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Abstract

Starting from the construction of a geometric rough path associated with a fractional Brownian motion with Hurst parameter
H E]le %[ given by Coutin and Qian in [Probab. Theory Related Fields 122 (2002) 108-140], we prove a large deviation
principle in the space of geometric rough paths, extending classical results on Gaussian processes. As a by-product, geometric
rough paths associated to elements of the reproducing kernel Hilbert space of the fractional Brownian motion are obtained and
an explicit integral representation is given.
0 2005 Elsevier SAS. All rights reserved.
Résumé

Partant de la construction de rough paths géométriques associés a un mouvement brownien fractionnaire d’indice de Hurst
H e ]%1, %[ faite par Coutin et Qian dans [Probab. Theory Related Fields 122 (2002) 108—-140], nous montrons un principe de
grandes déviations dans I'espace des rough paths géométriques, généralisant des résultats classiques sur les processus gaussie
Cecinous améne a construire des rough paths géométriques au-dessus des trajectoires des éléments de I'espace autoreproduis:

du brownien fractionnaire et a en donner une représentation intégrale explicite.
0 2005 Elsevier SAS. All rights reserved.
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1. Introduction

In the seminal paper [14], Lyons developed a sophisticated mathematical theory to analyse dynamical systems
with an external rough force acting as a control and influencing their evolution. One of the key ideas is to keep the
non-commutative structure of controls on small time steps. Rough controls are constructed as elements of direct
sums of tensor spaces endowed with a topology associated wighvthdation distance. Dynamical systems are
proved to be continuous functionals of their rough path controls with respect to this topology. This result is called
theuniversal limit theorem

Stochastic modeling deals basically with rough path controls. Indeed, the ground-breaking It6’s theory on sto-
chastic differential equations is based on Brownian motion, which has almost surely nowhere differentiable sample
paths but onlyx-Ho6lder continuous ones, with < ]0, %[. Note that the solution of a multidimensional stochastic
Ité’s differential equation is not a continuous functional of the driving Brownian motion. From Lyons perspective,
the rough path character of Brownian motion is caught by increments of both, its trajectories and those of the
Lévy area process. His approach provides a kind of pathwise calculus well-suited for system control in a stochastic
context. We refer the reader to [15] and [13], where the basic ingredients of the theory are presented.

It6’s theory has been extensively developed in many different directions, including finite and infinite dimen-
sional settings. Recently, increasing attention is being devoted to a particular stochastic control rougher than the
Brownian motion: the fractional Brownian motion with Hurst paraméfes 10, %[. Unlike the classical Brownian
process = %), the fractional Brownian motion does not have independent increments and possesses long-range
memory. Many problems in traffic networks, hydrology and economics, just to mention a few examples, share these
properties and therefore can be realistically analysed including this process in their mathematical formulation. In
[16] a large survey on fractional Brownian motion is given. Some of the recent developments concerning fractional
Brownian motion are employed in this paper (see for instance [1,2,4,5]). These references contain an exhaustive
list of contributors to the subject and are suggested to those who would like to have a broad picture on the subject.

In this article, we are interested in the rough path associated with a fractional Brownian motion with Hurst
parameterH e];ll, %[, constructed in [4]. The main goal has been to establish a large deviation principle. For

= % this question has been addressed in [12] (see also [9]) and the possibility of the extension given in our work
is mentioned. However, we believe that it is not a straightforward one and gives rise to interesting mathematical
issues which need new ideas to be solved satisfactory. For valmeim]‘%, 1[, the problem has an almost obvious
answer — see the remark following the proof of Proposition 4.

In order to give a more detailed description of the results in their context, some basic notions on rough paths
analysis and some notation should be set up.

Let T > 0 andB be a Banach space. Fpr> 1, the p-variation norm of a function : [0, 7] — B is defined by

1
P
p
Ixll,, = (supZ I, —mlB) :
P

where the supremum runs over all finite partitigdsof [0, T']. In the sequel we shall také = 1 and consider
B =R,

A continuous magX defined on the simplext = {(s,1): 0 <s <t < 1}, taking values on the truncated tensor
algebra

TR =RoR!® (R) ¥ 0. .. ¢ (RY)®

is called arough pathin 7171(R?) of roughness, if X,, = (1, X},...., XE{;]), (s, 1) € A, satisfies the properties:

. I i b1
(a) Finite p-variation: max< j<p)(Supp Y_; 1X]_, ,17)7 < oo.

(b) Multiplicative property:X;; = Xs.u ® Xy, forany(s, u), (u,t) € A.
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The set of rough paths ifi’?!(R?) is a metric space with the-variation distance

i
_ J ioEYr
dp(X,Y) = 1<n;2)[(p] (Sgp;|xfllyll = Yi ] I) : @)
Assume that the functior has finite total variation. For any=1, ..., [p], (s,t) € A, consider thej-th iterated
integral

Xxj’t=/o«~ / dxll®'.'®d—xl]" (2)

s<ty<--<tj<t

Itis easy to check thaX; ; = (1, Xi,, e, XE{’)) defined in this way is a rough path. We shall refer to this class of
objects asmooth rough pathlying abovex.

The space ofeometric rough pathaith roughnes9 is the closure of the set of smooth rough paths with respect
to the p-variation metric. An important class in stochastic analysis of geometric rough paths are those obtained
from smooth rough paths based on linear interpolations. dthey shall be denoted byp(Rd). Indeed, linear
interpolations of interesting examples like Brownian moti®nalued Wiener process, free Brownian motion and
fractional Brownian motion have been successfully used to define the corresponding geometric rough path (see
[3,4,11,15], respectively).

In this paper, we consider @&dimensional fractional Brownian motiow = (W,”, t € [0, 1]) with Hurst
parameterH < 10, 1[. Its reproducing kernel Hilbert space, denoted®¥, consists of functiong : [0, 1] — R¢
that can be represented as

t
h(z):/KH(t,s)h(s)ds, (3)
0
whereK (¢, ) is the kernel defined by

13 l—H
KH(t,s)=cH(t—s)H_% —‘rCH(% —H)/(u —s)H_g<l— (5)2 )du, 4)

forcy >0, 0<s <t <1, andh € L2([0, 1]). The scalar product itt” is given by

(h1, ho)yn = (h, hZ)LZ[O,ll
(see [5], Theorem 3.3).

ForO<s <t
1
dKH 1 i-H
=9 =cy (H - 5) (f) (t—)"3, ®)

Note that forH €10, 3[, |K#|(dr, s) = —2KZ (1, )15 11 (1) .
Let E = Co([0, 1]; R¢), endowed with the topology of the supremum norm ancPEtbe the law ofW 7 onE.
The triple (E, H, PH) is an abstract Wiener space. We shall denoté’byhe continuous dense embedding of
HH into E.
A classical result of the theory of Gaussian processes (see for instance [8], Theorem 3.4.12) establishes that the
family (e P, € > 0) of Gaussian probabilities satisfies a large deviation principlE with good rate function

A (x) = { SNEH @2, ifxe if’(HH), )
+00 otherwise
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Along this article we deal with values @f in ]%, %[. For the sake of simplicity, we shall skip any reference to
the parameteH in the sequel and writ® instead ofW ¥, H instead ofH ", etc.

For anym € N, we consider then-th dyadic grid(z/* =127, 1=0,1,...,2") and setA]'W = Wy — W,
foranyl=1,...,2",

Denote byW (m) = (W (m);, t € [0, 1]) the process obtained by linear interpolationofon them-th dyadic
grid. Thatis,W (m)o =0 and forz € J#/" ;, /"],

W(m)e = Wi +2"(t — 1" ) A]'W. 7

Let p €]1,4[ be such thatHp > 1. In [4], a geometric rough path with roughnegs lying above W
is obtained as a limit in the-variation distance (1) of the sequence of smooth rough p&at& (m)) =
(1, W(m), W(m)2, W(m)3) defined as in (2). We denote this object B W). By its very construction,
F(W) e D,(RY).

As has been mentioned before, our purpose is to establish a large deviation prindipléish for the family of
probability laws of(F (e W), € € (0, 1)), extending the classical Schilder result for Gaussian processes. By means
of the universal limit theorem of [14], the result can be transferred to stochastic differential equations driven by
fractional Brownian motion.

The next Section 2 is devoted to the proof of the main result. We follow the same strategy as in [12]. Thatis, since
the smooth rough paths based on linear interpolations of the préicess easily seen to satisfy a large deviation
principle, we only need to prove that they agonentially goodpproximations o#¥. In comparison with [12],
there are essentially two new difficulties coming up. Firstly, time increments of fractional Brownian motion are
not independent and secondly, we need to deal with third order geometric rough paths, making arguments a bit
more involved. The main tools to be used are the hypercontractivity inequality for Gaussian chaos (see [10])
and a collection of covariance type estimatesWomproved in [4]. As a by-product, we prove the existence of a
geometric rough path associated with each elerhéntthe reproducing kernel Hilbert spagé Section three is
entirely devoted to give a precise description of this geometric rough path in terms of indefinite multiple integrals.
The results might be understood as deterministic versions of those given in [1] for stochastic integrals with respect
to Gaussian Volterra processes (see also [6]). In our case, integrands and integrators are of Volterra type, because
the representation (3). The interest of these results goes beyond the framework of this work; they shall be useful in
the characterization of the topological support of the law of the rough path associated with the fractional Brownian
motion.

As is being usual, we denote throughout the proofs different constants by the same letter.

2. Thelargedeviation principle
We want to prove the following.

Theorem 1. Let H €13, 3[, p €11, 4[ be such tha#p > 1. The family of probability laws ofF (W), € € (0, 1))
satisfies a large deviation principle dn, (R4) with the good rate function defined far e Dy RY) by:

I(X) = { it x)13, XS ei(n), ®)
400 otherwise

Let us start by setting the method of the proof, that we borrow from [12] and fix the notations to be used in the
sequel.

Let Z(m) = (W, 1<1<2"). Clearly, Z(m) = @, o W, with @, :E — (R%)2" a continuous map. The
explicit form of the smooth rough path lying aboWié&im) shows that there exists a continuous r#gp: (R4)2" —
D, (R9) such thatF (W (m)) = (¥,, o ®,,)(W). Consequently, the contraction principle implies that for anthe
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family of probability laws of(F (e W (m)), € € (0, 1)) satisfies a large deviation principle m(Rd) with the good
rate function

In(X) =inf{A(x): x €E, (W 0 Dp)(x) =X}, 9)

X € D, (RY).
We then transfer the large deviation principle frdige W (m)) to F(e W). At first we shall prove that for any
§>0,

lim limsupe®log P(d,(F(eW(m)), F(eW)) > §) = —cc. (10)
m—0o0 6—)0

For anyh € H, let h(m) denote the smooth function obtained by linear interpolatioh ofi them-th dyadic
grid and letF (h(m)) be the corresponding smooth rough path.

We will prove that for every > 0,

lim sup d,(F(h(m)), F(h(m))) =0. (11)
m.m' =00 |||y <a

This result gives in particular the existence of a geometric rough Bédihin D, (R?) obtained as the limit in the
dp-variation distance of (h(m)). In the last part of the article we shall identifi() as a triple of integrals.

By means of an extension of the contraction principle (see [7], Theorem 4.2.23), (10), (11) provide a proof of
Theorem 1.

Let us introduce some technicalities to deal with theariation distance,,.

If X,Y arerough paths of degrége], we setforj =1,...,[p], y >0,
e 2 . . P é
_ j J i

n=1 =1

andD; ,(X) = D; ,(X,0).

Owing to results proved in [11] and [4] (see also [15]), for ang 13, 4[, y > p — 1,

dp(X,Y) < Cmax(Dy,p(X,Y), D1, p(X, Y)[D1,p(X) + D1,,(Y)], D2 p(X.Y),
D2 ,(X,Y)[D1,p(X) + D1, ,(Y)], D1,,(X, Y)[ D2,p(X) + D2, ,(V)],
D1, (X, Y)[Dl,,,(X)2 + Dl,,,(Y)Z], D3 (X, Y)). (12)
Therefore, similar arguments as in [12], pp. 273—-274 show that (10) follows from the following statement.

Proposition 2. Let p €11, 4] be such thap H > 1. Then,

(a) Forany j =1, 2, 3, there exists a sequeneg(m) converging to zero as tends to infinity such that for every
q>p,
1 :
(E(Dj.p (Wm). W)"))7 <cjm)g?. (13)
(b) Foranyj = 1,2, there exists a constant such that for every > p,
1 .
SUp(E(D;.p(Wm)"))¥ <cjq. (14)
meN
Proof. We shall denote by a standard normal random variable and observe that, as a consequence of the hyper-

contractivity inequality (see e.g. [10], page 665,|g|‘1)% <(g— 1)%, for anyq € ]2, oo[. Along the proof, for any
n>m,l=1,...,2" we denote by := k(n, m, [) the unique integer ifl, 2, ..., 2"} such that

m n n m
LSt <ty <t (15)



250 A. Millet, M. Sanz-Solé / Ann. I. H. Poincaré — PR 42 (2006) 245-271

First order terms. Let j = 1. From the definition of¥ (m)? it follows easily,
1

oo n 7
Dl,p(W(m),W)=( > nVZ|2’""Az1W—A;1w|P> :
n=m+1 =1

q

As in [12], forg > p andm > 0 setA(m, q) = O no,, 112" (n" Ja,) 77
numberda,,n > 1) to be chosen later.
Holder's inequality yields

=P ..
) » , for some sequence of real positive

0 g 2
E(D1,(W(m). W)") < AGm.q) Y al D E(|2""apw — Afw|?)
n=m+1 =1
X g
<A(m,q)2d)1q% Y af 2'(27ma2maA-H) 4 pmnaHl)
n=m+1

e q
<A(m,q)2d)q% Yy af2"daD, (16)
n=m+1

1 q
Seta, = 2" =47 for somee €10, %(H - %)[; then the seried_, a,; 2"@~H% converges. Fi% > 0 such that
n? < ¢2"P for somec > 0 ande + 8 €10, 3(H — %)[. Then,

1 1 1
A(m, q)d <cr2mH=pmed),

Consequently, syp , A(m, q)% tends to zero as tends to infinity. By virtue of (16), the upper bound (13) for
j =1 holds true.
The proof of (14) forj = 1 is similar. Indeed, proceeding as for the proof of (16), we have

X g
E(D1,(W)?) <A0.q)(2d)7q% Y " af 2", 17)
n=1
Since sup.. , A(0, ¢) < oo, the inequalities (16), (17) yield (14).

Second order terms.Let j =2. Fori =1,..., 2" set
To(n,m, 1) =Wm+ 1 o —Wmp

’Il ,t;l'
Assume firstz < m. Quoting Eq. (20) in [4],
1 2771*)’[1
To(n.m.1) = Do (AR weARTW — AT W @ AL W).
r=2m=n(l—-1)+1
Clearly, To(n,m,1) = 0 for d = 1 and for anyd > 2, all the diagonal componeni(n, m, )" vanish. Hence,
we may assume that> 2 and consider onlyi, j) components with # j. Under these premises, any couple of
random variablea[ ™ Wi, A"*1W/ are independent.
Owing to the hypercontractivity inequality,

(E|Ton,m,1y1|)3 < Cq(E|Tan, m, 1y"1?)?.
Clearly,
E|Ta(n,m, )" > < C(Toa(n, m, )"/ + Taa(n, m, 1)),
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where
n-ny
Tam, ) = Y E|ApEiwiapttw; — aptiw;agttw |
r=2m=n(l—1)+1
n—n)
<C Y E[aptiwiPE|agttwP < czmrzintioy, (18)

r=2m-n(l—1)+1

Lemma 12 in [4] yields

mny
Tos(n.m, 1) < C Z ( Z (7 — )4H 5) —4(m+1)H <C2—i12—4m(H—‘—11). (19)
r=2"""(-1)+1 \r=r+1
Consequently,
N n
(E|Ta(n, m, 11|)7 < Cq2-3272mH~3), (20)

This inequality holds also true far= m. Indeed, using for instance the identities (5) and (6) in [12hfoe n + 1
andm = n, respectively, we obtain

To(n.n.1) = 1(An+l W& AL - AL @ ALTL W),
and therefore,
(E]Tz(n,n,z)ivfﬁ)% <Cq2 2,
Fix M > m. The above inequality (20) and Minkowski’s inequality imply

M-1
Wi <cqzt Y 2N < g2 b, (21)
N=m

— W(m)?

(E|W(M)t21n7 " o

whereC is a constant depending only @h, p andd.
By the construction of the rough path lying abowe a.s.,

lim WG o =Wi
M— o0 -1 -1
Therefore, Fatou’s lemma and (21) yield foK m

1 n
e < Cq2 2272, (22)

(E]Wt]%il’tln - W(m)fl,,f ,

vl
Letm < n; in this case,

W(m)a =221 AP W)®2,

n
1.0

wherek = k(n, m, ) satisfies (15) (see [4], Eq. (17)). By the hypercontractivity property,

1
(E]W(m)inilv )i < cqg2-222mA=D, (23)

'
The previous estimate (22) far= m together with Minkowski’s inequality, imply

(E | th%’il,tl"

1
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With (23) and (24) we obtain fon < n,
2 2 q\1 —2nH
(E[Wg o= W a|")7 < Cq27H. (25)

2 2%
We now proceed in an analogue way as joe 1. Forg > %, setAa(q) = (Yoo 12"(nV/an)24_)Tp for
some positive sequence,, n > 1). By Holder's inequality,

1, (26)

E(Da, (W (m), W)? Az(q)Zan ZE|W(m) v, —Wt?ll’[ln

From (22) and (25), it follows that

m

2 e 2
E(Da,,(W(m), W)?) <CA2(q)qq[Za,f (=D g=2mq(H—3) | > af 2—"(2qH—1>}.
n=1 n=m+1

Notice that, for any €10, 2H — 3,

moog x©
Zanp 21§D p-2ma(H—3) < p—man Za”p 2—nlgRH—n)-1] (27)
n=1 n=1

2
_ _ 141 . . > o . .
Leta, =2 """ #*2%%) withe > 0. Then the serie}’, a,” 2-"14@H-~11 converges. Moreover, this choice
of a, yields
2q—p

o0
2vq __ mpq (_ -2 b
A2(61)=<Zn24p2 z-p ("2 H2H =0 P)> ,

n=1
00 2 00
Z a,’ o—n(2qH-1) _ Z o—nq(n+2€)
n=m+1 n=m+1

Let n, € and § be positive reals such that+ ¢ + 2 < H — %, andn? < C2'%, for someC > 0. Then

1
sup,..z (A2(g))7 < oo and consequently,

1

(E(D2,p(W(m), W)?))s < Cq27™", (28)
proving (13) forj =2
By a similar approach, using the estimate (24), we can prove that
1
(E(D2,,(W)1))7 < Cq.
Thus, (14) forj = 2 holds true.

Third order terms. Finally, let us prove (13) foj = 3. Assume firsk < m;thenforanyl =1, ...,2",

_ W(m)3n n(l+2H)2—m(4H—l). (29)

E|W(m +1)3

Ht

Indeed, fom < m, the inequality is proved in [4], p. 128. Let=m; quoting [4], p. 119, for any > 1, we write

2
Wa+Dh o= D> Wa+D3 i M+W(n+1) pa ®Wr D2 0
14 21 1 1°'k—1 Te—10k
+Wn+D2 G @War+Dl, ). (30)

ho1fe-1 L—1k
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Fix k € {21 — 1, 21}; it is easy to check that for anye [2, c0),

1 1 1
(EIWm+12 a1+ (E[Wn+DL,, al|f)e <Cgqz2-tDH, (31)
h_ph-1 L1
Applying (23) we obtain
1 1
(EIWn+ D20 )+ (EWa+D2% L a|")7 <Cq2- @2, (32)
k—1°Tk 1-1Tk—1
Moreover, for anyn < n,
23(m7n) 3
Wm)h = o (A7 W)=, (33)

with k = k(n, m, [) satisfying (15). SinceW(m)f;,, v belongs to the third order Gaussian chaos, the hypercontrac-
tivity property yields form < n,

1
(E|WomE 7)1 < CqPardnp-anti=D, (34)
From (30)—(32) and (34), we obtain
E|Wn+D] [ <c27o", (35)

This upper bound, together with (34) far=n andq = 2, imply the validity of (29) fom = m
By virtue of the hypercontractivity property and (29) we deduceiferm,

1 3,1 _ _1
(E]W(m+1)l31,,71’ _W(m)te;",l,z;*’q)q < Cqdo Gy m@H—3)

i
Hence, Minkowski’s inequality yields

1
i < ngz—n(%+H)2—m(2H—%)

(ElwD3 . —Wm)d .
1-1°" =171
foranyM > m > n.

We observe that, a.s. lign, oo W (M)3 = Wf; o Therefore, Fatou’s Lemma yields far> n,
1-1°%1

l)l tl
3 3 a\g 3 n(itH)y—m@H-1
(E|Wp o = Wn)p )q < Cq3anGHHIg-m@H—3) (36)
Supposen < n. Applying the previous estimate (36) and (34) with=n, we obtain
3
(E|Wtf_l,tl”

Therefore, using again (34) we deduce#oK n,

1
q)a gcqu—&ll‘['

1
)i <Cqi ¥, (37)

(E | t" t]” 4 (m)

n n
N

p o] (Y % % —p
Forg > 5, let As(q) = (3_,2, 2'(n" Jan)%—7) 7,
mined later. Holder’s inequality yields

wherea, is a sequence of positive numbers to be deter-

on

E (D3, ,(W(m), W)? <A3(q)Zan ZE|W(m) Wi ol

By means of (36), (37) we obtain,

m o
E(Dg,p(W(m), W)‘I) < A3(q)q% (Zanp nq( +H— 1) —mq(2H— 2) + Z n(3qH—1)>'
n=m+1

.&’
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Letn €10, 2H — 1[; clearly,

m 39
Za p 2—"!1( +H—*) mq(2H — 2) < 27man Z P —m{(3H—*—ﬂ)
n=1 n=1

—np(&— ny 1 X . 3 _ _1_
Seta, = 27""37HT3T3) with € > 0. Then the seriey. ™, a,” 27" ~47" converges. Furthermore,

3¢—p
P

o
3yq _ npq -3
= (St scn) 7

n=1
o0 3q
Z a 2—n(BqH-1) _ Z 2—nq(etmn)
n=m+1 n=m+1

Letn >0, € >0 andé$ > 0 be such that 8+ ¢ + n < 3H — % andn” < €28, for someC > 0. Then
sup,..» (As(q))7 < co. Thus,

=

(E(Dap(Wom), W) < Cq27.

proving (13) forj = 3. This concludes the proof of the propositiorn:

In the sequel, we make the conventikiriz, s) = 0 if s > ¢, and therefore write
h(t) = / K (t,s)h(s)ds,

for anyh € H. We denote by - ||» the usual Hilbert norm iL2([0, 1).

Lemma 3. Leth € H andt, ¢’ € [0, 1]. Then
|h(6) = h(@t)] < lIhl2lt — 7. (38)
In particular, for anya > 0,

sup |h(t) —h(t)| <alt — 117, (39)
Al <e

Proof. With the above convention okl and by virtue of Schwarz’s inequality, we have

1 2 1
h(t) — h(t)|* = /(K(z,s)—K(t’,s))h(s)ds <||h||§/(K(t,s)—K(z’,s))zds
0 0
= lRI3EIW, — Wy > = lR131 — 1?2, O

In the remaining part of the sectiol shall denote a fixed elementtt andi(m), m > 1, the function obtained
by linear interpolation of: on them-th dyadic grid(z/" =/27", 1 =0,1,...,2"). That is,h(m)o = 0 and for
el 4",

h(m); = k(1" 1) +2" (1 — /" 1) A]"h. (40)
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We shall quote several times algebraic identities set up in [4] for the procB&ses m > 1, and replacéV (m)
by h(m). Indeed, their proof rely only on the structure of the linear interpolations and not on the probabilistic
properties of the fractional Brownian motion.

Our next purpose is to prove the convergence stated in (11). By the inequality (12), this amounts to prove the
next proposition.

Proposition 4. Let p €11, 4] be such thapH > 1 and« > 0. Then,

(a) Foreveryj =1,2,3,
lim  sup Dj ,(h(m), h(m")) =0. (41)

m.m' =09 |||y <o

(b) Foreveryj =1,2,
sup sup Dj ,(h(m)) < oco. (42)

meN [|h]l3 <o

Proof. First order termsLet j = 1 andk the index satisfying (15). By Lemma 3,

00 2
sup (Dyp(h(m).h)’)= sup Y n? > |[2""Aph— A7h|"
Al <e Ihln<e, S0t 13

o0 n
< Cal Z nY Z(z—mp(H—l)—np + 2—an)
n=m+1 =1
< C(sz—m(pH—l—e)’

with € €]0, pH — 1[. Hence, (41) holds foy = 1.
Similarly, for anye €10, pH — 1],

2/1
sup (Dyp(h)?)= sup ZnVZ|A”h|” oﬂ’ZZ‘”(PH -6 < CaP,

Ihll3<er Illr <o sy

which together with (41) fof = 1 give (42) forj = 1.

Second order terms.Consider now the casg¢ = 2. Assume firstn < n. Following [4], Eq. (17), p. 118 for
w(m) := h(m), and using Lemma 3, we have far< n,

sup |h(m +1)tn w h(m)l,l | < sup (|h(m +1) ,In|)
IAlH <e IhllH<a
< CZZ(m‘")(|(AZ’“h)®2| +[(arm®))
< Co?272H (43)
Notice that we have also proved that for everyg n,
sup |h(m)% ; ln} < Ca?272H, (44)

llAllH <o
From Eq. (19) in [4] p. 118 and Lemma 3, we easily obtain

sup [h(n+D | < Ca2 M,

Ihllr<a
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Thus, the above upper bound (43) holds for anyg .
Suppose now < m. Quoting [4], Eq. (20), p. 118, we write

2m=ny
1
W+ D% 0= hm)f 0= 5 Yo (At e AL — AL ® AYTYR),
k=2m=n(l-1)+1
forany/=1,...,2".
Fix d > 2 and components, j) of the tensor products with=~ j. Clearly,

< C(Ti',j;;,z + Tn{’,iz,z)v

m

[hm + DE" = hm)Z",,

e 111
with
2nn
Tr;jnl = Z A?ktllhiAglthj
k=2m—n(-1)+1

om—nj

11
B // > (K(tr) — K (55 0)) (K (1 s) — K (577, 5)) (DA () ds de | (45)
00 k=2nn(-1+1

Schwarz’s inequality yields

1
2

T < CaZ(T,f;’{Ll(l)JrT,f;ﬁ,,,(Z)) ,

m,n,l =3
where
Zln*nl l 1
W= Y [ - KO0 (k) - K@) s
k=2n—n(-1)+1 00
Zln—nl 1 1
T @= ) (K (t575.1) = K (1575,1))
k,k’:Z”;(;Z/(lfl)Jrl 00
x (K (i3, 1) = K (i 5. 0)) (K (13,7 s) = K (1545.8)) (K (5 5) = K (13s)) ds .
Clearly,
2m—nj
T W= Y ElagtwiPE|agttw, | < cam@H-bon (46)
k=2m—r(-1)+1
Moreover,
2m—nj
Tr:{;/n,l(z) = Z E(Nznktllwi ArznkJ’ill"Vi)E(Ag’jle ArznkJ/erj)-

koK =21 (= 1)1
k<k

Notice that, whenevek < k/, 2(k’ — k) > 2. Hence, applying the upper bound set up in [4], Eq. (29), p. 121, we
obtain
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om—n|
m " 1(2) < C2—4(m+1)H Z | / _ k|4(H—l)

kk'=2m=n(-1)+1
k<k'

2m—n

< C2—4(m+1)H2m—n Z r—4(l—H) < C2—m(4H—1)—n‘ (47)
r=1
From (46), (47), it follows that, ifi < m,

Ca22-mCH-$)—% (48)

Sup [R(m + 1 o —h(m)f o] <
Il < v -

Putting together (43) (valid forn < n) and (48), we obtain

m—1 [}
sup (Daz.p(h(m + 1), h(m))) 2 < Ca? ( 3wy 2n-BgmmetH=p 4 5 nyz—”@f’—l)).

llAllH <« n=1 n=m
Lete €10, pH — 1[. The above estimates show the existence of some positive real ngrnsbeh that

sup Dy ,(h(m+1), h(m)) < Ca?27™P. (49)

Ihlln<a

This yields (41) forj = 2. The proof of (42) forj = 2 is an easy consequence of (49) and (44).

Third order terms. We finally prove (41) forj = 3; note that these terms only appear wlfére]%, %], so that
peB AL
Assume firsin < n. In this case, for any=1, ..., 2" andk satisfying (15)

23(m n)

3
oy | o= = (arn)* (50)
We shall check that
sup |h(m+1) " h(m)tn v, < Col273H, (51)
Il <er v !

Indeed, ifm < n, owing to (50) and Lemma 3,

)

sup |i(m + 1)t,, P h(m)f;n_l’t],, < sup (|a(m+ 1)

lAllH <o Al <o
< Ca32—3m(H—l)—3n < CO(32_3nH.

3
n n
N

Form = n, we write the analogue of (30) witW replaced by:. With Lemma 3, we can check that each term of
the resulting formula is bounded above Gy32-"+13H  Consequently, (51) holds for any < .
Let us now assume < m. We write the identity given in Lemma 11 in [4] with replaced by:. More precisely,

5
|hn + D% o —h(m)}y a[<C Z|I,(m, n, 1),

with

nm.on, D)=y (h(15i55) — (1)) ® (A3 h @ AGFh — MG R @ AR h),
k

Dm,n, 1) =Y (AR @ Apth — A h @ AL R) @ (h(1]') — h(153).
k
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Im,n, )= Apt @ (AT @ AR+ AR @ ALTR),
k
Ism,n, 1) =Y ASF R @ (AL @ A h+ AT h @ AR,
k
Is(m,n,) = (A5 @ AT+ AT @ AL R) @ AR,
k
where the index in the sums runs in the s€”"( — 1) + 1, ...,2""l}. The first two terms above have the
same structure; the last three ones are also similar. They shall be analysed separately.
We start with/1(m, n,1). Notice that ifd = 1, this term vanishes. Moreover, far> 2 only the components
Iy(m, n, )"J with i # j might not vanish.
Leti # j. Clearly,

sup |nGm.n. | < sup sudh(izty) —h(io)[(T,0, + 7).
Al <o lhllg<a & o -

with 7,1/, defined in (45). Then, Lemma 3 together with (46) and (47) yield

SUp |Ia(m, n, 1y | < CaB2m@H-D-nH+) (52)
Il <a

and the same estimate holds for gyp, <, [12(m, n, 1)*""/].
Set
om=nj
_ m+1 m+1 m+1
Jmon = Y Arh@ Apith @ AN,
k=2m—n(1—1)+1
wherea(k), b(k) andc(k) belong toe {2k — 1, 2k} and are such that two out of the three indices agree. Lemma 3
yields

sup ‘J(m, n, l)’ < CoB32mBH-D-n
72l <o

which implies

sup ‘IM(m, n, l)‘ < Ca32 mBH-D-n (53)
Al <o
foranyu =3,4,5.
Since forn < m, 2-m@H+3)=n(H=3) _ o-mBH-D-n _the estimates (52) and (53) imply
sup |h(m+1)3 —hm)3 | < Cal2mGH=Dmn, (54)
]+ < - -

By the very definition ofD3 , (h(m + 1), h(m)) and taking into account the results obtained#oK » in (51)
and form > n in (54), we obtain

m—1 00
P D
D3 (h(m + 1), h(m))? < Ca!’< Y w2 HeD=E :nyz—"U’H—D).
n=1 n=m

Sincep > 3, this yields

sup Dg p(h(m + 1), h(m)) < Ca®27mF,
Il <er

for some reaP > 0. This suffices to establish (41) fgr= 3 and ends the proof of the proposition
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Remark. For H e]%, [, F(W) = (1, W}) is a geometric rough path of roughnesswith pH > 1. The large
deviation principle stated in Theorem 1 also holds for these values of the pararHetard p. Indeed, it is a
consequence of (13) and (41) fpe=1.

3. Geometric rough paths on thereproducing kernel Hilbert space

Proposition 4 implies the existence of a geometric rough path of roughndssany p €11, 4] with pH > 1,
lying aboveh € H. In this section we give a representation of this object in terms of multiple integrals baged on
We start by introducing the type of integrals to be used. They are a sort of deterministic counterpart of the
stochastic integral with respect to the fractional Brownian motion introduced in [1] (see also [2]).
Following [1], for a step functiom : [0, 1] — R we set

1 1 1 2
||so||§<=/so(s)21<<1,s)2ds+/ds(/|<p<r)—<p<s>||1<|(dr,s>> : (55)
0 0 s
t
K*(@l0.0)(s) = p()K (2, 5) + / (¢(r) — @(s)) K (dr, s). (56)

N

Notice that,||¢| x < oo implies|l¢lillx < oo as well, for any: € [0, 1]. We denote by x the completion of
the set€ of step functions ofi0, 1] with respect to the semi-norin || k.

In the sequel, we s&K i) (1) = h(r) for any h € ‘H with representation given in (3) in terms bfe L2([0, 1)).
By Lemma 1 in [1], for any step functiop € £, we have

1 1 1

/ o()h(dr) = / (1) (Ki)(dr) = / K* (@) (0h(r) dr. (57)

0 0 0

Thus, the linear continuous functional— folgo(t)h(dt) defined on-endowed with the topology induced by the
semi-norm|| - | x -taking values irR, can be extended tH ¢ . Hence, we attach a meaning to the indefinite integral
of ¢ € Hg with respect td: € H by means of the formula

t 1

/w(S)h(dS)=/K*(<p1[o,r])(S)h(S)ds. (58)

0 0

The following lemma establishes the existence of the indefinite multiple 1t6—Wiener integral with respect to the
fractional Brownian motion and its continuity. Recall that we Két, s) =0 fors > t.

Proposition 5. Let ¢ be a Holder continuous real-valued function defined[0nl], of order A € (0, 1) with
A+ H > % Theng € Hg and the function — fé ¢(s)h(ds) is Holder continuous of ordeH .

Proof. First we prove thafg| g < oco. Clearly,

1 1

/w(s)zm,s)zds < ||<p||§o/1<<1,s>2ds = [lplI%, < oo
0 0
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1 1

! 2
/ds</|¢(t)_‘/’(s)||K|(dt,s)> gcf
: 0

with [|¢]lcc = SUR¢[0.1) |9 (t)]. Moreover, (5) implies
0

1 2
ds(f 3 _S|/\+H—§ dt) < 00.
s
The two above inequalities yielth || x < oc.

For anym > 1, we consider the step functigr, (s) = 212:1 1A71 (s)e(" 1). Sinceg is Holder continuous,

SuUp  sup|em(s) —g(s)| < C274.
I=1,...2" se A"

Consequently,
1 1
|iﬂwoof|¢m(s) - (p(s)|2K(1,s)2ds <q lim c2-2m f K(1,5)%ds =0.
0 0
Moreover,
M | (om (@) = gm () = (9(1) — ()| < C lim 27" =0,
m—00 m-—0oQ0
and
S§E’| (#m (@) = o ()= (1) — ()| < Clt = 5%,

wheneves € A}, r € A, with |I -] > 1.
Set

1 1 2
1m(§0)=/ dS</|(<pm(t)—<pm(S))—(w(l)—w(S))HKl(dt,S))
0

s

andl,(p) < C Y2, Il () with

om 1 2
I,%(w):Z/ ds(f|(<om<z)—<om(s>)—(¢(t)—<o<s))||K|<dr,s>) :
=1

! 1
om i 2
IZ(p) =Z/ ds(/\cp(r) —cp(s>||1<|<dr,s>) ,
l:lA;n S

2m 2
I,f;(go):Z/ ds(/ \(gom(r)—gom(s))—(w(z)—go(s>)!|1<|(dr,s)> :

=1
1 Al

By the bounded convergence theorem applied first to the integral with respect to the mi&aadire) and then
to the Lebesgue measure, we have,Jim,, I,ﬁ (p)=0.
Moreover,

tm
2" 1 2
IA(p) < CZ/ ds </ It — S|A+Hf% dt) < C2 M@ A2H-1),
=1 .

= m
Al
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Thus, lim,— « 12(¢) = 0.
Since

sup (|gm () — @] + |gm(s) — p(s)]) < €27,
s,t€[0,1]

it follows that

2)71 2
B <c 22*2*'" / ds( / It —s|H3 dt) < C2M@A2H-1)
A Al
and therefore, lij_ o I3 (¢) =0.
Therefore, lim,_, o I, (¢) = 0 and we have thus established that Hg .
Let us now prove the Hoélder continuity of the indefinite integf@o(s)h(ds). Fix 0< 11 <12 < 1. By virtue of
(58) and (56),

173 n

3
/ ¢(s)h(ds) — / p(s)h(ds) =Y Ti(11, 12),
0 0 i=1
with

11 12
Ti(t1, 12) = f dsh(s)< / cp(r)K(dr,s)>,
0

n
7]

To(t1, 12) = / @($)K (t2, $)h(s) ds,

n

15 12
Ts(tl,t2)=/ dsfl(S)(/(w(r)—w(S))K(dn S))-
n

N

Schwarz’s inequality yields

n 12 2\ 1
T3, )| < ||¢||oo||h||z</ds</|K|<dr,s)> )
n

0

Nl

41
< ||‘P||m||k||2</|K(t275) - K(tlvs)|2ds>
0

< llellsollill2ltz — 2] (59)

Similarly,

12 5
|Ta(11, 12)| < ||<P||oo||fl||2</ K(tz,S)zdS) < lelloollhlizltz — 1] (60)
4%

The Holder continuity of the functiop together with the upper bound given in (5), imply
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o tp 2 ;zl
| T3(t1, 12)| <C||h||z(/ds<f |r—s|“”—%dr) ) < Clhl2ltz — n)HH. (61)
S

41
With (59)—(61), we have

7] n

/w(S)h(dS) —/(ﬂ(S)h(dS)

0 0

: H
< C|lhll2lt2 — 1]

This completes the proof of the propositionz

The preceding proposition provides a background to define indefinite iterated integrals with respect to elements
of the reproducing kernel Hilbert space of the fractional Brownian motion, as follows.

Corollary 6. The reproducing kernel Hilbert spadé of the fractional Brownian motion with Hurst parameter
H €13, 3[ is contained inHg. Givenh € H, the indefinite integrah? , := [3 h(s)h(ds) defines aH-Holder

continuous function. Therefore, the functior> h(%t belongs toHk . Thus it can be integrated again with respect
to k. The resulting integral inherits th& -Holder continuity property.

Let ¢ be a measurable Lebesgue integrable function defing@,dn. Forl € {1, ..., 2"}, set
a"(t)=2" / g(s)ds.
AP0,
Consider the linear interpolation af that is the functiork (;m) defined in (40). Obviously,

! [2"]+1 [2"1]+1

/g(s)h(m)(ds): Z a (1) AT h = Z a" (K" — (Kh) (6" 1)) (62)

0 =1 =1
Following the steps of the proof of Lemma 1 in [1], consisting actually into an integration by parts, we obtain

t 1

/g(S)h(m)(dS)=/K(m)*(gl[o,z])(S)fl(S)ds, (63)
0 0
with
[2"t]+1
Km*(elom©) = Y Lan(®)ay K (tf3m11.5)
=1
[2"¢]+1
+ Z Lar(s) Z ap () —a" ) (K (4, s) — K(t]"_1.5)). (64)
=l+1

Notice the similarity between the expressions (64) and (56).

Our nextaim is to prove that lign, o0 fo G (m)(s)h(m)(ds) = [y G(s)h(ds), for the pairsG (m) = h(m), G = h,
andG(m) = fdh(m)(s)h(m)(ds), G = fdh(s)h(ds), respectively. As a consequence we shall obtain in Theorem 9
an integral expression for the geometric rough path lying alhovie basic ingredient of its proof is provided by
the next statement.
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Proposition 7. Let g be air-Hdlder continuous real-valued function defined[Onl], withA + H > % Then, there
exists a constant > 0 such that foran <11 <1 < 1,

7] a1
Susfg(s)h(m)(ds)—/g(s)h(m)(ds) < Cle — 1", (65)
me 0

In particular, each indefinite integrajd g(s)h(m)(ds) defines aH -Holder continuous function.

Proof. Fix m > 1. Assume first that2”t1] = [2"1;], so thatjr — 71| < 27™. Owing to (62),

2 1 17} 1
f g($)h(m)(ds) — f g($)h(m)(ds)| = zm( / g(i’)d’”> f (K (3115 5) — K (tf3n,yy- 5))e(s) ds
0 0 n 0
< lglloollillz2™™H Pty — 1] < Cliz — 1] 7. (66)

Suppose now thdR"t1] < [2"#2]. Then using (62) we have

1
53

/Sj (11, 12, $)h(s) ds
Jj=1lg

2 n

/g(S)h(M)(dS)—/g(S)h(m)(dS)
0 0

)

with

[m
[2M 17141

Si(t1,12,8) = 2" / 8(r)dr)(K(tf421mz1]+1»s)_K(t[m?"tl]’s))’

n

7]
Sa(r1, 12, 5) = (2'" f g(r) dr) (K (tf3n1141:8) = K (t{zm1,): 5))
t[gmlzj
[2"12]
S3(tr12,9) = Y al'(;)ATK(.s),
I=[2"11]4+2

with the convention tha};_, x; = 0if I > J.
The arguments used to prove (66) show that
/S‘, (11, 12, $)h(s) ds

2
>
j=11g

The inequalities (66) and (67) prove (65)[®"1;] = [2"#1] + 1. In order to conclude the proof, assume that
[2"15] > [2"11] + 2 and let us estimat&s (71, 12, 5).

Following again the steps of the proof of Lemma 1 in [1], we deduce k@i, 12, s) = Z?:l S3,j(t1, 12, 8),
with

1
<Clip—n)f. (67)

[2"17]
= m m m .
Sa1(t1.12.8) = Liom, L 165) ) @' @)AK(,s),
I=[2"11]4+2
[2"12]

832(11, 12, 8) = Z Lar (5)a" (DK (1), 5)
I=[2"11]42
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[2"12]-1 [2"12]
S33(tLt2.5)= Y 1A;n<s>< > (a,'r’(rz)—a,’"(rz))A;'ch,s)).

[=[2"11]+2 U'=l+1

Note that this decomposition is similar to that used to prove the Holder regularity of the indefinite stochastic
integral [ ¢ (s)h(ds). Actually, out of the factoh, Ss (11,2, s), j = 1, 2, 3, are the analogue of the integrands of
T;(r1,12), j = 1,2, 3, respectively.

By (5), we have that the function— K (¢, s) is decreasing ois, 1]. Hence, given KX I < J ands <t}" 4,
J
SIAPKC )| =K (. 5) = K(F1.5)].
I=I
Since sup, ;; la;" (1) < llglloo, We have
1 ffomiy 11 z
/ S3.1(11, 12, )h(s) ds| < ||g||oo||h||z< / ds| K (1{3n1,)- 5) = K (311 s)!z)
0 0
Cltfam, — t[’g,,,tl]+1|H <Cltp—11| (68)
and
1 tlygmtzl %
/ S3.2(11, 12, $)h(s) ds| < ||g||oo||h||z< / ds K (3nr,)- s)!z)
0 t[r;”’t11+1
< Cltf3n,, — t["21’77t1]+1|H <Clp—11). (69)

The Holder continuity og implies that fors € A}", r € AJf with [2"n]+2 <1 <1 <[2"12], |a}! (t2) — a;" (t2)| <
C((' —=D27™* < C27™ Lyp—yy1y + Ir — s1* L= 141)). Therefore, sincero — 11| > 27"

1
/53,301, t2,5)h(s) ds
0
[2”’t2 [Egmfz] , 2 7 , 2 %
C||h||2</ds 1A;n(s)(|: / Ir — s* =2 dr:| + |:2_m}‘/|r—s|H_2 dri| ))
(2l 2 i "
‘ [2’"12] ! 2A+2H -1 2H-1 %
C||h||2</ ds 1an (s)[(t['gmtzl - s) + 2_2’")‘(tlm - s) ])
0 =[2m1]+2
1 1 .
< Clhla(lt2 — ta*TH +27mOFHH=D |1, — 1]2) < Clhll2ltp — 1) . (70)

The inequalities (67)—(70) conclude the proof of the propositian.
We next prove the announced result on convergence of integrals.

Proposition 8. Leth = Kh € H, G(m), m > 1, and G be real continuous functions defined @ 1]. Assume that
forany0<rm < <1,
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(i) 1G(r2) — G(r)| < Clrz — 11|,
(i) sup,en |G(m)(t2) — G(m)(11)| < Clta — 11|,
(iii) c(m) :=supco,1;|G(m)(t) — G(t)| - 0, asm — oo.

Then

t t

lim sup /G(m)(s)h(m)(ds)—fG(s)h(ds) -

Mm=>09;¢(0,1]
0 0

Proof. SetAj(r) =2" fAmm[ot G(m)(s)ds. We first prove that

[2"]+1
lim sup /dsh(s)( > Lam (AP (1)K (t{3m, +1,s)) G($)K(t,s)| =
M= tef0,1] -1

Indeed, Schwarz’s mequallty yields

t [2" ]+

/ dshis) > 1Am(s>G(s)( (1. 5) — K (2.5)

0 =1

L ] 2%
||h||z||G||oo<fds D Lan )| K (tfang11.5) — K(t,s>|> <cz i,

=1
Owing to (ii) and (iii),

sup  sup [Gm)(r) — G(s)| < C(27™H + c(m)).
1KIL[2" 1] rse Al

Therefore,
[2"1]
/dsh(S)K( 2y +1, (Z lAm(s)(Am([) Zm/G(s)dr>>‘
=1

A
1
<C(27" 4 c(m)) /}h(s)| |K (t{5ms140- 5) | ds < Cllal2(27" + c(m)).

By (ii) and (iii),
t
sup  |G(s) — 2" / G(m)(r)dr| < C(27™H + c(m) + [|Glloo) < C.
rAEA[z"HH—l o
[2m1]
Hence,
t
(t{%m,m,s)( A»l;m,Hl(s)( / G(m)(r)dr—G(s)))‘

[2m1]

1
< C/ [2”’IJ+1( )‘h(S)HK( [2m14+10 S |dS <c2 M,
0

265

(71)

(72)

(73)

(74)
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With (72)—(74), we have proved (71).
The second step of the proof consists in checking that

lim sup
Mm—>304e[0,1]

/dsh(s)(/ G(r) — G(s))K(dr,s)

|:[2mt] [271]+1

Z Lap(s) Z (A (t) — AT ) (K (7, s) — K ()7, s))])' =0.

1=1 U=I+1
Clearly,

t 1
/dsh(s)(/(c(r) G(5))K (dr, s)) ZR’”(;)
0 N

with
t

RY'(t) = / ds A(s) (/ (G(r) - G(s))K(dr, s)),

Ao y41010.1] s
[277'[] t ‘ t[m

IOEDY /ds Lap (s)h(s)(/(G(r) - G(s))K(dr,s)),
=1 0 s

2
RY (t)—Z f dslAm<s>h(s)( Z / G(r) — G())Ls<r<n K (dr, s)).

=l+1 s

=1
0 )

By virtue of Schwarz’s inequality, assumption (i) and (5) we have

t 2 %
|R’f(t>|<cnh||z( / ds</|r—s|2”3dr)) < Cllhf2272mH.

A’[”Zy,lt 41071 s

Using again (i) and (5) we obtain
t]))l

/(G(r) —G(s))K(dr,s)

N

It follows that

_1
<C@r -5z,

1
sup  sup /(G(r)—G(s))K(dr, 5)| < c2mH=3)
1=1,..., [2’”t]seA’" <

and consequently

2"
‘R?(;)‘ < C2—m(2H—%) Z /dSlAyn (S)‘h(s)’ < C2—m(2H—%)
=1 0

(75)
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Thus we have shown

lim Sup (IRT 0|+ |RF ®)]) =

)ﬂ*)OOt

Therefore, the proof of (75) reduces to that of

o

[2¢] [2"]+1
Z / dslAm(s)Ms)( > < / (G(r) = G())Ls<r<n)

=i+1

lim sup
M= re[0,1]]

m
tl’ 1

— (A @) — A" (z))) K (dr, s)) ‘ =0. (76)
Set
[271]
Ry (1) = Z/dS/K(dr S)h(s)lAm(s)lA”’ (r)[(G(r) G(S))l{s<r<t} (A1+1(t) Am(t))]
I=1}

The Holder continuity ofz together with (5) implies

[2m t] [2)71

> /dsh(s) / K(dr,)(G(r) — G(9))Lis<r<n| < Z /dsh(s) / Ir —s|2H=3dr
=hap ATy
< cnizuzz—’"(”’—?’. (77)
By assumption (i), forany=1, ..., [2"¢] — 1, we have

sup |A" () — A ()| < €27

while for [ = [2"¢],

sup [A71(1) — A7 ()| < C(27" 4+ c(m) + [IGllw) < C
t€[0,1]

Therefore,

[2m1] |

Z/dsh(s) / K(dr,s)(A"1 (1) — A" (1))
l+1

ccomn Z /ds|h(S)|/dr|r—S|H 24C / ds [A(s))| / drir — 5|2

Aﬂ—l Al[g’”z] AEZ’":HI
[2m1-1 , 3
_ . 1 _ . _m _ _
<C2 m”||h||2< Z ds|z" — s = ) + Cllh)227™ 7 < Cllh|p(272@H D 4 27mH), (78)
l:]- A;”

From (77) and (78) we obtain
lim sup |Ry ()| =

m~>oo
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Consequently, it remains to prove that

[2n-1 ¢ !

im sup| Y / dslA;"(S)h(s)< 3 ( / (G) = G)Lyeren

rel01)| 44 0 V=142 An
— (A} (1) — A'(0))) K (dr, s)) | =0. 79)
Set

[2"t]—1 [2™1]

!l/m(t; S, V) = Z Z 1A;" (S)lA;’,’ (}’)((G(f‘) — G(s)) — (A?;l(l) _ A}ﬂ(l‘)))

=1 I'=l142

A simple analysis based on the hypotheses (i)—(iii) gives

sup  |Lan()(G(s) — AT ()| + sup |1A;7(r)(G(r)—A;7(t))|gc(z—mH+c(m)).
1=1,...,[2"t]-1 '=1+2,...,[2"t]

‘Wm (t; s, ”)‘ < C(Z_mH + C(m))l{(s,r)e[o,l]z: s<r}
and therefore,

lim sup sup | Wu(t:s.r)|=0.
M=>001€[0,1] (5,r)€[0,1]2: s<r

Foranyl=1,...,[2"]—-1,I'=1+2,...,[2"¢],
Lap (9)Lan (D|AJ (1) = AT (O] < Clr — 51

Indeed, a change of variables and the assumption (ii) yield

Tap(s)Lam (| A} @) = A" ()| = Lap (s)1am (V)Zm(

/G(m)(u)du—/G(m)(u)du

A AP

I'—I\" "
<C o <Clr—s|”.

)

Hence

Sup|q/m(l; s, V)| <Clr— S|H1{(s,r)e[0,t]2: s<r)e
m>=1

and consequently,

H
SUp SUp (W (55, )| < Clr — 51" 1y eroa2: s<r)-
m>11€[0,1]

The function(s, ) > h(s)|r — S|H1{(s,r)€[0,1]2: s<r} 1S integrable on the s€0, 1]2 with respect to the measure
ds x |K|(dr, s). Hence,

1 1
lim sup /dsh(s)/[((dr,s)llfm(t;s,r):O. (80)
0 0

M—>00,c10.1]
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In order to complete the proof of (79), we must check that

lim sup |RE ()| = (81)

m~>oo

where

[2’”1] 11
RI= Y / s ()1 (5) / KA s) Ly, (D((G0) = G5)) Usrny — (Al (1) — AT'D))).
=1

Fori=1,...,[2"t]—
Iar (9)|G(s) — A ()| = Lap (s)Zm’/(G(m)(u) —G())du| <C(2™ +cm)) < C
A;H
and
Lar()Lam, (MG Ls<<i) — Afny1 (D] < C.

Moreover, given any: €10, H[,

3 2
ds( f |r—s|H_?dr>

U
0 A’[zmzj+1

[2m1+1

m
om -1

m
"gmi—1

_ _1 _1 _1
<C [ sy = B (e = 9" = (=)

0
Uomsy_1
_ 2H—1-2a _
< C2 %m / ds(t["émtJ —s) < Cc22m,
0

Hence fora €10, H[,
RZ(1) < qC|lhl 227"

This clearly implies (81) and concludes the proof of the propositian.

The following theorem gives an integral representation of the geometric roughpath 72, 1) associated
with h e H.

Theorem 9. Leth = Kh be an element of the reproducing kernel Hilbert space of the fractional Brownian motion
with Hurst parametef €13, 3[. Then for every <t,i, j,x € {1,...,d},

2
hJ»J:

5.t

K* (" 110.0) @) (o) ce — 5 R (82)

o\aH

1
o = / K* (g Ljs.0) )R () e — hE5 hEE — hg 2™ (83)
0
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Proof. For simplicity, we shall assumé= 1 and consequently, we remove the indites « .
To prove (82), set; := h andG (m) := h(m). Then owing to (38)G is H-Holder continuous. Suppo$g”s] =
[2"¢]. Then|r — 5] < 27™ and we have

[ (m) (@) — h(m) ()| < €2" )1 —s| < Cle — 51"
Assume[2”s] < [2"¢]. Since
|h(m) (@) — h(m)(s)| < [Rm) (@) — h(m) (t{3n,0) | + [RO0) (1{3n5141) — R0 ()| + [B(t{501) = R (t{5m11) |
the Holder continuity of: yields
sup|h(m)(t) — h(m)(s)| < Clt — s/
meN

Moreover, sup.o 1 [h(m)(t) — h(1)| < c2™H Thus, the assumptions (i)—(iii) of Proposition 8 are satisfied, so
that for everyr € [0, 1], the sequenc(ef0 h(m)(u)h(m)(du), m > 1), converges to
r 1
/h(u)h(du)=f1<*(h1]o,,])(u)h(u)du.
0 0

The construction of the geometric rough path based given in Proposition 4 shows thag’, = fg h(u)h(du).
Then, formula (82) follows from the multiplicative properties of rough paths.

For the proof of (83), we fbxG(-) := h2 andG(m)(-) := h(m)O Corollary 6, Proposition 7 and the results set
up in the first part of this proof show that the assumptions of Proposition 8 hold true. Therefore, for anydixed

[0, 1] the sequence/y /i(m)3 (u)h(m)(du),m > 1) converges tofg h3 (u)h(du) = fo K*(h3 Lj0,r1) u)h(u) du.
By Proposition 4, the limit must coincide Withl%w Then the expression (83) follows from the multiplicative
properties of rough paths.O

Acknowledgements

This paper has been written while the first named author was visiting the Centre de Recerca Matematica in
Bellaterra.

References

[1] E. Alos, O. Mazet, D. Nualart, Stochastic calculus with respect to Gaussian processes, Ann. Probab. 29 (2) (2001) 766—801.
[2] P. Carmona, L. Coutin, G. Montseny, Stochastic integration with respect to fractional Brownian motion, Ann. Inst. H. Poincaré 39 (1)
(2003) 27-68.
[3] M. Capitaine, C. Donati-Martin, The Lévy area process for the free Brownian motion, J. Funct. Anal. 179 (1) (2001) 153-169.
[4] L. Coutin, Z. Qian, Stochastic analysis, rough path analysis and fractional Brownian motions, Probab. Theory Related Fields 122 (2002)
108-140.
[5] L. Decreusefond, S. Ustiinel, Stochastic analysis of the fractional Brownian motion, Potential Anal. 10 (1999) 177-214.
[6] L. Decreusefond, A Skorohod-Stratonovitch integral for the fractional Brownian motion, in: Stochastic Analysis and Related Topics, VII
(Kusadasi, 1998), in: Progr. Probab., vol. 48, Birkhduser Boston, Boston, 2001, pp. 177-198.
[7] A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications, second ed., Appl. Math., vol. 38, Springer-Verlag, 1998.
[8] J.-D. Deuschel, D.W. Stroock, Large Deviations, Pure Appl. Math., vol. 137, Academic Press, 1989.
[9] P. Fritz, N. Victoir, Approximations of the Brownian rough path with applications to stochastic analysis, prepublication, arXiv:
math.PR/0308238, Ann. Inst. H. Poincaré, in press.
[10] M. Ledoux, M. Talagrand, Probability in Banach Spaces, Springer-Verlag, 1991.
[11] M. Ledoux, T. Lyons, Z. Qian, Lévy area of Wiener processes in Banach spaces, Ann. Probab. 30 (2) (2002) 546-578.



A. Millet, M. Sanz-Solé / Ann. |. H. Poincaré — PR 42 (2006) 245-271 271

[12] M. Ledoux, Z. Qian, T. Zhang, Large deviations and support theorem for diffusion processes via rough paths, Stochastic Proccess.
Appl. 102 (2002) 265-283.

[13] A. Lejay, An introduction to rough paths, in: Séminaire de Probabilités XXXVII, in: Lecture Notes in Math., vol. 1832, Springer, Berlin,
2003, pp. 1-59.

[14] T.J. Lyons, Differential equations driven by rough signals, Rev. Mat. Iberoamericana 14 (1998) 215-310.

[15] T. Lyons, Z. Qian, System Control and Rough Paths, Oxford Math. Monographs, Oxford Science Publications, Clarendon Press, Oxford,
2002.

[16] B.B. Mandelbrot, J.W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev. 10 (1968) 422-437.



