : {A1, . . . ,Am} is a partition of [N ]).

It is actually generated by components in [N ]. An event K in Hn,N may be viewed as the corresponding event K in
HN in a natural way. The theorem says limn Pn(K) = P(K).

For N,m � 1, let DN be the number of nonempty boxes after the N -th particle has been placed, Tm the first time
that the box Bm is nonempty and Qm

N the number of the particles in box Bm at the time when the N -th particle is
placed. Precisely

DN := max{Z1, . . . ,ZN },

Qm
N :=

N∑
k=1

1{Zk=m},

Tm := inf{k: Zk = m}.
Set QN = (Qm

N : m � 1). Then DN is also equal to the length of non-zero elements in QN or simply the length
of QN . Clearly Q1, . . . ,QN and Z1, . . . ,ZN are uniquely determined mutually for any N � 1. Then {HN } is also the
filtration of (QN). Let S be the set of sequences of non-negative integers x = (xn) satisfying that there exists m � 1
such that xn = 0 for n > m and xn > 0 for n � m with norm |x| = ∑

n xn. Particularly ei := (1{n=i}: n � 1) the i-th
unit vector. The following lemma can be checked by definition directly.

Lemma 3.2. {QN : N � 1} is a Markov chain starting from e1, with state space S. More precisely for i = 1,2, . . . ,

P(QN+1 = QN + ei |HN) = 2Qi
N

2|QN | + 1
+ 1

2|QN | + 1
1{Qi−1

N >0,Qi
N=0}.

For the length of QN , by the definition of the random allocating particles process, we have

P(DN+1 = DN + 1|HN) = 1

2N + 1
, and P(DN+1 = DN |HN) = 2N

2N + 1
.

Hence, {DN } is a Markov chain with independent (but not stationary) increments with respect to {HN }.
From the definition of Tm, it is actually the first hitting time to {m} of {Zn} and hence we know that {Tm} is a

sequence of stopping times with respect to {HN }. Obviously 1 = T1 < T2 < · · · < Tm < · · · . As we shall see later,
{Tm} takes finite value a.s. From the definition of Qm

N , we know, on {Tm < ∞}

P
(
Qm

Tm+N = Qm
Tm+N−1 + 1|HTm+N−1

) = 2Qm
Tm+N−1

2Tm + 2N − 1
,

P
(
Qm

Tm+N = Qm
Tm+N−1|HTm+N−1

) = 1 − 2Qm
Tm+N−1

2Tm + 2N − 1
.

Thus {Qm
Tm+N } is a Markov chain with respect to {HTm+N } for any m � 1. In particular, when m = 1, {Q1

N : N � 1}
is a Markov chain with respect to {HN }. We now present a few martingale properties related to this chain.



362 X. Chen, J. Ying / Ann. I. H. Poincaré – PR 43 (2007) 353–374
Lemma 3.3.

(1) For any m � 1, Tm is finite a.s., and for N = 1,2, . . . we have that

P(Tm+1 = Tm + N |HTm) = B(Tm + N − 1, 3
2 )

B(Tm, 1
2 )

where B(· , ·) is the beta function.
(2) Moreover, { 3m

2Tm+1 } is a martingale with mean 1.

(3) For each m � 1, { Qm
Tm+N

2Tm+2N+1 : N = 0,1, . . .} is a bounded martingale with respect to {HTm+N }. Moreover

E
{

Qm
Tm+N

2Tm + 2N + 1

∣∣∣HTm

}
= 1

2Tm + 1
, and E

{
Qm

Tm+N

2Tm + 2N + 1

}
= 1

3m
.

(4) { Qm
N

2N+1 } is a bounded sub-martingale with respect to {HN }, and

E
{

Qm
N

2N + 1

}
� 1

3m
.

Proof. (1) Using the strong Markov property, we get on {Tm < ∞} that DTm = m and

P(Tm+1 = Tm + N |HTm) = E
(
P(DTm+N = m + 1,DTm+N−1 = m|HTm+N−1)|HTm

)
= E

(
P(DTm+N = DTm+N−1 + 1|HTm+N−1),DTm+N−1 = m|HTm

)
= 1

2Tm + 2N − 1
P(DTm+N−1 = m|HTm)

= 1

2Tm + 2N − 1
E

(
P(DTm+N−1 = DTm+N−2|HTm+N−2);DTm+N−2 = m|HTm

)
= 1

2Tm + 2N − 1
· 2Tm + 2N − 4

2Tm + 2N − 3
P(DTm+N−2 = m|HTm)

= 1

2Tm + 2N − 1
· 2Tm + 2N − 4

2Tm + 2N − 3
· · · 2Tm

2Tm + 1

= B(Tm + N − 1, 3
2 )

B(Tm, 1
2 )

,

and then on {Tm < ∞},

P(Tm+1 < ∞|HTm) =
∞∑

N=1

P(Tm+1 = Tm + N |HTm)

=
∞∑

N=1

B(Tm + N − 1, 3
2 )

B(Tm, 1
2 )

= 1

B(Tm, 1
2 )

∞∑
N=1

1∫
0

xTm+N−2(1 − x)
1
2 dx = 1.

Hence, P{Tm+1 < ∞|Tm < ∞} = 1 and it follows from T1 = 1 that any Tm is finite a.s.

(2) Calculating the conditional expectation of 3m+1

2Tm+1+1 given HTm by using (1), we have

E
(

3m+1

2Tm+1 + 1

∣∣∣HTm

)
=

∞∑ 3m+1

2Tm + 2N + 1

B(Tm + N − 1, 3
2 )

B(Tm, 1 )
= 3m

2Tm + 1

N=1 2
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and

E
(

3m+1

2Tm+1 + 1

)
= 3

2T1 + 1
= 1.

(3) The boundedness is obvious since Qm
Tm+N � N + 1. Using strong Markov property again, we have

E
{
Qm

Tm+N+1|HTm+N

} = Qm
Tm+N P

{
Qm

Tm+N+1 = Qm
Tm+N |HTm+N

}
+ (

Qm
Tm+N + 1

)
P
{
Qm

Tm+N+1 = Qm
Tm+N + 1|HTm+N

}
= Qm

Tm+N

(
1 − 2Qm

Tm+N

2Tm + 2N + 1

)
+ (

Qm
N + 1

)( 2Qm
Tm+N

2Tm + 2N + 1

)
= 2Tm + 2N + 3

2Tm + 2N + 1
Qm

Tm+N.

Hence

E
{

Qm
Tm+N+1

2Tm + 2N + 3

∣∣∣HTm+N

}
= Qm

Tm+N

2Tm + 2N + 1

and it follows that

E
{

Qm
Tm+N

2Tm + 2N + 1

∣∣∣HTm

}
= 1

2Tm + 1

since Qm
Tm

= 1. The second equation is a consequence of (2).

(4) The fact that { Qm
N

2N+1 } is a sub-martingale with respect to {HN } follows directly from (3) and the fact that Qm
N = 0

if Tm > N . That completes the proof. �
The following theorem gives us a more intuitive picture about the relation between these two models. We need

to introduce a series of random variables for a random mapping graph with n vertices. A random mapping graph
Gn gives a partition for [n] which is the set of components and denoted by E1,E2, . . . ,Eνn in order, where νn is the
number of components. Clearly νn � n. Given a natural number k, let Hk

n := |Ek| for k � νn, and Hk
n := 0 for k > νn.

For N � n we shall see how the partition is shown locally in [N ]. Let Ak
N := Ek ∩ [N ], and

Dn,N := sup
{
k: Ak

N �= ∅} = sup
{
k: minEk � N

}
and obviously Dn,N � N . With this notation, for a fixed partition A1, . . . ,Am of [N ] with proper order,

JA1 ⊕ · · · ⊕ JAm = {
Gn: Ak

N = Ak, 1 � k � m
}
.

For 1 � k � Dn,N , let Qk
n,N := |Ak

N | be the number of vertices in Ak
N and Hk

n,N the number of vertices of the

component which contains Ak
N in Gn. For k > Dn,N set Qk

n,N = Hk
n,N = 0. By definition it is easy to see that

N =
∞∑

k=1

Qk
n,N , n =

∞∑
k=1

Hk
n,n �

∞∑
k=1

Hk
n,N ,

QN+1
n,N = QN+2

n,N = · · · = 0,

Hk
n,N = Hk

n · 1{k�Dn,N }.

It follows from Theorem 3.1 that (Qk
n,N : k � 1) converges to (Qk

N : k � 1) in law in the sense that for any k � 1 and
l1, . . . , lk � 1, it holds that

lim
n

Pn

(
Q1

n,N = l1, . . . ,Q
k
n,N = lk

) = P
(
Q1

N = l1, . . . ,Q
k
N = lk

)
,

which shall be written as (Qk
n,N : k � 1)

d−→ (Qk
N : k � 1).

As we see above, some information of a random mapping graph will be reflected in a subset. For N � n, a property
of a random mapping graph with n vertices recorded in its subset [N ] is called its local image, which is asymptotically
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embedded into a nice probability space. The theorem below says that such a property (i.e., ratio Hk
n

n
of the k-th

component in Gn) may be approximated by its local image (ratio
Qk

n,N

N
of the part of it located in [N ]). To prove it,

we mainly use the techniques developed above.

Theorem 3.2.

lim
N→∞ lim sup

n→∞
En

( ∞∑
k=1

(
Qk

n,N

N
− Hk

n

n

)2
)

= 0.

Proof. Set Tn,1 = 1 and for any Gn ∈ Ωn,

Tn,m(Gn) := minEm = inf{j > Tn,m−1: J{Tn,1} ⊕ · · · ⊕ J{Tn,m−1} ⊕ J{j} occurs in Gn},
(inf∅ = ∞) for m � 2, n � 1, i.e., Tn,m is the least numbered vertex in the m-th component of Gn. By definition,
we have Dn,Tn,m = m, Am

Tn,m
= {Tn,m}, Qm

n,N = Hm
n,N = 0 on {Tn,m > N}, and Hm

n = Hm
n,Tn,m

= Hm
n,N on {Tn,m � N},

since the component which contains vertex Tn,m always contains vertices in Am.
Employing Theorem 3.1, we can easily get when n → ∞, Tn,m and Qm

n,N asymptotically converge to Tm and Qm
N

in distribution respectively, namely, for any fixed m,k,N ,

lim
n→∞ Pn(Tn,m = k) = P(Tm = k),

lim
n→∞ Pn

(
Qm

n,N = k
) = P

(
Qm

N = k
)
,

since {Tn,m = k}, {Tm = k}, {Qm
n,N = k}, {Qm

N = k} can be decomposed into finite union of events of the form JA1 ⊕
· · · ⊕ JAm or A1 ⊕ · · · ⊕ Am in respective probability space. Furthermore, by the dominated convergence theorem and
Lemma 3.3, we have for any fixed m,N ,

lim
n→∞ En

(
1

2Tn,m + 1

)
= E

(
1

2Tm + 1

)
= 1

3m
,

lim
n→∞ En

(
Qm

n,N

) = E
(
Qm

N

)
� 2N + 1

3m
.

For any 1 > δ > 0 and m ∈ N, there exist Nm such that, P(Tm � Nm) � 1 − δ
2 since Tm is a finite stopping time. Then

we have

Pn(Tn,m � Nm) � 1 − δ,

En

(
1

2Tn,m + 1

)
� 1 + δ

3m
,

Pn(JA1 ⊕ · · · ⊕ JAm ⊕ J{M+1}|JA1 ⊕ · · · ⊕ JAm) � 1 + δ

2M + 1

for any n > n1, where n1 depends on m,Nm, and {A1, . . . ,Am} is any partition of [M] with M � Nm.
Let us now estimate the expectation in question by several steps. The easy part is that for n large,

En

{ ∞∑
k=1

(
Qk

n,N

N
− Hk

n

n

)2

; Tn,m > Nm

}
� 2Pn(Tn,m > Nm) � 2δ.

To estimate the other case Tn,m � Nm, we separate the sum into two parts: the tail k > m and the main body k � m.
To estimate the tail of {Qk

n,N : k � 1} first, we have

lim
n→∞ En

( ∞∑
k=m+1

Qk
n,N

)
= lim

n→∞ En

(
N∑

k=m+1

Qk
n,N

)
= E

(
N∑

k=m+1

Qk
N

)

=
N∑

E
(
Qk

N

)
�

N∑ 2N + 1

3k
<

2

3m
N.
k=m+1 k=m+1
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Hence there exists n2 which depends on m,N , such that for n > n2, we have

En

( ∞∑
k=m+1

Qk
n,N

)
� 2

3m
N.

To estimate the tail of {Hk
n : k � 1} is a little harder. Clearly for Tn,m < ∞, we have

∞∑
k=m+1

Hk
n =

n∑
j=Tn,m+1

1J
A1

Tn,m

⊕···⊕JAm
Tn,m

⊕J{j },

where the notation (and similar in the sequel) JA1
Tn,m

⊕ · · · ⊕ JAm
Tn,m

⊕ J{j} denotes the set of Gn satisfying

Gn ∈ JA1
Tn,m

(Gn) ⊕ · · · ⊕ JAm
Tn,m

(Gn) ⊕ J{j},

namely, the event that vertex j is not connected with the first m components.
For any M > m � 1 with M � Nm, and an ordered partition {A1, . . . ,Am−1,Am} of [M] with Am = {M}, it holds

that

Pn

(
JA1

Tn,m

⊕ · · · ⊕ JAm
Tn,m

⊕ J{Tn,m+1}|Tn,m = M,A1
Tn,m

= A1, . . . ,A
m
Tn,m

= Am

)
= Pn(JA1 ⊕ · · · ⊕ JAm ⊕ J{M+1}|JA1 ⊕ · · · ⊕ JAm)

� 1 + δ

2M + 1
,

for n > n1. Then, on {Tn,m � Nm},

Pn

(
JA1

Tn,m

⊕ · · · ⊕ JAm
Tn,m

⊕ J{Tn,m+1}|Tn,m,A1
Tn,m

, . . . ,Am
Tn,m

)
� 1 + δ

2Tn,m + 1
.

It follows that

En

( ∞∑
k=m+1

Hk
n ;Tn,m � Nm

)

= En

(
En

( ∞∑
k=m+1

Hk
n |Tn,m,A1

Tn,m
, . . . ,Am

Tn,m

)
;Tn,m � Nm

)

= En

(
En

(
n∑

j=Tn,m+1

1J
A1

Tn,m

⊕···⊕JAm
Tn,m

⊕J{j } |Tn,m,A1
Tn,m

, . . . ,Am
Tn,m

)
;Tn,m � Nm

)

= En

(
n∑

j=Tn,m+1

En

(
1J

A1
Tn,m

⊕···⊕JAm
Tn,m

⊕J{j } |Tn,m,A1
Tn,m

, . . . ,Am
Tn,m

);Tn,m � Nm

)
= En

(
(n − Tn,m)En

(
1J

A1
Tn,m

⊕···⊕JAm
Tn,m

⊕J{Tn,m+1} |Tn,m,A1
Tn,m

, . . . ,Am
Tn,m

);Tn,m � Nm

)
= En

(
(n − Tn,m)

1 + δ

2Tn,m + 1
;Tn,m � Nm

)
� n(1 + δ)En

(
1

2Tn,m + 1

)
� (1 + δ )2

3m
n.

It then implies that

En

( ∞∑
Hk

n

)
�

(
(1 + δ )2

3m
+ δ

)
n.
k=m+1
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Therefore we have a tail estimate

En

{ ∞∑
k=m+1

(
Qk

n,N

N
− Hk

n

n

)2
}

� En

{ ∞∑
k=m+1

(
Qk

n,N

N
+ Hk

n

n

)}
� 2

3m
+ δ + (1 + δ)2

3m
.

We are now left to estimate the hard part

En

{
m∑

k=1

(
Qk

n,N

N
− Hk

n

n

)2

;Tn,m � Nm

}
.

Set S(n, t, a,h) = {α ⊆ [n]\[t]: |α| = h − a}. Since the symmetric property of Pn, we have, on {Tn,m � Nm}, for any
α ∈ S(n,Tn,m, |Ak

Tn,m
|,Hk

n,Tn,m
), 1 � k � m,

Pn(JAk
Tn,m

∪α|Tn,m,A1
Tn,m

· · ·Am
Tn,m

,H 1
n,Tn,m

, . . . ,Hm
n,Tn,m

) = 1

|S(n,Tn,m, |Ak
Tn,m

|,Hk
n,Tn,m

)| .

Hence on {Tn,m � Nm}, for 1 � k � m, 0 � Qk � N � n − Nm, we have

Pn

{
Qk

n,N+Tn,m
= Qk + ∣∣Ak

Tn,m

∣∣|Tn,m,A1
Tn,m

· · ·Am
Tn,m

,H 1
n,Tn,m

, . . . ,Hm
n,Tn,m

}
= Pn

{ ⋃
α1,α2

JAk
Tn,m

∪α1∪α2
|Tn,m,A1

Tn,m
· · ·Am

Tn,m
,H 1

n,Tn,m
, . . . ,Hm

n,Tn,m

}

=
|S(N + Tn,m,Tn,m, |Ak

Tn,m
|,Qk + |Ak

Tn,m
|)||S(n,N + Tn,m,Qk + |Ak

Tn,m
|,Hk

n,Tn,m
)|

|S(n,Tn,m, |Ak
Tn,m

|,Hk
n,Tn,m

)|

=
(

N
Qk

)( n−N−Tn,m

Hk
n,Tn,m

−Qk−|Ak
Tn,m

|
)

( n−Tn,m

Hk
n,Tn,m

−|Ak
Tn,m

|
)

=
(Hk

n,Tn,m
−|Ak

Tn,m
|

Qk

)(n−Tn,m−Hk
n,Tn,m

+|Ak
Tn,m

|
N−Qk

)
(n−Tn,m

N

) ,

where
⋃

α1,α2
means union for all

α1 ∈ S
(
N + Tn,m,Tn,m,

∣∣Ak
Tn,m

∣∣,Qk + ∣∣Ak
Tn,m

∣∣), α2 ∈ S
(
n,N + Tn,m,Qk + ∣∣Ak

Tn,m

∣∣,Hk
n,Tn,m

)
,

i.e., the conditional distribution is hypergeometric. It follows that

En

{(
Qk

n,N+Tn,m
− ∣∣Ak

Tn,m

∣∣ − N
Hk

n,Tn,m
− |Ak

Tn,m
|

n − Tn,m

)2 ∣∣∣∣ Tn,m,A1
Tn,m

· · ·Am
Tn,m

,H 1
n,Tn,m

, . . . ,Hm
n,Tn,m

}
= N

Hk
n,Tn,m

− |Ak
Tn,m

|
n − Tn,m

(
1 −

Hk
n,Tn,m

− |Ak
Tn,m

|
n − Tn,m

)
n − Tn,m − N

n − Tn,m − 1

� N
Hk

n,Tn,m
− |Ak

Tn,m
|

n − Tn,m

.

Furthermore, on {Tn,m � Nm}, we have

En

{
m∑

k=1

(
Qk

n,N+Tn,m
− |Ak

Tn,m
|

N
−

Hk
n,Tn,m

− |Ak
Tn,m

|
n − Tn,m

)2 ∣∣∣∣ Tn,m,A1
Tn,m

· · ·Am
Tn,m

,H 1
n,Tn,m

, . . . ,Hm
n,Tn,m

}

� 1

N

m∑
k=1

Hk
n,Tn,m

− |Ak
Tn,m

|
n − Tn,m

= 1

N

∑m
k=1 Hk

n,Tn,m
− Tn,m

n − Tn,m

� 1

N
.

Therefore, it holds that
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En

{
m∑

k=1

(
Qk

n,N+Tn,m
− |Ak

Tn,m
|

N
−

Hk
n,Tn,m

− |Ak
Tn,m

|
n − Tn,m

)2

;Tn,m � Nm

}
� 1

N
Pn(Tn,m � Nm) � 1

N
.

However, it is easy to see that (1) |Ak
Tn,m

| � Tn,m; (2) Hk
n,Tn,m

= Hk
n for k � m; (3) 0 � Qk

n,N+Tn,m
− Qk

n,N � Tn,m.
Hence if Tn,m � Nm, there exists n3 which depends on Nm such that for any n > N > n3 we have∣∣∣∣∣

m∑
k=1

(
Qk

n,N+Tn,m
− |Ak

Tn,m
|

N
−

Hk
n,Tn,m

− |Ak
Tn,m

|
n − Tn,m

)2

−
m∑

k=1

(
Qk

n,N

N
− Hk

n

n

)2
∣∣∣∣∣ � δ.

This yields

En

(
m∑

k=1

(
Qk

n,N

N
− Hk

n

n

)2

;Tn,m � Nm

)
� 1

N
+ δ.

Finally we have for N > n3, n > max{n1, n2, n3,N},

En

{ ∞∑
k=1

(
Qk

n,N

N
− Hk

n

n

)2
}

� En

{
m∑

k=1

(
Qk

n,N

N
− Hk

n

n

)2

;Tn,m � Nm

}
+ En

{ ∞∑
k=m+1

(
Qk

n,N

N
− Hk

n

n

)2
}

+ En

{ ∞∑
k=1

(
Qk

n,N

N
− Hk

n

n

)2

;Tn,m > Nm

}

� 1

N
+ δ + 2

3m
+ δ + (1 + δ )2

3m
+ 2δ <

1

N
+ 10δ,

by choosing m large enough such that 3−m < δ. Hence

lim
N

lim sup
n

En

{ ∞∑
k=1

(
Qk

n,N

N
− Hk

n

n

)2
}

� 10δ.

The conclusion follows since δ may be arbitrarily small. �
Now we are at a position to uncover how our results can be used to discuss asymptotic behaviors of random

mappings, which generally means the limit probability of a property or an event of a random mapping graph as the
number of vertices goes to infinity. Our program runs like this: (1) a property of a random graph is approached by its
local image; (2) the local image converges to a property in the scheme of allocation; (3) this property in the scheme
shows some asymptotic behavior. Now a lemma, easy to prove, is prepared to bridge the last inch of the gap concerning
asymptotic behaviors in two models. Let {Xn} and {Xn,N } be random sequences in (Ωn,Fn,Pn), and {YN } a random
sequence in (Ω,F ,P).

Lemma 3.4. Assume that for any δ > 0 and real x,

lim
N

lim sup
n

Pn

(|Xn − Xn,N | > δ
) = 0 and lim

n
Pn(Xn,N � x) = P(YN � x).

If YN converges to Y in law, then limn Pn(Xn � x) = P(Y � x) for any real x. In this case we also say that Xn

converges in law to Y , or simply Xn
d−→ Y .

Combining all results above, we can see that any asymptotic behavior of the Markov chain {QN } leads to a similar
behavior of random mappings. In other words, asymptotic behaviors concerning component size of random mappings
are embedded in the related Markov chain. A direct consequence is that components of a random mapping are asymp-
totically organized as the blocks of a (0,1/2)-Chinese restaurant process (refer to [6]). It follows from Lemma 3.3(4)
that Qk

N/N converges a.s. and in L1 to a random variable, say, Xk .

Corollary 3.1. As n goes to infinity, (
Hk

n : k � 1)
d−→ (Xk: k � 1).
n
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We shall give several examples to show how this program works to recover classical results.

Example 1. From the following theorem we can easily get one result of Pittel [7] on two-sided epidemic processes
which was proposed by Gertsbakh [4], also see Stepanov [12]. The result states that for any fix r � 1, starting with r

infected elements (or vertices) in a random mapping with n elements(or vertices), in a two-sided epidemic process,
the percentage of eventually infected elements is asymptotically beta-distributed with parameters r and 1

2 as n goes
to infinity. In other words, the result gives the limit distribution of the ratio of the number of elements in components
containing the first r vertices,

lim
n

Pn

(∑∞
k=1 Hk

n,r

n
� x

)
= (2r − 1)!!

2(2r − 2)!!
x∫

0

(1 − y)−1/2yr−1 dy, x ∈ [0,1],

where Hk
n,r = Hk

n if the k-th component contains a vertex in [r] and Hk
n,r = 0 otherwise. This follows from the

theorem below, Theorem 3.2 and Lemma 3.4.

Theorem 3.3. For r � 1, there exists a random variable ζr , such that N−1 ∑Dr

k=1 Qk
N → ζr , L1 & a.s. and ζr is

beta-distributed with parameters r and 1
2 .

Proof. Set Q̃r
N := ∑Dr

k=1 Qk
N . Clearly, when N = r ,

P
(
Q̃r

r = r
) = P

(
Q1

r = r|Q1
r = r

) = 1

and when N > r ,

P
(
Q̃r

N+1 = 1 + Q̃r
N |HN

) = E
(
P
(
Q̃r

N+1 = 1 + Q̃r
N

∣∣Dr

)∣∣HN

)
= E

(
P

(
Dr∑
k=1

Qk
N+1 = 1 +

Dr∑
k=1

Qk
N

∣∣Dr

)∣∣∣∣HN

)

= E

(
Dr∑
k=1

P
(
Qk

N+1 = 1 + Qk
N

∣∣Dr

)∣∣HN

)

= E

(
Dr∑
k=1

2Qk
N

2N + 1

∣∣∣∣HN

)
= 2Q̃r

N

2N + 1
.

It follows that

P
(
Q̃r

N+1 = Q̃r
N

∣∣HN

) = 1 − 2Q̃r
N

2N + 1
.

It is then verified that { Q̃r
N

2N+1 : N � r} is a bounded martingale with respect to {HN : N � r}. Therefore, there exists a
random variable ζr such that,

Q̃r
N

2N + 1
→ ζr

2
, L1 & a.s.

We need to show that ζr is beta-distributed with parameters r and 1
2 . It is seen that {Q̃r

N } is a Markov chain with
respect to {HN : N � r}. Moreover, the chain is independent of Dr . As a result,

P
(
Q̃r

N ∈ •) = P
(
Q̃r

N ∈ •|Dr = 1
) = P

(
Q1

N ∈ •|Q1
r = r

)
, ∀N > r,

since {Dr = 1} = {Q1
r = r}. Set Λ(k1, . . . , km) = {A1 ⊕ · · · ⊕ Am: |A1| = k1, . . . , |Am| = km and they are a partition

of [k1 +· · ·+km]} and Λ1(k1, . . . , km) = {A1 ⊕· · ·⊕Am: A1 ⊇ [r], and |A1| = k1, . . . , |Am| = km and they are a par-
tition of [k1 +· · ·+km]}. And we shall write α(k1, . . . , km) = |Λ(k1, . . . , km)| and α1(k1, . . . , km) = |Λ1(k1, . . . , km)|.
For any r � M < N ,
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P
(
Q1

N = M,Q1
r = r

) =
N∑

m=1

∑
k2+···+km=N−M

P
{
Λ1(M,k2, . . . , km)

}
=

N∑
m=1

∑
k2+···+km=N−M

α1(M,k2, . . . , km)(M − 1)!(k2 − 1)! · · · (km − 1)!2N−m

(2N − 1)!!

=
N∑

m=1

∑
k2+···+km=N−M

(
N − r

M − r

)
α(k2, . . . , km)(M − 1)!(k2 − 1)! · · · (km − 1)!2N−m

(2N − 1)!!

=
(

N − r

M − r

)
(M − 1)!(2N − 2M − 1)!!

2−M+1(2N − 1)!!

×
N∑

m=2

∑
k2+···+km=N−M

α(k2, . . . , km)(k2 − 1)! · · · (km − 1)!2(N−M)−(m−1)

(2N − 2M − 1)!!

=
(

N − r

M − r

)
(M − 1)!(2N − 2M − 1)!!

2−M+1(2N − 1)!!
N∑

m=2

∑
k2+···+km=N−M

P
{
Λ(k2, . . . , km)

}
= 1

2−2M+1

N !N !
N(2N)!

(2N − 2M)!
(N − M)!(N − M)!

(M − 2)r−1

(N − 2)r−1
.

Since P(Q1
r = r) = (2r−2)!!

(2r−1)!! , it follows from Stirling formula that, as M is large enough,

P
(
Q̃r

N = M
) = cr

(
M

N

)r−1 1√
N(N − M)

(
1 + C1

N
+ C2

M
+ C2

N − M

)
,

where C1,C2,C3 are bounded functions which depend on N,M,N − M respectively. Hence

P
(
Q̃r

N � xN
) = cr

x∫
0

(1 − y)−1/2yr−1 dy + o(1).

That completes the proof. �
Example 2. The following theorem leads to a result of Stepanov [11] on L1

n, the size of the largest component of a
random mapping with n elements, also see Kolchin [5], which states that

Pn

(
L1

n

n
� x

)
→

1∫
x

1

2x
√

1 − x
dx, x ∈

[
1

2
,1

]
.

Theorem 3.4. As N goes to infinity,

P
(

max
k

Qk
N

N
� x

)
→

1∫
x

1

2x
√

1 − x
dx, x ∈

[
1

2
,1

]
.

Proof. It follows from a similar argument as in Theorem 3.3 that for any fixed N,M with N
2 < M � N , it holds that

P
(

max
k

Qk
N = M

)
= 1

2−2M+1M

N !N !
(2N)!

(2N − 2M)!
(N − M)!(N − M)! .

As M large enough, using Stirling’s formula again, we have

P
(

max
k

Qk
N = M

)
= 1

2M

√
N

N − M

(
1 + C1

N
+ C2

N − M

)
,

where C1,C2 are bounded functions dependent on N,N − M respectively, and this implies our assertion. �
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Example 3. The study of the limit behavior of sequence concerning the size of components of random mappings(
H 1

n

n
, . . . ,

Hm
n

n
, . . .

)
goes back at least to Stepanov [12], also see Aldous et al. [2,1], which states(

H 1
n

n
,
H 2

n

n
, . . . ,

Hm
n

n
, . . .

)
d−→

(
ξ1, ξ2(1 − ξ1), . . . , ξm

m−1∏
k=1

(1 − ξk), . . .

)
,

where (ξk) are i.i.d. and beta-distributed with parameters 1 and 1
2 . This follows directly from Corollary 3.1, Theo-

rem 3.3 and the self-similarity of (QN) as explained below, see also [6]. For m � 1, define bm
n := ∑

k>m Qk
n, the

total number of particles in boxes beyond m after n particles are placed, which increases at most by 1 each time, and
τm
N := inf{n: bm

n = N} for N � 1. Intuitively τm
N is the N -th particle placed beyond the first m boxes. Obviously τm

N

is a finite stopping time since τm
N � Tm+N . It is easy to check that {QτN

} is a time change of {QN }. For any x ∈ S,
πmx := (x1, . . . , xm), a projection, and ξmx := (xm+1, xm+2, . . .), a translation.

Theorem 3.5. For any m � 1, {ξm(Qτm
N
): N � 1} is a Markov chain independent of {πm(Qτm

N
): N � 1} and identical

in law with {QN : N � 1}.

4. The expected size of the largest component

In this section, we shall present the moments of size of the largest component in a random mapping graph. For
r,m � 1, define

E(x) :=
∞∫

x

e−y

2y
dy, Gr,m :=

∞∫
0

xm−1 [E(x)]r−1

(r − 1)! e−E(x) e−x

2
dx.

Theorem 4.1. Let Lr be the size of the r-th largest component in a random mapping graph in Ωn. Then

lim
n

En(Lr/n)m = 2m

(2m − 1)!!Gr,m.

Particularly limn En(L1/n)
.= 0.7575 . . . .

Proof. As we have known, there is a probability space (Ω,H ,P) and A1 ⊕ · · · ⊕ Am is an atom of HN where
A1, . . . ,Am are an ordered partition of [N ], and QN = (Qk

N) where Qk
N = |Ak|, k = 1, . . . , and P satisfies that

P(A1 ⊕ · · · ⊕ Am) = (2a1)!! · · · (2am)!!
(2N − 1)!! ,

where al = |Al | − 1 .
Define ζi,N := #{k: Qk

N = i} and ζ (N) := (ζi,N : i � 1). Suppose that s = {si : si ∈ Z+} with

υ(s) :=
∞∑
i=1

isi = N.

It is easily shown that

P(ζi,N = si : i = 1, . . .) = N !
�∞

i=1(i!)si si !
�∞

i=1((2(i − 1))!!)si
(2N − 1)!!

= N !2
∑∞

i=1 isi �∞
i=1 (2i)−si

(2N − 1)!!
= N !2N

(2N − 1)!!
∞∏ (2i)−si

si ! .
i=1
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It implies the identity∑
s: υ(s)=N

N !2N

(2N − 1)!!
∞∏
i=1

(2i)−si

si ! = 1. (1)

The random variables {ζi,N : i � 1} would be independent if it were not for the condition on υ(s) = N . Consider then
a sequence ζ = {ζi} of mutually independent nonnegative integer valued random variables, where for i = 1,2, . . . the

random variable ζi is Poisson distributed with mean zi

2i
, i.e.,

Pz{ζi = s} = exp

{
− zi

2i

}
(zi/2i)s

s! , s = 0,1, . . . ,

where, z ∈ (0,1).
Since P(ζi �= 0) = 1 − exp{− zi

2i
} < zi

2i
and

∑∞
j=1 Pz(ζi �= 0) is finite, it follows from the Borel–Cantelli lemma,

that Pz(ζi �= 0, infinitely often) = 0. Thus the random variable υ(ζ ) = ∑∞
i=1 iζi is finite with probability 1, and the

joint distribution of (ζi) may be written meaningfully as

Pz(ζi = si , i = 1, . . .) =
∞∏
i=1

exp

{
− zi

2i

}
(zi/2i)si

si ! = √
1 − z · zυ(s)

∞∏
i=1

(2i)−si

si !
for all sequences s = (si) of nonnegative integers eventually 0. It is easy to see from (1) that the conditional distribution
of the ζ ’s given υ(ζ ) does not depend on z, more precisely

Pz(ζi = si , i = 1, . . . |υ(ζ ) = N) =
{

N !2N

(2N−1)!!
∏∞

i=1
(2i)−si

si ! , if
∑∞

j=1 isi = N,

0, otherwise.

Therefore two probabilities are connected as follows

Pz(ζi = si , i = 1, . . . |υ(ζ ) = N) = P(ζi,N = si : i = 1, . . .)

and the distribution of υ is

Pz

(
υ(ζ ) = N

) = √
1 − z · zN (2N − 1)!!

N !2N
, N = 0,1, . . . .

Its expected value is Ez(υ(ζ )) = ∑∞
i=1

zi

2 = z
2−2z

. Let Φ be a function on S. Then it follows that

Ez

(
Φ(ζ)

) =
∑
N�0

Ez

(
Φ(ζ)|υ(ζ ) = N

)
Pz

(
υ(ζ ) = N

)
=

∑
N�0

E
(
Φ

(
ζ (N)

))√
1 − z · zN (2N − 1)!!

N !2N

and then

1√
1 − z

Ez

(
Φ(ζ)

) =
∞∑

N=0

zN (2N − 1)!!
(2N)!! E

(
Φ

(
ζ (N)

))
.

Given r � 1, define Φ(s) := max{i � 0:
∑∞

j=i sj � r} for s ∈ S, Lr := Φ(ζ) and Lr,N := Φ(ζ (N)). Then Lr,N is the
r-th large component in QN and we have

1√
1 − z

Ez

(
Lm

r

) =
∞∑

N=0

zN (2N − 1)!!
(2N)!! E

(
Lm

r,N

)
.

It means that the left-hand side is equal to the generating function of { (2N−1)!!
(2N)!! E(Lm

r,N ): N � 0}. An idea similar to
that in [10] gives the following limit

lim (1 − z)mEz

(
Lm

r

) = Gr,m.

z→1
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Thus

lim
z→1

(1 − z)m+ 1
2

�(m + 1
2 )

· 1√
1 − z

Ez

(
Lm

r

) = Gr,m

�(m + 1
2 )

.

Since {Lr,N : N � 1} is obviously increasing, we may apply Karamata–Hardy–Littlewood Tauberian theorem (see,
e.g., [3]), and Stirling’s formula, and obtain

lim
N→∞ E

(
Lr,N

N

)m

=
√

π Gr,m

�(m + 1
2 )

= 2m

(2m − 1)!!Gr,m,

for the limiting form of the moments of Lr,N/N . The theorem follows from Theorem 3.2 and Lemma 3.4. The case
m = 1, r = 1 gives the limit of

lim
n→∞ En

{
Lr

n

}
=

∞∫
0

exp

{
−x −

∞∫
x

e−y

2y
dy

}
dx ≈ 0.7575. �

We now seek the limiting distribution of Lr,N/N . It is known that {Lr,N/N : N � 1} converges a.s. Let ηr :=
limLr,N/N with distribution Fr(x),0 � x � 1. By Lebesgue’s dominated convergence theorem, the moments of ηr

are given by

Eηm
r =

1∫
0

xm dFr(x) = 2m

(2m − 1)!!Gr,m, m = 0,1, . . . .

Take a random variable X supported by (0,∞) with distribution

P(X ∈ dx) = [E(x)]r−1

(r − 1)! e−E(x) e−x

2x
dx.

Hence we have

E
(
ηm

r

) = 2m

(2m − 1)!!E
(
Xm

)
.

Take a random variable Y which has a symmetric distribution on (−∞,∞) about 0 with Y 2 d= 4X, and we have

E
(
eiYz

) =
∞∑

m=0

E(Y 2m)

(2m)! z2mi2m =
∞∑

m=0

E(ηm
r )

m!
(−z2)m = E

(
e−ηrz

2)
.

On the other hand, take a standard Brownian motion B = (B(t)) on R independent of η, and then

E
(
ei(

√
2B(ηr ))z

) = E
(
E

(
ei(

√
2B(ηr ))z|ηr

)) = E
(
e−ηrz

2) = E
(
eiY z

)
.

It follows that Y
d= √

2B(ηr) or X
d= 1

2 (B(ηr))
2, i.e.,

[E(x)]r−1

(r − 1)! e−E(x) e−x

2x
=

1∫
0

2√
2x

1√
2πt

e− x
t fr (t)dt,

where fr is the probability density of ηr . Let τ = 1
t
− 1, and set g(τ)dτ = − 1√

t
fr (t)dt . It follows that

∞∫
0

e−xτ g(τ )dτ =
√

π

2

[E(x)]r−1

(r − 1)! e−E(x) 1√
x

=
√

π

2

∞∑
m=0

(−1)m(E(x))r+m−1

(r − 1)!m!
1√
x

.

Since

E(x) =
∞∫

e−u

2u
du =

∞∫
e−xu

2u
1{u>1} du and

1√
x

=
∞∫

e−xu 1√
πu

du,
x 0 0
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we have
τ∫

0

g(x)dx = 1

2

∞∑
m=0

(−1)m

(r − 1)!m!
∫

· · ·
∫

Θm+r−1(τ )

du1

2u1
· · · dum+r−1

2um+r−1

du0√
u0

= 1

2

∞∑
p=r−1

(−1)p−r+1

(r − 1)!(p − r + 1)!2p

∫
· · ·

∫
Θp(τ)

du1

u1
· · · dup

up

du0√
u0

= 1

2

∞∑
p=r−1

(−1)p−r+1

(r − 1)!(p − r + 1)!2p

τ∫
0

du

∫
· · ·

∫
Θ1

p(u)

1√
u − u1 − · · · − up

du1

u1
· · · dup

up

,

where

Θp(x) = {
(u1, . . . , up,u0): u1 � 1, . . . , up � 1, u0 � 0, u1 + · · · + up + u0 � x

}
,

Θ1
p(x) = {

(u1, . . . , up): u1 � 1, . . . , up � 1, u1 + · · · + up � x
}
, p � 1.

Hence we have

g(τ) = 1

2

∞∑
p=r−1

(−1)p−r+1

(r − 1)!(p − r + 1)!2p

∫
· · ·

∫
Θ1

p(τ)

1√
τ − u1 − · · · − up

du1

u1
· · · dup

up

and with substitution τ = 1
t
− 1, we obtain the asymptotic density of Lr/n

fr(t) = g

(
1

t
− 1

)
t−3/2

= t−3/2 1

2

p<1/t−1∑
p=r−1

(−1)p−r+1

(r − 1)!(p − r + 1)!2p

∫
· · ·

∫
Θ1

p(1/t−1)

1√
1
t
− 1 − u1 − · · · − up

du1

u1
· · · dup

up

.

When r = 1, t > 1
2 , we have a result of Stepanov [11]

f1(t) = t−3/2 1

2
√

1/t − 1
= 1

2t
√

1 − t
.

Remark. In Table 2 we list the numerical values concerning the expected size of largest component n−1En(L1)

through Monte Carlo simulation given by

n−1En(L1) ≈ sum of the size of largest component in N times

n · N
with N = 20000.

Table 2
Calculation of n−1En(L1)

n = 50 n = 100 n = 150 n = 200 n = 250 n = 300 n = 350 n = 400
0.7811 0.7724 0.7672 0.7673 0.7659 0.7650 0.7645 0.7656

n = 450 n = 500 n = 550 n = 600 n = 650 n = 700 n = 750 n = 800
0.7627 0.7659 0.7644 0.7652 0.7609 0.7617 0.7634 0.7634

n = 80 n = 900 n = 950 n = 1000 n = 1050 n = 1100 n = 1150 n = 1200
0.7623 0.7644 0.7634 0.7618 0.7648 0.7655 0.7606 0.7608

n = 1250 n = 1300 n = 1350 n = 1400 n = 1450 n = 1500 n = 1550 n = 1600
0.7618 0.7627 0.7623 0.7621 0.7605 0.7620 0.7612 0.7598

n = 1650 n = 1700 n = 1750 n = 1800 n = 1850 n = 1900 n = 1950 n = 2000
0.7611 0.7616 0.7614 0.7620 0.7603 0.7598 0.7612 0.7603
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