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Abstract

In this paper the limit behavior of random mappings with n vertices is investigated. We first compute the asymptotic probability
that a fixed class of finite non-intersected subsets of vertices are located in different components and use this result to construct a
scheme of allocating particles with a related Markov chain. We then prove that the limit behavior of random mappings is actually
embedded in such a scheme in a certain way. As an application, we shall give the asymptotic moments of the size of the largest
component.
© 2006 Elsevier Masson SAS. All rights reserved.

Résumé

Dans cet article, nous étudions le comportement asymptotique des trasformations aléatoires a n vertex. A titre d’application nous
calculons les moments asymptotiques de la taille de la plus grande composante.
© 2006 Elsevier Masson SAS. All rights reserved.

MSC: 05C80; 60J10

Keywords: Random mapping graphs; Connection; Component; Scheme of allocating particles; Markov chain; Asymptotic behavior

1. Introduction

Let V be a set with n elements, say, V = {1,2,...,n}, and £2, the set of all mappings on V, which includes n"
elements. Let P, be the classical probability on £2,,. Any f € £2,, induces a directed graph G ; with the set of vertices
V(Gy) =V and edges E(Gy) = {(u, f(u)): u € V}. The space (£2,, P,) is called the space of random mappings or
random mapping graphs.

The most interesting problems on random mappings are their various asymptotic behavior, by which we means the
limit distribution of various graph structures, for example, number of components, size of component, etc., as n goes
to infinity. Most of papers on this field focused on these issues. In this paper we shall start with a direct computation of
asymptotic connection probability and use it to construct a scheme of allocating particles and a related Markov chain.
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We prove that asymptotic behaviors of random mappings may be represented in the Markov chain in certain sense.
Moreover we may use the limit theorems in theory of probability and powerful tools developed for martingales and
Markov chains. As a main result we shall give an explicit answer for the asymptotic moments and distribution of the
largest component size.

We should mention that in 1994, Aldous and Pitman [2], also see [6], proved that the uniform random mapping is
asymptotically the Brownian bridge in some sense, by which, various limit distributions were obtained. Comparing to
that, our approach is more direct and elementary, and involves less machinery.

Throughout the paper N denotes the set of natural numbers. For any n € N, [rn] = {1, 2,...,n}. For any set A,
the notation |A| denotes the cardinality of A. A partition {Ay,..., A} of a finite set U C N is said to be ordered if
minA; < minAj < --- < min A,,. The partition involved in this paper will always be ordered. The probability and
expectation are taken in the probability space of random mappings with n elements are written as P,,, E,,. The symbol
‘.=’ should be read as ‘is defined to be’. We shall briefly introduce our strategy as follows. The key is to relate this
asymptotics with that of a particular Chinese restaurant process. More precisely let (§2,,, P,) be the probability space

of random mappings on [n] and G, a sample. For N <n, let Ay, ..., A, be an ordered partition of [N]. Denote by
Ja, ® - @ Ja,, the event that i, j € [N] are connected if and only if they are in the same set A;. In other words,
Ja, @ -+ ® Ja,, is the event that the trace of the connected components of G, on [N] is the partition {A1, ..., Ay}

(let us call this the N-trace of G,). Now let (Zy)i>1 be the (0, 1/2)-Chinese restaurant process and P its probability
(Zy, is the label number of the table where the k-th customer is seated). Set

m

=1

The asymptotic connection of two models is the following (see Theorem 3.1, though it is actually proved in Section 2)
1ir{nPn(JA1 @D Ja,) =P(Zr=a,,..a,k), k=1,...,N).

(Roughly speaking, the asymptotic distribution of the N-trace of G,, is given by the distribution of Z1, ..., Zy.) We
then show in Theorem 3.2 that the asymptotic (n — oo) “difference” between the cardinalities of the N-trace and those
of the connected components of G, vanishes as N goes to infinity. By this way we obtain a connection between the
asymptotic of the cardinalities of the connected components of G, and the process (Zx). As a consequence, we give
examples in Section 3 to show how to derive from this approach some known results as in Pittel [7], Stepanov [11],
Aldous and Pitman [2], etc. However the main application is Theorem 4.1 in which the asymptotic of all moments of
the r-th largest connected component of G, is given.

2. The limit probability of connection

Two vertices i and j are connected if there is a path of edges, ignoring direction, connecting them. This naturally
induces a classification for each graph. Let U be a fixed subset of [n] and {A1, Aa, ..., A, } a fixed partition of U.
Let Jo, @ Ja, ® --- ® Ja,, be the event that for any i, j € U with i # j, i and j are connected if and only if i, j € A;
for some 1 <1 < m. Set J,’fl =Jn®Jpy @ @ Jymy. Let ¥; = Y;(G,) be the number of the vertices connected
with vertex i for any i € V, and 1, be the indicator of « for any set «. In order to write with more convenience,
we also use the notation ¢; :=|A;| — 1 >0 foreachl,1 </ <mandseta:=a;+ay+---+a, <n—m;and
X))y =x(x—1---(x—r—+1).

Lemma 2.1.

1 m
. qd
Pul/ay @ Iy @+ @ Ja,) = (- B (E(Y,)a,, Jm>.

Proof. Let S={Js, ® Js, ®--- B Js,,: S1. 52, ..., Sy are mutually disjoint subsets of V and for 1 </ <m, [ € S

m

and |S;| = | Ay}, a set of events. For any event « € S,

E,(1o) =Py(la =) =Pula} =P, (Ja, ® Ja, @ -~ @ Ja,).
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Hence

Zaes E,(10) _ E, (ZaeS 1¢)
IS] |S]| '

On the other hand, a direct calculation gives that

P,(Ja, @Ja, @ - D Jay,) =

(n —m)

S| = A~ Ma_

ayla!---ap!

and
Y, .
Z 1, — T2, (;l)f", if J¢ occurs,
« = 1

aes 0, otherwise.

Replacing them into the formula for P, {J4, @ Ja, ® --- ® Ja,,}, the conclusion follows. O
Refer to pages 129-137, [9] for the following lemma.

Lemma 2.2.
. 1)' J
P,.{G,, is connected} = Z

Lemma 2.3. Foreach 1 <I<m, letk; >0, withk :=ki+ky+---+ky, <n—m. Then
ki

(n—m)! (n — k —m)—k-m 3 (ki + 1)/

n" (n—k—m)! Jj!

P, (Yi=ki,o.o, Y =kus Jf1) =
=1 j=0

Proof. Set S:={Js, & Js, ®--- ® Js,,: S1,..., Sy are mutually disjoint and [ € S; C V, |S;| = k; + 1, for any
1 <1< m},and for o = Jg, EBJSZEB BJs, €S, 1<I<mwesetleoy=S5. Andthata =Jy, B Jo, -+ D Jy,
for v € S. For A C V we set D4 be the event that none of the vertices in A is connected with any vertex in V\ A.
Then

Po(Yi =K1, Yoy =kps ) =D Pl Yi=ki, ..., Y =km)

aeS

:ZPH(JQIGBJOQ@@Jam7Y1=k1’5Ym:kWL)
aeS

:ZPH(‘,OH@Jolz@"'@Jam;Da]st27~"7Dam)
aeS

= ZPn(DotlDaz"'Dam)Pn(Jal @Jaz @"'@Jam |D0(17D0127°"7D01m)
aeS

m
= Py(Dgy Dy -+ Day,) [ [ Pu ey | D)

aeS =1
By the definition of S and «, we know that k; = |o;| — 1 for each [, 1 <1 < m. It is easy to see that
(n —m)! (n —k—m)" [T (k4 D!
NE . Pu(DgDyy -+ Dq,) = L :

kil kpl(n —m — k)!

Employing Lemma 2.2 we know that for each /, 1 <[ < m it holds that

(k1+1)’
Py (Joy | D) = +1)k,+12 :
=0

Substituting the m + 2 equations into P, (Y1 = k1, ..., Y = ki J,ﬁ), we shall have the conclusion directly. O

nl’l
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Corollary 2.1. Let k; >0, 1 <I<m. Ifk:=k1 + ko +---+ ky, <n —m, then
1

_ d 2
P, (Y1 =ki, ..., m_km’]m) omym— l/z(n—k m)l/z( Akl ~~~~~ km+An,k| ,,,,, km)’
and if k =n — m, then
N2
d 2
P, (Yi=kisoo, Vi =km: ) = S 73 (1= Dk + A5y k)
where

- 2 C = G
A =Y ———— and A} =1 4+ 0y ’
bl = L3 i+ D) e Zk1+1

=1

with C_y, Co, Ci, ..., Cy, being bounded functions which depend on n,m and ky, ..., ky,. Note that we set n—Cn_11—k =0
ifk=n—m.

Proof We prove for the case k < n — m only. Employing the Stirling’s formula r! = (r/e)" /27 r e, where S +1 <

0, < 12r, we get that
) (n — k — m)n—k—m 1/2 .—k—m m—1 -\ -1
(}’l m) (n m) — n € e@,,*ﬂn,k,m l_[ 1— i .
n" (n —k —m)! n"mn —k —m)l/? P n
Furthermore, we have the Ramanujan sequence [8]
1 2 rrfl ’r
Ze =1 - _
5¢ = +1'+2'+ ooy T

where y;, is decreasing in r and of the form y, = % + ﬁ with % < < %. Then
m Kk m

<k1+1>f ekit! (k + DRt ektm 2 2Vk+1
[T H — Vi1 —)==TI(1- i )-
(k; + 1! 2 27 (ky + 1)e+!

I=1j=0 =1

After some simple but lengthy calculation, it follows that

m—1 N —1m
On—0n—k—m ! ) ( 2yk[+1 ) — 2
e 1—— 1-— =1—Ag ... ky A
1_[ ( n 1_[ /Zn(kl + 1 eekl'H 1 NS ki

i=0 =1

where Ay, ., and A ok, ATE defined as above. Therefore, substituting the three equations above into Lemma 2.3,

we shall have

1

. qd
Pn(Yl :klv.-.,Ym :km, ‘Im) = zmnm*1/2(n_k_m)1/2(l

2
—Mbyokn D k) D

The following two theorems give an explicit expression for connection probability and its exact asymptotic behav-
ior.

Theorem 2.1. Let Ay, Az, ..., Ay be a partition of a fixed set U C V. Then

_ _ 5 n—k—m M
ORI EEE S S n<k>a,z<’”j._”’

—k—m)!
k=0 kj+-+ky=k (n —k —m)!

Proof. It is a direct consequence of Lemmas 2.1 and 2.3. O
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Theorem 2.2. Let Ay, Aa, ..., Ay be a partition of a fixed set U C V. Then

P,(Jo, ® - ® Ja,)

_ Q@ap!--Qay)!! | Qap!--- Qa)!! — Qai — D'\ V21 “in
= Gmt2a—D0 T @m+2a—2)0 (1—2 Qa!! ) g " ol ),

and
P,(Jo, ®---® Ja,) —Puyp1(Ja, ®--- D Ja,)

CQaple Qa5 Qai — DI\ V21 =y 3
T @2m+2a—2)!! (1 2 Qa;)!! ) 12 o).

as n goes to infinity. Note that we set (—1)!! =0!! = 1.

Proof. The case m =1, a; =0 is trivial. We shall prove forcase I: m = 1,a; = l andcase II: m =2, a; =ay =0. The
result for the rest cases can be proved by induction to m and the size of A1, Ay, ..., A, and we omit the procedure
which is something like the procedure that we shall do for case I and case II.

Case I: m = 1, a; = 1. Without loss of generality, we set A1 = {1, 2}. What we want to prove is that

V7

B n~1/2 +O(n_1/2),

2
P, {Junl= 3 +

P2} — Pusi{J o)) = ——n 32 +o(n 3/2)-

24

Case II: m =2, a; = ap = 0. Without lost of generality, we set A; = {1} and A, = {2}. What we want to prove is
that

vIT

—12
B +o(n™"7%),

1
P,{Jy ® Joy} = 37

and

P {Jy @ Ty} — Pup i { Ty @ Iy} = ———n7 2 +o(n ).

24
We prove for case I in three steps. At first we point out that P,{J{; 2} converges to 2 %. Secondly we prove the
existence of limit 7 = lim,_, f(Pn{J{l 23} —2/3) by induction on the base of 11rnn_>OO f(Pn{J{l }—1)=0.
At last we find out T, where we use the fact lim,—, /7 (P,{J{1;} — 1) = 0 again, and prove the monotonicity of
P, {J(1,2)} at the same time. We prove for case II straightforward by using the previous results above for P, {J{1 2}. (It
may be seen as being proved by induction, too.)
Step 1. Using Theorem 2.1, we get

n—1 n—k—1
E,(Y —2)! k(n —k—1 k+l J
Pn{J{l,Z}} - (X1) (n ) Z (n ) Z ( ) .

1 = —k=1)
1 n" P n—k—1)! i

o

Set , Ay, foreachn,k,n=2,3,...and k=0,1,2,...,n—1,

(n—2)k(n —k — 1)n—*-1 Z (k+ 1)/

k
Ay=—-D"P, Y1 =k)=
n{lk n—1 n( 1 ) P (n—k—l)!

(=)

Then P, {J1 2)} = ZZ;{ »Ar. Employing Corollary 2.1, we get, for0 <k <n —2

1 k ( 2 C_, +C0+ Ci )
2ynn—1) /n—k—1 3«/271(—k+1 n—k—1 n  k+1)

nAk =

Therefore,
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n—2 n—2 1 1 1 2

P,{J =PY =n-1 A 5 3

n{J}=PX1=n H‘Zﬂ k™ sz(n—l) Jn—k—1 2/ e
0

k=0 k=0

Step 2. As it is known that P, {J;;} = 1, we get

nl

n—1
=Y P, (Y1 =k =P,(Juj} =P, (Y1 =0)=1+0(n"").

We shall separate P,,{J{l’z}} into several parts.

n—1 n— ln—l —1
PolJuoh =Y nde=) — Z
k=1 k=1 k=1
n—1
n—k—1 2 C_ Co Ci ) 1
=1- 1— +—+ +0
];2ﬁ(n—1)< VIR T D k-1 k+1 (™)
n—1 n—1
n—k—1 n—k—1 2
=1- + +o(n!/?
;2\/5(11—1) gzﬁ(n—l)a/zn(kﬂ) ()
o 1 I
— X
:1——fﬁdx+—/ dx-n~V2 o(n=1/?
2 32 X ( )
0 0
L e Vo o(n17)
3 12 '

Hence T = lim,,— o0 /7 Pr{J,2) —2/3) existsand T = % However, it is not necessary to know the value of T'.
What we need only at present is to know its existence, and we will calculate its value by solving out a equation. Such

method will do help when we prove the rest cases.
We compare ;41 Ax41 with , Ag, and get foreach 1 <k <n — 1,

k k+2)/
n+1Ak+1 _ k+1ln—1 e-n"t! Zt(l)%
WAk kon (41l Z O(k+1)f
1 3 1 1 Cr
=(1+=)(1-=40(= ) )1+ —5+—
( +k)( " <n2>>< +3<2n>1/2k3/2+k2>
1 3 1 Cy

S O I .2
T T wm T3 en T e

where Ci, which may vary from place to place, is a bounded function which depends on k. But it can be shown that

1

n—2
232 _n
ka Z k(n / x(l—x 2
0
and ) | ”/;k = o(n~3/2). Therefore,
n—1 n—1
Ak 3nl/2 n3/2
22y Gt Akt = n AL —"3/22 2 D onhit o 32m)!/2 4 Z K372 L o)
k=1 k=1 k=1
3u1/2 5
=n1/2_ n (2/3+Tn—1/2)+1—2n:+0(1)
3 N2
=—=T+ —+o(1).

2 12
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It follows that

3/2 3/2 3/2n_1 3 V2n
w2 (P (T2} = Puldng}) =0 i A+ 077 1 Ak —nAr)=—=5T + == +o(D).
k=1

On the other hand, we have
lim /n (P,{J1,2)} —2/3) =2 lim nv/n (Pu{Jj1.2)} — Pus1{Ji1.2)}),
n—0o0 n—o0

since the existence of lim,,_, o n\/ﬁ(Pn{J{l,z}} —P,1{Jj1,2)D). Therefore,

T 3. 2
T+

2 2 12

359

and we get T = /2 /12. For case I, it holds that P, (J{1y @ Ji2y) =P, (J{1y) — P, (J{1,2)). Substituting the result of

case I into this, we draw out the conclusion for case II. O
The following two results are the direct consequences of Theorem 2.2.
Corollary 2.2.

(1) The probability that vertices in [m] are totally disconnected

1
P} =Pl ®Jy @ - @ Jymy} am DI’
(2) The probability that vertices in [m] are connected
2m —2)!!

P.{J TR
n{J(1.2,....m} } Qm =1l

Remark. At the end of this section, we would like to present a table of Monte Carlo simulation. In Table 1 we list some
numerical values concerning probability P, {Ja, ® Ja, @ --- @ J4, } in some simple cases for comparing. ‘precise’
means ‘precise value’, ‘revised’ means ‘revised value’, ‘test’ means ‘test value’ and ‘limit’ means ‘limit value’. The

precise value is given by Theorem 2.1. The revised value is given by approximation

Table 1

Calculation of Py {J4, ® Ja, ® - @ J4,,}

P precise revised test precise revised precise revised limit
n=10 n=10 n=10 n=>50 n =50 n =100 n =100 n— 0o

Ji1,2) 7159 1327 7175 .6923 .6962 .6855 .6876 6667
Ji1,2,3) .5966 .6159 .5990 .5659 .5703 5572 .5594 5333
Ji1,2,3,4 5272 .5480 5315 4931 4978 4834 4859 4571
J(1,2,3,4,5) 4805 .5023 4830 4443 4493 4341 4367 4063
Jiy @ Jpy 2841 2673 2825 3077 .3038 3145 3124 3333
Ji1,2) @ J3) 1193 .1168 1185 1264 1259 1284 1281 1333
Ji1,2) ® Ji3,43 .0365 - .0430 .0376 - .0378 - .0381
Ji1,2,3) @ Jygy .0694 .0679 .0675 .0728 .0725 0737 .0736 .0762
J(1,2,3) © Ji4,5) .0166 .0176 .0145 .0170 0172 .0170 .0171 .0169
J(1,2,3,4) @ J{5% .0467 .0456 .0485 .0488 .0485 .0493 .0492 .0508
Jiy @ Jpy @ Ji3) .0454 .0336 .0445 .0548 .0519 0578 .0562 .0667
Ji1,2) ® Ji3) @ Jygy .0135 .0108 .0120 .0160 .0154 .0168 .0164 .0190
J(1,2) ® Ji3,4) @ Ji5) .0032 .0029 .0045 .0037 .0036 .0038 .0038 .0042
J(1,2,3) @ Ji4y @ Ji53 .0060 .0047 .0055 .0071 .0068 .0074 .0073 .0085
Jiy @ Jpy @ Ji3) @ Jigy .0050 .0013 .0060 .0068 .0058 .0074 .0069 .0095
Ji1,2)® J3) @ Ji4y @ Jis5y .0011 .0004 .0000 .0015 .0013 .0017 .0016 .0021
Jiy @ Jpy @ Ji3) @ Jig) @ Jis5y .0004 —.0003 .0010 .0006 .0004 .0007 .0006 .0011
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Py {Ja, ®Ja, @ - @ Ja,}

o QaDlt - Qap)t  Qantt-- Qapn)t (| S Qai — DI\ V2
T emt2a—DI " Q@m+2a—2)! -2 Qa) )6

The test value is given by the Monte Carlo simulation

times of the occurrence of Ja, @ Ja, ®--- ® Ja,, in N times

PifJa, @Ja,® - DJa,} = N

with N = 2000. The limit value is given by
Qap!!--- Qam)!!

P,{J J @D .
ntIa @4, & © Jan) = @2m +2a — D!

3. A related Markov chain and asymptotics of components

We shall present the essential relation between large components of a random mapping and large boxes of the
related scheme of allocation in this section. We first introduce a probability space which describes a scheme of allo-
cating particles and discuss interesting properties of some related random sequences. By Theorem 2.2 the following
lemma is direct.

Lemma 3.1. Assume that Ay, ..., Ay, is a fixed partition of [N]. Then
1
2N +1

lim P, {Ja, @ & Ja, @Iyl Ja, @D Ja, ) =
n—o0

andforl=1,...,m
2| Al

Jim Po{Ja, @@ T, @ Jauw+1) @ Jar, @@ Ja, la, @@ Ja, ) = 5

The lemma inspires us to consider a scheme of random allocating particles. There are different particles called
Py, P>, ... and different boxes called By, By, .... The P, and B, are also called the n-th particle and n-th box. We
define the allocation by induction. First we place P; into Bp, and next we place P, with probability % into By and
with probability % into By. More generally, suppose that the first N particles have been placed. Let us place the next
particle. Let the first m boxes be non-empty and have gy, ..., g, particles in boxes from 1 to m respectively. Then

N =gq1+-- -+ gm. At the next time we place Py into the B; with probability zf,qu forl=1,...,mand into By, 4+

with probability ﬁ More precisely we have a probability space (§2, ¥, P) and a sequence of random variables
{Z,}, which is defined by induction as follows

1 Zi=1,

(2) Suppose that Zy, ..., Zy is defined for N > 1. Let m := max{Z;,..., Zy} and ¢; := 21]2/:1 Lizy=iy- ZN41 1s
equal to i with probability 2/%/[14;1 for 1 <i < m and to m + 1 with probability Mlﬁ, or in the form of conditional
expectation

. qi
P(Z =ilZi,....2ZNn) = lagi — 1= .
Znn1=i|Z4 N) N1 {1<lgm}+2N+1 {i=m+1}
The random variable Zy records the number labelled on the box where the N-th particle is placed. The property (2)
actually gives the conditional distribution of Zy4; given {Z1,..., Zy} which determines the law P. Let #Hy :=
o(Z1, ..., Zy) the filtration of {Zy} and Hoo = o (Hy: N > 1). Assume again that Ay, ..., A, is a fixed ordered

partition of [N]. We denote by A; © A2 @ --- @ A, the event that for any i, j € [N], P; and P; are contained in
the same box if and only if i, j € A; for some 1 </ < m. Actually the event A| @ --- @ A, determines the value of
Z1, ..., Zy and vice versa. Indeed if Zy, ..., Z, are given, then the partition is natural, and conversely if an ordered
partition is given as above, Z; =1 if k € A;. Then

HN :a(A1 @D---DAn: {A1,..., Ay} is apartition of[N])
and A D --- D A,, is an atom of Fy.
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This process is actually a particular case of so-called (¢, 8)-Chinese restaurant process (see, e.g. Chapter 3, [6])
with « =0 and 6 = 1/2. By a direct calculation, it follows that
Qap!--- Lap)!!
Therefore we have the following theorem which states that asymptotically the probability that vertices are connected
in a random mapping is equal to the probability that particles are placed in the same box in the above scheme of
allocating particles. This illustrates the essential connection between these two models.

P{A1®A2$"'$An1}:

Theorem 3.1. For any N and if Ay, ..., Ay, is a partition of [N], then
nliJEoP"{JAl @ PJa,}=PlA1B---B A,

Remark. For N < n, define similarly for random mapping graph
Hyn:=0(Ja, ® - ®Ja,: {A1,..., Ay} is a partition of [N]).

It is actually generated by components in [N]. An event K in #, y may be viewed as the corresponding event K in
JCn in a natural way. The theorem says lim, P, (K) = P(K).

For N, m > 1, let Dy be the number of nonempty boxes after the N-th particle has been placed, T}, the first time
that the box By, is nonempty and Q') the number of the particles in box B, at the time when the N-th particle is
placed. Precisely

Dy :=max{Zy, ..., ZyN},

N
oy = Z L{zy=m}
k=1

T, :=inflk: Zy =m}.

Set Oy = (Q%: m > 1). Then Dy is also equal to the length of non-zero elements in Qy or simply the length
of On.Clearly Q1, ..., QOn and Zy, ..., Zy are uniquely determined mutually for any N > 1. Then {#y} is also the
filtration of (Qy). Let S be the set of sequences of non-negative integers x = (x,) satisfying that there exists m > 1
such that x, =0 for n > m and x, > 0 for n < m with norm |x| = )", x,. Particularly e; := (1{4=;}: n > 1) the i-th
unit vector. The following lemma can be checked by definition directly.

Lemma 3.2. {Qy: N > 1} is a Markov chain starting from e, with state space S. More precisely fori =1,2, ...,
20 1

| = i|HN) = 1, - i .
(ON+1=0OnN +ei|Hy) 2|QN|+1+2|QN|+1 [0ly">0,01,=0}

For the length of Oy, by the definition of the random allocating particles process, we have

1 2N
P(D =D 1|Hy) = ———, d P(D = Dy|Hy) = .
(Dy+1 N + 1|FHN) N1 an (Dn+1 NIFHN) N1

Hence, { Dy} is a Markov chain with independent (but not stationary) increments with respect to {Fx}.

From the definition of T;,, it is actually the first hitting time to {m} of {Z,} and hence we know that {T,} is a
sequence of stopping times with respect to {#y}. Obviously 1 =Ty < T» < --- < T, < ---. As we shall see later,
{T,,} takes finite value a.s. From the definition of Q7, we know, on {7}, < 0o}

m
P(O™ —Om 117 )= Tn+N—1 ’
(07,48 = OF,+n—1 + UHr, +n-1) 2T, 2N —1
207 in—1
mtN—
P(Qr%lmwv = QrTr"i,1+N—1|‘%Tm+N*1) =1- 2T, +2N — 1

Thus {Q’ﬁmH\,} is a Markov chain with respect to {#7, +n} for any m > 1. In particular, when m =1, {Q}V: N > 1}
is a Markov chain with respect to {#y}. We now present a few martingale properties related to this chain.
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Lemma 3.3.

(1) Foranym > 1, T,, is finite a.s., and for N = 1,2, ... we have that

mm+N—L%
B(Tw. %)

P(Tm+1 = Tm + N|*}€Tm) =

where B(-, ) is the beta function.
m
(2) Moreover, {ﬁ} is a martingale with mean 1.

(3) Foreachm > 1, {% N =0,1,...} is a bounded martingale with respect to {#r,,+n}. Moreover

o7 1 or 1
E{___ZTntN Hr t=———— and E _ ZhtN U
2T +2N + 1 2T, + 1 2T, +2N + 1 3m

(@) {2 N } is a bounded sub-martingale with respect to {Hy}, and
m
QN}<1

E —
2N +1

AN 3m
Proof. (1) Using the strong Markov property, we get on {7, < oo} that D7, =m and

P(Tyy41 =T + N|Hrz,) =E(P(D1 ey =m + 1, Dy, yn—1 = m|Hr, -N—1)|Hr,,)
=E(P(Dg,4+n = D1, 4n—1 + U Hp,+N-1), D1, N—1 = m|Hr,)

1
=—— P _1=m|H
3T, TN 1 (D1, +N—1 = m|Hr,)
1
=—— E(PD _1=D _a|H _2); D —2=m|H
3T, FON 1 (P(D1,, +n—1 Tt N—2|H1, +N—2); D1, 1 N—2 = m|Hr,,)
1 2T +2N —4
— . P(D _2 =m|H
Ty +2N —1 2T, 12N — 3 DlwtN-2=ml,)
1 2T, +2N —4 2T,

T2, 42N —1 2T,,+2N -3 2T, +1
_BTu+N-13)
B(Ty. %)

and then on {7;,, < oo},

o0
P(T,11 <00l Hr,) =Y P(Ty1 =T+ N|Hr,)
N=1

—XI

B(Tw+N—1,3)
B( nmo j)

o0
BT Z/me+N—2(1—x)%dx=1.
2 N=1 0

Hence, P{T},,+1 < 00|T;; < oo} =1 and it follows from 77 = 1 that any T, is finite a.s.

(2) Calculating the conditional expectation of % given #r, by using (1), we have

E( 3+l > i 3"+ B, +N-13) 3"
T £ 117 — 2T,y +2N + 1 ) 2T, + 1
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m+1
E 3 = 3 =1.
2Tm+1 + 1 2T + 1

(3) The boundedness is obvious since Q’ﬁm +n S N + 1. Using strong Markov property again, we have

E{Q’;lm+N+1|'}€Tm+N} = Ql¥m+NP{QnT1m+N+1 = Q’;lm+N|‘}€Tm+N}
+(Q7, v + DPLOT, yni1 = O, v + 1 Hr, 1 }
m 2 r;in'f'N m 2 r}:lm-i-N
- QTm+N<1 2T, +2N + 1) +(o%+ 1)<2Tm F2N + 1)
0T, 42N 43,
T 2T 2N 1 Tt

and

Hence
Q%,,+N+1 _ Qr;lerN
2T +2N +317 N [T o TON + 1

and it follows that

m
T, +N _ 1!
2T+ 2N+ 117 [ T2, 1
since Q’"m = 1. The second equation is a consequence of (2).

(4) The fact that {%} is a sub-martingale with respect to {#y } follows directly from (3) and the fact that O\ =0
if T,,, > N. That completes the proof. O

The following theorem gives us a more intuitive picture about the relation between these two models. We need
to introduce a series of random variables for a random mapping graph with n vertices. A random mapping graph
G, gives a partition for [n] which is the set of components and denoted by &1, &, ..., &, in order, where v, is the

n

number of components. Clearly v, < n. Given a natural number k, let H,’f := | 8| for k < vy, and H,’f =0 fork > v,.
For N < n we shall see how the partition is shown locally in [N]. Let AK = & N[N], and

D,y :=sup{k: A% # @} =sup{k: min& < N}
and obviously D, y < N. With this notation, for a fixed partition Ay, ..., A, of [N] with proper order,
Ja, ® - @ Ja, ={Gn: Ay = Ar, 1 <k<m}.

For 1 <k < Dy y, let Qﬁ N = |A/]‘V| be the number of vertices in Alj‘v and H,/f y the number of vertices of the
component which contains Al]‘v in G,. For k > D, y set Q’; N= H,’z‘ n = 0. By definition it is easy to see that

oo oo 00
k k k
NZZQn,N’ nzan,n>ZHn,N’
k=1 k=1 k=1
N+1 _ AN+2 _ —
Qn,N - Qn,N __O’

k k
H, v =H, - 1<, v}

It follows from Theorem 3.1 that (Qﬁ’ n: k= 1) converges to (Q’]‘V: k > 1) in law in the sense that for any k > 1 and
I1, ...,y > 1, it holds that

111?1Pn(Q},,N=11,..., Ok v=0)=P(Qy =11,.... 0 =),

which shall be written as (Qﬁ,N: k>1) 4, (Q'I‘\,: k>1).
As we see above, some information of a random mapping graph will be reflected in a subset. For N < n, a property
of a random mapping graph with n vertices recorded in its subset [ V] is called its local image, which is asymptotically
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k
Hy

embedded into a nice probability space. The theorem below says that such a property (i.e., ratio of the k-th

k

component in G, ) may be approximated by its local image (ratio Q}(;N of the part of it located in [N]). To prove it,

we mainly use the techniques developed above.

Theorem 3.2.

00 k 2
O,n Hf
lim li E e =0.
i, timsup (Z( W)
Proof. Set T,, 1 =1 and for any G,, € §2,,

Tym(Gp) :=min &, =inf{j > T, y—1: Jiz, )} ® -+ © Ji7,,,,_1) B Jyj} occurs in G},

(infd = o0) for m > 2,n > 1, i.e., Ty, , is the least numbered vertex in the m-th component of G,. By definition,
we have Dy 1, ,, =m, A’}’mm ={Tuw.m}, Qn’"’N = HZ’N =0on{T,, > N},and H" = H,:"‘Tn.m = H,TN on {T, » < N},
since the component which contains vertex 7, ,, always contains vertices in Ay,.

Employing Theorem 3.1, we can easily get when n — 00, T,, ,, and Q) ,; asymptotically converge to 7,, and Q'y
in distribution respectively, namely, for any fixed m, k, N,

lim P, (Ty.m = k) =P(T,, = k),
n—oo
Jim P,(0 =) =P(0% =K).

since {T,,,m =k}, {T, =k}, {QZ‘N =k}, {Q% =k} can be decomposed into finite union of events of the form J4, @
<@ Ja,, or A1 ®--- P Ay, in respective probability space. Furthermore, by the dominated convergence theorem and
Lemma 3.3, we have for any fixed m, N,

1 1 1
lim E,(——— | =E =,
n—00 2Ty m +1 2T, + 1 3m

. 2N +1
Jim E,(0) =E(0f) < S HL
For any 1 > § > 0 and m € N, there exist N, such that, P(T,,, < Nj,) > 1 — % since T, is a finite stopping time. Then
we have

Pn(Tn,m < Nm) =134,

( 1 ) 146
E, <=2,
2Ty +1) 3

1+6
P, (J - J J e J <
n( Al@ (S Amea {M+1}| Alea @ Am) 2M+1
for any n > n1, where n| depends on m, N,,, and {Aq, ..., A, } is any partition of [M] with M < N,,.

Let us now estimate the expectation in question by several steps. The easy part is that for n large,

00 k 2
0 H¥
E, N 3 Tuym > Ny ¢ <2Py(Ty;m > Npy) <26.
];_1 N n , ,

To estimate the other case 7, ,, < N, we separate the sum into two parts: the tail kK > m and the main body k < m.
To estimate the tail of {Qﬁ n: k = 1} first, we have

00 N N
e > ob) = me( ¥ o) T o)
k=m+1 k=m+1 k=m+1
N N

IN+1 2
= Y E(Q})< > 7 <N
k=m+1 k=m+1
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Hence there exists ny which depends on m, N, such that for n > n;, we have

> 2
E( > Q’;,N> <3N
k=m+1

To estimate the tail of {H,’f: k > 1} is a little harder. Clearly for 7, ,, < oo, we have

n

o
ONUEED S

‘AT ®IIA®J[A%1 m QBJU] ’
k=m+1 j=Tnm+1 e '

where the notation (and similar in the sequel) J AL DD Jam @ Jijy denotes the set of G, satisfying

Tn,m

GneJy,

Tn,m

Gn @B an (G ® )

namely, the event that vertex j is not connected with the first m components.
For any M > m > 1 with M < Ny, and an ordered partition {Aq, ..., Ay—1, A} of [M] with A, = {M}, it holds
that

Pi(Ja @@ Juap @7, 1) Tam =M, AL = AL AL = Ay)

Tn,m

=Py(Ja, @ - @ Ja, & Jm+1j|Ja, @ - @ Ja,,)

< 1+4 ’
2M +1
for n > n;. Then, on {T}, » < Nin},
1446
1 m
P (J‘A’lTnm D---D J‘Ar;ln,m D J{Tn.m‘f‘l}lTn,m"A'Tn’m’ ""ATn,m) < m

It follows that

(3 o)

00
} : k 1 .
Hn |Tn,m9 CA)Tn,m’ cees A’%‘;m)1 Tn,m < Nm)
k=m+1

3
/_\/_\

1 m .
1] 1 O DI ym DI |Tn,m, ATn,m’ ey ATn,m)’ Tn,m < Nm)
Tnm Tn,m

.] Tn m+1

I
R
N —
=[]
N
S~———

En(1JA 69"'@]%? DI |Tn,m9 A;n,m’ ey A%,_m); Tn,m < Nm
J= n,m+1 T e
=E,((n — Ty m)E, (11A1 OB ym DTy m+1) | Tn,m s ,AlTn mr eA’Y;’n m); Thm < Nm)
Tn,m n,m : ' !
146
=E,| (n — Tn’m)ZTn,m—"i']; Tam < Np
1
<n(l1+30)E,| ———
<n(l+96) n<2Tn’m T 1)
(1+68)?

It then implies that

o £ (2 )

k=m+1
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Therefore we have a tail estimate

00 k 2 00 k
O,y HFf O,y HF 2 (1+8)2
AN _~n < N, n < =~
En{_Z<N n) <E, Z<N+n>\3m+8+ o

k=m+1 k=m+1

We are now left to estimate the hard part

m k 2
0 H¥
E”{Z( ;}N__n> §Tn,m<Nm .

n
k=1

Set S(n,t,a, h) ={a C [n]\[t]: |¢| =h — a}. Since the symmetric property of P,, we have, on {7}, ,, < Ny}, for any
@ €S0, Tym, | AL [ HY 7 ), 1<k<m,

1
1 m 1 m _
Pn(J‘A’I;}Lm Ua |Tn,M7 CAT’!,m e eATﬂ,m ’ Hn,Tn,m’ . Hn,Tﬂ,m - |S(I’l, Tn m |e74)l;~ | Hk )| .
> nm "’

naTn,m
Hence on {7}, ,, < Ny}, for 1 <k <m,0< Qr <N <n— N,, we have

k _ k 1 m 1 m
Pn { QnaN“‘Tn,m - Qk + i'A’Tn,m \ |Tn’m’ oA n,m o e)‘ngm ’ HnsTn,m v ann,m}
1 m 1 m
{ U J‘A’Tn m Vo Uery |T;1’m’ eATn. :A Thm? HnsTn,m L R [ P }
oy,

ISIN + Ty Tums | AL, 1 Qi+ AL DISGL N + Tom, O + AT, 1, Hy

naTn,m)|
k k
IS, Tm, |ATn.m [, Hn,T,Lm)l

N n—N-Tym
(Qk)(an’Tn,m—Qk EY |)

Tn,m

T,
n—Inm |)

(Hk —|AK

n,Tn,m Tn,m

k k k k
(H",Tn,m _‘ATn,m I) (n_Tn’m_H’l-Tn.m +|‘A’Tn.m ‘)

Ok N—0k
()

where |, ,, means union for all

o) € S(N + Tn,m» Tn,m,

k
e}an.m ?

Tom )’ 2 € S(}’l, N + Tn’m’ Qk + |A§n,m ’ H”l’csTn.m)’

i.e., the conditional distribution is hypergeometric. It follows that

H* [AK \2
k k n,Ty.m n,m
£ (Ot - o |- e el

n—"Tym
— NHVI: Tnm - |A§n.)}z| (1 H']lc Tnm |A§n,m|)n - Tn,m - N

1 m 1 m
Tn’m’ ATn.m e ATnm ? H, }

nTym’ Ty,

n—"Tym n—"Tym n—"Tym—1
HK . — Ak
Tnm n,m
<N *
n—"T,m

Furthermore, on {7, » < N;;}, we have

k k k
E Z Qn N+Tn m |EA)T)1.771 | _ H’1>Tn,m - |ATn,m| 2
" N

1 m 1 m
Tn’m’ e)%Tn,m e eA)Tn.m ’ HnsTn,m Hn To,m ,

=1 n— Tn,m
m k
Z " Tn m eA)Tn.m| 1 Zk 1 n Tn m Tn,m < l
— n—Tuim TN n—Tym =N

Therefore, it holds that
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m Ok — AL | HY = AL N2 1 1
’N+Tﬂ,m TVl m T Tn,m
En{;( . N -= n_Tnm ) s Tom < N gﬁpn(TnmgNm)gﬁ
However, it is easy to see that (1) |Ak m| < Thums (2) Hk = Hk fork <m;(3)0< Qn N+Tpom Qn NS Tum.

Hence if T, » < Ny, there exists n3 Wthh depends on N such that for any n > N > n3 we have

Z(Qn N+Tnm |A§n,m| H"]l( Tnm |:A,];n,m|>2 i(Qﬁ,N Hr’[(>2
P N n—"Tym P N n
This yields

m k 2
O,y HF 1
E”(Z(#— nl>  Tan < N | < 5 48

k=1

<4.

Finally we have for N > n3, n > max{ni, ns,n3, N},

3 Qﬁ’N Hy ’ Q”N Hrf ? > Qﬁ,N HEk 2
En[2< N _7) ]<En[z< N n);Tn,m<Nm +E, kZ ( s _7>

k=1 k=1 =m+1
oo k 2
O,y HF
+En{ Z(—’ - _n) 5 Tn,m > Ny,
P N n
1 2 (1+8)? 1
§+—+4+86 +———+26 < — + 108,
Syt tgts+—gp <5t

by choosing m large enough such that 3 < §. Hence

o] k kN 2
H
E (@__”) }QIOS.
N n

n k=1

limlimsupE, {
N

The conclusion follows since § may be arbitrarily small. O

Now we are at a position to uncover how our results can be used to discuss asymptotic behaviors of random
mappings, which generally means the limit probability of a property or an event of a random mapping graph as the
number of vertices goes to infinity. Our program runs like this: (1) a property of a random graph is approached by its
local image; (2) the local image converges to a property in the scheme of allocation; (3) this property in the scheme
shows some asymptotic behavior. Now a lemma, easy to prove, is prepared to bridge the last inch of the gap concerning
asymptotic behaviors in two models. Let {X,} and {X, »x} be random sequences in (£2,,, ¥, P,), and {Y} a random
sequence in (2, ¥, P).

Lemma 3.4. Assume that for any § > 0 and real x,
li}{,nlimsuan(|X,, — Xa.N| >8)=0 and 1limP,(X, n <x) =Py < x).
n n

If Yy converges to Y in law, then lim, P, (X, < x) = P(Y < x) for any real x. In this case we also say that X,
converges in law to Y, or simply X, Ly,

Combining all results above, we can see that any asymptotic behavior of the Markov chain {Q y} leads to a similar
behavior of random mappings. In other words, asymptotic behaviors concerning component size of random mappings
are embedded in the related Markov chain. A direct consequence is that components of a random mapping are asymp-
totically organized as the blocks of a (0, 1/2)-Chinese restaurant process (refer to [6]). It follows from Lemma 3.3(4)
that Q /N converges a.s. and in L' to a random variable, say, Xj.

k
Corollary 3.1. As n goes to infinity, (%: k>1) LN Xi: k=>1).
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We shall give several examples to show how this program works to recover classical results.

Example 1. From the following theorem we can easily get one result of Pittel [7] on two-sided epidemic processes
which was proposed by Gertsbakh [4], also see Stepanov [12]. The result states that for any fix r > 1, starting with r
infected elements (or vertices) in a random mapping with n elements(or vertices), in a two-sided epidemic process,
the percentage of eventually infected elements is asymptotically beta-distributed with parameters r and % as n goes
to infinity. In other words, the result gives the limit distribution of the ratio of the number of elements in components
containing the first r vertices,

Yos Hy, @r=1n1 -
. =111y, /2. r—1
hr{nP”<7n <x> 20r o)1 /( Yy dy, xe€l0,1],

where H,f’ . = HF¥ if the k-th component contains a vertex in [r] and H,],‘, » = 0 otherwise. This follows from the
theorem below, Theorem 3.2 and Lemma 3.4.

Theorem 3.3. For r > 1, there exists a random variable ¢,, such that N~ 1Zk 1 Qk — ¢ L1 & as. and &, is
beta-distributed with parameters r and 1 5

Proof. Set é’ = ,?;1 Q’;V. Clearly, when N =r,
P(0.=r)=P(Q! =r|0} =r)=1

and when N > r,

P(Qy, =1+ Oyl #y) =E(P(Qy,, =1+ O |D,)|5tv)

_E< (ZQN+1—1+ZQN|D>‘J€N>

E(ZP Qyr =1+ 0D )“%N)
2Qk 20
2N+1 N ) =oN T

20
AN +1°

It follows that

(O, = Oy |#n) =1~

It is then verified that {%: N > r} is a bounded martingale with respect to {#y: N > r}. Therefore, there exists a
random variable ¢, such that,

AT

On — 2, L & a.s.
2N +1 2

We need to show that ¢, is beta-distributed with parameters r and % It is seen that {éfv} is a Markov chain with
respect to {Fn: N > r}. Moreover, the chain is independent of D,. As a result,

P(Q}y € o) =P(Q}y co|D, =1)=P(QL €e|Q} =7), VN>,
since {D, = 1}={Q} =r}. Set Alky,....kn) ={A1®--- B Ap: |A1l =ki1,...,|An| =k and they are a partition
of [k1+---+kyl}and Ay(ky, ..., k) ={A1D---DPAy: A1 2[r], and |A1| =k1, ..., |An| = ki, and they are a par-

tition of [k; +- - -+ k;,1}. And we shall write o (ky, ..., k) = |A(ky, ..., ky)| and ay(ky, ..., ky) = A1k, ..., k).
Foranyr <M <N,
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N
P(Qy =M, Q;=r) =Z > PlAiM ke )

Z Al (M, Koy .. ) (M — DI(ky — 1)+ - (kg — 112N
QN — D!

Z N—=r\aka, ... .kn)(M — Dl(ky — D!+ (ky — 112N
M—r 2N — D!

B (M—l)'(ZN 2M — D!
_( ) 2-M+1QN — !
N

alka, ..., kp)(ka — D+ (kyy — DIRWN=M)=(m—=1)
DD QN —2M — D

m=2ky+--+ky=N—M

N—r\(M—1I2N —2M — D!l &
=(M_r) TGN = D1 > > PlAta. .. k)

m=2ky+--+kpy=N—M
1 NN @N-2M) (M —2),
= 272MFT N2N) (N — M)IN — M)! (N —2),_1

Since P(Q} =r)= g:ji::, it follows from Stirling formula that, as M is large enough,

P(Q} = M) My 1+ 8.8, @
= =C e —_— R —_— ,
N "\ N VNN — M) N M N-M

where C1, C2, C3 are bounded functions which depend on N, M, N — M respectively. Hence
P(Oy <xN)=c /(1 — 72y dy +o(D).

That completes the proof. O

Example 2. The following theorem leads to a result of Stepanov [11] on L,ll, the size of the largest component of a
random mapping with n elements, also see Kolchin [5], which states that

1
p (L'11> ) / L g e[l 1}
>y )—» | ———dx, xel-,1].
"\n 2x/1 —x 2
X

Theorem 3.4. As N goes to infinity,

1
Vo) [ w3
Plmax—>x)— [ ———dx, xe|-,1[.
(k N 2x+/1 —x 2
X

Proof. It follows from a similar argument as in Theorem 3.3 that for any fixed N, M with % < M < N, it holds that
1 N!N! 2N —2M)!
2-2MH1IpM 2N) (N — M)Y(N — M)!

As M large enough, using Stirling’s formula again, we have

G
P k= ay
(mfx Ov=M)=7y ( = M)

where Cy, C; are bounded functions dependent on N, N — M respectively, and this implies our assertion. 0O

P(ml?x ok = M) =
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Example 3. The study of the limit behavior of sequence concerning the size of components of random mappings

Hy,  HY

goes back at least to Stepanov [12], also see Aldous et al. [2,1], which states

H' H>  H" =
(—”,—”,..., n >i> (51,52(1—51),...,5,,, ]‘[(1—5@,...),

n n n
k=1

where (&) are i.i.d. and beta-distributed with parameters 1 and % This follows directly from Corollary 3.1, Theo-
rem 3.3 and the self-similarity of (Qx) as explained below, see also [6]. For m > 1, define b)) := Zk>m Qﬁ, the
total number of particles in boxes beyond m after n particles are placed, which increases at most by 1 each time, and
Ty :=inf{n: b’ = N} for N > 1. Intuitively 7y is the N-th particle placed beyond the first m boxes. Obviously Ty
is a finite stopping time since 7y < T4 n. It is easy to check that {Q,} is a time change of {Qx}. For any x € §,
X = (X1, ..., Xn), a projection, and &, X := (X, 41, Xm+2, - - .), a translation.

Theorem 3.5. For anym > 1, {Em(Q,[r\l;): N > 1} is a Markov chain independent of{nm(QT[rVn): N > 1} and identical
in law with {Qyn: N > 1}.

4. The expected size of the largest component

In this section, we shall present the moments of size of the largest component in a random mapping graph. For
r,m > 1, define

[ JY 2100) G

E()C) :/Z_dya Gr,m ::/.xm7 7'67E(x)—dx_
y (r—1n! 2

X

Theorem 4.1. Let L, be the size of the r-th largest component in a random mapping graph in $2,,. Then
2m

— G-

Qm -1y ""

Particularly lim, E,,(L1/n) =0.7575....

HmE, (L, /n)" =
n

Proof. As we have known, there is a probability space (£2, #,P) and A1 @ --- ® A, is an atom of Fy where
A1, ..., Ay are an ordered partition of [N], and Qy = (Q’Z‘v) where QK = |Ax|,k =1, ..., and P satisfies that

Qa)!!--- Qay)!
P(A DA = ———————
( 160 (5] m) (2N—1)”
where a; = |A;| — 1.
Define ¢; y :=#{k: Q’I‘\, =i} and {UV) = (g, n: i = 1). Suppose that s = {s;: 5; € Z} with

9]

v(s) = Zis[ =N.

i=1
It is easily shown that
N! L2, ((2( — )H*
L2, (i1)%s;! 2N - D!
_ NDREER (20) 7
2N — D!

e ¢]

N0V (2i)~si
T Q2N =D 1_[ '

PGin=siii=1,..)=

Si!
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It implies the identity

Z NN 2 (21) Si

— 1N
s: v(s)=N (2N 1) i=1

)]

The random variables {¢; y: i > 1} would be independent if it were not for the condition on v(s) = N. Consider then
a sequence ¢ = {¢;} of mutually independent nonnegative integer valued random variables, where fori = 1,2, ... the

. . . . . . 1 .
random variable ¢; is Poisson distributed with mean é—l 1.e.,

(z'/2i)°

s!

z{gz—s}_exp{__} , s=0,1,...,
2i

where, z € (0, 1). _ _

Since P(¢; #0) =1 — exp{—é—lj} < % and Zj’i 1 P;(¢; #0) is finite, it follows from the Borel-Cantelli lemma,
that P,(¢; # 0, infinitely often) = 0. Thus the random variable v(¢) = Z?il i¢; is finite with probability 1, and the
joint distribution of (¢;) may be written meaningfully as

P.(¢i=sii=1,. )—Hex{ }M_\/T v(s)H(Zl) 5i

S,’!

for all sequences s = (s;) of nonnegative integers eventually 0. It is easy to see from (1) that the conditional distribution
of the ¢’s given v(¢) does not depend on z, more precisely

N1V (2;) S oo
PG =sii=1....Ju() = N) = ] @n-nu [li2 5 i 5 s = N,
0, otherwise.

Therefore two probabilities are connected as follows
P.(Gi=sii=1...[vQ)=N)=P(n=si1i=1,..)

and the distribution of v is

2N — 1!
P (v(§)=N) =1 N(NQN), N=0,1,....

Let @ be a function on S. Then it follows that

Its expected value is E; (v(¢)) = Y oo, 21 =555 Zz

E.(2(0) =Y E(2@)Iv(@)=N)P.(v(t) =N)

NZ>0
Y =L
NN
N2>0
and then
Lk (00)= ) VN (o))
(2 z d(¢ )
i &5 en
Given r > 1, define @ (s) := max{i > 0: Z >riforseS, L, :=®()and L,y =@ (™). Then L, n is the

r-th large component in O and we have

1 Ny 2N =Dl
——E(L"y).
«/1— Z QN)!! ( rN )
It means that the left-hand side is equal to the generating function of {(ng)l,?”E(LmN) N > 0}. An idea similar to
that in [10] gives the following limit

lim (1 - 2)"E (L") = Gym.
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Thus
-t 1 G
fim =972 E, (L") = — ",
=1 'm+5) 11—z I'(m+3)
Since {L, y: N > 1} is obviously increasing, we may apply Karamata—Hardy-Littlewood Tauberian theorem (see,
e.g., [3]), and Stirling’s formula, and obtain

m
r,N AT Gr,m 2"
lim E( N ) = T = 1 ”Gr,ms
[(m+ 3) (2m !

for the limiting form of the moments of L, y/N. The theorem follows from Theorem 3.2 and Lemma 3.4. The case
m =1,r =1 gives the limit of

o o0
. L, e
lim E,{—{ = [ expy—x — | —dy;dx~0.7575. m|
n—00 n 2y
0 X

We now seek the limiting distribution of L, y/N. It is known that {L, y/N: N > 1} converges a.s. Let 5, :=
lim L, 5 /N with distribution F,(x),0 < x < 1. By Lebesgue’s dominated convergence theorem, the moments of 7,
are given by

1
m

En” = xmdF(x)—ziG m=0,1
n, = r _(2m—1)” rms =U,1,....
0

Take a random variable X supported by (0, oo) with distribution

[EQI _pe™

P(X edx) = e
(r—1n! 2x

Hence we have

2m
E(n)") =

Qm — 1)!!E(Xm)'

Take a random variable Y which has a symmetric distribution on (—o00, 0o) about 0 with Y? 4 4X, and we have

o B0 o o B avm o
E(e” )=Z 2 7232 =Z (—zz) =E(e™"” 2).
m=0

m!
m=0

On the other hand, take a standard Brownian motion B = (B(¢)) on R independent of 1, and then
E(ei(ﬁBm))z) - E(E(ei(ﬁ3(77r))z|nr)) - E(efnrzz) =E(c"9).
It follows that ¥ £ v/2B(n,) or X £ L(B(,))%, i.e

[E@)]) ! E(x)e N

- ¢ /mme'f’(’)dt

where f, is the probability density of 7n,. Let T = % — 1, and set g(r)dr = —%ﬁ fr (@) dz. It follows that

[e¢]

- CVAIEOI T g 1 VT e CD™ME@)
/e gmdr =" ﬁ__zz) r—Dm!  Jx
0 m=
Since
E()—Oo ]O L1y d d i—]o—w L 4
X)= (u>1ydu an \/;_ € m u
0 0

X
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we have
; . (=" du;  du du
/g(x)dx_ Z / / =1, Zmtr-1 700
— D'm! 2ur 2Umyr—1 /U0
0 Omer—1(7)
1 i (—1p—r+l / / du;  du, dug
T2 r—DWp—r+D02° up up Juo
p=r—1 0,(1)
_! i (=pp—rt / / / duy  du,
_2p_r  (r=DNp—r+D12r \/u—ul—-“—up uj up’
- OLw)
where
Op(x)={ur, ..., up,uo): uy =1,...,up > 1uo>0,u1+ - +up+up<x},
@},(x):{(ul,...,up):u121,...,up>1,u1+~-~+uP<x}, p=1.
Hence we have
- (=1)p—r+l 1 du;  du
g(t):i Z (r—l)‘(p—r+1)'2p,/.“ / JT—ur—---—u u_u_p
p=r—1 ’ ' el(r) ! p A P
P

and with substitution 7 = % — 1, we obtain the asymptotic density of L, /n

f(@) =g<% - 1);—3/2

1
_eply e [ ] ! duy | dup,
2 ol r—DWp—-r+n02° \/l—l—ul—--'— uy Up

eL1/t-1)

Whenr=1,t > %, we have a result of Stepanov [11]
1 _ 1
21/t —1  2t/1—1

hi@y =177

Remark. In Table 2 we list the numerical values concerning the expected size of largest component n~'E, (L)
through Monte Carlo simulation given by

_1 __ sum of the size of largest component in N times
nEy(L))~

n-N
with N = 20000.
Table 2
Calculation of ™ E, (L1)
n =50 n =100 n=150 n =200 n =250 n =300 n =350 n =400
0.7811 0.7724 0.7672 0.7673 0.7659 0.7650 0.7645 0.7656
n =450 n =500 n=>550 n =600 n =650 n =700 n="1750 n =800
0.7627 0.7659 0.7644 0.7652 0.7609 0.7617 0.7634 0.7634
n =80 n =900 n =950 n = 1000 n=1050 n=1100 n=1150 n=1200
0.7623 0.7644 0.7634 0.7618 0.7648 0.7655 0.7606 0.7608
n=1250 n=1300 n = 1350 n = 1400 n = 1450 n=1500 n = 1550 n = 1600
0.7618 0.7627 0.7623 0.7621 0.7605 0.7620 0.7612 0.7598
n=1650 n=1700 n=1750 n=1800 n=1850 n = 1900 n=1950 n =2000

0.7611 0.7616 0.7614 0.7620 0.7603 0.7598 0.7612 0.7603
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