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Abstract

For x0 ∈ R
d \ {0}, d � 3, we study the local behaviour near 0 of the local times (L

y
t ) of a super-Brownian motion X initially

in δx0 . More precisely, if ψ(c) is a suitable normalization, our main result implies that the process (ψ(c)(L
x/c
t − L0

t ), x ∈ Rd ,

t � 0) converges in distribution to a non-degenerate limit as c → ∞. This allows us to study the local behaviour of the occupation
measure of X, then to recover and to generalise a result of Lee concerning the occupation measure of three-dimensional super-
Brownian motion conditioned to hit a distant ball.
© 2005 Elsevier SAS. All rights reserved.

Résumé

Pour x0 ∈ R
d \ {0}, d � 3, on étudie le comportement local au voisinage de 0 des temps locaux (L

y
t ) du super-mouvement

brownien X de valeur initiale δx0 . Plus précisément, si on note ψ(c) la normalisation adéquate, notre résultat principal implique

que le processus (ψ(c)(L
x/c
t −L0

t ), x ∈ R
d , t � 0) converge en loi lorsque c → ∞ vers une limite non dégénérée. Ce résultat nous

permettra d’étudier le comportement local de la mesure d’occupation de X, puis de redémontrer et généraliser un résultat de Lee
concernant la mesure d’occupation d’un super-mouvement brownien tri-dimensionel conditionné à toucher une boule lointaine.
© 2005 Elsevier SAS. All rights reserved.
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1. Introduction and statement of results

1.1. Introduction

The main goal of this work is to study the local behaviour of the occupation measure of super-Brownian motion in
dimension d � 3.
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Super-Brownian motion is a model for spatial populations undergoing a continuous branching phenomenon, which
arises in a variety of different contexts. It was introduced independently by Watanabe (69) and Dawson (75) as the
weak limit of branching particle systems. Connections between the wider class of superprocesses and partial differ-
ential equations have helped derive some of the basic properties of super-Brownian motion and have also allowed to
prove analytic results using probabilistic arguments. More recently, it has been shown that super-Brownian motion
appears in scaling limit of a wide range of lattice systems such as the voter model, the contact process, lattice trees or
oriented percolation. Therefore, in a way similar to standard Brownian motion, super-Brownian motion can be thought
of as a universal object providing information on the asymptotics of many interacting particle systems or statistical
mechanics models.

Local times of superprocesses have been studied by many authors (cf. Sugitani [9], Adler and Lewin [1], Krone [4]).
Our main result Theorem 1 gives precise information about the local behaviour of local times of super-Brownian
motion, in dimension d = 2 or 3. Let us be more precise. Let x0 ∈ R

d \ {0}, X a super-Brownian motion initially in
δx0 , and Lx

t the local time of X at time t and point x. As a direct consequence of Theorem 1, if x ∈ R
d and if we

set ψ(c) = √
c when d = 3, ψ(c) = c(ln(c))−1/2 when d = 2, we will obtain that (ψ(c)(L

x/c
t − L0

t ))t�0 converges
in distribution as c → ∞ to (βa(x)L0

t
)t�0 where β is a one-dimensional Brownian motion which is independent of X

and a(x) is a constant depending only on x. Theorem 1 in fact gives a more general statement involving finitely many
different values of x. This allows us to study the local behaviour of the occupation measure of X (Proposition 2).

Our results are related to a recent paper of Lee [5]. Lee considers a super-Brownian motion started at δcx0 with c

large and conditioned on hitting the unit ball. Using analytic methods, he obtains limit theorems for the occupation
measure of this ball by super-Brownian motion (see Proposition 1 below). We will show how to recover and to
generalise Lee’s results from our main theorem. To do this, we will need to study the local behaviour of the occupation
measure of X under its canonical measure Nx0 (Proposition 5).

Our results on the local behaviour of local times of super-Brownian motion are analogous to the ones obtained by
Yor for local times of standard Brownian motion. Let B be a linear Brownian motion started at the origin and let �x

t

denote the local time of B at level x and time t . Then Yor [11], proved that (
√

c(�
x/c
t − �0

t ))t�0, x�0 converges in
distribution to a Brownian sheet as c → ∞. This should be compared with Theorem 1 below.

After introducing the basic notation, Section 1 first summarises known results which motivate our study, mainly
found in [5,9], and [7], then states our results. It also provides an outline of the proof of our main result (Theorem 1)
about the local behaviour of local times. Section 2 is devoted to the proof of Theorem 1. In Section 3, we apply
Theorem 1 to prove a non-conditional equivalent form of Lee’s result (Proposition 2), then we recover and extend
Lee’s result (Proposition 1). Section 4 is devoted to the one-dimensional case.

1.2. Notation

Let MF (Rd) be the space of finite measures on Rd . For μ ∈ MF (Rd), f : Rd → R, 〈μ,f 〉 is shorthand for∫
Rd f (x)μ(dx).

We denote by B(Rd) the Borel σ -algebra in R
d . The notation B(x, r) stands for the open ball of radius r centered

at x ∈ R
d .

We denote by Cb(R
d) the space of bounded continuous functions from R

d into R, and by Cb(R
d)+ the space of

non-negative functions in Cb(R
d). If K is a compact subset of R

d , CK(Rd) is the subset of Cb(R
d) consisting of

functions supported on K . If n ∈ N, we let Cn
b (Rd) be the set of all n times continuously differentiable functions on

R
d with bounded derivatives of order less than n, and C∞

b (Rd) :=⋂
n�0 Cn

b (Rd).

We denote by pt the transition density of d-dimensional Brownian motion, that is for t � 0, z ∈ R
d ,

pt (z) = (2πt)−d/2 exp

(
−|z|2

2t

)
.

Set qt (x) = ∫ t

0 ps(x)ds, and if μ ∈ MF (Rd),

μqt (z) =
∫
d

qt (z − y)μ(dy).
R
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We consider a super-Brownian motion (Xt , t � 0) in the space MF (Rd). We will write Pμ for the probability
measure under which X0 = μ. When there is no confusion we will write P for Pμ, E for Eμ. We denote by (FX

t )t�0
the right-continuous filtration generated by X.

1.3. Basic properties of super-Brownian motion and its local times

In this section we consider a super-Brownian motion X under Pμ, for μ ∈ MF (Rd).
It is well known (see for example [7], Theorem II.5.9) that for any function φ ∈ Cb(R

d)+ we can express
Eμ[exp(− ∫ t

0 〈Xs,φ〉ds)] in terms of the solution of a partial differential equation:

Eμ

(
exp

{
−

t∫
0

〈Xs,φ〉ds

})
= exp

(
−
∫

v(t, x,φ)μ(dx)

)
, (1)

where (t, x) → v(t, x,φ) is continuous on R+ × R
d and solves the partial differential equation

∂v(s, x)

∂s
= 1

2

v(s, x) − (

v(s, x)
)2 + φ, (2)

on ]0,∞[ × R
d , with initial value v(0, x) = 0.

(1) is a particular case of the Laplace equation for the super-Brownian motion X. Note that formula (1) remains
valid if φ ∈ CK(Rd) is not necessarily non-negative, but only then if t is less than a certain explosion time t∗ > 0.
More precisely, for a fixed T > 0, (1) will remain valid for t � T for any compactly supported function that is bounded
from below by a constant depending on T .

As shown in Chapter IV of [6] by the Brownian snake approach (see also Section II.7 of [7]), for any x ∈ R
d ,

there exists a σ -finite measure Nx on C(R+,MF (Rd)) called the excursion measure of super-Brownian motion such
that the law of (Xt )t>0 under Pμ is the same as the law of (

∑
Xi

t )t>0, where
∑

δXi is a Poisson point process with
intensity

∫
Nx dμ(x). This fact is called the canonical decomposition of super-Brownian motion.

Intuitively, if one thinks of super-Brownian motion as the scaling limit of critical branching random walks as it is
introduced in [7], the measure Xt under Nx for t > 0 represents the contribution to the population of the descendants
at time t of one single individual alive at time 0 at the point x. The canonical decomposition expresses that the
super-Brownian motion at time t is obtained by superimposing a Poisson number of such contributions.

It is also well known that the process X solves a martingale problem (see [7], Theorem II.5.1). For any φ ∈ C2
b(Rd),

〈Xt,φ〉 = 〈X0, φ〉 + Mt(φ) + 1

2

t∫
0

〈Xs,
φ〉ds, (3)

where Mt(φ) is an FX
t -martingale such that M0(φ) = 0 and the quadratic variation of M(φ) is

〈
M(φ)

〉
t
=

t∫
0

〈
Xs,φ

2〉ds.

Sugitani [9] proved that for d � 3, there exists a random continuous function (t, x) → Lx
t from (0,∞) × R

d into
R+ such that for any Ψ ∈ Cb(R

d),

t∫
0

〈Xs,Ψ 〉ds =
∫
Rd

Ψ (x)Lx
t dx. (4)

Lx
t is called the local time of X at point x ∈ R

d and time t > 0.
Take Lx

0 = 0 for every x ∈ R
d . The function (Lx

t )t�0, x∈Rd needs not being continuous at points of the form (0, x),
x ∈ R

d . However Sugitani established for d � 2 that Lx
t is continuous in the pair (x, t) on the set of continuity points

for μqt(x). For example, note that this set contains R+ × B(0, r) whenever μ(B(0, r)) = 0.
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Sugitani also proved that for d = 1, Lx
t is always continuous in the pair (x, t) and even differentiable with respect

to the space variable at points x ∈ R
d where μ({x}) = 0.

Under the assumption that (t, x) → μqt (x) is continuous in R+ × R
d , Sugitani [9] obtained the existence of

exponential moments for local times: for any T > 0, there exists a constant K(μ,T ) > 0 such that

Eμ

[
exp

(
rLx

t

)]
< ∞ (5)

holds for any t � T , x ∈ R
d and r < K(μ,T ). We shall denote by Gt,x

μ : {z ∈ C, |z| < K(μ, t)} → C the function
such that for any z ∈ C, |z| < K(μ, t),

Eμ

[
exp

(
zLx

t

)]= exp
(
Gt,x

μ (z)
)
. (6)

For convenience we will write G
t,x
δx0

=: Gt,x
x0 .

If K is a compact set in R
d , and if we only know that (t, x) → μqt (x) is continuous in R+ × K (for example if

μ(K) = 0), it is easy to adapt the proof of (5) in [9] to obtain for any T > 0 the existence of constants K(μ,T ,K) > 0,
C(μ,T ,K) > 0 such that

Eμ

[
exp

(
rLx

t

)]
� C(μ,T ,K) (7)

holds for any t � T , x ∈ K and r < K(μ,T ,K). In this case, this clearly allows us to define the functions Gt,x
μ for

t � 0, x ∈ K in a way such that (6) remains valid for z ∈ C, |z| < K(μ, t,K).

Let us now discuss the scaling properties of super-Brownian motion. Let c > 0, and if f ∈ Cb(R
d)+ let fc be the

function fc(x) = f (cx). From (2) we get

v(t, x, fc) = c2v
(
c2t, cx, c−4f

)
.

The scaling properties of super-Brownian motion easily follow from (1) and that observation. Let μ ∈ M(Rd). For
any A ∈ B(Rd), t � 0, let

X
(c)
t (A) = c−2Xc2t (cA), μ(c)(A) = c2μ

(
c−1A

)
.

Then, the law of the process (X
(c)
t , t � 0) under Pμ(c) is equal to the law of the process (Xt , t � 0) under Pμ.

Consequently, for any φ ∈ CK(Rd), the law of the process(
c−4

c2t∫
0

〈Xu,φ〉du, t � 0

)

under Pμ(c) is the same as the law of the process( t∫
0

〈Xu,φc〉du, t � 0

)

under Pμ.
We are now in position to state our main result concerning the local behaviour of local times of super-Brownian

motion.

1.4. The main result

Theorem 1. Assume d = 2 or 3. Let

ψ(c) =
{√

c if d = 3,
c√

ln(c)
if d = 2.

Let ν ∈ MF (Rd) such that ν(B(0, ρ)) = 0 for some ρ > 0, and let X be a super-Brownian motion in R
d with initial

value ν. If x1, . . . , xk are fixed points in R
d \ {0}, the process(

Xt,ψ(c)
(
L

x1/c
t − L0

t

)
, . . . ,ψ(c)

(
L

xk/c
t − L0

t

))

t�0
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converges as c → ∞ in the sense of weak convergence in the space C(R+,M(Rd) × R
k) to a limiting process which

can be written in the form(
Xt,β

x1

L0
t

, . . . , β
xk

L0
t

)
t�0.

Here, (βx
t )t�0,x∈Rd is a centered Gaussian process independent of X such that

cov
(
βx

t , β
y
s

)= a(x, y)(t ∧ s),

and a(x, y) is given by

a(x, y) =
{ 1

4π2

∫
R3 dz

( 1
|z−x| − 1

|z|
)× ( 1

|z−y| − 1
|z|
)

if d = 3,

1
π
x · y if d = 2.

For convenience we will write a(x, x) =: a(x).
Part of the motivation for Theorem 1 came from a recent paper of Lee [5] dealing with asymptotics for the occu-

pation measure of super-Brownian motion.

1.5. Lee’s result and extensions

Lee [5] only considers the three-dimensional case, but we will extend his result to the case of dimension 2.
Let d = 2 or 3, X a super-Brownian motion in R

d , with initial value μ = δcx0 , where x0 ∈ R
d , x0 
= 0 and c > 0.

Let K be a compact set in R
d , and let φ, ξ be integrable functions on R

d supported on K satisfying
∫
K

ξ(y)dy = 0,∫
K

φ(y)dy 
= 0. We also define φc , ξc the functions such that for any x ∈ R
d ,

φc(x) = φ(cx), ξc(x) = ξ(cx).

Note that φc, ξc are supported on K(c) := c−1K = {y: cy ∈ K}.
One may think of the particular example where K = �B(0,1), and where we consider the functions

φ0 = 1�B(0,1), ξ0 = 1�B(0,1)∩{x: xd�0} − 1�B(0,1)∩{x: xd<0}.
For T > 0, let us introduce the quantities

Dφ,T =
T∫

0

〈Xt,φ〉dt, Dξ,T =
T∫

0

〈Xt, ξ 〉dt, T � 0.

We also set

aξ :=
∫
K

∫
K

ξ(y)ξ(z)a(y, z)dy dz.

The following result, is proved by Lee in [5] (for the case d = 3), by analysing the behaviour of v(t, x0, ac3φc +
bc7/2ξc) as c → ∞ (cf. (2)).

Proposition 1. Let d = 2 or 3, t > 0, x0 ∈ R
d \ {0} and let K be a compact subset of R

d . Let φ and ξ be integrable
functions on R

d supported on K satisfying
∫
K

φ(y)dy 
= 0,
∫
K

ξ(y)dy = 0. Under Pδcx0
(·|X hits K) the random

vector(
cd−4Dφ,c2t , c

d−4ψ(c)Dξ,c2t

)
converges in distribution as c → ∞ to a non-degenerate limit (D1,D2). Furthermore, if |a| and |b| are small enough
the Fourier transform of the limit is

E
[
exp(iaD1 + ibD2)

]= 1 + 2|x0|2
4 − d

GT,0
x0

(
ia
∫
K

φ(y)dy − b2aξ

2

)
,

where the function G
T,0
x is determined by (6).
0
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The case d = 3 stands as Corollary 1.2 in [5]. The form of the Fourier transform of (D1,D2) implies that the
conditional law of D2 knowing D1 is Gaussian with mean 0 and variance aξD1(

∫
φ(y)dy)−1.

In the example φ = φ0, ξ = ξ0, Proposition 1 has the following interpretation: conditionally on the event that a
super-Brownian motion X started at δcx0 hits the unit ball, the occupation time of the unit ball up to time c2t (that
is Dφ0,c2t ) is of order c4−d , while the difference between the occupation time of the top half of the unit ball and the
occupation time of the bottom half (that is Dξ0,c2t ) is of order

√
c when d = 3, and c(ln(c))1/2 when d = 2.

In Section 3.2, we will derive Proposition 1 from the following proposition, which is itself a consequence of
Theorem 1, as we will see in Section 3.1.

Proposition 2. Let d = 2 or 3. Let t , K , φ, ξ be as in Proposition 1, and let ν be as in Theorem 1. Under Pν , the
random vector(

cdDφc,t , c
dψ(c)Dξc,t

)
converges in distribution as c → ∞ to(

L0
t

∫
K

φ(y)dy,Ut

)
,

where conditionally on L0
t , Ut is Gaussian with variance aξL

0
t .

As we will explain below, the first component cdDφc,t indeed converges almost surely. Also note that, from (6),
the Fourier transform of (

∫
φ(y)dyL0

t ,Ut ) is simply

Eν

[
exp

(
iaL0

t

∫
K

φ(y)dy + ibUt

)]
= exp

(
GT,0

ν

(
ia
∫
K

φ(y)dy − b2aξ

2

))
.

Let us explain how Proposition 2 follows from Theorem 1. The following approach is also valid in the one-
dimensional case, and so we consider the general case d � 3. Let us first give a simple argument showing that cdDφc,t

converges Pν -almost surely as c → ∞. By (4), and our assumption on the support of φ,

cdDφc,t = cd

∫
Rd

φ(cx)Lx
t dx =

∫
K

φ(y)L
y/c
t dy.

Since (t, x) → Lx
t is continuous on R+ × B(0, ρ),

cdDφc,t −→
c→∞L0

t

∫
K

φ(y)dy

almost surely under Pν by dominated convergence. See Theorem 5 in [9] for a related statement ([9] only states the
convergence in distribution of cdDφc,t ).

If φ is replaced by ξ , the preceding argument is not sufficient. Indeed, since
∫

ξ(x)dx = 0, the last step yields
cdDξc,t → 0 as c → ∞. Still, we can write∫

Rd

ξ(y)L
y/c
t dy =

∫
Rd

ξ(y)
(
L

y/c
t − L0

t

)
dy,

which suggests to focus on the convergence of ψ(c)(L
y/c
t −L0

t ), where ψ(c) is a suitable normalization. This approach
is similar to the work of Stroock–Varadhan–Papanicolaou [10] and Yor [11] concerning limit theorems for additive
functionals of standard Brownian motion.

The one-dimensional case follows almost immediately from [9] and will be treated briefly in Section 4. Until then
we set d = 2 or 3.
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1.6. Outline of the proof of Theorem 1

We will first consider the case k = 1. We fix x ∈ R
d \ {0} and a measure ν satisfying the assumption of Theorem 1.

For α � 0 (α > 0 if d = 2) we set gα(z) = ∫∞
0 exp(−αt)pt (z)dt , and for y ∈ R

d , g
y
α(z) = gα(z − y). If d = 3,

note that we have g0(z) = 1/(2π |z|).
The key idea is to use the Tanaka formula for local times of super-Brownian motion in dimension less than 3

(see [2], Theorem 6.1). Let y ∈ R
d , d � 3, μ ∈ MF (Rd), and let α � 0 if d = 3 or α > 0 if d = 2. Under the

assumption 〈μ,g
y
α〉 < ∞, we have Pμ-almost surely,

〈
Xt,g

y
α

〉= 〈
μ,gy

α

〉+ Mt

(
gy

α

)+ α

t∫
0

〈
Xs,g

y
α

〉
ds − L

y
t , (8)

where Mt(g
y
α) is an FX

t -martingale which is defined in terms of the martingale measure associated with super-
Brownian motion. In particular, M0(g

y
α) = 0 and Mt(g

y
α) has quadratic variation

〈
M
(
gy

α

)〉
t
=

t∫
0

〈
Xs,

(
gy

α

)2〉ds.

If c is large enough so that x/c ∈ B(0, ρ), the conditions 〈ν, g0
α〉 < ∞, 〈ν, g

x/c
α 〉 < ∞, will clearly be satisfied.

Thus we can use (8) for y = x/c and y = 0 to obtain, Pν -almost surely,

L
x/c
t − L0

t = 〈
X0 − Xt,g

x/c
α − g0

α

〉+ Mt

(
gx/c

α

)− Mt

(
g0

α

)+ α

t∫
0

〈
Xs,g

x/c
α − g0

α

〉
ds. (9)

In what follows we will take α = 0 when d = 3. Note that the last term in the right-hand side of the previous formula
then vanishes.

In Section 2.1 we will prove the following lemmas:

Lemma 1. Let d = 3, T > 0. Then Pν -almost surely

sup
t�T

∣∣√c
〈
X0 − Xt,g

x/c

0 − g0
0

〉∣∣ −→
c→∞ 0.

Lemma 2. Let d = 2, T > 0. Then Pν -almost surely

(a) sup
t�T

∣∣∣∣〈X0 − Xt,
c√

ln(c)

(
gx/c

α − g0
α

)〉∣∣∣∣ −→
c→∞ 0,

(b) sup
t�T

∣∣∣∣∣
t∫

0

〈
Xs,

c√
ln(c)

(
gx/c

α − g0
α

)〉
ds

∣∣∣∣∣ −→
c→∞ 0.

From (9), Lemmas 1 and 2 we see that the convergence of (ψ(c)(L
x/c
t − L0

t ))t�0 follows from that of

(ψ(c)Mt(g
x/c
α − g0

α))t�0.
All that remains to do is thus to study the convergence of the martingales

M
x,c
t :=

⎧⎨⎩
√

cMt((g
x/c

0 − g0
0)) if d = 3,

c√
ln(c)

Mt ((g
x/c
α − g0

α)) if d = 2.

Lemma 3. Pν -almost surely,〈
Mx,c

〉
t
−→
c→∞a(x)L0

t .
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This lemma will be proven in Section 2.2.
We then have to discuss the convergence in distribution of the martingale M

x,c
t . Using the Dubins–Schwarz theorem

(see [8], Theorem V.1.6), we can write

M
x,c
t = β

x,c
〈Mx,c〉t , (10)

where β
x,c
t is a standard Brownian motion. We may and will assume that for s � u � 〈Mx,c〉∞, β

x,c
s − β

x,c
u =

γ x
s − γ x

u , where γ x is a one-dimensional Brownian motion independent of X. The collection of the laws of the
family (X,βx,c)c>0 is clearly tight.

In Section 2.3 we will prove

Lemma 4. Suppose that along a subsequence cn ↗ ∞ we have(
X,βx,cn

) (d)−→
n→∞

(
X,βx

)
.

Then βx is independent of X.

From the tightness of the laws of (X,βx,c) and Lemma 4, it follows that(
X,βx,c

) (d)−→
n→∞

(
X,βx

)
(11)

with a Brownian motion βx independent of X. We know from Lemma 3 that 〈Mx,c〉t converges Pν -almost surely to
a(x)L0

t , and the convergence is uniform on every compact time interval by Dini’s theorem. It then follows from (10)
and (11) that (Xt ,M

x,c
t )t�0 converges in distribution to (Xt , β

x

a(x)L0
t

)t�0.

The case k = 1 of Theorem 1 now follows from this fact and Lemmas 1 and 2. We will then extend this argument
to the general case in Section 2.4.

2. Proof of Theorem 1

2.1. Preliminary reduction

In this section we will prove Lemmas 1 and 2. Recall that the point x 
= 0 is fixed, and that we have also fixed a
measure ν satisfying the assumption of Theorem 1: there exists ρ > 0 such that ν(B(0, ρ)) = 0.

We start with a preliminary result providing a uniform bound for the measure of small balls. From [2], Corollary 4.8,
we know the following

Proposition 3. Let δ > 0 be fixed. If d = 2 or 3 then, for any μ ∈ MF (Rd), Pμ-almost surely,

lim sup
r↘0

sup
t�δ

sup
y∈Rd

Xt

(
B(y, r)

)
Φ(r)−1 � κμ,

where Φ(r) = r2(ln(1/r))4−d and κμ is a constant depending on μ.

An easy consequence is the following

Corollary 1. Pν -almost surely,

lim sup
r↘0

sup
t�0

sup
y∈B

(
0,ρ/2)

Xt (B(y, r)
)
r−2

(
ln

(
1

r

))d−4

� κν.

Proof of Corollary 1. Since ν(B(0, ρ)) = 0, it is well known that Pν -almost surely there exists n0(ω) ∈ N such that
supp(Xt ) does not intersect B(0,

3ρ
4 ) for any t ∈ [0,2−n0 ]. Provided r � ρ/4, we then have

sup
−n0(ω)

sup
y∈B(0,ρ/2)

Xt

(
B(y, r)

)
r−2

(
ln

(
1

r

))d−4

= 0,

t�2
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and thanks to Proposition 3, for Pν -almost all ω,

lim sup
r↘0

sup
t�2−n0(ω)

sup
y∈Rd

Xt

(
B(y, r)

)
r−2

(
ln

(
1

r

))d−4

� κν.

Corollary 1 follows. �
In the following we write κ0 = κ0(x), κ1 = κ1(x), . . . for constants that depend on the point x which is fixed.

2.1.1. The case d = 3
For convenience we will use the notation

hx,c(z) := ψ(c)
(
g

x/c

0 (z) − g0
0(z)

)=
√

c

2π

(
1

|z − x/c| − 1

|z|
)

, for z 
= 0, x/c.

We will use the following easy estimates on hx,c:

(A1) If |z| � |x|
2c

, then |hx,c(z)| �
√

c
|z| .

(A2) Let r � 2|x|
c

. Then, the maximum of |hx,c| outside the ball B(0, r) is attained at the point rx
|x| and its value is

(2π
√

c r( r
|x| − 1

c
))−1.

(A3) If |z| ∧ |z − x/c| � |x|
2c

and |z| � 4|x|
c

, then |hx,c(z)| � 2c
√

c
π |x| .

Proof of Lemma 1. If c is sufficiently large and z /∈ B(0, ρ), using (A2),∣∣hx,c(z)
∣∣� 1

2π
√

cρ(ρ/|x| − 1/c)
−→
c→∞ 0.

Thus 〈X0, h
x,c〉 = 〈ν,hx,c〉 clearly goes to 0 as c → ∞.

Hence, to get Lemma 1, it is enough to prove that Pν -almost surely,

sup
t�T

∣∣〈Xt,h
x,c
〉∣∣= sup

t�T

∣∣∣∣ ∫
R3

hx,c(z)Xt (dz)

∣∣∣∣ −→
c→∞ 0. (12)

If t > 0 is fixed we know that 0 does not belong to suppXt , Pν -almost surely. Thus the same argument as when t = 0
gives 〈Xt,h

x,c〉 → 0 as c → ∞. The point is that we need this convergence uniformly in t � T , and we know that
there may exist exceptional times t � T such that 0 ∈ suppXt .

It will be convenient to cut the domain R
3 of the integral in (12) into different areas where we will be able to

estimate the integrand. First of all, if r > 0 is fixed, if z /∈ B(0, r) and c is large enough, using again (A2) we have
|hx,c(z)| � κ0/

√
c so that∣∣∣∣ ∫

R3\B(0,r)

hx,c(z)Xt (dz)

∣∣∣∣� κ0√
c
〈Xt,1〉.

Since supt�0〈Xt,1〉 is Pν -almost surely bounded, we get

sup
t�T

∣∣∣∣ ∫
R3\B(0,r)

hx,c(z)Xt (dz)

∣∣∣∣ −→
c→∞ 0.

Thus, to get (12) it only remains to prove that for some r1 > 0,

sup
t�T

∣∣∣∣ ∫
B(0,r1)

hx,c(z)Xt (dz)

∣∣∣∣ −→
c→∞ 0. (13)

From Corollary 1 it follows that Pν -almost surely, there exists r1 > 0 such that, for any r � r1,

sup sup Xt

(
B(y, r)

)
� 2κνr

2 ln

(
1

r

)
. (14)
t�0 y∈B(0,ρ/2)
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Clearly we can assume r1 � ρ/4. Let c be large enough so that B(0,4|x|/c) ⊂ B(0, r1). To get rid of the singularities
of hx,c , we will first deal with the integrals in neighbourhoods of 0 and x/c. First, we have∣∣∣∣ ∫

B(0,
|x|
2c

)

hx,c(z)Xt (dz)

∣∣∣∣� ∑
p�1

∣∣∣∣ ∫
B(0,

|x|
2pc

)\B(0,
|x|

2p+1c
)

hx,c(z)Xt (dz)

∣∣∣∣.
Using (A1) and (14) we see that Pν -almost surely

sup
t�T

∣∣∣∣ ∫
B(0,

|x|
2pc

)\B(0,
|x|

2p+1c
)

hx,c(z)Xt (dz)

∣∣∣∣� 2κν

2p+1c
√

c

|x|
( |x|

2pc

)2

ln

(
2pc

|x|
)

.

It is now clear that Pν -almost surely

sup
t�T

∣∣∣∣ ∫
B(0,

|x|
2c

)

hx,c(z)Xt (dz)

∣∣∣∣� 4κν |x|
c1/2

∑
p�1

(
p ln(2) + ln(c) − ln(|x|))2−p � κ1κνc

−1/2 ln(c).

Clearly we can obtain an analogous bound for the quantity

sup
t�T

∣∣∣∣ ∫
B( x

c
,
|x|
2c

)

hx,c(z)Xt (dz)

∣∣∣∣.
Now using (A3) and (14) we get

sup
t�T

∣∣∣∣ ∫
B(0,

4|x|
c

)\(B(0,
|x|
2c

)∪B( x
c
,
|x|
2c

))

hx,c(z)Xt (dz)

∣∣∣∣� 2κν

2c
√

c

π |x|
(

4|x|
c

)2

ln

(
c

4|x|
)

,

so we finally obtain that

sup
t�T

∣∣∣∣ ∫
B(0,

4|x|
c

)

hx,c(z)Xt (dz)

∣∣∣∣� κνκ2
ln(c)√

c
. (15)

Let us now consider the integral on B(0, r1) \ B(0,
4|x|
c

). Let N be such that

r1

2N
� 4|x|

c
� r1

2N−1
.

Note that, for 1 � p � N , r1/2p � 2N−p+1|x|/c while r1/2p−1 � 2N−p+3|x|/c. Once again, using (A2) and (14), we
obtain for 1 � p � N

sup
t�T

∣∣∣∣ ∫
B(0,

r1
2p−1 )\B(0,

r1
2p )

hx,c(z)Xt (dz)

∣∣∣∣
� 2κνc

3/2

|x|(2N−p+1 − 1)2

(
2N−p+3|x|

c

)2

ln

(
c

2N−p+3|x|
)

� 2κν

26|x|
c1/2

ln

(
c

|x|
)

.

Therefore,

sup
t�T

∣∣∣∣ ∫
B(0,r1)\B(0,

4|x|
c

)

hx,c(z)Xt (dz)

∣∣∣∣� N × 27κν |x|
c1/2

ln

(
c

|x|
)

� κνκ3
(ln(c))2

c1/2
.

The limit (13) now follows from the above and (15), which completes the proof of Lemma 1. �
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2.1.2. The case d=2
Now we consider α > 0 and the function

hx,c(z) := c√
ln(c)

(
gx/c

α − g0
α

)
(z), for z 
= 0, x/c.

We will need the following estimates on hx,c which shall be proven in Appendix A. When c is large enough,

(B1) If z ∈ B(0,
|x|
2c

),∣∣hx,c(z)
∣∣� κ4

c√
ln(c)

ln+
(

1

|z|
)

.

If z ∈ B(x
c
,

|x|
2c

),∣∣hx,c(z)
∣∣� κ4

c√
ln(c)

ln+
(

1

|z − x/c|
)

.

(B2) If z ∈ B(0, c−3/4) \ (B(0,
|x|
2c

) ∪ B(x
c
,

|x|
2c

)),∣∣hx,c(z)
∣∣� κ5c

√
ln(c).

(B3) Let r > c−7/8. Then if z /∈ B(0, r),∣∣hx,c(z)
∣∣� κ6

1

r
√

ln(c)
.

Proof of Lemma 2. We will use a similar method as for proving Lemma 1.
Fix T > 0. To obtain Lemma 2(a), it is enough to establish that Pν -almost surely,

sup
t�T

∣∣〈Xt,h
x,c
〉∣∣ −→

c→∞ 0. (16)

If r > 0 is fixed and c is sufficiently large we can use (B3) to get

sup
t�T

∣∣∣∣ ∫
R3\B(0,r)

hx,c(z)Xt (dz)

∣∣∣∣� κ6

r
√

ln(c)
sup
t�T

〈Xt,1〉.

Since supt�0 |〈Xt,1〉| is finite Pν -almost surely, we have

sup
t�T

∣∣∣∣ ∫
R2\B(0,r)

hx,c(z)Xt (dz)

∣∣∣∣ −→
c→∞ 0. (17)

Now, from Corollary 1 we know that Pν -almost surely, there exists r2 > 0 such that for any r � r2,

sup
t�0

sup
y∈B(0,ρ/2)

Xt

(
B(y, r)

)
� 2κνr

2
(

ln

(
1

r

))2

. (18)

We can choose r2 � ρ/4 and c large enough so that B(0, c−3/4) ⊂ B(0, r2). We will first deal with the neighbourhood
of singularities 0 and x/c. Using (18) and the estimate (B1) we get for every p � 1,

sup
t�T

∣∣∣∣ ∫
B(0,

|x|
2pc

)\B(0,
|x|

2p+1c
)

hx,c(z)Xt (dz)

∣∣∣∣� κ4
2κνc√
ln(c)

(
ln

(
2p+1c

|x|
))3( |x|

2pc

)2

,

and thus

sup
t�T

∣∣∣∣ ∫
B(0,

|x|
)

hx,c(z)Xt (dz)

∣∣∣∣� ∑
p�1

2κ4κνc√
ln(c)

(
ln

(
2p+1c

|x|
))3( |x|

2pc

)2

� κ7
(ln(c))5/2

c
−→
c→∞ 0.
2c
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We can bound the integral on B(x
c
,

|x|
2c

) by the same quantity. Furthermore using (B2) and (18) we have∣∣∣∣ ∫
B(0,c−3/4)\(B(0,

|x|
2c

)∪B( x
2c

,
|x|
2c

))

hx,c(z)Xt (dz)

∣∣∣∣� 2κνκ5(ln(c))5/2c−1/2 −→
c→∞ 0.

Let us now consider the integral on D := B(0, r2) \ B(0, c−3/4). Let N ∈ N such that

r2

2N
� c−3/4 � r2

2N−1
.

We may assume that c is large enough so that c−7/8 < 2−Nr2. The domain D is contained in the union of the sets
B(0, r2

2p−1 ) \ B(0, r2
2p ) for 1 � p � N . Since c−7/8 � r2/2N we can use (B3). Together with (18) this leads to:∣∣∣∣ ∫

B(0,r2)\B(0,c−3/4)

hx,cXt (dz)

∣∣∣∣� N∑
p=1

2p+1κνκ6

r2
√

ln(c)

(
r2

2p−1

)2(
ln

(
2p−1

r2

))2

�
N∑

p=1

8κνκ6√
ln(c)

2−p

(
ln

(
2p

r2

))2

� κ7√
ln(c)

−→
c→∞ 0.

By considering the preceding estimates, we get

sup
t�T

∣∣∣∣ ∫
B(0,r2)

hx,c(z)Xt (dz)

∣∣∣∣ −→
c→∞ 0.

Together with (17) this proves (16) and thus Lemma 2(a).
Lemma 2(b) is also a consequence of (16). Simply notice that if t � T ,∣∣∣∣

t∫
0

〈
Xs,h

x,c
〉
ds

∣∣∣∣� t × sup
s�T

∣∣〈Xs,h
x,c
〉∣∣,

which goes to 0 as c → ∞ by (16). �
2.2. Convergence of the quadratic variation of M

x,c
t

From the martingale problem for X (see (3)) we know that M
x,c
t is a local martingale whose quadratic variation is

ψ(c)2
∫ t

0 〈Xs, (g
x/c
α − g0

α)2〉ds.
Let us now prove that this quantity converges to a non-degenerate limit as c → ∞.

2.2.1. Proof of Lemma 3, the case d = 3
Recall we set α = 0 for d = 3. We simply have

〈
Mx,c

〉
t
=

t∫
0

c
〈
Xs,

(
gx/c − g0)2〉ds = c

4π2

∫
R3

dzLz
t

(
1

|z − x/c| − 1

|z|
)2

= 1

4π2

∫
R3

dzL
z/c
t

(
1

|z − x| − 1

|z|
)2

.

Note that the function z → (1/|z − x| − 1/|z|)2 is integrable over R
3. From Sugitani [9] we know that the function

x → Lx
t is continuous with compact support. Hence, by dominated convergence, the above quantity goes Pν -almost

surely to a(x)L0
t where

a(x) = 1

4π2

∫
R3

dz

(
1

|z − x| − 1

|z|
)2

.
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2.2.2. Proof of Lemma 3, the case d = 2
We now have

〈
Mx,c

〉
t
=

t∫
0

〈
Xs,

(
hx,c

)2〉ds =
∫
R2

Lz
t

(
hx,c(z)

)2 dz. (19)

Changing into polar coordinates (r, θ) and then setting r = cδ leads to

〈
Mx,c

〉
t
=

∞∫
−∞

2π∫
0

c2δ ln(c)L
(cδ,θ)
t

(
hx,c

(
cδ, θ

))2 dθ dδ,

where L
(r,θ)
t refers to the local time at time t and at the point with polar coordinates (r, θ).

We will then need some sharper estimates on hx,c(z). These will also be proven in Appendix A.
For two positive functions f and g we will write f (c) = o(g(c)), if for any ε > 0 there is cε such that f (c) � εg(c)

for any c � cε .
In the following estimates, z and δ are linked by the relation |z| = cδ , and c is supposed to be large enough.

(C1) If z ∈ B(0, 1
c(ln(c))1/8 ) or equivalently if δ � −1 − ln(ln(c))

8 ln(c)
,∣∣hx,c(z)

∣∣� κ5|1 + δ|c√ln(c).

(C2) If 1
c(ln(c))1/8 � |z| � (ln(c))1/8

c
and z /∈ B(x

c
, 1

c(ln(c))1/8 ),∣∣hx,c(z)
∣∣� κ8

c

(ln(c))1/4
.

(C3) If (ln(c))1/8

c
� |z| � (ln(c))−1/4 or equivalently if −1 + ln(ln(c))

8 ln(c)
� δ � − ln(ln(c))

4 ln(c)
,∣∣hx,c(z)

∣∣= |z · x|
π

√
ln(c)

c−2δ + o
(
c−δ

(
ln(c)

)−1/2)
,

where z · x denotes the usual scalar product.
(C4) If (ln(c))−1/4 � |z| or equivalently if − ln(ln(c))

4 ln(c)
� δ,∣∣hx,c(z)

∣∣� κ9
(
ln(c)

)−1/4
.

Now, in order to use these estimates, we will split R
2 into the following five sets:

D
(c)
0 = B

(
0,

1

c(ln(c))1/8

)
,

D
(c)
1 = B

(
x

c
,

1

c(ln(c))1/8

)
,

D
(c)
2 = B

(
0,

(ln(c))1/8

c

)∖(
D

(c)
0 ∪ D

(c)
1

)
,

D
(c)
3 = B

(
0,

1

(ln(c))1/4

)∖(
D

(c)
0 ∪ D

(c)
1 ∪ D

(c)
2

)
,

D
(c)
4 = R

2 \ (D(c)
0 ∪ D

(c)
1 ∪ D

(c)
2 ∪ D

(c)
3

)
.

We suppose c is large enough so that the sets D
(c)
0 and D

(c)
1 do not intersect, so that we can write

〈
Mx,c

〉
t
=

4∑
i=0

∫
D

(c)

Lz
t

(
hx,c(z)

)2 dz.
i



504 M. Merle / Ann. I. H. Poincaré – PR 42 (2006) 491–520
Fix T > 0 and consider t ∈ [0, T ]. First notice that Pν -almost surely,

Lx
t � sup

y∈Rd

L
y
T := L∗

T < ∞. (20)

Using (C4) on the domain D
(c)
4 we obtain

∫
D

(c)
4

Lz
t

(
hx,c(z)

)2
dz � (κ9)

2

√
ln(c)

∫
D

(c)
4

Lz
t dz = (κ9)

2

√
ln(c)

T∫
0

〈Xs,1〉ds � (κ9)
2

√
ln(c)

T sup
0�s�T

〈Xs,1〉,

which goes Pν -almost surely to 0 as c → ∞.
The integrals over D

(c)
0 , D

(c)
1 are treated in a symmetric way. We have

∫
D

(c)
0

Lz
t

(
hx,c(z)

)2 dz =
−1− ln(ln(c))

8 ln(c)∫
−∞

2π∫
0

ln(c)c2δL
(cδ,θ)
t

(
hx,c

(
cδ, θ

))2 dθ dδ

� 2πL∗
T (κ5)

2(ln(c)
)2

−1− ln(ln(c))
8 ln(c)∫

−∞
(1 + δ)2c2+2δ dδ,

where we used (20) and the estimate (C1). Then,

(
ln(c)

)2

−1− ln(ln(c))
8 ln(c)∫

−∞
(1 + δ)2c2+2δ dδ � κ10

(ln(ln(c)))2

(ln(c))5/4

so that
∫
D

(c)
0

Lz
t (h

x,c(z))2 dz goes almost surely to 0 as c → ∞, and so does
∫
D

(c)
1

Lz
t (h

x,c(z))2 dz.

Consider now the integral over D
(c)
2 . Using (20) and the estimate (C2) we get

∫
D

(c)
2

dzLz
t

(
hx,c(z)

)2 � 2πL∗
T κ2

8
c2

√
ln(c)

−1+ ln(ln(c))
8 ln(c)∫

−1− ln(ln(c))
8 ln(c)

c2δ ln(c)dδ � πL∗
T κ2

8

(
ln(c)

)−1/4

which goes almost surely to 0 as c → ∞.
It remains to compute the integral over D

(c)
3 which is the preponderant part. We use (C3), and the fact that Pν -

almost surely, sup{|Lz
t − L0

t |: z ∈ D
(c)
3 } tends to 0 as c → ∞ to obtain

∫
D

(c)
3

dzLz
t

(
hx,c

)2
(z) =

− ln(ln(c))
4 ln(c)∫

−1+ ln(ln(c))
8 ln(c)

2π∫
0

c2δ ln(c)L
(cδ,θ)
t

(
hx,c

)2(
cδ, θ

)
dθ dδ

=
− ln(ln(c))

4 ln(c)∫
−1+ ln(ln(c))

8 ln(c)

2π∫
0

1

π2

(
x2

1 cos2(θ) + x2
2 sin2(θ)

)
L

(cδ,θ)
t dθ dδ + o(1) −→

c→∞
|x|2
π

L0
t .

This completes the proof of Lemma 3. �
As we explained in Section 1.6, to get the convergence of (X,Mx,c), and thus the case k = 1 in Theorem 1, it only

remains to prove Lemma 4.
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2.3. Independence of βx and X

Proof of Lemma 4. In what follows, when there is no ambiguity we will omit the x exponent in the notation Mx,c ,
βx,c , βx , γ x .

By assumption, along a subsequence cn ↗ ∞,(
X,βcn

) (d)−→
c→∞(X,β). (21)

Recall from (3) the definition of the martingales Mt(φ). The formula for the quadratic variation of Mt(φ) shows
that the collection (Mt(φ))t�0, φ∈C2

b (Rd ) generates FX . Hence it is enough to check that β is independent of

(Mt(φ))t�0,φ∈F , where F is dense in C2
b(E) for the topology T induced by the norm

‖f ‖ = max
(
‖f ‖∞, max

i∈{1,...,d}
∥∥∂if

∥∥∞, max
i,j∈{1,...,d}

∥∥∂i,j f
∥∥∞

)
for f ∈ C2

b(Rd). For instance, we let F be the space of all functions φ ∈ C∞
b (Rd) such that there exists A > 0 such

that for all n ∈ N, for all α = (α1, . . . , αn) ∈ {1, . . . , d}n,

sup
x∈Rd

∣∣∂αφ(x)
∣∣� An+1.

We will use the following notation: Let 0 � t1 � · · · � tp , 0 = s0 � s1 � · · · � sq , φ1, . . . , φp ∈ F , λ1, . . . , λp ∈ R

and μ1, . . . ,μq ∈ R. We set

Nt =
p∑

j=1

λjMt∧tj (φj ),

and

f =
q∑

j=1

μj 1(sj−1,sj ].

We let Λ := max1�i�p |λi |, and K := max1�i�p ‖φi‖∞. If W is a standard Brownian motion we also set

Wt(f ) =
t∫

0

f (s)dWs =
q∑

j=1

μj (Wt∧sj − Wt∧sj−1).

We finally set B = exp(iβ∞(f )) = exp(i
∫∞

0 f (s)dβs).
In order to prove Lemma 4, it is enough to establish the following statement

Lemma 5. For any choice of (φ1, . . . , φp) ∈Fp , for any 0 � t1 � · · · � tp ,

E
[
BMt1(φ1) · · ·Mtp(φp)

]= E[B]E[
Mt1(φ1) · · ·Mtp(φp)

]
. (22)

The proof of Lemma 5 is based on

Lemma 6. If Λ = max1�i�p |λi | is small enough,

E

[
B exp

(
i

p∑
j=1

λjMtj (φj ) + 1

2

p∑
j,k=1

λjλk

〈
M(φj ),M(φk)

〉
tj ∧tk

)

)]
= E[B]. (23)

Proof of Lemma 6. From the definition of the Brownian motion βc (see (10)) we have

βc∞(f ) =
q∑

j=1

μj

(
βc

sj
− βc

sj−1

)=
∞∫

f
(〈
Mc

〉
s

)
dMc

s +
∞∫
c

f (s)dγs. (24)
0 〈M 〉∞
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Since γ is independent of X we also have

E

[
exp

(
i

∞∫
〈Mc〉∞

f (s)dγs + 1

2

∞∫
〈Mc〉∞

f 2(s)ds

)∣∣∣∣X
]

= 1. (25)

We use the notation E(M)t = exp(Mt − 1/2 < M〉t ) for the exponential martingale of the martingale M .

Lemma 7. If Λ is small enough, the exponential martingale

E
(

i

( t∫
0

f
(〈
Mc

〉
s

)
dMc

s + Nt

))

is uniformly integrable.

Proof of Lemma 7. It suffices to check that

E

[
exp

( ∞∫
0

f 2(〈Mc
〉
s

)
d
〈
Mc

〉
s
+ 〈N〉∞

)]
< ∞.

Since
∞∫

0

f 2(〈Mc
〉
s

)
d
〈
Mc

〉
s
�

∞∫
0

f 2(s)ds < ∞,

we only have to prove that

E
[
exp

(〈N〉∞
)]

< ∞. (26)

Note that

〈N〉∞ = 〈N〉tp =
p∑

i=1

p∑
j=1

λiλj

tp∫
0

〈Xs,φiφj 〉ds.

Recall the notation K = max1�i�p ‖φi‖∞. We have

E
[
exp

(〈N〉tp
)]

� E

[
exp

(
p2Λ2K2

tp∫
0

〈Xs,1〉ds

)]
� 1

tp

tp∫
0

E
[
exp

(
p2Λ2K2tp〈Xs,1〉)]ds,

where in the previous line we used Jensen’s inequality. We know (see for example [7], p. 32) that

E
[
exp

(
λ〈Xs,1〉)]= exp

( 〈ν,1〉λ
1 − λs

)
for λ <

1

s
. (27)

It follows that
∫ tp

0 E[exp(p2Λ2K2tp〈Xs,1〉)]ds is finite as soon as we have p2Λ2K2tp < (2tp)−1, which is equivalent
to Λ < (

√
2Kptp)−1. Under this condition, (26) holds and the exponential martingale E(i

∫ t

0 f (〈Mc〉s)dMc
s + Nt) is

uniformly integrable. �
Let us now get back to the proof of Lemma 6. Using Lemma 7, we now have for every t ∈ [0,∞],

E

[
exp

{
i

( t∫
0

f
(〈
Mc

〉
s

)
dMc

s + Nt

)

+ 1

2

( t∫
f 2(〈Mc

〉
s

)
d
〈
Mc

〉
s
+ 〈N〉t + 2

t∫
f
(〈
Mc

〉
s

)
d
〈
Mc,N

〉
s

)}]
= 1. (28)
0 0
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Define Hc
t := ∫ t

0 f (〈Mc〉s)d〈Mc,N〉s .

Lemma 8. supt∈[0,∞] |Hc
t | → 0 almost surely as c → ∞.

Proof of Lemma 8. From the definition of the martingales Mc and N we have

Hc
t =

p∑
j=1

t∧tj∫
0

λjf
(〈
Mc

〉
s

)〈
Xs,h

x,cφj

〉
ds.

Thus, if μ = max1�j�p |μj |, for any t ∈ [0,∞],∣∣Hc
t

∣∣� ptpΛμ sup
s�tp

∣∣〈Xs,h
x,cφj

〉∣∣.
Since the functions φj are bounded, the same arguments as in the proofs of Lemmas 1 and 2 show that Pν -almost
surely the right-hand side of the above display goes to 0 as c → ∞, which completes the proof of Lemma 8. �

Let us now complete the proof of Lemma 6. We use (28) with t = ∞ and (25), together with (24) and the fact that

∞∫
0

f
(〈
Mc

〉
s

)
d
〈
Mc

〉
s
=

〈Mc〉∞∫
0

f 2(s)ds

to get

Eν

[
exp

{
i
(
βc∞(f ) + N∞

)+ 1

2

( ∞∫
0

f 2(s)ds + 〈N〉∞ + Hc∞

)}]
= 1. (29)

By the Kunita–Watanabe inequality (see for example [8], Corollary IV.1.16), for any c > 0, Pν -almost surely

∣∣Hc∞
∣∣� ( ∞∫

0

f 2(〈Mc
〉
s

)
d
〈
Mc

〉
s

)1/2( ∞∫
0

d〈N〉s
)1/2

�
( ∞∫

0

f 2(s)ds

)1/2(〈N〉∞
)1/2

� 1

2

∞∫
0

f 2(s)ds + 1

2
〈N〉∞,

so that

1

2

[ ∞∫
0

f 2(s)ds + 〈N〉∞ + 2
∣∣Hc∞

∣∣]�
∞∫

0

f 2(s)ds + 〈N〉∞. (30)

From (21), and the fact that both Mt(φj ) and 〈M(φj ),M(φk)〉t are continuous functions of X (cf. (3)), we see that(
βc∞(f ),

(
Mtj (φj )

)
1�j�p

,
(〈

M(φk),M(φl)
〉
tk∧tl

)
1�k,l�p

)
(d)−→

n→∞
(
β∞(f ),

(
Mtj (φj )

)
1�j�p

,
(〈
M(φk),M(φl)

〉
tk∧tl

)
1�k,l�p

)
. (31)

Since N∞ =∑p

j=1 λjMtj (φj ), 〈N〉∞ =∑p

j,k=1 λjλk〈M(φj ),M(φk)〉tj ∧tk , we can use (31) and Lemma 8 to pass to
the limit c → ∞ in the left-hand side of (29). Note that (30) and (26) provide the domination required to justify the
passage to the limit. In this way we get

E

[
exp

{
i

(
β∞(f ) +

p∑
j=1

λjMtj (φj )

)
+ 1

2

( ∞∫
f 2(s)ds +

p∑
j,k=1

λjλk

〈
M(φj ),M(φk)

〉
tj ∧tk

)}]
= 1,
0
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where β∞(f ) =∑q

j=1 μj (βsj − βsj−1). Since E[B] = exp(− 1
2

∫∞
0 f 2(s)ds), we get Lemma 6. �

Proof of Lemma 5. For any (y1, . . . , yp) ∈ R
p, (zj,k)1�j,k�p ∈ R

p2
, let us write

exp

(
i

p∑
j=1

λjyj + 1

2

p∑
j,k=1

λjλkzj,k

)
− 1 =

∑
n1,...,np∈N

n1+···+np�1

λ
n1
1 · · ·λnp

p Qn1,...,np

(
(yj ), (zj,k)

)
,

where the series converges absolutely and for every choice of n1, . . . , np,Qn1,...,np ((yj ), (zj,k)) is a polynomial of
the p + p2 variables (yj ), (zj,k). Furthermore, the highest degree term in Q1,...,1 is clearly ipy1 · · ·yp . Thus (23) can
be rewritten as

E

[
B

∑
n1,...,np∈N

n1+···+np�1

λ
n1
1 · · ·λnp

p Qn1,...,np

((
Mtj (φj )

)
,
(〈

M(φj ),M(φk)
〉
tj ∧tk

))]= 0. (32)

We now observe that for Λ small enough,

E

[
B

∑
n1,...,np∈N

n1+···+np�1

λ
n1
1 · · ·λnp

p Qn1,...,np

((
Mtj (φj )

)
,
(〈

M(φj ),M(φk)
〉
tj ∧tk

))]

=
∑

n1,...,np∈N

n1+···+np�1

λ
n1
1 · · ·λnp

p E
[
BQn1,...,np

((
Mtj (φj )

)
,
(〈
M(φj ),M(φk)

〉
tj ∧tk

))]
. (33)

To justify the interchange of summation and expectation it is enough to verify that

E

[
|B|

∑
n1,...,np∈N

n1+···+np�1

|λ1|n1 · · · |λp|np
∣∣Qn1,...,np

((
Mtj

(
φj )

)
,
(〈
M(φj ),M(φk)

〉
tj ∧tk

))∣∣]

is finite. Let us define new polynomials Q̂n1,...,np by

exp

(
p∑

j=1

λj |yj | + 1

2

p∑
j,k=1

λjλk|zj,k|
)

− 1 =
∑

n1,...,np∈N

n1+···+np�1

λ
n1
1 · · ·λnp

p Q̂n1,...,np

((|yj |), (|zj,k|
))

,

and observe that we always have∣∣Qn1,...,np

(
(yj ), (zj,k)

)∣∣� Q̂n1,...,np

((|yj |
)
,
(|zj,k|

))
.

Since |B| = 1, it is then enough to prove that

E

[ ∑
n1,...,np∈N

n1+···+np�1

|λ1|n1 · · · |λp|npQ̂n1,...,np

((∣∣Mtj (φj )
∣∣), (∣∣〈M(φj ),M(φk)

〉
tj ∧tk

∣∣))]

is finite, which from the definition of Q̂ holds if

E

[
exp

{
p∑

j=1

∣∣λjMtj (φj )
∣∣+ 1

2

p∑
j,k=1

∣∣λjλk

〈
M(φj ),M(φk)

〉
tj ∧tk

∣∣}]< ∞.

By the Cauchy–Schwarz inequality, it is enough to check the finiteness of

Ap(λ1, . . . , λp) = E

[
exp

(
2

p∑∣∣λjMtj (φj )
∣∣)]
j=1



M. Merle / Ann. I. H. Poincaré – PR 42 (2006) 491–520 509
and

Bp(λ1, . . . , λp) = E

[
exp

(
p∑

j,k=1

∣∣λjλk

〈
M(φj ),M(φk)

〉
tj ∧tk

∣∣)],

provided Λ is small enough. The fact that both Ap(λ1, . . . , λp) and Bp(λ1, . . . , λp) are finite when Λ is sufficiently
small follows from (27) by arguments similar to the proof of Lemma 7. Thus, the interchange of summation and
expectation in (33) is justified.

From (32) we now get∑
n1,...,np∈N

n1+···+np�1

λ
n1
1 · · ·λnp

p E
[
BQn1,...,np

((
Mtj (φj )

)
,
(〈
M(φj ),M(φk)

〉
tj ∧tk

))]= 0.

Since this is true for any (λ1, . . . , λp) such that Λ is sufficiently small we obtain that for any n1, . . . , np ∈ N such that
n1 + · · · + np � 1,

E
[
BQn1,...,np

((
Mtj (φj )

)
,
(〈
M(φj ),M(φk)

〉
tj ∧tk

))]= 0.

Specialising to the case f = 0 we have also, for any n1, . . . , np ∈ N such that n1 + · · · + np � 1,

E
[
Qn1,...,np

((
Mtj (φj )

)
,
(〈
M(φj ),M(φk)

〉
tj ∧tk

))]= 0.

We have finally proven that

0 = E
[
BQn1,...,np

((
Mtj (φj )

)
,
(〈
M(φj ),M(φk)

〉
tj ∧tk

))]
= E[B]E[

Qn1,...,np

((
Mtj (φj )

)
,
(〈
M(φj ),M(φk)

〉
tj ∧tk

))]
. (34)

We are now in a position to finish the proof of Lemma 5. We prove (22) by induction on p. For p = 1, we simply
use (34) with p = 1, n1 = 1 and observe that Q1(y) = iy to get

E
[
BMt1(φ1)

]= E[B]E[
Mt1(φ1)

]
.

Now let p � 2 and let us assume that (22) holds up to the order p − 1. Observe first that we can write

Q1,...,1
(
(yj ), (zj,k)

)= ipy1 · · ·yp +
∑

J⊂{1,...,p}
K⊂{1,...,p}2

αJ,K

(∏
i∈J

yi

)( ∏
(j,k)∈K

zj,k

)

where the constants αJ,K may be non-zero only if CardJ + CardK < p.
Using (34) with n1 = · · · = np = 1, we see that (22) will follow if we can prove that for any choice of (J,K) such

that CardJ + CardK < p,

E

[
B

(∏
i∈J

Mti (φi)

)( ∏
(j,k)∈K

〈
M(φj ),M(φk)

〉
tj ∧tk

)]

= E[B]E
[(∏

i∈J

Mti (φi)

)( ∏
(j,k)∈K

〈
M(φj ),M(φk)

〉
tj ∧tk

)]
. (35)

To get rid of the quadratic variation terms we write

〈
M(φj ),M(φk)

〉
t
=

t∫
0

〈Xs,φjφk〉ds,

and from the martingale problem for X, using an easy induction on n,
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〈Xs,φjφk〉 = 〈X0, φjφk〉 + Ms(φjφk) + 1

2

s∫
0

du
〈
Xu,
(φjφk)

〉
= 〈X0, φjφk〉 + s

2

〈
X0,
(φjφk)

〉+ Ms(φjφk)

+ 1

2

s∫
0

duMu

(

(φjφk)

)+ 1

4

s∫
0

du

u∫
0

dr
〈
Xr,


2(φjφk)
〉

= Xn
s (φjφk) + Rn

s (φjφk),

where

Xn
s (φjφk) = 〈X0, φjφk〉 + s

2

〈
X0,
(φjφk)

〉+ · · · + sn−1

2n−1(n − 1)!
〈
X0,


n−1(φjφk)
〉

+ Ms(φjφk) + 1

2

s∫
0

duMu

(

(φjφk)

)

+ · · · + 1

2n−1

s∫
0

du1

u1∫
0

du2 · · ·
un−2∫
0

dun−1Mun−1

(

n−1(φjφk)

)
,

and

Rn
s (φjφk) = 1

2n

s∫
0

du1

u1∫
0

du2 · · ·
un−1∫
0

dun

〈
Xun,


n(φjφk)
〉
.

By assumption both φj and φk belong to F , and it easily follows that φjφk is also in F . Let A be the constant
associated with φjφk in the definition of F . From the formula for Rn

s (φjφk) one easily gets

Eν

[(
Rn

s (φjφk)
)p]� dpnAp(2n+1)spn

(n!)p Eν

[(
sup

u∈[0,s]
〈Xu,1〉

)p]
.

Recall that 〈Xt,1〉 is an FX
t -martingale (cf. (3) with φ = 1). Furthermore we know from (27) that this quantity has

finite moments of any order. If q > 0 is such that 1
p

+ 1
q

= 1, using Doob’s inequality, we see that for any s � t ,

Eν

[(
Rn

s (φjφk)
)p]� dpnAp(2n+1)tpn

(n!)p qpEν

[(〈Xt,1〉)p],
so that Rn

s (φjφk) → 0 as n → ∞, in Lp for every p < ∞, uniformly on [0, t].
From the expression of Xn

s (φjφk), we see that we can use the induction hypothesis (recall CardJ + CardK < p)
to get

E

[
B

(∏
i∈J

Mti (φi)

)( ∏
(j,k)∈K

tj ∧tk∫
0

dsXn
s (φjφk)

)]

= E[B]E
[(∏

i∈J

Mti (φi)

)( ∏
(j,k)∈K

tj ∧tk∫
0

dsXn
s (φjφk)

)]
.

and letting n → ∞ leads to (35), which completes the proof of Lemma 5, and thus the one of Lemma 4. �
We have proven that for every x 
= 0,(

X,M
x,c
t

) (d)−→ (
X,βx

0

)
,

n→∞ a(x)Lt
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with βx a standard Brownian motion independent of X. As it was explained in Section 1.6, this gives the case k = 1
of Theorem 1.

We now address the problem of the convergence in distribution of(
X,M

x1,c
t ,M

x2,c
t , . . . ,M

xk,c
t

)
as c → ∞, where X = (x1, . . . , xk) is a k-tuple of non-zero points in R

d .

2.4. Space dependence for the limit

We denote by �MX ,c
t the k-tuple of martingales (M

x1,c
t , . . . ,M

xk,c
t ), and by 〈 �MX ,c, �MX ,c〉t the matrix

(〈Mxi,c,Mxj ,c〉)1�i,j�k . Recall that for a fixed x 
= 0, 〈Mx,c〉t → a(x)L0
t as c → ∞. By adapting the argument

used in Section 2.2 to prove this convergence, it is easy to see that Pν -almost surely,〈 �MX ,c, �MX ,c
〉
t
−→
n→∞

(
a(xi, xj )L

0
t

)
1�i,j�k

. (36)

By the Dini theorem, the convergence of the diagonal terms in (36) is uniform in t � 0. Then, using the Kunita–
Watanabe inequality, it is not hard to see that the convergence of the non-diagonal terms is also uniform in t � 0.

Let A be the matrix (a(xi, xj ))1�i,j�k . Since A is symmetric, there exists an orthogonal matrix O such that
D := OAtO is a diagonal matrix.

Now let

�Nc
t = (

N
1,c
t , . . . ,N

k,c
t

) := O �MX ,c
t

and 〈�Nc, �Nc〉t be the matrix (〈Ni,c,Nj,c〉t )1�i,j�k .

We clearly have 〈�Nc, �Nc〉t = O〈 �MX ,c, �MX ,c〉t tO , so that Pν -almost surely,〈�Nc, �Nc
〉
t
−→
n→∞L0

t D (37)

uniformly in t � 0.
If for s � 0 we let τ

j,c
s := inf{t � 0: 〈Nj,c〉t � s}, we thus have that for any j 
= k, for any s � 0, both

〈Nj,c,Nk,c〉
τ

j,c
s

, and 〈Nj,c,Nk,c〉
τ

k,c
s

go to 0 as c → ∞.
Using the Dubins–Schwarz theorem, for every i ∈ {0, . . . , k}, we have

N
i,c
t = B

i,c

〈Ni,c〉t ,

where Bi,c is a linear Brownian motion. For every i ∈ {1, . . . , k}, we may and will assume that for s � u � 〈Ni,c〉∞,
we have B

i,c
s − B

i,c
u = γ

i,c
s − γ

i,c
u , where (γ 1,c, . . . , γ k,c)c>0 is a family of independent k-dimensional Brownian

motions, independent of X.
By an evident adaptation of Theorem 2.3 of [8], Chapter XIII, the convergence to 0 of 〈Nj,c,Nk,c〉

τ
j,c
s

, and

〈Nj,c,Nk,c〉
τ

k,c
s

implies that(
B1,c, . . . ,Bk,c

) (d)−→
n→∞

(
B1, . . . ,Bk

)
,

where (B1, . . . ,Bk) is a k-dimensional Brownian motion. By adapting the arguments of Section 2.3, we can also
verify that(

X,B1,c, . . . ,Bk,c
) (d)−→

n→∞
(
X,B1, . . . ,Bk

)
,

where the k-dimensional Brownian motion B = (B1, . . . ,Bk) is independent of X.
It follows that(

Xt,N
1,c
t , . . . ,N

k,c
t

)
t�0 −→

n→∞
(
Xt,B

1
D11L

0
t
, . . . ,Bk

DkkL
0
t

)
t�0.

Now recall that �Mc = O−1 �Nc so that
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(
Xt, �MX ,c

t

)
t�0

(d)−→
n→∞

(
Xt,β

X ,1
L0

t

, . . . , β
X ,k

L0
t

)
, (38)

where

βX
t = (

β
X ,1
t , . . . , β

X ,k
t

) := O−1(B1
D11t

, . . . ,Bk
Dkk

)
is a centered k-dimensional Gaussian process satisfying

cov
(
βX

t , βX
s

)= (t ∧ s)O−1D tO−1 = (t ∧ s)A.

It is immediate that βX (d)= (βx1 , . . . , βxk ), where the collection (βx)x∈Rd is as in Theorem 1. The same arguments as
in the case k = 1, using Lemmas 1 and 2, show that the general case of Theorem 1 follows from (38). �
3. Applications of Theorem 1

3.1. A non-conditioned result

We now turn to the convergence of the vector Ξc = (cdDφc,t , c
dψ(c)Dξc,t ) under Pν , ν being as in Theorem 1.

Proof of Proposition 2. Let t > 0. Recall from Section 1.6 that

Ξc =
(∫

Rd

L
y/c
t φ(y)dy,ψ(c)

∫
Rd

ξ(y)
(
L

y/c
t − L0

t

)
dy

)
. (39)

We already noticed that Pν -almost surely,

lim
c→∞

∫
Rd

L
y/c
t φ(y)dy =

(∫
Rd

φ(y)dy

)
L0

t . (40)

Furthermore it is easy to check that

lim
c→∞Eν

[∣∣∣∣ψ(c)

∫
Rd

ξ(y)
(
L

y/c
t − L0

t

)
dy −

∫
Rd

ξ(y)M
y,c
t dy

∣∣∣∣]= 0. (41)

Indeed the Tanaka formula (8) shows that for every y ∈ K and c sufficiently large,

ψ(c)
(
L

y/c
t − L0

t

)− M
y,c
t = 〈

X0 − Xt,h
y,c
〉+ α

t∫
0

〈
Xs,h

y,c
〉
ds.

Hence (41) follows from the convergence

lim
c→∞

(
sup
y∈K

sup
s∈[0,t]

Eν

[〈
Xs,

∣∣hy,c
∣∣〉])= 0,

which is itself an easy consequence of the first moment formula for X (see Proposition 2.10 in [6]). By (39), (40)
and (41), Proposition 2 reduces to verifying that(

L0
t ,

∫
Rd

ξ(y)M
y,c
t dy

)
(d)−→

n→∞
(
L0

t ,Ut

)
, (42)

where, conditionally given L0
t , Ut is centered Gaussian with variance aξL

0
t .

Lemma 9. We can find c0 > 0 such that for every integer p � 1,

sup
y∈K

sup
c�c0

Eν

[∣∣My,c
t

∣∣p]< ∞. (43)
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Let us postpone the proof of Lemma 9 and complete that of Proposition 2. From (7), the limiting law in (42) is
determined by its moments. Hence to get the convergence (42) it is enough to prove that, for every integers k and
p � 1,

lim
c→∞E

[(
L0

t

)k(∫
ξ(y)M

y,c
t dy

)p]
= E

[(
L0

t

)k
(Ut )

p
]
. (44)

Note that(
L0

t ,Ut

) (d)=
(

L0
t ,

∫
ξ(y)β

y

L0
t

)
with the notation of Theorem 1. By the Fubini theorem, (44) follows from the fact that for every y1, . . . , yp ∈ K ,

lim
c→∞E

[(
L0

t

)k
M

y1,c
t · · ·Myp,c

t

]= E
[(

L0
t

)k
β

y1

L0
t

· · ·βyp

L0
t

]
. (45)

However we proved (Theorem 1) that the (p + 1)-tuple (L0
t ,M

y1,c
t , . . . ,M

yk,c
t ) converges in distribution to

(L0
t , β

x1

L0
t

, . . . , β
xk

L0
t

), and the bound of Lemma 9 allows us to derive (45) from this convergence in distribution. This

completes the proof of Proposition 2.

Proof of Lemma 9. We will only give the proof in the three-dimensional case. In the two-dimensional case, there are
a few technical differences as can be guessed by looking at Sections 2.1 and 2.2, but the ideas remain very similar,
and we leave this case to the reader.

Let d = 3, a := sup{|y|, y ∈ K}, c0 := 4aρ−1, t > 0, p � 1, and c � c0. For y ∈ K , we first use the Burkholder–
Davis–Gundy inequality to obtain

E
[(∣∣Mt

(
hy,c

)∣∣)p]� cpE
[〈
M
(
hy,c

)〉p/2
t

]
, (46)

where cp is a constant. Let ηy,c := E[〈M(hy,c)〉p/2
t ].

From (3), we have

ηy,c = E

[( t∫
0

〈
Xs,

(
hy,c

)2〉ds

)p/2]
.

From the fact that c � 4aρ−1, we can split R
d into the domains B(0,2ac−1), B(0, ρ/2)\B(0,2ac−1), R

d \B(0, ρ/2)

and introduce

h
y,c
a := hy,c1

B(0, 2a
c

)
, η

y,c
a := E

[( t∫
0

〈
Xs,

(
h

y,c
a

)2〉ds

)p/2]
,

hy,c
ρ := hy,c1

B(0,
ρ
2 )\B(0, 2a

c
)
, ηy,c

ρ := E

[( t∫
0

〈
Xs,

(
hy,c

ρ

)2〉ds

)p/2]
,

h̄y,c := hy,c1R3\B(0,
ρ
2 ), η̄y,c := E

[( t∫
0

〈
Xs,

(
h̄y,c

ρ

)2〉ds

)p/2]
.

We have to verify that the quantities

sup
c�c0, y∈K

η̄y,c, sup
c�c0, y∈K

ηy,c
ρ , sup

c�c0, y∈K

η
y,c
a

are finite.
From (A2), we get that h̄y,c is bounded from above by a constant κ̃ neither depending on y nor on c. Thus

using (27), we have
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sup
c�c0

sup
y∈K

η̄y,c
ρ � κ̃E

[( t∫
0

〈Xs,1〉ds

)p/2]
< ∞.

Let us turn to η
y,c
ρ . From (7), introducing for convenience the notation

Cρ := C
(

ν, t, �B
(

0,
ρ

2

))
, Kρ := K

(
ν, t, �B

(
0,

ρ

2

))
,

we have for any integer n � 0

sup
z∈B(0,

cρ
2 )

E
[(

L
z/c
t

)n]� n!
(Kρ)n

Cρ. (47)

Using the trivial inequality ap/2 � 1 + ap for a � 0, we see that

ηy,c
ρ � 1 + E

[( t∫
0

〈
Xs,

(
hy,c

ρ

)2〉ds

)p]
� 1 + E

[(
1

4π2

∫
B(0,

cρ
2 )\B(0,2a)

dz

(
1

|z − y| − 1

|z|
)2

L
z/c
t

)p]
. (48)

Set

κ̂(y, c) = 1

4π2

∫
B(0,

cρ
2 )\B(0,2a)

dz

(
1

|z − y| − 1

|z|
)2

.

We clearly have supc�c0
supy∈K κ̂(y, c) < ∞. Using the Jensen inequality in (48) we obtain

ηy,c
ρ � 1 + κ̂(y, c)p−1E

[
1

4π2

∫
B(0,

cρ
2 )\B(0,2a)

dz

(
1

|z − y| − 1

|z|
)2(

L
z/c
t

)p]
.

Thus, using (47), we get

ηy,c
ρ � 1 + κ̂(y, c)

p!Cρ

(Kρ)p

∫
B(0,

cρ
2 )\B(0,2a)

(
1

|z| − 1

|z − y|
)2p

,

so that supc�c0, y∈K η
y,c
ρ is also finite.

It remains to bound η
y,c
a . Using the trivial inequality (a + b)p/2 � 1 + 2p(ap + bp) for a, b � 0, we obtain

η
y,c
a � 1

2π2
+ 2p

2π2

(
E

[( ∫
B(0,2a)

dz

|z|2 L
z/c
t

)p

+
( ∫

B(0,2a)

dz

|z − y|2 L
z/c
t

)p])
.

From the Hölder inequality with conjugate exponents 5
4 and 5, we then get

E

[( ∫
B(0,2a)

dz

|z|2 L
z/c
t

)p]
� E

[( ∫
B(0,2a)

dz

|z|5/2

)4p/5( ∫
B(0,2a)

dz
(
L

z/c
t

)5
)p/5]

and also,

E

[( ∫
B(0,2a)

dz

|z − y|2 L
z/c
t

)p]
� E

[( ∫
B(0,2a)

dz

|z|5/2

)4p/5( ∫
B(0,2a)

dz
(
L

z/c
t

)5
)p/5]

.

Using the inequality ap/5 � 1 + ap for a � 0, and then the Jensen inequality, we then obtain

η
y,c
a � 1

2π2
+ 2p

π2

( ∫
dz

|z|5/2

)4p/5(
1 +

(
32πa3

3

)p/5−1

E

[ ∫ (
L

z/c
t

)5p
])

.

B(0,2a) B(0,2a)
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Using (47) we now get that supc�c0, y∈K η
y,c
a < ∞. We thus have proven that supc�c0, y∈K ηy,c is finite, and (43) now

follows from (46).
We thus have finished the proof of Lemma 9 and of the non-conditioned result Proposition 2. We now get back to

Lee’s result.

3.2. Back to Lee’s result

In this section we prove Proposition 1 with the help of Proposition 2.

Proof of Proposition 1. We know from the scaling properties of super-Brownian motion that the law of cd−4Dφ,c2t

under Pν(c) is the same as that of cdDφc,t under Pν . Proposition 1 is thus equivalent to the following statement

Proposition 4. Consider t, x0,K,φ, ξ as in Proposition 1.
Under Pc−2δx0

(·|X hits K(c)), the random vector (cdDφc,t , c
dψ(c)Dξc,t ) converges in distribution as c → ∞ to

(D1,D2).

Rather than proving Proposition 4 immediately, we will first establish an analogous statement under the excursion
measure Nx0 of super-Brownian motion. Let us give an informal explanation for this intermediate step.

Let qc := Pc−2δx0
(X hits K(c)). From [3] or [5],1

qc ∼
c→∞

4 − d

2c2|x0|2 .

Whenever a super-Brownian motion started at c−2δx0 hits K(c), the probability that this is done by a single excursion
goes to one as c → ∞. At least informally it follows that, when c is large enough, Pc−2δx0

(·|X hits K(c)) is in some
sense close to Nx0(·|X hits {0}). This idea will be used below to reduce the proof of Proposition 4 to the following
statement.

Proposition 5. Let t , x0, K , φ, ξ be as in Proposition 1. Let l0
t denotes the local time of X under Nx0(·|X hits {0}) at

level 0 and time t .
Under Nx0(·|X hits {0}), the vector Ξc := (cdDφc,t , c

dψ(c)Dξc,t ) converges in distribution as c → ∞ to(
l0
t

∫
K

φ(y)dy, Ũt

)
,

where conditionally on l0
t , Ũt is centered Gaussian with variance aξ l

0
t .

We now prove Proposition 5 as a consequence of Proposition 2.

Proof of Proposition 5. Fix t > 0 and let ρ0 := 2−1|x0|. Using the notation of (7), we also set r0 := K(δx0 , t,
�B(0, ρ0)).

Note from the discussion following (6) and (7) that the function G
t,0
x0 is well defined on {z ∈ C, |z| < r0}. Let us intro-

duce the function g
t,0
x0 such that for any z ∈ C, |z| < r0,

gt,0
x0

(z) = Nx0

(
exp

(
zl0

t

)|X hits {0}).
The canonical decomposition of super-Brownian motion ensures that g

t,0
x0 is also well defined for |z| < r0. It is proven

in Chapter VI of [6] that Nx0(X hits {0}) = (2 − d
2 )|x0|−2, so using the canonical decomposition under Pδx0

we can
write Pδx0

-almost surely:

L0
t =

N∑
i=1

l
0,(i)
t ,

1 in [5] as in [2], qc is twice bigger. In [5] this comes from the non-standard underlying Brownian motion, whereas in [2] it comes from the
branching rate being 2 instead of 1.
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where the random variables l
0,(i)
t are independent and distributed as l0

t under Nx0(·|X hits {0}), and N is an indepen-
dent Poisson variable with parameter (2 − d

2 )|x0|−2.
We thus have for z ∈ C, |z| � r0,

exp
(
Gt,0

x0
(z)

)= Eδx0

[
exp

(
zL0

t

)]= Eδx0

[
Eδx0

[
exp

(
zL0

t

)∣∣N]]=
∞∑

k=0

(
4 − d

2|x0|2
)k 1

k! exp

(
− 4 − d

2|x0|2
)

gt,0
x0

(z)k

= exp

{
4 − d

2|x0|2
(
gt,0

x0
(z) − 1

)}
.

From the fact that G
t,0
x0 (0) = 0 and g

t,0
x0 (0) = 1 and the continuity of the functions g

t,0
x0 ,G

t,0
x0 we then deduce that for

any z ∈ C, |z| � r0,

gt,0
x0

(z) = 1 + 2|x0|2
4 − d

Gt,0
x0

(z). (49)

Let a and b two real numbers and Zc
a,b := acdDφc,t +bcdψ(c)Dξc,t . Let Hc(a, b), respectively hc(a, b) be the Fourier

transform of Ξc with respect to the measure Pδx0
, respectively Nx0(·|X hits {0}), that is

Hc(a, b) = Eδx0

[
exp

(
iZc

a,b

)]
,

hc(a, b) = Nx0

[
exp

(
iZc

a,b

)∣∣X hits {0}].
Recall that Nx0(X hits {0}) = (2 − d

2 )|x0|−2. Using the canonical decomposition of super-Brownian motion we

obtain that Zc
a,b is distributed under Pδx0

as Z
c,(1)
a,b + Z

c,(2)
a,b + · · · + Z

c,(N)
a,b + Rc

a,b where Z
c,(1)
a,b ,Z

c,(2)
a,b , . . . are inde-

pendent and distributed as Zc
a,b under Nx0(·|X hits {0}), and N is Poisson with parameter (2 − d

2 )|x0|−2. Also, Rc
a,b

represents the contribution to Zc
a,b under Pδx0

of excursions that hit K(c) but do not hit 0. Since the compact sets K(c)

converge to {0}, it is easy to verify that Pδx0
(Rc

a,b = 0) −→
c→∞ 1. It follows that, uniformly in (a, b) ∈ R

2,∣∣Eδx0

[
exp

(
iZc

a,b

)]− E
[
exp

(
iλ
(
Z

c,(1)
a,b + · · · + Z

c,(N)
a,b

))]∣∣ −→
c→∞ 0,

that is∣∣∣∣Hc(a, b) − exp

[
4 − d

2|x0|2
[
hc(a, b) − 1

]]∣∣∣∣ −→
c→∞ 0, uniformly in (a, b) ∈ R

2. (50)

On the other hand we know from Proposition 2

Hc(a, b) −→
c→∞H(a,b) := E

[
exp

{
ia

(∫
φ(x)dx

)
L0

t + ibUt

}]
(51)

uniformly when (a, b) varies over a compact subset of R
2. We also have

H(a,b) = E

[
E

[
exp

{
ia

(∫
φ(x)dx

)
L0

t + ibUt

}∣∣∣∣L0
t

]]
= E

[
exp

(
ia

(∫
φ(x)dx

)
L0

t

)
exp

(
−L0

t aξ b
2

2

)]
= exp

{
Gt,0

x0

(
ia

(∫
φ(x)dx

)
− aξb

2

2

)}
,

assuming that (a, b) belongs to a sufficiently small neighbourhood V of (0,0) (see the discussion following (7)). We
then get by (49)

H(a,b) = exp

{
4 − d

2|x0|2
(

gt,0
x0

(
ia

(∫
φ(x)dx

)
− aξb

2

2

)
− 1

)}
.

If we let

h(a, b) := gt,0
x0

(
ia

(∫
φ(x)dx

)
− aξb

2)
,

2
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we thus have from (50) and (51)

exp

[
4 − d

2|x0|2
[
hc(a, b) − 1

]] −→
c→∞ exp

{
4 − d

2|x0|2
(
h(a, b) − 1

)}
(52)

uniformly in V . From the fact that for any (a, b), the function c → hc(a, b) is continuous, it follows from (52) that for
any (a, b) ∈ V , there exists an integer k(a, b) such that

4 − d

2|x0|2 hc(a, b) −→
c→∞

4 − d

2|x0|2 h(a, b) + 2ik(a, b)π.

Now from the continuity of both functions (a, b) → hc(a, b) and (a, b) → h(a, b) and the uniformity of the conver-
gence in (52), it follows that k(a, b) does not depend on a nor b. Since hc(0,0) → h(0,0) as c → ∞, k(a, b) = 0 for
every (a, b) ∈ V . We have thus proved that for (a, b) ∈ V ,

hc(a, b) = Nx0

(
exp

(
iZc

a,b

)∣∣X hits {0}) −→
c→∞h(a, b),

and h(a, b) can be interpreted as the Fourier transform at 1 of al0
t

∫
φ(x)dx + bŨt . The statement of Proposition 5

follows. �
Proof of Proposition 4. From the canonical decomposition of super-Brownian motion, the law under Pc−2δx0

of

Ξc coincides with the law of
∑Nc

i=1(U
c
i ,V c

i ) where the variables (Uc
i ,V c

i ) are independent and distributed as Ξc

under Nx0(·|X hits K(c)), and Nc is an independent Poisson variable with parameter c−2
Nx0(X hits K(c)). Clearly

{Nc � 1} = {X hits K(c)}, and moreover

Pc−2δx0
(Nc = 1) ∼

c→∞
4 − d

2c2|x0|2 .

It is also clear that P(Nc � 2) � κ(x0)c
4 where κ(x0) is a constant depending on x0. Since the laws of Ξ under

Ec−2δx0
(·|Nc = 1) and Nx0(·|X hits K(c)) coincide, we have

∣∣Ec−2δx0

(
exp

(
iZc

a,b

)∣∣X hits K(c)
)− Nx0

(
exp

(
iZc

a,b

)∣∣X hits K(c)
)∣∣� |Ec−2δx0

(exp(iZc
a,b),Nc � 2)|

Pc−2δx0
(X hits K(c))

� 2|x0|2κ(x0)c
−2.

From the fact that Nx0(X hits K(c)) → Nx0(X hits {0}) as c → ∞ we now have∣∣Ec−2δx0

(
exp

(
iZc

a,b

)∣∣X hits K(c)
)− hc(a, b)

∣∣ −→
c→∞ 0.

From the proof of Proposition 5 we know that hc(a, b) → h(a, b) as c → ∞, and from (49)

h(a, b) = 2|x0|2
4 − d

Gt,0
x0

(
ia
∫
K

φ(y)dy − aξb
2

2

)
+ 1

is the Fourier transform of (D1,D2). This finishes the proof of Proposition 4, and thus of its rescaled equivalent form
Proposition 1. �
4. The case d = 1

Sugitani showed in [9] (Theorems 1 and 4) that under the condition that ν does not charge points in R, Pν -almost
surely, Lx

t is continuously differentiable with respect to both time and space variables on (0,∞) × R. We will denote
DxL

y
t its continuous derivative with respect to the space variable taken at point (t, y). It is not hard to deduce from [9]

the following extension of Theorem 1 to the one-dimensional case

Proposition 6. Suppose ν ∈ MF (R) is atomless in a certain neighbourhood of 0. Let T > 0,K > 0 be fixed. Then Pν -
almost surely, uniformly in y ∈ [−K,K], t ∈ [0, T ], the random variable c(L

y/c
t − L0

t ) converges to yDxL
0
t , where

DxL
0
t denotes the derivative of Lx

t with respect to the x-variable taken at point (t,0).
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Also, it is evident that uniformly in y ∈ [−K,K], t ∈ [0, T ], L
y/c
t converges Pν -almost surely to L0

t . As a direct
consequence of these results we obtain a statement analogous to Proposition 2 in the one-dimensional case.

Proposition 7. Fix t > 0 and let ν be as in Proposition 6, and let φ, ξ be integrable function with compact support on
R such that

∫
φ(y)dy 
= 0,

∫
ξ(y)dy = 0 . Then, for every t > 0, we have Pν -almost surely(

cDφc,t , c
2Dξc,t

) −→
c→∞

((∫
R

φ(y)dy

)
L0

t ,

(∫
R

y ξ(y)dy

)
DxL

0
t

)
.
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Appendix A. Proof of the estimates on hx,c

Recall

hx,c(z) = c√
ln(c)

∞∫
0

(2πt)−1 e−αt
(
e−|z−x/c|2/2t − e−|z|2/2t

)
dt. (53)

We will still use the notation cδ = |z|, and introduce δ
′

so that cδ′ = |z − x/c|. By a symmetry argument, without loss
of generality we may and will always assume δ � δ′. Note that we then have for every t > 0∣∣e−|z−x/c|2/2t − e−|z|2/2t

∣∣� e−|z|2/2t . (54)

Proof of (B1), (B2). Notice that the maximum of the function t → t−1 e−|z|2/2t is attained at t = |z|2/2. Its value at
this point is 2e−1/|z|2, so that∣∣∣∣∣

∞∫
0

(2πt)−1 e−αt e−|z|2/(2t)

∣∣∣∣∣� e−1 +
∣∣∣∣∣

∞∫
|z|2/2

(2πt)−1 e−αt

∣∣∣∣∣� κ11
(
1 + ln+(1/|z|)).

The above and (54) imply (B1), (B2). �
Let us now prove the remaining estimates. The change of variable t = cβ in the integral (53) leads to

hx,c(z) = c

2π
√

ln(c)

∞∫
−∞

e−αcβ (
e− 1

2 c2δ′−β − e− 1
2 c2δ−β )

ln(c)dβ.

For convenience let us define

F(u) =
u∫

−∞
e−αcβ (

e− 1
2 c2δ′−β − e− 1

2 c2δ−β )
ln(c)dβ,

and

F̃ (u) =
∞∫

u

e−αcβ (
e− 1

2 c2δ′−β − e− 1
2 c2δ−β )

ln(c)dβ,

so that for any real x, hx,c(z) = c(2π
√

ln(c))−1(F (u) + F̃ (u)). Note that F(u) and F̃ (u) still depend on c, x and z,
even though this is not apparent in our notation.
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Proof of (C2). On the domain of (C2), −1 − ln(ln(c))
8 ln(c)

� δ � −1 + ln(ln(c))
8 ln(c)

. Using (54) we first obtain

∣∣F(2δ)
∣∣� 2δ∫

−∞
e−αcβ

e
− |z|2

2cβ ln(c)dβ �
2δ∫

−∞
c2δ−β e− 1

2 c2δ−β

ln(c)dβ � 2
[
e− 1

2 c2δ−β ]2δ

−∞ � 2.

Using a Taylor expansion and the fact e−αcβ � 1, we also have

∣∣F̃ (2δ)
∣∣� ∣∣∣∣∣

∞∫
2δ

( ∞∑
n=1

(−1)n

2nn!cβn

(
c2δ′n − c2δn

)
ln(c)dβ

)∣∣∣∣∣�
∣∣∣∣∣

∞∑
n=1

(−1)n

2nnn!
(
c2(δ′−δ)n − 1

)∣∣∣∣∣.
Since the Taylor expansion of

∫ u

0
e−y−1

y
dy is

∑
n�1

(−1)nun

nn! , this last quantity is equal to

∣∣∣∣∣
1
2 |z−x/c|2c−2δ∫

1
2

e−y − 1

y
dy

∣∣∣∣∣�
( |z · x|

c
c−2δ + x2

2c2
c−2δ

)
sup

y∈[1/2,∞)

∣∣∣∣e−y − 1

y

∣∣∣∣.
Using the fact that δ � −1 − ln(ln(c))

8 ln(c)
we thus obtain that |F̃ (2δ)| � κ12(ln(c))1/4. Combining the above inequalities

for |F(2δ)|, |F̃ (2δ)|, we obtain (C2). �
Proof of (C1). Here δ � −1 − ln(ln(c))

8 ln(c)
. As in the proof of (C2) we first have |F(2δ)| � 2. Furthermore, using (54) we

get

∣∣F̃ (−4 − 2δ) − F̃ (2δ)
∣∣� −2+(−2−2δ)∫

2δ

e−αcβ

e− 1
2 c2δ−β

ln(c)dβ � −4 − 4δ

2π
ln(c) � |1 + δ| ln(c).

Using the same Taylor expansion technique as in the proof of (C2) we also obtain

∣∣F̃ (−4 − 2δ)
∣∣� ∣∣∣∣∣

c4+4δ

2 −(z·x)c3+2δ+|x|2 c2+2δ

2∫
c4+4δ

2

e−y − 1

y
dy

∣∣∣∣∣� κ13
(
ln(c)

)−1/4
.

Combining the above inequalities leads to (C1). �
Proof of (C3), (C4), (B3). Here δ � −1 + ln(ln(c))

8 ln(c)
. In particular 3

2δ − 1
2 � 2δ. Using (54) we first obtain

∣∣∣∣F(
3

2
δ − 1

2

)∣∣∣∣�
∣∣∣∣∣

3
2 δ− 1

2∫
−∞

e− 1
2 c2δ−β

ln(c)dβ

∣∣∣∣∣� e−c1/2δ+1/2
(55)

which is o(c−δ−1) since δ � −1 + ln(ln(c))
8 ln(c)

. Furthermore, when β � 3
2δ − 1

2 , we have∣∣∣∣ |z|2 − |z − x/c|2
2cβ

∣∣∣∣= ∣∣∣∣(z · x
c

− |x|2
2c2

)
c−β

∣∣∣∣ −→
c→∞ 0,

so that

e− 1
2 c2δ′−β − e− 1

2 c2δ−β ∼
c→∞

z · x
cβ+1

e− 1
2 c2δ−β

.

By dominated convergence, we thus have

F̃

(
3

2
δ − 1

2

)
∼

c→∞

∞∫
3 δ− 1

e−αcβ z · x
cβ+1

e− 1
2 c2δ−β

ln(c)dβ. (56)
2 2
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Let us first prove (C3), for which δ � − ln(ln(c))
ln(c)

, in particular δ < 0. Let us split the integral in the right-hand side
of (56) into two parts:

δ∫
3
2 δ− 1

2

e−αcβ z · x
cβ+1

e− 1
2 c2δ−β

ln(c)dβ ∼
c→∞

δ∫
3
2 δ− 1

2

z · x
2cβ+1

e− 1
2 c2δ−β

ln(c)dβ ∼
c→∞ 2(z · x)c−2δ−1, (57)

and
∞∫
δ

e−αcβ z · x
2cβ+1

e− 1
2 c2δ−β

ln(c)dβ � (z · x)c−1−2δ

∞∫
δ

c2δ−β e− 1
2 c2δ−β

ln(c)dβ,

which, since δ < 0 is o(c−δ−1) as c → ∞. This fact, (55) and (57) give us the estimate (C3).
Let us now prove (C4), for which δ � ln(ln(c))

4 ln(c)
. Using (56), we obtain

∣∣∣∣F̃(
3

2
δ − 1

2

)∣∣∣∣�
∣∣∣∣∣

∞∫
3
2 δ− 1

2

z · x
cβ+1

e− 1
2 c2δ−β

ln(c)dβ

∣∣∣∣∣� κ14c
−δ−1. (58)

The above and (55) give us (C4).
Finally (B3) is obtained as a combination of (55), (58) and (C3). �
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