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Abstract

Let 1 � p � ∞ and B̃(Sn
p) be the unit ball of the Schatten trace class of matrices on Cn or on Rn, normalized to have Lebesgue

measure equal to one. We prove that

λ

({
T ∈ B̃

(
Sn
p

)
:

‖T ‖HS

n
� c1t

})
� exp

(−c2tnkp
)

for every t � 1, where kp = min{2,1 + p/2}, c1, c2 > 1 are universal constants and λ is the Lebesgue measure. This concentration
of mass inside a ball of radius proportional to n follows from an almost constant behaviour of the Lq norms (with respect to the

Lebesgue measure on B̃(Sn
p)) of the Hilbert–Schmidt operator norm of T . The same concentration result holds for every classical

ensembles of matrices like real symmetric matrices, Hermitian matrices, symplectic matrices or antisymmetric Hermitian matrices.
The result is sharp when p = 1 and p � 2.
© 2006 Elsevier Masson SAS. All rights reserved.

Résumé

Pour tout 1 � p � ∞, soit B̃(Sn
p) la boule unité des classes de Schatten à trace, normalisée pour avoir un volume égal à 1. Nous

prouvons que pour tout t � 1,

λ

({
T ∈ B̃

(
Sn
p

)
:

‖T ‖HS

n
� c1t

})
� exp

(−c2tnkp
)

où kp = min{2,1 + p/2}, c1, c2 > 1 sont des constantes universelles et λ désigne la mesure de Lebesgue. Ce phénomène de
concentration du volume à l’intérieur d’une boule euclidienne de rayon proportionnel à n découle d’un comportement presque

constant des normes Lq (par rapport à la mesure de Lebesgue sur B̃(Sn
p)) de la norme Hilbert–Schmidt d’un opérateur T . Le

même phénomène de concentration est valable pour tous les ensembles classiques de matrices : les matrices symétriques réelles,
les matrices hermitiennes, les matrices symplectiques ou encore les matrices hermitiennes antisymétriques. De plus, le résultat est
optimal lorsque p = 1 et p � 2.
© 2006 Elsevier Masson SAS. All rights reserved.

* Corresponding author.
E-mail addresses: guedon@math.jussieu.fr (O. Guédon), grigoris_paouris@yahoo.co.uk (G. Paouris).

1 G. Paouris acknowledges the financial support provided through the European Community’s Human Potential Programme under contract
MRTN-CT-2004-511953 (Phenomena in High Dimensions).
0246-0203/$ – see front matter © 2006 Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.anihpb.2006.01.002



88 O. Guédon, G. Paouris / Ann. I. H. Poincaré – PR 43 (2007) 87–99
MSC: 46B07; 47B10

Keywords: Schatten–Von Neumann classes; Isotropic measure; Kahane Khinchine inequalities; Concentration inequalities

0. Introduction

Let K be a symmetric convex body in Rd , and let E ∈ E ll = {E an ellipsoid, |E | = ωd} where |E | denotes the
volume of E and ωd is the volume of the Euclidean unit ball in Rd . For every q � 1 consider the Lq normalized norm
of the Euclidean norm associated to E :

Iq(K,E) =
(

1

|K|1+q/d

∫
K

‖x‖q

E dλ(x)

)1/q

,

where λ is the Lebesgue measure on Rd .

Conjecture (C). There exist a universal constant C > 0 and a function φ(d) tending to infinity with d , which satisfy
the following: for every centrally symmetric convex body K in Rd there is an ellipsoid E ∈ E ll such that, for all
q � φ(d),(

1

|K|
∫
K

‖x‖q

E dλ(x)

)1/q

� C

(
1

|K|
∫
K

‖x‖2
E dλ(x)

)1/2

.

Equivalently, this means that Iq(K,E) � CI2(K,E).

The goal of this paper is to verify conjecture (C) for the case of Schatten trace classes of matrices and their
subspaces which are of particular interest. Observe that for every α > 0 and every q � 1, Iq(αK,E) = Iq(K,E) and
for every linear transformation T ∈ SLn(R),

Iq

(
T (K),Bd

2

) = Iq

(
K,

(
T ∗T

)−1
Bd

2

)
. (1)

By (1), it is clear that in order to check the conjecture (C), our goal is to find a position of the symmetric convex body
K for which the desired estimates can be obtained with E = Bd

2 .
The isotropic constant LK of a symmetric convex body K is defined by

LK = min
{
I2(K,E)/

√
d; E an ellipsoid, |E | = ωd

}
. (2)

It is well known that the hyperplane conjecture is equivalent to the fact that LK is uniformly bounded for all symmetric
convex bodies (see [13]). We say that a symmetric convex body K is in isotropic position when the minimum at Eq. (2)
is attained by the Euclidean unit ball Bd

2 . It is natural to expect that the conjecture (C) will be satisfied for a convex
body in isotropic position.

By Borell’s inequality [6], we know that for any symmetric convex body K ∈ Rd ,

Iq

(
K,Bd

2

)
� CqI2

(
K,Bd

2

)
.

Moreover, if K is a symmetric convex body of Rd in isotropic position, Alesker [1] proved that for every q � 2,

Iq

(
K,Bd

2

)
� C

√
qI2

(
K,Bd

2

)
.

For general symmetric convex bodies, this is the best known estimate but it is very far from the conjecture. If we
translate this result in terms of concentration of measure, it says that for every t � 1,

λ
({

x ∈ K̃: ‖x‖2 � CtI2
(
K,Bd

2

)})
� exp

(−t2)
where K̃ denotes the homothetic image of K of volume 1.

It turns out that the claimed conjecture is equivalent to some type of concentration of mass inequality for con-
vex bodies. This is part of Theorem 1.1 in [15], where other equivalent formulations of the question are studied.
In the particular case of isotropic 1-unconditional convex bodies K (1-unconditional means that for every point
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x = (x1, . . . , xd) ∈ K and (ε1, . . . , εd) ∈ {−1,1}d , the point (ε1x1, . . . , εdxd) belongs to K), Bobkov and Nazarov
[5] proved a sharp concentration inequality for the Euclidean norm with respect to the normalized Lebesgue measure
on K :

Theorem. [5] There exists a universal constant C > 0 such that for every isotropic 1-unconditional convex body K

in Rd , if K̃ denotes the homothetic image of K of volume 1, then for every t � 1,

λ
({

x ∈ K̃: ‖x‖2 � CtI2
(
K,Bd

2

)})
� exp

(−t
√

d
)
.

But it is well known (see [13]) that sup{LK,K1-unconditional convex bodies} is finite. So that in this case, there
exists a constant c > 0 such that I2(K,Bd

2 ) � c
√

d for all d � 1. The previous result states that the mass of an isotropic
1-unconditional convex body is highly concentrated inside a Euclidean ball of radius c

√
d . This shows that, for this

class of bodies, the conjecture (C) is true with φ(d) proportional to
√

d . (See Lemma 8.)
Our purpose is to show that for all p � 1, the unit balls of the Schatten trace classes of matrices B(Sn

p) of every clas-
sical ensemble of matrices (real matrices, complex matrices, real symmetric matrices, complex Hermitian matrices,
symplectic matrices or antisymmetric Hermitian matrices) share the same property, where the appropriate Euclidean
norm is the Hilbert–Shmidt norm of an operator (which is the norm associated to the unit ball B(Sn

2 )). As observed
in [11], in the case of real and complex matrices, these unit balls are in isotropic position. However, we believe that
this is not the case for every classical ensemble of matrices. For example, it is known that the situation may be different
for real symmetric matrices as indicated in the paper [4]. We prove here:

Theorem 1. There exist universal constants c1, c2 > 0 such that for every n � 1, for every 1 � p � ∞ and 2 � q �
c1 min{n2, n1+p/2},(

1

|B(Sn
p)|

∫
B(Sn

p)

‖T ‖q

HS dλ(T )

)1/q

� c2

(
1

|B(Sn
p)|

∫
B(Sn

p)

‖T ‖2
HS dλ(T )

)1/2

.

The same result holds if we replace B(Sn
p) with B(Sn

p) ∩ E where E is the subspace defining one of the classical
ensembles of matrices.

More generally, there are universal constants C,C′ > 0 such that for every n � 1, for every 1 � p � ∞, for every
2 � q � c1 min{n2, n1+p/2} and every space E of classical ensemble of matrices (real matrices, complex matrices,
real symmetric matrices, complex Hermitian matrices, symplectic matrices or antisymmetric Hermitian matrices),

Cn � Iq

(
B

(
Sn

p

) ∩ E,B
(
Sn

2

) ∩ E
)
� C′n.

Remark. Theorem 1 states that the conjecture (C) is valid for K = B(Sn
p)∩E with φ(dn) 	 min{dn, d

1/2+p/4
n } where

dn 	 n2 is the corresponding dimension of the convex body K (see Section 1).

The next theorem is a translation of the previous result in terms of concentration of measure.

Theorem 2. There exist universal constants c1, c2 > 0 such that if 1 � p � ∞ and B̃(Sn
p) is the unit ball of the

Schatten trace class of matrices, normalized to have Lebesgue measure one, then

λ
({

T ∈ B̃
(
Sn

p

)
: ‖T ‖HS � c1nt

})
� exp

(−c2tn
kp

)
for every t � 1, where kp = min{2,1 + p/2}.

The same result holds if we replace B̃(Sn
p) with ˜B(Sn

p) ∩ E, the unit ball of Sn
p ∩ E normalized to have Lebesgue

measure one, where E is the subspace defining one of the classical ensembles of matrices.

The proof relies on the same method for general matrices in the real or complex case and for different classical
ensembles of matrices. The computation of the integrals Iq will use a method similar to the one used in [11] to
prove the uniform boundedness of the isotropic constants of the unit balls of Sn

p (for real or complex matrices). For
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all particular ensemble of matrices, classical change of variables reduces the computation of the integrals Iq to the
computation of integrals over Bn

p with different type of densities of the form∏
1�i<j�n

∣∣xa
i − xa

j

∣∣b n∏
i=1

|xi |c,

where a, b are positive integers and c is a nonnegative integer. A usual trick in convexity makes the computation of
the integrals Iq tractable. Surprisingly, some evaluations are possible and give a very sharp comparison between Iq

and I2 whenever q is not too large (depending on n and p).
The organization of the paper is as follows. In Section 1, we indicate that the desired estimate of Theorem 1 can

be reduced to an estimate of integrals over Rn. In Section 2 we make the computations that complete the proof of
Theorem 1. Finally in Section 3 we explain why Theorem 1 and Theorem 2 are equivalent.

0.1. Notations

For n � 1, we work on Rn or Cn which are equipped with their canonical Euclidean structure. The spaces Mn(R)

and Mn(C) of n×n matrices with real or complex entries are equipped with the associated Euclidean structure defined
by ‖T ‖2

HS = tr (T �T ) for any T ∈ Mn, embedded in Rn2
or R2n2

endowed with the Lebesgue measure denoted by
dT . For every x ∈ Rn, let

‖x‖p =
(

n∑
i=1

|xi |p
)1/p

for 1 � p < ∞ and ‖x‖∞ = max
i�n

|xi |.

For any matrix T ∈ Mn(R) or T ∈ Mn(C), let s(T ) = (s1(T ), . . . , sn(T )) be the non-increasing rearrangement of
the singular values of T i.e. the eigenvalues of (T ∗T )1/2. For every 1 � p � ∞, we define σp(T ) = ‖s(T )‖p . Let Sn

p

be the Schatten trace class of matrices on the n-dimensional Euclidean space equipped with the norm σp , and denote

B
(
Sn

p

) = {
T ∈Mn; σp(T ) � 1

}
.

Of course, σ2(T ) = ‖T ‖HS = ‖T ‖B(Sn
2 ). We denote by |A| the Lebesgue measure of any Borel set A ⊆ Sn

p , when it is

finite and when 0 < |A| < +∞, we denote Ã = λA where λ is chosen such that |Ã| = 1.
Whenever we write a 	 b we mean that there exist universal constants c1, c2 > 0 such that c1a � b � c2a.

1. Reduction to integrals over Rn

A function F : Rn → R is said to be a symmetric function if for every permutation π on {1, . . . , n},
F(x1, . . . , xn) = F(xπ(1), . . . , xπ(n)).

The function F : Rn → R is said to be positively homogeneous of degree k ∈ R if for every α ∈ R∗+,

F(αx1, . . . , αxn) = αkF (x1, . . . , xn).

Following the book of Mehta [12], it is natural to consider the spaces of real self-adjoint matrices, complex Hermitian
matrices, antisymmetric Hermitian matrices, symplectic matrices and we refer to this book for the definitions of
these ensembles. We will denote by E the subspace of Mn that defines these ensemble (whatever is the field of the
considered manifolds, real or complex). In each of these cases, it is well known [12] that there exists a, b positive
integer, a nonnegative integer c and a constant cn depending only on n,a, b, c such that for any symmetric continuous
function F : Rn → R,∫

T ∈B(Sn
p)∩E

F
(
s1(T ), . . . , sn(T )

)
dT = cn

∫
Bn

p

F (x)fa,b,c(x)dx (3)

where

fa,b,c(x) =
∏ ∣∣xi

a − xj
a
∣∣b ×

n∏
|xi |c and Bn

p = {
x ∈ Rn, ‖x‖p � 1

}
.

1�j<i�n i=1
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A similar type of change of variables is discussed and explained in the work of Saint-Raymond [17]. He proved
that the same result holds when we consider the space E of complex (or real) matrices [17] with a = 2, b = 2,
c = 1 (or a = 2, b = 1, c = 0). Since fa,b,c is positively homogeneous of degree abn(n − 1)/2 + cn, define dn by
dn = abn(n − 1)/2 + (c + 1)n, then in each of these examples, dn = dimE. We will use the following lemma which
is exactly in the same spirit as Lemma 1 in [11].

Lemma 1. For any symmetric continuous function F : Rn → R, positively homogeneous of degree k, for every p � 1,
one has ∫

T ∈B(Sn
p)∩E

F
(
s1(T ), . . . , sn(T )

)
dT = cn


(1 + (dn + k)/p)

∫
Rn

F (x) e−‖x‖p
pfa,b,c(x)dx.

Proof. We recall here a proof of this result for reason of completeness. It follows from Fubini’s theorem:∫
Rn

F (x) e−‖x‖p
pfa,b,c(x)dx =

∫
Rn

F (x)fa,b,c(x)

( +∞∫
‖x‖p

p

e−t dt

)
dx

=
+∞∫
0

e−t

( ∫
{x,‖x‖p�t1/p}

F(x)fa,b,c(x)dx

)
dt

= 


(
1 + dn + k

p

)∫
Bn

p

F (x)fa,b,c(x)dx

since F is positively homogeneous of degree k and fa,b,c of degree dn − n. We conclude using (3). �
Next, we need some estimates about the volume of the sets B(Sn

p) ∩ E. Exact computations of these volumes are
done in the paper of Saint-Raymond [17] for the unit balls of matrices of Sn

p with real entries or complex entries. In

the next proposition, we give a proof of an estimate of (|B(Sn
p)∩E|)1/dn valid for every ensembles of matrices that we

consider in this paper. Recall that in each case, the dimension of E, dn, is equivalent to n2 (up to constants depending
only on a and b). We will need the following classical estimate about the operator norm of a random Gaussian operator
in E.

Lemma 2. Let E be one of the classical ensemble considered in this paper. Let GE be a Gaussian vector in E. There
exists a constant c � 2 such that for every integer n,

E‖GE‖B(Sn∞) � c
√

n.

Proof. By Chevet’s inequality [9], it is well known that E‖GMn(R)‖B(Sn∞) � 2
√

2n when GMn(R) is a n×n Gaussian
matrix with independent real Gaussian N (0,1) entries. In the case of complex entries, we decompose the matrix as
sum of its real and imaginary part and use triangle inequality to get that E‖GMn(C)‖B(Sn∞) � 4

√
2n. In the case of

quaternionic entries, we separate it in a sum of four terms and get that E‖GMn(H)‖B(Sn∞) � 8
√

2n. We can also refer
to the survey [10] where better constants are obtained. Now, let Σ be one of the field R, C, or H then for every
ensemble E, it is clear that if we denote by GE a Gaussian vector in E then GE = PE(GMn(Σ)) where PE is the
orthogonal projection on E. Since an orthogonal projection has norm 1, the estimate of the lemma follows. �

We are now able to state the proposition.

Proposition 3. For every p � 1, up to constants depending only on a and b,(∣∣B(
Sn

p

) ∩ E
∣∣)1/dn 	 d

−1/4−1/2p
n 	 n−1/2−1/p. (4)
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Proof. Let K be a symmetric convex body in Rd and Bd
2 the Euclidean ball in Rd then by Urysohn’s inequality [16],

we get that( |K|
|Bd

2 |
)1/d

� c√
d

E‖G‖Ko

where G is a Gaussian vector in Rd with independent N (0,1) entries, Ko = {y ∈ Rd,∀x ∈ K, 〈x, y〉 � 1} denotes
the polar of K and c is a universal constant. Since |Bd

2 |1/d 	 1/
√

d , we get that for every symmetric convex body
K ⊂ Rd ,

|K|1/d � c′
2
E‖G‖Ko

d
.

Moreover, by reverse Santaló inequality [7] there exist universal constant c1 such that( |Bd
2 |

|K|
)1/d

� c1

( |Ko|
|Bd

2 |
)1/d

.

Using again Urysohn’s inequality for Ko and the fact that |Bd
2 |1/d 	 1/

√
d , there is a universal constant c2 such that

c2

E‖G‖K

� |K|1/d .

Therefore, we get that for every symmetric convex body K ⊂ Rd ,

c2

E‖G‖K

� |K|1/d � c′
2
E‖G‖Ko

d
.

We will apply this inequality in the situation we are interested in. Let K = B(Sn
p) ∩ E and Bd

2 = B
dn

2 = B(Sn
2 ) ∩ E.

Remark that the norm in Sn∞ corresponds to the operator norm. By Hölder’s inequality, for any matrix T ∈ E, for
every p � 1,

‖T ‖B(Sn
p) � n1/p‖T ‖B(Sn∞) and ‖T ‖(B(Sn

p)∩E)o � ‖T ‖B(Sn
p∗ )

where 1/p + 1/p∗ = 1. Let GE be a Gaussian vector in E then, by Lemma 2, there exists a constant c > 0 such that
for every n, E‖GE‖B(Sn∞) � c

√
n. Therefore,

E‖GE‖Ko = E‖GE‖(B(Sn
p)∩E)o � E‖GE‖B(Sn

p∗ ) � n1/p∗
E‖GE‖B(Sn∞) � cn3/2−1/p

where 1/p + 1/p∗ = 1, and

E‖GE‖K = E‖GE‖B(Sn
p) � n1/pE‖GE‖B(Sn∞) � cn1/2+1/p.

Since dn 	 n2, this proves the estimate (4). �
We are now able to explain how the estimates of the Lq norms in Theorem 1 is related to the estimate of integrals

with respect to the measure Ma,b,c,p defined by

Ma,b,c,p(f ) =
∫
Rn

f (x)fa,b,c(x) e−‖x‖p
p dx.

Lemma 4. Let E be any of the classical space of matrices on the real or complex field (the space of real, complex
matrices, real self-adjoint matrices, complex Hermitian matrices, antisymmetric Hermitian matrices or symplectic
matrices), and let a, b and c the corresponding integers associate to the ensemble defined by (3) and let dn = dimE =
abn(n− 1)/2 + (c + 1)n. Then for every 1 � p < ∞, if we define Ma,b,c,p as the measure of density fa,b,c(x) e−‖x‖p

p ,
for every 1 � q � dn,

Iq

(
B

(
Sn

p

) ∩ E,B
(
Sn

2

) ∩ E
) 	 n1/2−1/p

(
Ma,b,c,p(‖x‖q

2)

Ma,b,c,p(1)

)1/q

where the constants in this equivalence depend only on a, b, c.
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Proof. For notational convenience, we will write Iq(B(Sn
p) ∩ E) instead of

Iq

(
B

(
Sn

p

) ∩ E,B
(
Sn

2

) ∩ E
)
.

Using Lemma 1 for the functions F = 1 and F(x) = ‖x‖q

2 , we get∣∣B(
Sn

p

) ∩ E
∣∣ =

∫
T ∈B(Sn

p)∩E

dT = cn


(1 + dn/p)

∫
Rn

fa,b,c(x) e−‖x‖p
p dx,

and

Iq

(
B

(
Sn

p

) ∩ E
) = ∣∣B(

Sn
p

) ∩ E
∣∣−1/dn

(∣∣B(
Sn

p

) ∩ E|−1
∫

T ∈B(Sn
p)∩E

(
n∑

i=1

∣∣σi(T )
∣∣2

)q/2

dT

)1/q

= ∣∣B(
Sn

p

) ∩ E
∣∣−1/dn

(∣∣B(
Sn

p

) ∩ E
∣∣−1 cn


(1 + (dn + q)/p)

∫
Rn

‖x‖q

2fa,b,c(x) e−‖x‖p
p dx

)1/q

= ∣∣B(
Sn

p

) ∩ E
∣∣−1/dn

(
cn
(1 + dn/p)

cn
(1 + (dn + q)/p)

)1/q(∫
Rn ‖x‖q

2fa,b,c(x) e−‖x‖p
p dx∫

Rn fa,b,c(x) e−‖x‖p
p dx

)1/q

.

We have proved in (4) that |B(Sn
p) ∩ E|1/dn 	 n−1/2−1/p and since(


(1 + dn/p)


(1 + (dn + q)/p)

)1/q

	 d
−1/p
n

we get the claimed estimate (because dn 	 n2). �
For the measures Ma,b,c,p , we can provide exact computations of some integrals which are presented in the next

section. The result which is of interest for our problem is as follows and will be proved in the next section.

Lemma 5. For every integers a, b, c, there are positive constants c1 and c2 such that for every n ∈ N, for every
1 � p � 2, define the measures Ma,b,c,p as above, then, for every 2 � q � c1n

1+p/2,(
Ma,b,c,p(‖x‖q

2)

Ma,b,c,p(1)

)1/q

� c2n
1/2+1/p.

Proof of Theorem 1. It is well known (see [13]) that for every symmetric convex body K ⊂ Rd ,(
1

|K|1+2/d

∫
K

‖x‖2
2 dλ(x)

)1/2

�
(

1

|Bd
2 |1+2/d

∫
Bd

2

‖x‖2
2 dλ(x)

)1/2

� C
√

d

where Bd
2 is the Euclidean ball associated to ‖ · ‖2 and C is a universal constant.

When p � 2, the assertion of the theorem follows from the following observation:

For every symmetric convex body K ⊂ Rd, Id

(
K,Bd

2

) 	 max
x∈K̃

‖x‖2. (5)

Indeed,

Id

(
K,Bd

2

) =
(∫

K̃

‖x‖d
2 dx

)1/d

	
( ∫
Sd−1

∫
K̃

∣∣〈x, θ〉∣∣d dx dσ(θ)

)1/d

.

Since θ �→ (
∫
K̃

|〈x, θ〉|d dx)1/d defines a norm on Rd , it is well known using concentration of measure on the sphere
[14] that

Id(K,E) 	
(

max
θ∈Sd−1

∫ ∣∣〈x, θ〉∣∣d dx

)1/d
K̃
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and a classical use of Brunn–Minkowski inequality (see [6]) proves that for every symmetric convex body K̃ ,(∫
K̃

∣∣〈x, θ〉∣∣d dx

)1/d

� c max
x∈K̃

∣∣〈x, θ〉∣∣
which finishes the proof of (5).

Let E be one of the classical ensemble of matrices, dn = dimE where dn = abn(n − 1)/2 + (c + 1)n and a, b, c

are defined in (3). Let K = B(Sn
p) ∩ E and E = B(Sn

2 ) ∩ E = B
dn

2 .
If p � 2 then by (5), Idn(K,E) 	 maxT ∈K̃ ‖T ‖HS and by (4), we conclude that there are constants C,C′ > 0

(depending only on a, b, c) such that Cn � I2(K,E) � Idn(K,E) � C′n which proves the assertion of the theorem.
If 1 � p � 2, then by Lemma 4(

1

|K|1+q/dn

∫
K

‖T ‖q

HS dλ(T )

)1/q

	 n1/2−1/p

(
Ma,b,c,p(‖x‖q

2)

Ma,b,c,p(1)

)1/q

.

By Lemma 5, we get that there exist c1 and c2 depending only on a, b, c such that for every n, for every 2 � q �
c1n

1+p/2,

C
√

dn �
(

1

|K|1+q/dn

∫
K

‖T ‖q

HS dλ(T )

)1/q

� c2n.

This ends the proof of the theorem. �
2. Computation of integrals with respect to the measures Ma,b,c,p

First we need some precise results concerning the computation of the integrals of positively homogeneous functions
with respect to the measures Ma,b,c,p . We shall prove a generalization of Lemma 3 in [11], which is based on a method
developed by Aomoto [3] for the study of Jacobi polynomials associated to Selberg integrals. We start by recalling
the notations. Let a, b ∈ N∗, c ∈ N and fa,b,c : Rn → R defined by

fa,b,c(x) = fa,b,c(x1, . . . , xn) =
∏

1�j<i�n

∣∣xi
a − xj

a
∣∣b ×

n∏
i=1

|xi |c.

Denote by Mp,a,b,c = Mp the measure in Rn with density

fa,b,c,p(x1, . . . , xn) = fa,b,c(x) exp

(
−

n∑
i=1

|x|pi
)

i.e. for every f : Rn → R,

Mp(f ) =
∫
Rn

f (x)fa,b,c(x) e−∑n
i=1 |x|pi dx.

Denote by dn = abn(n − 1)/2 + (c + 1)n. Observe that fa,b,c is a positively homogeneous function of order
abn(n − 1)/2 + cn. Note also that for every function g : Rn → R positively homogeneous of order s > −n such
that

∫
Sn−1 |g(u)|dσ(u) < +∞, for every p � 1,

∫
Rn |g(x)| exp(−‖x‖p

p)dx is finite.

Lemma 6. Let β � 0, s � −dn −β and f : Rn → R+ a positively homogeneous function of order s and C1 on Rn \{0}.
Then

(β + c + 1)Mp

((
n∑

i=1

|xi |β
)

f (x)

)
= pMp

(‖x‖β+p
β+pf (x)

) − Mp

(
n∑

i=1

|xi |βxi

∂f

∂xi

(x)

)

− abMp

((
n∑

i=1

∑
k �=i

|xi |βxa
i

xa
i − xa

k

)
f (x)

)
.
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Proof. For fixed x2, . . . , xn we define g1 : R → R+ by

g1(x1) = |x1|βx1f (x1, x2, . . . , xn)fa,b,c(x1, x2, . . . , xn) exp
(−|x1|p

)
exp

(
−

n∑
j=2

|xj |p
)

.

Since f is positively homogeneous, limx1→+∞ g1(x1) = 0 and limx1→−∞ g1(x1) = 0. Without loss of generality, we
can assume that x2 < x3 < · · · < xn therefore g′

1 is continuous on R \ {0, x2, . . . , xn} and has finite left and right limits
at each of these points of discontinuity. Observe also that g1(x) = 0 for every x ∈ {0, x2, . . . , xn}. Integration by parts
proves the following equality, for almost all (x2, . . . , xn) with respect to the Lebesgue measure in Rn−1:

∞∫
−∞

|x1|βf (x) exp

(
−

n∑
j=1

|xj |p
)

fa,b,c(x)dx1

= − 1

β + 1

∞∫
−∞

|x1|βx1
∂

∂x1

(
f (x) exp

(
−

n∑
j=1

|xj |p
)

fa,b,c(x)

)
dx1.

For every x1 /∈ {x2, . . . , xn}, we can assume that there exists 2 � m � n − 1 such that x1 ∈ (xm, xm+1) (the cases
x1 < x2 and x1 > xn are handled similarly). Then,∏

1�j<i�n

∣∣xi
a − xj

a
∣∣b =

∏
2�j�m

(
xj

a − x1
a
)b

∏
m+1�j�n

(
x1

a − xj
a
)b

∏
2�j<i�n

∣∣xi
a − xj

a
∣∣b

and it is easy to check that

∂fa,b,c(x)

∂x1
=

(
ab

(∑
k�1

x1
a−1

xa
1 − xa

k

)
+ c

x1

)
fa,b,c(x).

Combining with the integral identity above, we get that for almost all (x2, . . . , xn)

(β + 1)

∞∫
−∞

|x1|βf (x) exp
(−‖x‖p

p

)
fa,b,c(x)dx1

= p

∞∫
−∞

|x1|β+pf (x) exp
(−‖x‖p

p

)
fa,b,c(x)dx1 −

∞∫
−∞

|x1|βx1

(
∂f

∂x1
(x)

)
exp

(−‖x‖p
p

)
fa,b,c(x)dx1

−
∞∫

−∞

((
ab

∑
k�1

|x1|βxa
1

xa
1 − xa

k

)
+ c|x1|β

)
f (x) exp

(−‖x‖p
p

)
fa,b,c(x)dx1.

Integration with respect to x2, . . . , xn and the definition of Mp give

(β + c + 1)Mp

(|x1|βf (x)
) = pMp

(|x1|β+pf (x)
) − Mp

(
|x1|βx1

∂f

∂xi

(x)

)
− abMp

((∑
k�1

|x1|βxa
1

xa
1 − xa

k

)
f (x)

)
.

This is obviously valid for every i = 1, . . . , n and summing these equalities we get

(β + c + 1)Mp

((
n∑

i=1

|x1|β
)

f (x)

)
= pMp

(‖x‖β+p
β+pf (x)

) − Mp

(
n∑

i=1

|xi |βxi

∂f

∂xi

(x)

)

− abMp

((
n∑

i=1

∑
k �=i

|xi |βxa
i

xa
i − xa

k

)
f (x)

)
. �

Corollary 7. With the notations defined at the beginning of this section, we have:
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(a) if f is a positively homogeneous function of degree s, integrable on Sn−1 and s > −dn then

(dn + s)Mp

(
f (x)

) = pMp

(‖x‖p
pf (x)

);
(b) for any q > −dn − 2,

pMp

(‖x‖p+2
p+2‖x‖q

2

) − qMp

(‖x‖4
4‖x‖q−2

2

)
� ζ(a,2)

(
dn

n
+ 2

)
Mp

(‖x‖q+2
2

)
where ζ(1,2) = 3

2 and ζ(a,2) = 1 for every a � 2;
(c) for any q > −dn − p,

pMp

(‖x‖2p

2p‖x‖q

2

) − qMp

(‖x‖p+2
p+2‖x‖q−2

2

)
� ζ(a,p)

(
dn

n
+ p

)
Mp

(‖x‖p
p‖x‖q

2

)
where ζ(a,p) = max{ a+p

2a
,1}.

Remark. Simple observations in the proof below show that the two inequalities established in (b) and (c) can be
reversed with other constants (independent of the dimension n).

Proof. (a) Let g : R → R defined by

g(t) =
∫
Rn

f (x)fa,b,c(x) exp
(−t‖x‖p

p

)
dx

then g is clearly a C1 function on R and

g′(t) = −
∫
Rn

‖x‖p
pf (x)fa,b,c(x) exp

(−t‖x‖p
p

)
dx.

However, since f is positively homogeneous of degree s and fa,b,c is positively homogeneous of degree abn(n −
1)/2 + cn therefore, by the change of variable y = t1/px we get that

g(t) = t−(s+dn)/pg(1).

Taking the derivative at 1 proves (a).
For (b) and (c) we will use Lemma 6, for f (x) = ‖x‖q

2 . So observe that ∂f
∂xi

= qxi‖x‖q−2
2 .

One can check that for any positive integer a and β > 0, if ζ = ζ(a,β) = max{ a+β
2a

,1} then,

∀x1 �= x2,
|x1|βxa

1 − |x2|βxa
2

xa
1 − xa

2
� ζ

(|x1|β + |x2|β
)
.

So, we get

n∑
i=1

∑
k �=i

|xi |βxa
i

xa
i − xa

k

= 1

2

(
n∑

i=1

∑
k �=i

|x1|βxa
1 − |x2|βxa

2

xa
1 − xa

2

)
� n − 1

2
ζ‖x‖β

β.

To prove assertion (b) we apply Lemma 6 with β = 2. So we get

(c + 3)Mp

(‖x‖q+2
2

)
� pMp

(‖x‖p+2
p+2‖x‖q

2

) − qMp

(‖x‖4
4‖x‖q−2

2

) − abζ(a,2)

n − 1

2
Mp

(‖x‖q+2
2

)
.

To prove assertion (c) we apply Lemma 6 with β = p. So we get

(c + p + 1)Mp

(‖x‖p
p‖x‖q

2

)
� pMp

(‖x‖2p

2p‖x‖q

2

) − qMp

(‖x‖p+2
p+2‖x‖q−2

2

)
− abζ(a,p)

n − 1

2
Mp

(‖x‖p
p‖x‖q

2

)
. �

We conclude this section by proving the key estimate of Lemma 5.
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Proof of Lemma 5. Assume that 0 � q � dn. By Corollary 7(c) we have

qMp

(‖x‖p+2
p+2‖x‖q−2

2

)
� pMp

(‖x‖2p

2p‖x‖q

2

) − ζ(a,p)

(
dn

n
+ p

)
Mp

(‖x‖p
p‖x‖q

2

)
.

On the other hand, by Corollary 7(b) (applied for q − 2), we get

ζ(a,2)

(
dn

n
+ 2

)
Mp

(‖x‖q

2

)
� pMp

(‖x‖p+2
p+2‖x‖q−2

2

) − (q − 2)Mp

(‖x‖4
4‖x‖q−4

2

)
.

Combining the above, we get

qζ(a,2)

(
dn

n
+ 2

)
Mp

(‖x‖q

2

) + q(q − 2)Mp

(‖x‖4
4‖x‖q−4

2

)
� p2Mp

(‖x‖2p

2p‖x‖q

2

) − pζ(a,p)

(
dn

n
+ p

)
Mp

(‖x‖p
p‖x‖q

2

)
.

Now, Corollary 7(a) applied to the function f (x) = ‖x‖q

2 gives

(dn + q)Mp

(‖x‖q

2

) = pMp

(‖x‖p
p‖x‖q

2

)
which proves that

p2Mp

(‖x‖2p

2p‖x‖q

2

)
� q(q − 2)Mp

(‖x‖4
4‖x‖q−4

2

) +
((

dn

n
+ 2

)
qζ(a,2)

+ ζ(a,p)(dn + q)

(
dn

n
+ p

))
Mp

(‖x‖q

2

)
.

Therefore, the following inequality holds for every 0 � q � dn and every p � 1

Mp

(‖x‖2p

2p‖x‖q

2

)
� 6

d2
n

n
Mp

(‖x‖q

2

) + q2Mp

(‖x‖4
4‖x‖q−4

2

)
. (6)

Using Corollary 7(a) with f (x) = ‖x‖4
4‖x‖q−4

2 , we get

(dn + q)Mp

(‖x‖4
4‖x‖q−4

2

) = pMp

(‖x‖p
p‖x‖4

4‖x‖q−4
2

)
. (7)

By Hölder inequality, for every x ∈ Rn and p ∈ [1,2],
‖x‖p+2

p+2‖x‖2
2 � n−1+p/2‖x‖4

4‖x‖p
p,

so

Mp

(‖x‖p+2
p+2‖x‖q−2

2

)
� n−1+p/2Mp

(‖x‖4
4‖x‖p

p‖x‖q−4
2

)
which proves by (7) that

pMp

(‖x‖p+2
p+2‖x‖q−2

2

)
� n−1+p/2(dn + q)Mp

(‖x‖4
4‖x‖q−4

2

)
.

Using again Corollary 7(b) (applied for q − 2), we get

ζ(a,2)

(
dn

n
+ 2

)
Mp

(‖x‖q

2

)
�

(
(dn + q)n−1+p/2 − q + 2

)
Mp

(‖x‖4
4‖x‖q−4

2

)
.

Therefore, we have proved that for every 0 � q � 1
2n−1+p/2dn,

Mp

(‖x‖4
4‖x‖q−4

2

)
� 6n−p/2Mp

(‖x‖q

2

)
. (8)

Combining (6) with (8), we conclude that for every q � dn

2 n−1+p/2

Mp

(‖x‖q

2‖x‖2p

2p

)
� 12

d2
n Mp

(‖x‖q

2

)
.

n
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By symmetry of Mp we have Mp(x
2p
i ‖x‖q

2)/Mp(‖x‖q

2) � 12d2
n/n2, and Hölder’s inequality shows that

Mp(x2
i ‖x‖q

2)

Mp(‖x‖q

2)
�

(
Mp(x

2p
i ‖x‖q

2)

Mp(‖x‖q

2)

)1/p

� 12

(
dn

n

)2/p

,

which proves that for every q � dn

2 n−1+p/2, Mp(‖x‖q+2
2 )/Mp(‖x‖q

2) � 12n(dn/n)2/p . Therefore(
Mp(‖x‖q

2)

Mp(1)

)1/q

� 2
√

3n1/2
(

dn

n

)1/p

and this concludes the proof of lemma. �
Remark. For p = 1, the estimate of Theorem 1 is sharp up to a universal constant. Let E be one of the classical
ensemble of matrices, dn = dimE where dn = abn(n − 1)/2 + (c + 1)n and a, b, c are defined in (3). Let K =
B(Sn

1 ) ∩ E and E = B(Sn
2 ) ∩ E. Let Iq(K) = Iq(K,E).

Let q0 be such that Iq0(K) 	 n. By a result of Carbery and Wright [8] we know that, for every p,q � 1 and every
convex body L, Ipq(L) � CpIq(L), where C > 0 is an absolute constant. Recall that by (5), we get in this case
(using (4))

Idn(K) 	 max
x∈K̃

‖x‖2 	 n3/2

therefore, necessarily

n3/2 � c
n2

q0
Iq0(K) 	 n3

q0
and q0 � cn3/2.

3. Proof of Theorem 2

In fact, Theorem 1 and Theorem 2 are equivalent. This is a consequence of the following more general but simple
lemma (for a proof see [15]):

Lemma 8. There exists C > 1 such that for φ � C, for every convex body K in Rd and for every γ � 1, the following
are equivalent:

(a) For every 2 � q � φ,

Iq(K,E) � γ I2(K,E);
(b) For every t � 1,

λ
({

x ∈ K̃: ‖x‖E � c2(γ )I2(K,E)t
})

� e−tc1φ

where c2(γ ) 	 γ and c1 > 0 is a universal constant.

Also, in [15] an equivalent formulation of Lemma 8 can be found, showing that the initial conjecture (C) is related
to the central limit properties of the convex bodies. We refer to [2,5] and [15] for more information in this direction.
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