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Abstract

We consider a random walk in random scenery {Xn = η(S0) + · · · + η(Sn), n ∈ N}, where a centered walk {Sn,n ∈ N} is
independent of the scenery {η(x), x ∈ Z

d }, consisting of symmetric i.i.d. with tail distribution P(η(x) > t) ∼ exp(−cαtα), with
1 � α < d/2. We study the probability, when averaged over both randomness, that {Xn > ny} for y > 0, and n large. In this note,
we show that the large deviation estimate is of order exp(−c(ny)a), with a = α/(α + 1).
© 2006 Elsevier Masson SAS. All rights reserved.

Résumé

Soit une marche aléatoire en paysage aléatoire Xn = η(S0)+· · ·+η(Sn). La marche {Sn} est centrée, et évolue indépendamment
d’un paysage formé d’une suite i.i.d {η(x), x ∈ Z

d }, caractérisées par une queue de distribution P(η(x) > t) ∼ exp(−cαtα), avec
1 � α < d/2. Nous étudions la probabilité pour que {Xn > ny} pour y > 0, et n grand.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

We consider a centered random walk {Sk, k ∈ N} on Z
d . When S0 = x, we denote the law of the walk by Px and

the expectation with respect to this law by Ex . Each site x ∈ Z
d is associated with a random variable η(x), and we

assume that the scenery {η(x), x ∈ Z
d} consists of symmetric i.i.d. unbounded random variables, independent of the

random walk. We denote the law of the scenery by Pη , and by Eη the expectation with respect to this law.
The random walk in random scenery (RWRS) is the process {Xn,n ∈ N} defined by

Xn :=
n∑

k=0

η(Sk) =
∑
x∈Zd

ln(x)η(x), where ln(x) =
n∑

k=0

1Sk=x. (1.1)

RWRS has been introduced by Kesten, Spitzer [9], and Borodin [4,5] as a case-study for sums of dependent random
variables, in order to exhibit new scaling and new self-similar limiting laws. Indeed, the convergence in law of Xn,
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studied for d �= 2 in [9,4,5], and for d = 2 by Bolthausen [3], needs a super-diffusive scaling in dimensions 1 and 2.
In terms of the mean square, the dominant orders are the following.

E0 ⊗ Eη

[
X2

n

] �
⎧⎨
⎩

n3/2 for d = 1,

n log(n) for d = 2,

n for d � 3.

(1.2)

Recently, the moderate and large deviations for Xn have been studied in [7,1,2,6] for the Brownian motion in
various sceneries, and in [10,11] in the original random walk setting.

For our estimates, the only important feature of the scenery variables is their tail decay. Thus, we make the hypoth-
esis that there is α > 0, and a positive constant cα such that

lim
t→∞

logPη(η(0) > t)

tα
= −cα. (1.3)

• When α < 1, η(x) has no exponential moments, and is called a heavy-tail variable. In a recent paper [11], van
der Hofstad, Gantert and König deal with Xn = ∑

ln(x)η(x), by conditioning on the local times {ln(x), x ∈ Z
d},

thus obtaining a weighted sum of i.i.d. heavy-tail variables. Using classical heavy-tail estimates (as those of [13]),
they show that {Xn > ny} is realized as only one term of the series reaches level ny. Thus, in terms of logarithmic
equivalence (≈),

P0 ⊗ Pη[Xn � ny] ≈ P0 ⊗ Pη

[
ln(0)η(0) � ny

]
.

Now, recall that for a time k � n, the local time at site 0, ln(0), satisfies the following property

P0
(
ln(0) = k

) ≈ exp(−κ0k), with κ0 := log

(
1

P0(H0 < ∞)

)
, (1.4)

where H0 = inf{n � 1,Xn = 0}. Thus, for y > 0, [11] shows that for an explicit J > 0

P0 ⊗ Pη

(
ln(0)η(0) > ny

) ≈ sup
k=1,2,...

P0
(
ln(0) = k

)
Pη

(
η(0) >

ny

k

)

≈ exp

(
− inf

k�1

(
κ0k + cα

(
ny

k

)α))

≈ exp
(−J (ny)α/(α+1)

)
. (1.5)

In the optimal strategy ln(0) is of order (ny)α/(α+1).
• When α > max(d/2,1), a different behavior holds: for all y > 0

P0 ⊗ Pη[Xn � ny] ≈ exp
(−nd/(d+2)J (y)

)
(with a J (y) > 0 known explicitly). (1.6)

This result is proved in [2] for Brownian motion in a bounded scenery (i.e. α = ∞), in [6] for a Gaussian scenery
(α = 2 and d � 3), and in [10] for a random walk in a general scenery. The best strategy to realize {Xn > ny} is
the following.
– Force the random walk to spend all its time in a ball of radius rn with 1 � rn � √

n, in such a way that for x

in this ball, ln(x) is of order n/rd
n . This has a cost of order exp(−n/r2

n).
– Require the scenery to satisfy

∑
‖x‖�rn

η(x) � rd
n y. This has a cost of order exp(−rd

n ).

The exponent d/(d + 2) appears as one sets equal n/r2
n and rd

n . Thus, in the optimal strategy, the walk spends a
time n2/(d+2) on each site of a ball of about nd/(d+2) sites.
Observe that when η(x) satisfies (1.3), then ln(x)η(x) has a heavy tail (see (1.5)). Also Xn = ∑

η(x)ln(x) is a
sum of about n-terms (in dimensions d � 3). However, the variables {ln(x)η(x), x ∈ Z

d}} are not independent,
and the extreme value of the sum does not dominate.

• The regime 1 � α < d/2 is the purpose of this note.

Our main result is the following.
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Proposition 1.1. Let {Sn,n ∈ N} be a walk with centered independent increments with finite exponential moments.
Assume that {η(x), x ∈ Z

d} are symmetric i.i.d. variables with tail parameter α with 1 � α < d/2, and whose law has
a density decreasing on R

+. There are c1, c2 > 0, such that when n is large enough and y > 0

exp
(−c1(ny)α/(α+1)

)
� P0 ⊗ Pη[Xn � ny] � exp

(−c2(ny)α/(α+1)
)
. (1.7)

In the course of deriving the upper bound, we rely on a localization lemma of independent interest.

Lemma 1.2. Assume d � 3. There is a constant κd > 0 such that for any Λ ⊂ Z
d , and any t > 0

P0
(
l∞(Λ) > t

)
� exp

(
−κd

t

|Λ|2/d

)
, (1.8)

where l∞(Λ) is the total sojourn time of the walk in the region Λ.

Note that the recent paper [8] gives a representation of P0(l∞(Λ) > t), in terms of the eigenvalues and eigenvectors
of the matrix whose entries are the Green function restricted to Λ. It is not clear to us how to deduce Lemma 1.2 from
the type of representation of [8].

This note is organized as follows. We specify the model in Section 2. In Section 3, we deal with the lower bound.
In Section 4, we deal with the upper bound. Finally, we have gathered in the Appendix the proof of Lemma 1.2, and
the proof of some technical facts.

2. Model

Assumptions on the random walk. We assume that the increments of the walk are centered, with finite exponential
moments, i.e.

Sk =
k∑

j=1

ξj , ξj i.i.d, E[ξ1] = 0, E
[
exp(λξ1)

]
< ∞ for all λ ∈ R

d . (2.1)

It is then easy to see that there exist constants C,c > 0, such that for all n,

P0

[
max
k�n

‖Sk‖ � n
]

� C exp(−cn). (2.2)

Assumptions on the scenery. Besides our basic tail assumption (1.3), we make assumptions on the law of the
scenery whose goal is to simplify the technical parts. Thus, we say that a random variable with value in R is bell-
shaped (usually called symmetric unimodal distribution), if its law has a density with respect to Lebesgue which is
even, and decreasing on R

+. Throughout the paper, we will assume that {η(x);x ∈ Z
d} are i.i.d and bell-shaped, with

the following handy consequence, proved in Appendix A.

Lemma 2.1. When {η(x), x ∈ Z
d} have independent bell-shaped densities, then for any Λ finite subset of Z

d , and any
y > 0

P

( ∑
x∈Λ

αxη(x) > y

)
� P

( ∑
x∈Λ

βxη(x) > y

)
, if 0 � αx � βx for all x ∈ Λ. (2.3)

A typical use of Lemma 2.1 is the following bound

P

(∑
Λ

η(x) >
y

minαx

)
� P

(∑
Λ

αxη(x) > y

)
� P

(∑
Λ

η(x) >
y

maxαx

)
. (2.4)

Some notations. Throughout the paper, we set a := α/(α + 1) and b := 1/(α + 1), and for x ∈ Z
d , ‖x‖ :=

maxi=1,...,d |xi |. Finally, when considering the variables {η(x), x ∈ Λ} for a finite region Λ of cardinality L, we
will sometimes use the notation {ηj ,1 � j � L}.



166 A. Asselah, F. Castell / Ann. I. H. Poincaré – PR 43 (2007) 163–173
3. Lower bound

We show in this section the following simple estimate.

Lemma 3.1. There is a constant c1 > 0 such that, for any y > 0, and n large

P

( ∑
x∈Zd

ln(x)η(x) > ny

)
� exp

(−c1(ny)a
)
. (3.1)

Proof. The bound (3.1) is obtained by using Lemma 2.1. Thus,

P

(∑
x

ln(x)η(x) > ny

)
� P

(
ln(0)η(0) > ny

) =
∑
k>0

P0
(
ln(0) = k

)
Pη

(
η(0) >

ny

k

)

� P0
(
ln(0) = k

)
Pη

(
η(0) >

ny

k

)
for any k. (3.2)

We choose an n-depending k, for instance kn = [(ny)a]. Since kn/(ny)a → 1 as n tends to infinity, we have for any
ε > 0 and n large that

Pη

(
η(0) >

ny

kn

)
� exp

(
−cα(1 + ε)

(
ny

kn

)α)
� exp

(−cα(1 + 2ε)(ny)a
)
.

Now, if we set κ0 = log(1/P0(H0 < ∞)), then

P0
(
ln(0) = kn

)
� P0

(
H0 � n

kn

)kn

�
(

e−κ0 − P0

(
n

kn

< H0 < ∞
))kn

. (3.3)

Thus, for any κ > κ0, we have for n large enough

P

(∑
x

ln(x)η(x) > ny

)
� exp

(−(
κ + (1 + 2ε)cα

)
(ny)a

)
. (3.4)

This concludes the proof. �
4. Upper bound

The case α = 1 is special and much simpler than α > 1. Thus, we will treat the former specifically in Remark 4.4.
Henceforth, we assume that α > 1 and we recall that a := α/(α + 1), and b = 1 − a < a. We consider a subdivision of
[b, a], b1 = b < b2 < · · · < bN+1 = a, and positive constants {y↓, y0, . . . , yN , y↑} satisfying y↓ + y0 + · · · + yN � y.
We will specify N and {bi, yi, i = 1, . . . ,N} after we partition the range of the walk Rn, into N + 3 sets. For 1 � i �
N , we set

Di := {
x ∈Rn: yanbi � ln(x) < yanbi+1

}
, (4.1)

and for a small constant z to be chosen later

D0 := {
x ∈Rn: znb � ln(x) < yanb

}
, (4.2)

and lastly, for the two sets at the extremities

D↓ := {
x ∈ Rn: ln(x) < znb

}
, and D↑ := {

x ∈ Rn: ln(x) � (yn)a
}
. (4.3)

Thus, { ∑
d

ln(x)η(x) > ny

}
⊂

N⋃
i=0

{ ∑
x∈D

ln(x)η(x) > nyi

}
∪

{ ∑
x∈D

ln(x)η(x) > ny↓
}

∪ {D↑ �= ∅}. (4.4)

x∈Z i ↓
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Thus, if we define A := {maxk�n ‖Sk‖ < n}, and recall that P0(Ac) is negligible compared to exp(−na) by (2.2), then

P

( ∑
x∈Zd

ln(x)η(x) > ny

)
� P0

(
Ac

) +
N∑

i=0

P

(
A,

∑
x∈Di

ln(x)η(x) > nyi

)

+ P

(
A,

∑
x∈D↓

ln(x)η(x) > ny↓
)

+ P0(D↑ �= ∅). (4.5)

We will now estimate each terms separately in the next section. However, in the course of obtaining an upper bound,
we will fall on the following requirement: we will need a positive β , independent of n, such that for i � N

βy � yin
(a−bi+1)−(1−δ0)(a−bi ) with the positive constant δ0 := 1/α − 2/d

1 − 2/d
< 1. (4.6)

Thus, a simple choice of {bi, yi} which fulfills (4.6) is yN := βyn(1−δ0)(a−bN ), and

∀i < N, yi = βyn−ε0(a−bi+1), and (a − bi) = (1 + ε0)(a − bi+1), with ε0 = δ0/2

1 − δ0/2
. (4.7)

To explicit further the choices in (4.7), we introduce more notations:

z1 = a − bN, z2 = bN − bN−1, . . . , zN = b2 − b1. (4.8)

Thus, (4.7) is fulfilled when z2 = ε0z1 and for i > 2

zi = ε0(z1 + · · · + zi−1) = (1 + ε0)zi−1 = (1 + ε0)
i−2z2 = (1 + ε0)

i−2ε0z1. (4.9)

Note that for i < N

a − bi+1 = z1 + · · · + zN−i = zN−i+1

ε0
= (1 + ε0)

N−i−1z1.

The condition on yi in (4.7) will be fulfilled if we choose z1 = χ/ log(n), for a constant χ to be tuned later. Indeed,
we obtain yN = βy exp(χ(1 − δ0)), and

∀i < N, yi = βy exp
(− log(n)z1ε0(1 + ε0)

N−i−1) = βy exp
(−χε0(1 + ε0)

N−i−1). (4.10)

Thus, since

∞∑
i=1

(1 + ε0)
i = ∞, and

∞∑
i=1

exp
(−χε0(1 + ε0)

i
)
< ∞, (4.11)

one can find N finite, of order log(log(n)), χ > 0 and β > 0 independent of n (or rather χn and βn can be chosen to
converge to positive constants, and we omit the subscript n) such that

a − b =
N∑

i=1

zi = χ

log(n)
(1 + ε0)

N−1, and
N∑

i=0

yi + y↓ + y↑ = y. (4.12)

Actually, the choice of y↓, y↑ is arbitrary since we are not after the exact constant in front of the speed na . For instance,
we choose y↓ = y↑ = y/3.

4.1. Contribution of D↓

Lemma 4.1. We set for any z > 0, D↓(z) = {x: ln(x) � znb}. Then, for any y↓ > 0, we have

lim
z→0

lim
n→∞

1

na
logP

( ∑
x∈D↓(z)

ln(x)η(x) > ny↓
)

= −∞. (4.13)
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Proof. We fix z > 0 and {ln(x): x ∈ D↓(z)} and integrate over the η, to obtain for λ � 0

Pη

( ∑
x∈D↓(z)

ln(x)η(x) > ny↓
)

� exp

(
−ny↓

λ

znb

) ∏
x∈D↓(z)

Eη

[
exp

(
λη(x)

ln(x)

znb

)]
. (4.14)

Note that by hypothesis (1.3), there is δ > 0 such that

ν(δ) = Eη

[
η2(x) exp

(
δ
∣∣η(x)

∣∣)] < ∞. (4.15)

Also, it is an obvious fact that for 0 � θ � δ

exp
(
θη(x)

)
� 1 + θη(x) + θ2η(x)2

2
eδ|η(x)|. (4.16)

Thus, after taking expectation in (4.16)

Eη

[
exp

(
θη(x)

)]
� 1 + θ2

2
ν(δ) � eθ2ν(δ)/2. (4.17)

Back to estimating (4.14), we choose λ � δ and use (4.17) to obtain

∏
x∈D↓(z)

Eη

[
exp

(
λη(x)

ln(x)

znb

)]
� exp

(
λ2

2
ν(δ)

∑
x∈D↓(z) ln(x)2

(znb)2

)
. (4.18)

Now,
∑

x∈D↓(z) ln(x)2 � zn1+b . Thus,

P

( ∑
x∈D↓(z)

ln(x)η(x) > ny↓
)

� exp

(
−n1−b

z
sup

0�λ�δ

{
y↓λ − ν(δ)λ2

2

})
(4.19)

The result follows since for any y↓ > 0, the supremum is positive, and z can be sent to zero. �
4.2. Contributions of D↑

Lemma 4.2. For D↑ given in (4.3), there is Cd > 0 such that for n large

P0(D↑ �= ∅) � Cdn e−κ0(yn)a . (4.20)

Proof. First, note that

P0(D↑ �= ∅) = P0
(
ln(x) > (yn)a for some x ∈ Rn

)
�

∑
x∈Zd

P0(x ∈ Rn)P0
(
l∞(0) � (yn)a

)
. (4.21)

Now, for κ0 := 1/ log(P0(H0 < ∞)), it is clear that

P0
(
l∞(0) � (yn)a

)
� e−κ0(yn)a . (4.22)

Thus, we conclude by recalling that E0[|Rn|] � n + 1. �
4.3. Contributions of Di for i = 0, . . . ,N

Lemma 4.3. Fix i = 0, . . . ,N . We have a constant c2 > 0 such that for y > 0, and n large

P

(
A,

∑
x∈Di

ln(x)η(x) > nyi

)
� exp

(−c2(ny)a
)
.

Proof. We first treat the case i > 0. Note that |Di | � y−an1−bi , and on A there are at most
(

nd

|Di |
)

possible choices for
Di since the walk does not exit a region of radius n. Thus, using Lemma 2.1 (and (2.4))



A. Asselah, F. Castell / Ann. I. H. Poincaré – PR 43 (2007) 163–173 169
P

(
A,

∑
x∈Di

ln(x)η(x) > nyi

)
�

y−an1−bi∑
L=1

P0
(
A, |Di | = L

)
Pη

(
L∑

j=1

ηj >
nyi

max{ln(x): x ∈ Di}

)

�
y−an1−bi∑

L=1

(
nd

L

)
sup

Λ: |Λ|=L

P0(Di = Λ)Pη

(
L∑

j=1

ηj >
nyi

nbi+1ya

)

�
y−an1−bi∑

L=1

(
nd

)L sup
Λ: |Λ|=L

P0
(
l∞(Λ) > Lyanbi

)
Pη

(
L∑

j=1

ηj >
nyi

nbi+1ya

)
. (4.23)

By using Lemma 1.2, we have(
nd

)L sup
Λ: |Λ|=L

P0
(
l∞(Λ) > Lyanbi

)
� exp

(−κdyanbi L1−2/d + L log
(
nd

))
, (4.24)

and the combinatorial factor ndL is negligible when

nbi L1−2/d � L log(n). (4.25)

Since L � y−an1−bi and bi � b = 1/(α + 1), (4.25) requires n large and

2

d
(1 − bi) < bi ⇐� α <

d

2
. (4.26)

Thus, the combinatorial factor is always innocuous when α < d/2.
Let B > 0 be a fixed large constant. We say that L is large when nbi L1−2/d > Bna , and this case poses obviously

no problem since the term P0(l∞(Λ) > Lnbi ya) suffices to obtain the right speed. Thus, we assume that L is small,
that is:

nbi L1−2/d � Bna. (4.27)

Thus, we consider for a fixed i = 1, . . . ,N

L � Anγi , with γi := a − bi

1 − 2/d
, and A = B1/(1−2/d). (4.28)

We want to evaluate Pη(
∑

Di
η(x) > n1−bi+1yiy

−a, |Di | � L) when L is as in (4.28). First, note that nγi � n1−bi+1yi ,
when n is large enough. Indeed, first rewrite

1 − bi+1 − γi =
(

1 − a − γi

α

)
+ (

a − bi+1 − (1 − δ0)(a − bi)
)
.

Then, by noting that 1 − a − γi/α � 1 − a − γ1/α � bδ0, and using (4.6),

n1−bi+1−γi yi = n1−a−γi/αna−bi+1−(1−δ0)(a−bi )yi � n1−a−γ1/αβy = nbδ0βy. (4.29)

Hence for L satisfying (4.28), n1−bi+1yi � L, and using standard Large Deviations estimates (see Lemma A.4 in
Appendix A), for all ε > 0 and n sufficiently large,

Pη

(
L∑

j=1

ηj > n1−bi+1
yi

ya

)
� exp

(
−cα(1 − ε)L

(
n1−bi+1yi

Lya

)α)

� exp

(
−cα(1 − ε)A

(
n1−bi+1−γi (1−1/α)yi

Aya

)α)

� exp

(
−cα(1 − ε)

βα

Aα−1
(ny)a

)
, using (4.6). (4.30)

By the same arguments, we can treat the case D0. Indeed, note that γ0 = (a − b)(1 − 2/d)−1 < a, and for L small,
we have

Pη

(
L∑

ηj > n1−b y0

ya

)
� exp

(
−cα(1 − ε)

naα(y0/y
a)α

Lα−1

)
, (4.31)
j=1
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which is negligible since aα − (α − 1)γ0 > a. �
Remark 4.4. When α = 1, then b = a = 1/2. Thus, the range of the walk is divided into three sets: D↓,D↑ and D0
as in (4.3) and (4.2) respectively. Also, we can choose y↓ = y↑ = y0 = y/3. Now, our treatment for D↓,D↑ only
assumed small exponential moments for the walk, which hold in this case. To treat D0 note that only the case L small
may pose problem. However, since γ0 = 0, L small means L � A for a large constant. It is easy to see that those terms
are of the correct order since, there is a constant c̄ such that

Pη

(
L∑

j=1

ηj > n1−a y0

ya

)
� LPη(η1 >

(ny)1/2

3L
) � L exp

(−c̄(ny)1/2). (4.32)
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Appendix A

A.1. On bell-shaped densities

We recall that a density f is bell-shaped if it is even and decreasing on R
+. A first observation, which seems to go

back to A.Wintner [14], is the following.

Lemma A.1. If f,g are two bell-shaped densities, so is their convolution f ∗ g.

Proof. First, it is obvious that f ∗ g is even. Indeed, by the evenness of both f and g

f ∗ g(−t) =
∫
R

f (−t − s)g(s)ds =
∫
R

f (t + s)g(−s)ds =
∫
R

f (t − s)g(s)ds = f ∗ g(t).

Now, assume that f is differentiable. Then,

(f ∗ g)′(t) =
∫
R

f ′(t − s)g(s)ds =
∫
R

f ′(s)g(t − s) =
∞∫

0

f ′(s)
(
g
(|t − s|) − g(t + s)

)
ds, (A.1)

where we used the oddness of f ′ and the evenness of g. Now, for t, s � 0, we have g(|t − s|) − g(t + s) � 0, and
f ′(s) � 0 implying that (f ∗ g)′(t) � 0.

Now let {ϕε, ε > 0} be a differentiable bell-shaped approximate identity. By what we just saw, ϕε ∗ f is a bell-
shaped differentiable density. So is in turn (ϕε ∗ f ) ∗ g. Thus, for any 0 � t � T , we have (ϕε ∗ f ) ∗ g(t) � (ϕε ∗ f ) ∗
g(T ). By pointwise convergence, as ε tends to 0, we obtain that f ∗ g(t) � f ∗ g(T ). �

By induction, using Lemma 2.1, we obtain the following corollary.

Corollary A.2. If {ηi, i = 1, . . . , n} are independent bell-shaped variables and S = α1η1 + · · · + αnηn, with posi-
tive {αi}, then S has a bell-shaped density.

Finally, the useful result is the following.

Lemma A.3. Let {ηi, i = 1, . . . , n} be independent bell-shaped variables and 0 � αi � βi for i = 1, . . . , n. Then for
any y > 0, we have (2.3).

Proof. We prove the lemma by induction on the number of βi larger than αi . Thus, it is enough to show that for any
y > 0, x �→ P(S + xηn > y) is increasing on R

+ when S is a bell-shaped variable independent of ηn.
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First note that for symmetric independent ξ, η, we have for y > 0

P(ξ + η > y) = P(ξ > y) +
∞∫

0

P(η > z)
(
fξ

(|y − z|) − fξ (y + z)
)

dz. (A.2)

The proof is concluded as we apply (A.2) to ξ = S and η = xηn, and as we note that fS(|y − z|) − fS(y + z) � 0 and
x �→ P(ηn > z/x) is increasing. �
A.2. On a localization result

We first prove Lemma 1.2.
First Step: We show that E0[l∞(Λ)] � Cd |Λ|2/d .
The following Green function estimates is standard (see for instance [12] Theorem 10.1): there is Cd such that for

any y ∈ Z
d

G(0, y) = E0
[
l∞(y)

]
� Cd

1 + ‖y‖d−2
. (A.3)

Now, l∞(Λ) = ∑
y∈Λ l∞(y) and

E0
[
l∞(Λ)

] =
∑
y∈Λ

E0
[
l∞(y)

]
�

∑
y∈Λ

Cd

1 + ‖y‖d−2
. (A.4)

We establish now an upper bound on the right-hand side of (A.4). Let ϕ be an ordering of the sites of Z
d in increasing

distance from the origin. In other words, ϕ : N → Z
d is a one to one, onto map so that ‖ϕ(i)‖ � ‖ϕ(i + 1)‖, for all

i ∈ N. Let ψ : {0, . . . , |Λ| − 1} → ϕ−1(Λ) be an ordering of ϕ−1(Λ) (so that ψ(0) < · · · < ψ(|Λ| − 1)) and note that

k � ψ(k), and
∥∥ϕ(k)

∥∥ �
∥∥ϕ

(
ψ(k)

)∥∥. (A.5)

Thus, g := ϕψ−1ϕ−1 :Λ → Z
d is a rearrangement of Λ inside a “ball” of radius proportional to |Λ|1/d . Thus, it is a

trivial fact that there is a constant c′
d and supΛ ‖g(x)‖ � c′

d |Λ|1/d . Let r := c′
d |Λ|1/d , and note that

∑
x∈Λ

1

1 + ‖x‖d−2
�

∑
x∈Λ

1

1 + ‖g(x)‖d−2
�

∑
‖y‖�r

1

1 + ‖y‖d−2

� 1

2
+

r∫
0

sd−1

1 + sd−2
ds � 1

2
+

r∫
0

s ds

� 1

2
+ r2

2
� r2. (A.6)

The first step concludes easily. By Chebychev’s inequality we have

sup
x,Λ

Px

(
l∞(Λ) > 2Cdr2) <

1

2
. (A.7)

Indeed, the starting point of the walk can very well be any site x ∈ Z
d since the transition kernel is translation invariant,

and Λ is arbitrary.
Second Step: We show that

P0
(
l∞(Λ) > t

)
�

(
1

2

)t/(2Cdr2)

Define a sequence of stopping times for k = 1,2, . . .

σk = inf
{
n � 0: ln(Λ) > 2kCdr2}, (A.8)
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and note that σk = σk−1 + σ1 ◦ θσk−1 . We have used the notation θk for the time translation by k-units. Now, the bound
(A.7) can be expressed in term of σ1 as

P0(σ1 < ∞) <
1

2
.

We express now the total sojourn time in Λ in terms of {σk, k ∈ N}
P0(l∞

(
Λ

)
> 2kCdr2) = P0(σk < ∞), (A.9)

and by the Strong Markov property

P0
(
l∞(Λ) > 2kCdr2) = E0

[
1σk−1<∞P0(σk−1 + σ1 ◦ θσk−1 < ∞|Fσk−1)

]
= E0

[
1σk−1<∞PSσk−1

(σ1 < ∞)
]

� 1

2
P0(σk−1 < ∞). (A.10)

By induction the bound (1.8) follows readily.

A.3. On a large deviation estimate

To be self-contained, we give an obvious estimate, for which a reference could not be found. We assume that α > 1.

Lemma A.4. For all ε > 0, L a positive integer, and for t/L large enough,

Pη

[
L∑

j=1

ηj � t

]
� exp

(
−cα(1 − ε)

tα

Lα−1

)
.

Proof. For λ ∈ R, set Λ(λ) := logEη[eλη1].

Pη

[
L∑

j=1

ηj � t

]
� exp

(
−αcα

(
t

L

)α−1

t

)
exp

(
LΛ

(
αcα

(
t

L

)α−1))
.

By Kasahara’s Tauberian theorem, for large x

Λ(x) � 1

ᾱ(αcα)ᾱ−1
xᾱ, where

1

α
+ 1

ᾱ
= 1.

Hence for all ε > 0 and t/L large enough,

Pη

[
L∑

j=1

ηj � t

]
� exp

(
−αcα

tα

Lα−1

)
exp

(
(1 + ε)

αcα

ᾱ

tα

Lα−1

)

� exp

(
−cα

tα

Lα−1

(
1 − εα

ᾱ

))
. �
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