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Abstract

In this paper we show how a solution of BSDE can be reflected by a very irreg@ﬂabstacle. We prove that this problem
is equivalent to find the smallegtsupermartingale of BSDE that dominates this obstacle. We then obtain the existence and
uniqueness and continuous dependence theorem for this reflected BSDE. We also consider the problem of existence and unique
ness of reflected BSDE with douhle obstacles, by using a penalization method. A new monotonic limit theorem is developed
to prove the convergence of the penalization sequence, and to prove the existence theorem. We also prove that this reflectec
BSDE with double obstacles is equivalent to a problem of the smaHespermartingale and the larggssubmartingale.
0 2005 Elsevier SAS. All rights reserved.

Résumeé

Dans cet article, nous étudions comment une solution d’'EDSR est réfléchie par un obstacle irrégulier quilestidans
montrons que ce probléme est équivalent a trouver la plus gesitemartingale (og-sursolution) de 'lEDSR qui majore cet
obstacle. Nous obtenons des théorémes d’existence, d’unicité et de dépendance continue pour ce probleme. Nous considéror
aussi l'unicité et I'existence de la solution pour 'EDSR avec deux obstacles par la méthode de pénalisation. Un nouveau
théoreme de limite monotone est développé pour montrer la convergence de la suite pénalisée, et pour obtenir le théoréme
d’existence. Nous montrons aussi que le probleme de 'EDSR avec deux obstacles est équivalent a trouver la phssipetite
martingale et de la plus grangesurmartingale.
0 2005 Elsevier SAS. All rights reserved.
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1. Introduction

El Karoui, Kapoudjian, Pardoux, Peng and Quenez [10] studied the problem of BSDE (backward stochastic
differential equation) with reflection, that is, a standard BSDE with an additional continuous, increasing process
added in this equation to keep the solution above a certain given continuous boundary process. This increasing
process must be chosen in an minimal way so that an integral condition, called Skorohod reflecting condition (cf.
[24]), is satisfied. It was proved in this paper that the solution of the reflected BSDE is the smallest supersolution of
this BSDE that dominates the given boundary process, called lower reflecting obstacle. An important observation
of this paper is that the solution is the value function of an optimal stopping problem. Cvitanic and Karaztas
(1996) [4] generalized the above results to the case of two reflecting obstacles: the solution of the BSDE has to
remain between two prescribed continuous proceSsasd L, called lower and upper obstacle, respectively. Two
continuous increasing processes was introduced in this reflected BSDE in order to force the solution to stay the
region enveloped by the lower reflecting obstakland the upper reflecting obstadle Two Skorohod conditions
are needed for the lower boundaktyand the upper boundary. They also established the connection of this
problem and that of Dynkin games. We refer to [8,2,18,3,9,1,17,13] for interesting research works in this domain.

The advantage of introducing the above Skorohod condition is that it possesses a very interesting coercive
structure that permits us to obtain many useful properties such as uniqueness, continuous dependence theories ar
other kind of regularities. It turns out to be a powerful tool to obtain the regularity properties of the corresponding
solutions of PDE with obstacle such as free boundary PDE.

We recall that, when the lower boundakyis only anL2-process, Peng [2] proved the existence of the smallest
supersolution of BSDE with prescribed terminal condition that dominated tidind then applied this result to
prove the a nonlinear decomposition of Doob—Meyer’s type, i.@s;sapermartingale is g-supersolution. An
interesting question is: in this situation, can we prove that this smallest supermartingale is the solution of the
reflected BSDE with the lower obstadl€ In other words, can we find a new formulation of the Skorohod reflecting
condition that characterizes this smallest solution? In the case whéw@s cadlag (right continuous with lift
limit) paths, a generalized Skorohod condition, similar to the original one, was given by Hamadene [12] and then,
explicitly, by Lepeltier and Xu [16]. But their formulation cannot be applied to hércase. In this paper we
will give a generalized formulation of the Skorohod reflecting condition (see (7)) and then characterize the above
smallestg-supermartingale as the unique solution of the related reflected BSDE.

We will also use this formulation to characterize the problem of BSDE with two refledtfagbstacles’
andU . For this purpose we first need to use a penalization method to prove the existence of the reflected solution.
This is a constructive method in the sense that the solution of the reflected BSDE is proved to be the limit of
a sequence of solutions of standard BSDESs called penalized BSDEs. Our penalization schemes might be useful
since many numerical methods have been developed for these standard BSDESs (see our comments in Section 5 an
Section 6.2). To prove the convergence, a new monotonic limit theorem, which generalizes a useful tool initially
introduced in Peng [21], is developed. We also refer to [23,22,20,14,5] for some related studies on this subject.

The paper is organized as follows: In the next section, we state our main problems of the reflected BSDE, in
Definition 2.2 for oneL2-obstacle and in Definition 2.3 for twh2-obstacles. Both definitions will use the gen-
eralized notion of Skorohod reflecting conditions. We also present the notigrsopersolutions. It will play a
crucial role in this paper. The results of existence and uniqueness of these reflected BSDE and their equivalences
to the corresponding-supersolutions are given in Theorem 2.1 and Theorem 2.3. We also use these new formu-
lation to prove the continuous dependence theorems. In Section 3 we will develop a monotonic limit theorem, i.e.,
Theorem 3.1 which is important in the proof of the existence part of Theorem 2.3 as well as in the proofs of the
convergence our penalized BSDE schemes given in Section 5 and 6. In Section 4, we first present the results of
existence of the smallegtsupersolution that dominates the procedsy a penalization method of BSDE. Then we
will prove the equivalence of the smallessupersolution that dominatésand the solution of the reflected BSDE
with the obstacld.. This equivalence leads automatically the existence of the solution of the reflected BSDE with
the lower obstaclé.. To prove the existence of a solution of the reflected BSDE with two obstacles, we introduce a
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penalization scheme in Section 5 and give several important estimates. After these preparation, in Subsection 6.1
we will prove the existence of the reflected BSDE with tivb-obstacles using the convergence of our penalized
BSDEs. Subsection 6.2 is devoted to provide a direct penalization approach which is numerically more realistic.

The results of this paper can be regarded as a kind of nonlinear decomposition theorems (cf. [7,6]) of Doob—
Meyer’s type with a Brownian filtration (see Remark 2.2). It can be generalized to a more general filtration, using
the existing results of BSDE with more general filtrations.

2. Statements and main results of reflected BSDE
2.1. Notations and preliminaries

On a given complete probability space, F, P), let (B;, t > 0) be a standard-dimensional Brownian motion
defined on a finite intervdld, T'], and denote by = {F;}o<,<r the augmentation of the natural filtratiéi¥ =
{FBYo<i<r with FB :=o{B,; 0< s <t}, generated bys. The Euclidean norm of an elemente R™ will be
denoted byx|. We shall need the following notations. For eack: 1 andr € [0, T'], let us introduce the following
spaces:

o LP(Fy; R™) :={&:2 — R™, F;-measurable random variablgsvith E[|£]7] < oo};

o L7.(0.1; R™):={¢:£2 x [0,1] > R™; F-predictable processes wili [5 |¢;|7dt < oo};

. Dé,’_.(o, t; R™) :={¢p e Lpf(o, t; R™); F-progressively measurable cadlag processes with
E[suphc,<q 19?1 < oo}

In the real-value case, i.en, = 1, they will be simply denoted bg? (F;), Lf;(O, 1) andDé’r(O, t), respectively. We
are mainly interested in the cape= 2.
We shall denote b theo-algebra of predictable sets|if, T] x £2.

2.2. Reflected BSDE with oi€-obstacle

In this whole paperg : [0, T] x 22 x R x R — R is a givenP x B(R) x B(R?)-measurable function. It satisfies
the following standard condition (cf. Pardoux and Peng [19]:

T
E/|g(t,a),0, O)|2dt<oo, 1)
0

|g(t, @, y1,21) — g(t, @, y2,22)| <k(ly1 — yol + |z1 — z2])
V(t,w) €[0,T] x £2, y1, y2inR, z1,z2in RY, 2)
for some given constatte (0, c0).
The following definition ofg-supersolution is a notion parallel to that in PDE theory.

Definition 2.1 (g-supersolution, cf. El Karoui, Peng and Queri@Z] and Peng21]). We say a triple

(Y,Z,V) e D%(0,T) x L%(0,T; RY) x D%(0, T)
is ag-supersolution (resg-subsolution) ifV is an increasing process lhﬁr(o, T)

T T

Yt=YT+/g(57 Yqu)dS-l-VT—Vr—/stBm 1€[0,T]. 3)

t t
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We observe that if botly, Z, V) and(Y, Z’, V') satisfy (3), then we havg = Z’ andV = V’. For this reason we
often simply callY a g-supersolution.

Remark 2.1.We also observe that, givéne L2(Fr) andV € D2%(0, T), there exists a unique solutidii, Z)
D2.(0,T) x L%(0, T; R?) of (3). This equivalent to solve

(Y,Z)=(Y +V,Z) € D0, T) x L%(0, T; RY)

of the following standard BSDE (cf. Pardoux and Peng [19])

T T

?,=§+/g(s,?s—VS,Z)ds—/ZdBS. (4)

t t

Remark 2.2.1n Peng [21], we have obtained the following resultis a g-supersolution if and only if it is &-
supermartingale (a-supermartingale is defined similarly as a classical supermartingale in which we use a notion
of nonlinear expectations, callgdexpectations, in the place of the classical linear expectations). It is a nonlinear
version of decomposition theorems of Doob—Meyer’s type. The increasing pracemsesponds the one in the
classical supermartingale (see, e.g., [6,7,15]). In this paper we consider a nonlinear version of decompositions of
supermartingales and semimartingales.

We will first consider a reflected BSDE with a lowEf-obstacled.. We assume that

Lel%(0,T), &elLXFr) and E[ess sup(L,*)Z] <400, Ly<E, as. (5)
o<i<T

Let us now introduce our generalized notion of RBSWIEh a single lower obstaclé.

Definition 2.2. Let & be a given random variable ih%(F7) and g:[0, 7] x 2 x R x RY — R be a given
P x B(R) x B(R?)-measurable function satisfying (1) and (2). A trigke Z, A) € D%.(0, T) x L%(0, T; R) x
D2.(0,T) is called a solution of RBSDE with a lower obstadles L2-(0, T') and terminal conditio§ € L?(Fr)
if
() (Y, Z, A) is ag-supersolution with ofi0, 7] with Y7 =&, i.e.
T T
Yz=§+/g(S,Ys,Zs)dS+AT—Az—/zsst, (6)

t t

(i) Y dominated.,i.e.,Y; > L;, a.s.a.e.;
(iii) The following (generalized) Skorohod condition (cf. [24]) holds:

T
/(Ys_ — LY )dA;=0, as. VL*e sz(o, T)stL;<L;<Y;, as., ae. @
0

The difference between the above definition and those of [10], with a continuous obstacle, and in [12,16], with
a cadlag obstacle, is in the Skorohod condition (iii). The following simple result linkes their notions and the ours.
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Proposition 2.1. If we assume further more that D}(O, T), then a triple (Y, Z, A) € sz(o, T) x
Lé(o, T:R%) x D%(O, T) is a solution of RBSDE with lower reflecting obstadleand terminal condition
& € L%(Fr) if and only if it satisfies the above conditiofis (i) and the following Skorohod condition

T
/(Y _—L; )dA, =0, as. (8)
0

Proof. (7) = (8) is obvious. To prove (8} (7), we only need to observe that, for edche D2.(0, T) such that
L; < L} <Yy, we have

T T
O< /(Y - L:(_)dAs < /(Yx— - Ls—)dAs =0. D
0 0

Remark 2.3.From the above definitiorY, is ag-supersolution that dominatés One may guess that thisis, in
fact, the smallesg-supersolution that dominatés Indeed, we have

Theorem 2.1.We assume that lower obstaclee L%E(O, T) and &€ € L2(Fr) satisfy (5). Then there exists a
unigue solution(Y, Z, A) of RBSDEwith the lower obstaclé. and the terminal conditioy; = £. MoreoverY is
the smallesg-supersolution that dominatdswith terminal conditionty = &.

The proof of the existence will be given in Section 4. As we mentioned in the introduction, our formulation
of the reflected BSDE permits us to derive easily the following continuous dependence theorem. This result also
implies the proof of the uniqueness in Theorem 2.1.

Proposition 2.2.We assume that lower obstadles L2.(0, T) satisfies(5). Letgi € L0, T) and&’ € L3(Fr),
i =12, begiven. Lety’, Z', A") be the squtiqn of RBSDEs With lower obstaklgerminal conditiort’ and the
following coefficientsg' (, y, z) = g(t, v, 2) + ¢' (¢), i.e., they areg’ -supersolutions of the following forms
T T
Y, =&+ f [g(s, Y], ZDyds + ¢i]ds + Al — Al — / Z! dB, 9)
1 t
and satisfy(7). Then we have
T

E[ sup v}~ v2?+ sup |A}—A?|2]+E[/|Z}—Zf|2}dr
0<I<T 0<I<T J
T
<CE[|51—52|2+ / |<p3—¢§|2ds}, (10)
0

where the constant depends only off and the Lipschitz constaitof g, given in(2).

~

Proof. By settingY = Y1 —¥2, Z=27'—72 A=A — A2 £ =£1—£2 5 =g(s, YL, ZY) — g(s, Y2, Z?) and
¢ = @1 — 92, we have
T T
To=t+ [l6+oads+dr -4 - [ Z.ds. (12)
t

t
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Their jumps satisiAY = —AA. Apply Itd's rule to|Y, |2, we have

T T T T
Tl [ Zee+ Y @h?=E42[T@rad2[Todi-2[%Zds. @
t

1<s<T t t t

We setL} := Y} A Y2, Itis clear thatL* € D%.(0,T) satisfy L, < L} < Y/, a.e., a.si = 1,2. Thanks to the
generalized Skorohod condition (7), we have

T T
/(Ysl_ —Ly_)dA} = /(Yf_ — Ly )dAZ=0.
0 0

The third term of the right hand of (12) is dominated by 0 since
T T T T T
/2_ dA, = /(YS{ — L )dAl+ /(L*f, —Y?)dAl+ /(YS{ — L )dA% + /(Lt —vl)da2
0 0 0 0 0

It follows that
T T T

|2|2+/|Z|2ds+ 3 <AAS>2<§2+/?S<§S+@>ds—2/?S-Zst. (13)

1 t<s<T t t
By Lipschitz condition ofg, we havelg,| < k(|Ys| + | Z]). Thus

T
~ 1 —~ ~
|Yz|2+(1—5>/|zs|2ds+ D (Ad)?
t

t<s<T
T T T
£12 2 v 2 1 A2 vy .7
ST+ @k +ak®+B) [ 1Yl dS+E lgs|“ds —2 | ¥ - Z; dBs. (14)
t t t

Seta =2, 8 =1, it follows that
T T
E[|Y,1%] < E[E3) + (2K + 2% + 1)E/ Y, |%ds + E/ |¢s] ds.
t t
It then follows from Gronwell's inequality that

T
E[IV] < C<E[§Z] - E/ |¢Js|2ds>.
t
We thus have

T T
E[IT:2] + E[/ |Z|2ds} < c(E[éz] + Ef Isﬁslzds)
0 0

With this estimate and using Burkholder-Davis—-Gundy inequality to (13), we deduce the estimate for
E[sup |Y;|?|] in (10). Then, using again Burkholder-Davis—Gundy inequality to (11), we deduce the estimate
for E[sup |A;?]]. O
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The uniqueness part in Theorem 2.1 is proved by setting £2 = &, 1 = 92 = 0. We also have the following
estimate:

Theorem 2.2.We assume thgte L2(Fr) and the lower obstaclé € LZF(O, T) satisfieg5). Let(Y, Z, A) be the
solution ofRBSDEwith the coefficieng, the terminal conditior§ and the lower obstaclé. Then we have

T

T
E[ sup |Y;]°+ sup |A,|2]+E[f|z,|2dt] <CE|:|§|2+ |g(5,0,0)[7ds + sup (Lf)2:|.
0<t<T 0<t<T 4 4 0<t<T

Since the proof is similar to the previous one. We omit it.
2.3. Reflected BSDE with twc?-obstacles

We now consider a BSDE reflected between a lower obstdckasd a upper obstacle whereL andU are
L2-processes. We still make the usual condition (1) and (2) for the coeffigidiite obstacles satisfy the following
assumptions

(H) L,U eL%(0, T) with
E[ess sup(L;” )2] + E[ess sup(Uf)z] <+oo, Lyr<&<Ur, as. (15)
0<I<T 0<i<T
and there exists a proces§ = Xo + A? — K2 + [ 22dB,,0 <t < T with Z% e L2.(0,7), A%, K% ¢
D3.(0, T, such thatA® and K © are increasing witi§ = K§ = 0 and such that

L;<X;<U;, a.e.,as. (16)
The formulation of the RBSDE with twh?-obstacles is as follows.

Definition 2.3. A solution of BSDE reflected between a lower obstatle L%_.(O, T) and an upper obstacle
Ue fLyz_f(O, T) with parametersé, g) is a quadrupleY, Z, A, K) € D%.(0,T) x L%(0, T; R?) x (D%(0, T))?
satisfying

(i) A, K areincreasing:d >0, dK > 0;
(i) (¥, Z) solves the following BSDE ofD, T']:

T T
Yt:s‘f‘/g(S,YSst)dS"‘AT—At—(KT—Kt)—/stBs; (17)
t t

(i) L, <Y, <U; a.e.as.
(iv) (Generalized) Skorohod condition: for eath, U* € sz(o, T)suchthatl, <L} <Y, <Uf<U; ae.as,

we have
T T
/(Y _—L*)dA, = f(YS_ —-U¥)dK;=0, as. (18)
0 0

For this reflected BSDE, we have the following main result of existence and uniqueness:
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Theorem 2.3.We make assumptioris5) and (16) of (H). Then there exists at least one solutidf) Z, A, K) of

RBSDEIn the sense of DefinitioR.3. The solution is unique in the following sende(Y’, Z’, A’, K') is another

solution, thert, =Y;, Z, = Z,;, andA; — K, = A, — K;,Vr € [0, T], a.s.

Example 2.1.The following example shows that, while the uniqueness is trué¥for), but not for(A, K).
LtEUtEO, g(tvyaZ)E()’ EZO

In this case it is clear that, = 0 is the uniquez-solution such that; < Y; < U;, a.e., a.s. Thu§l;, Z;, A, K;) =

(0,0,0,0). They satisfies (i)—(iv) of Definition 2.3. BUt;, Z;, A, K;) = (0, 0, ¢, t) also satisfies (i)—(iv).

Remark 2.4.1t is easy to check that the assumption (5) for RBSDE with one obstacle, as well as (15) and (16)
in (H) for RBSDE with two obstacles, are also necessary for the existence of the related RBSDE.

The uniqueness part of proof of Theorem 2.3 is a simple consequence of the following continuous dependence
theorem, which once more, shows that our new Skorohod condition (18) is a very useful formulation.

Theorem 2.4.We make assumptiond5) and (16) of (H). For i = 1,2, let (Y, Z!, Al K') € sz(o, T) x
L2.(0,T; R?) x D%(0, T) x D%(0, T) be the solutions of thRBSDE

dy; = [g(t, Y}, Z}) + ¢ | dt + dA! — dK! — Z! dB,,

. ‘ (19)

Yi=¢, i=12,
with two obstacled., U < L%(O, T), i.e., in the sense of Definitich3(i)—(iv). Then we have
T
E[ sup v}~ v2?|+E[ sup 1o} a2 (K} - KDP]+ E[f 1z} - Z?|2dt]
0<t<T 0<t<T 0
T
<CE[|51—52|2+ / |¢3—w§|2ds}, (20)
0

the constanC depends only on the Lipschitz constang@nd T .

~

Proof. WesetY =Y — Y2, Z=271-272, A=A'— A2, K =K' — K2, £ =£1 — £2 andg, = g(s. Y1, Z1) —
g(s,Y2,72), § = ¢ — ¢?, in following
T T
2=é+/[§s+@s]ds+AT—A,—(@—IZ)—/ZdBS. (21)
t t
ObviouslyAY = AK — AA. Apply Itd’s formula to|Y; |2, then
T
|?z|2+/|2~|2ds + Y (AK, — AAy)?
t t<s<T
T T T T
=|§|2+2f?s(§s+</3s)ds+2/i.,dAS —2/2,d1§ —Z/ﬁ-Zst. (22)

t t t t
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We defineL; = ¥} A Y2 andU; = Y} v Y2, it's clear thatL*, U* € D0, T) andL, < L} < ¥/ < U} < U;,. By
the Generalized Skorohod condition (iv) of Definition 2.3, we have

T T
/(Y}_ — L )dAl= /(Yf_ —L* )dA?=0,
t t

T T
Jat —unai= [0 —v)a?=o
t t

Thus for the two last terms in (22), we have

T T T T T
[Fedio= [ok - paats i -v2yaats [0z —1ihaa? [ -vbaat<o
t t t t t
and, similarly,/” ¥, dK > 0. Applying these two inequalities to (22) yields

T T T
|2F+/\ZF%+—}:<AEy—A&F<52+;/ﬁ@y+@nk—g/2-de. (23)
Yy 1<s<T 1 !

We now arrive to a position similar to that of (13) in the proof of Theorem 2.2. We then can analogously obtain (20)
by using Gronwall’s inequality and Burkholder—Davis—Gundy inequalitya

3. A generalized monotonic limit theorem for It processes

In this section, we will develop a new convergence theorem for a monotonic sequence of Itd processes. It is a
generalized version of a monotonic limit theorem obtained in Peng [21] (Theorem 2.1 of [21]). In Section 6, we
will use this result to prove the existence part of Theorem 2.3 for reflected BSDE with two obstacles.

We consider the following sequence of 1td processes

t t
ﬁ:%+/gm—4+ﬂ+/dwhi=LL“. (24)
0 0

Here, for eachi, the processes’ € sz(o, T)andA!, K’ € D%(O, T) are given(A’, K')?°, satisfy

(h1) A’ is continuous and increasing such tidt= 0 andE[(A}.)?] < oo;
(h2) K' is increasing withK, = 0;

(h3) K/ —K! > K — K, VO<s <t <T,as.Vi<j

(h4) Foreach € [0, T], K] 7 K, , with E[K2] < oo.

For (y', g',2))%,, we assume

(i) (g, 232, weakly converges teg®, z) in LZ(0, T; R x RY),

‘ 25
(i) (y));2, increasingly converges up t@,) with E[supy¢, <7 1y:14] < oo. (25)
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Itis clear that

() Elsupc,<r YiP1I<C,

. 26
(i) E [y Iyi = yi|?ds — 0, (26)
where the constant is independent of.
Remark 3.1.1t is easy to check that the limit of {yi};?il is the following form of Ité processes
t t
yz=yo+/g§’ds—Az+Kz+/zsst, (27)

0 0

where A, is the weak limit inA! in L2(Fr). In general, we cannot prove the strong convergenc{ei(});fil in
sz(o, T;R%). But as in Peng [21], we can prove that the convergence holds in some stronger sense: for each
p €11, 2), {z'} converges strongly i.’-(0, T'; R).

Our monotonicity limit theorem is as following.

Theorem 3.1.We assume that the sequence of 1td proceg@®ssatisfieghl)—(h4) (26) and (25). Then the limit
y of {y"}?il has a form(27), whereA and K are increasing processes me(o, T). Here, for eachr € [0, T], A;
(resp.K;) is the weakresp. strong limit of {Aﬁ};’il (resp.{K;'};?il) in L2(Fr). Furthermore, for any € [0, 2),
{z'}2, strongly converges toin L7.(0, T,R%), i.e.,

T
lim E / 2 —2,”ds =0, (28)
11— 00
0
If furthermore(A,);¢(0,7] is continuous, then we have
T
lim E/ Izi — z;]?ds =0. (29)
1—> 00
0
Remark 3.2. A special situation of the above theorem is whigh=0,i = 1,2, ..., and thusk, = 0. This result

was obtained in [21]. This special case will be also applied in this paper.

The following two easy lemmas is applied to prove tHatk and thusy are cadlag processes. We omit the
proofs.

Lemma 3.1.Let {x"(-)}?i1 be a sequence of (deterministic) cadlag processes defing@ @1 that increasingly
converges to(-) such that, for each € [0, 7], andi = 1,2, ..., x'(r) < xt1(r), with x(t) = b(r) — a(t), where
b(-) is an cadlag process and(-) is an increasing process wih(0) = 0 anda(T) < co. Thenx(-) anda(-) are
also cadlag processes.

Lemma 3.2.Let {a’(r), 0< ¢ < T}2, be a sequence aideterministig cadlag (resp. caglagl and increasing
processes defined ¢@, 7'] such that, for each € [0, T'], a’(r) / a(t) < oo and such that/ (r) —a' (1) < a’ (') —
a'(t"), foreachj >i and0 < ¢ <+ < T. Then the limitz(-) is also a cadlagresp. caglag process.
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Proof of Theorem 3.1. Since{g’}°, and{z}3°; weakly converge tg@° andz in L2.(0, T) and L3-(0, T; RY),
respectively, ancﬂK;'}l?’il converges up t&, in L2(F;), thus, for each stopping time< T, the following weak
convergence holds ih2(F).

T T T T
/Zést—\/zsst, /g;:ds—\/g?ds, Ki —~ K.
0 0 0 0

Since

A= —sisb+ Kt [+ [cian,
0

thus we also have the weak convergencear;):

T T
Ai_\AT::_yr+yO+Kr+/g§)ds+/zsd3s-
0 0

ObvioustE[A ] < co. For any two stopping times < < T, we haveA, < A, sinceAl < AL. From this it
follows thatA is an increasing process. Moreover, from Lemmas 3.1 andk3.2,andy are cadlag thus has a
form of (27). Our key point is to show th#t'}°°; converges ta in the strong sense of (28). In order to prove this

we apply 1td’s formula tay! — y,)? on each given subintervéd, t]. Here 0< o < v < T are two stopping times.
Observe that\y, = A(K; — Ay), Ay, AK’ We have

Ely! —yo|2+E/|z§l—zs|2ds

=Eli—y2—E Y (AA — K +K]) —ZE/(ys yo)(gh—g?)ds

te(o,1]

+2E f (v — yo)dAl — 2E f (v — yy_) dA, — 2E / O — ) d(K — k)

(o,7] (o,7] (o,7]

=El! —y:P+E Y [(AA)2— (AK, — AK])?] 2E/(ys yo)(gh — g9 ds

te(o,1]
+2E f (i — yo) dA — 2E / (i — yo) dA, — 2E / i — ) (K] — Ky).
(o,7] (o,7] (o,7]
Sincef(ggt](y;' — y5)dAL <0 and—2E f(m](y;'_ —ys-)d(K! — K;) <0, we then have

T

E/|z§—zs|2ds<E|yi—yT|2+E > Al

o te(o,1]

+2E/|yv wllg - gv|ds+2Ef|yg ¥ dAy. (30)

(0,7]
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Now we are in the same position as in that of proof of Theorem 2.1 of Peng [21] (see the first inequality in page 483,
see also [22]). Thus we can follow that proof to prove (28) and (29).

4. The proof of Theorem 2.1 through equivalence between the smallegtsupersolution and the related
RBSDE

Theorem 2.1 is an easy consequence of Theorem 4.1 of this section in which the following equivalence is given:
Atriple (Y, Z, A) is the solution of RBSDE if and only if it is the related smallgstupersolution. Using this result
and the existence of the smallgssupersolution given in Proposition 4.2, we then obtain the proof. We first claim

Proposition 4.1.We assume that lower obstadle= L?E(O, T) satisfies(5). Let the functiorg satisfy(1) and (2).
For a given procesg € D%(O, T) with Y7 = & € L?(Fr), the following claims are equivalent

(a) Y is the smallesg-supersolution that dominatds,
(b) foreachL* e D%(O, T)suchthatt; > L} > L,,a.e., a.s.Y is the smallesg-supersolution that dominatds".

Proof. (a)= (b) is obvious. _ .
(b)= (a): LetY € D}E(O, T) be the smallest-supersolution that dominatéswith Y = &. ThenY; > Y; > L,,
a.e., a.s. Thu¥ is the smallest-supersolution that dominatés i.e.,Y, = ¥;, V¢, a.s. O

We now give the existence theorem of the smalgesolution that dominatek. This theorem is proved in [10]
for the situation wheré. has continuous paths. The case thl@L%_-(O, T) is a special situation of Theorem 4.2
in Peng [21]. This theorem claims the existence of the smailssipersolution(Y, Z) subject to the constraint

o(t,Y,Z,)=0, a.e.,as., (31)

where the functiond : 2 x [0, T] x R x R? — [0, oo) satisfies the same assumptions (1) and (2)sfdn this
paper we are only interested in the constraipt L, or equivalently,
®(t,y,2):=(—L)" =0. (32)
The main idea of the proof is to introduce the following so-called penalized BSDE, which will be frequently used
in this paper,
T T
Y'=¢ +/g(s, Y!',Z)ds + AT — A} — / Z} dBy,
t t
t

A} ::n/(;b(s Y!, ZY)ds.

s Lgo

(33)

0

By comparison theorem of BSDE' < Y"1t €10, T], a.s. Asp — oo, the limit is the smallesg-supersolution:

T T

Yl=§+/g(S7YS7ZS)dS+AT_Af_/.ZSstv (34)
t t

®(1,Y,,2)=0, ae,asAeD%0,T), dA, >0 (35)

More precisely, Theorem 4.2 of Peng [21] claims:
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Proposition 4.2.Let the functiong satisfy (1), (2). We also assume that there existg-aupersolution(Y*, Z*)
constrained byo (¢, Y/, Z}) = 0 with terminal conditioné e L?(Fr). Then the smallesg- supersolutionY €
(0 T) constrained by31) with terminal conditiorg exists. Itis the solution of BSOB4), whereA € D2 +(0,T)

is an increasing process. Moreovér, Z, A) is the limit of the sequence of penalized BSE in the followmg
sense, for each fixed e [1, 2),

E [ (Y =Y, 2412} — Z,|P)dt — O,

E g (2} — Z)g dt — 0, ¥ e L%(0,T; RY), (36)

E[(A? —A)X]—0, Vie L%(Fr), vVt (stopping time.

Remark 4.1.The above convergence also imply the boundedness:

o<r<T

E[ sup |Y”|2 +E|:/|Z"| dti|+E[(A 2] < (37)

where the constar@ does not depends on
With this theorem we can obtain the existence of the smajtestpersolution that dominatds

Proposition 4.3.Let the functiong satisfy (1), (2) and let the lower obstaclé satisfies(5). Then the smallest
g-supersolutiont € D2 %(0, T) that dominated. with terminal conditior¢ exists. It is the solution of BSD@4)

with the constraintd deflned in(32), whereA € D3 %(0, T) is the corresponding increasing process. Moreover,
(Y, Z, A) is the limit of the sequence of penalized BSIE in the sense of36).

Proof. Thisis a simple corollary of Proposition 4.2 fé1(z, y, z) = (y — L;)~. We only need to check the existence
of a g-supersolutiory* with terminal conditiony’; = & such thatY;* — L;)~ = 0. By (5), we have

¢ = max{ess sup Lylis<1y, g} e L2(Fr).
s€[0,T)
Let (Y*, Z*) be the solution of the following BSDE
T T
Yi=¢ +/ lg(s, Y}, Z)|ds — / Z*dBy.
1 13
Itis easy to check thdt* > E[¢|F;] > L,. We then define an increasing processe sz(o, T) by
t
Af = /(Ig(s Y ZH| - g(s, Y, ZH) ds + (& — &)=y
0
The abover* is ag-supersolution that dominatds
T T
Y =&+ Ak — A} —l—/g(s, Y¥, ZF)ds —/Z;“dBS, tel0,T]. O
t t

With the above existence theorem of the smaljestipersolution, the existence and uniqueness of RBSDE with
single obstacld. is merely a simple consequence of the following properties. As a main result, we will give the
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equivalence between the smallgssupersolution dominated by and RBSDE with lower obstacle. First we
consider a simple case.
Let/ e D%(O, T) be a given process. For the caggr) = 0, agg-supersolutiort e sz(o, T) that dominates
1 € D%(0,T) with Y7 = & € L?(Fr) is simply defined by
T
Yl‘ Zg + AT - At - f ZS st, Yt 2 lt’ Vt € [0, T], a.s. (38)
t

whereZ e sz(o, T;R%) andA e D%(O, T) is an increasing process withg = 0. ThusY is a merely a super-
martingale that dominatéon [0, T'] with Y7 = £. We need the following result:

Lemma 4.1.LetY € sz(o, T) be the smallesgo-supersolution that dominatdswith Y = &. Then for each
stopping timer < T, we have

Yoo =Y Vi, (39)
Consequently
> - -1 )(A—A_)=0, as. (40)
0<t<T

Proof. For any stopping times, t € 7p such that < r, we denote by/, , the set of stopping times € 7o such
thato < p < . We define

Y, 1= €SS SUPE[lo Lo <1} + £ Ljo=1y| F1].
oeT;
It is known thatY is the smallest supermartingale that dominates [0, 7'] with Y7 = &. Thus we havel =Y.
Moreover, for each stopping timee 7o, Y € sz(o, T) is also the smallegfp-supersolution ofi0, 7] that domi-
nated with terminal conditiont, . We then can derive (39) by

Y, =ess SUPE[ls1ig<r) + Y Lio=r}| F7].

UEIZ;,'{

ButY,_ > [,_ impliesY,_ =Y, and thusA; = A,_. We then have (40). O

With the existence result of the smallgstsupermartingale given Proposition 4.3, the following equivalent
conditions implies the proof of the existence part of Theorem 2.1.

Theorem 4.1.Let the functiong satisfy(1), (2) and let the lower obstaclé satisfies(5). Then the following
conditions are equivalent

(a) The triple(Y, Z, A) is the unique solution of RBSDE wittf-lower barrier L;

(b) Y is the smallesg-supersolution that dominatdswith terminal conditionyr = §;

(c) Y is the smallesg-supersolution that dominates with terminal conditionYy = &, where we set, for each
tel0,T],

t
i =gt Y. Z),  Tii=Yi+ / 7(s) ds,

0
t T

L= Lz+f§(s)ds, §!=$+/§(S)dS;

0 0
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(d) Y € DZ(0, T) is the smallest supermartingale that dominatesuch thaty; = &;

(e) Y e DZF(O, T) is a supermartingale that dominatéswith Y7 = &, of whichA is the increasing process of the
Doob—Meyer’s decomposition, and the following reflecting condition héddgachL* e D%(O, T) such that
Y, <L;<L;,ae.,as.,

T
f (V- —I7)dA, =0, as. (41)
0

Proof of Theorem 4.1 and the existence part of Theorem 2.1(c) < (d) is easy to check.

We now prove (b} (c). We stress that ig(¢) defined abovey; and Z, are “fixed” or “frozen”. We consider
the solution(Y”, Z™) of following penalized BSDE

T T T

7[":§+/g(s)ds+n/(7s”—l_,s)_ds—/fdes.
t

t t

Like g, the functiong(z) satisfies also conditions (1) and (2). Thus, just{es", Z")}>°, defined in (33),
{(Y", Z")}22, converges strongly toY, Z) in L2.(0, T) x L%.(0, T) for eachp € [1,2). Y € D%(0,T) is also
the smallesg-supersolution that dominatéswith Y7 = &:

T T
E=s+fg<s>ds+/ir—At—fZYst, (42)

t t

Y, >L;,,  dA,>0. (43)
We now prove thatY, Z) = (¥, Z). Indeed, apply It6’s formula tgr — Y72, we have

T T
Y — Y2+ E/ 120 — 70 = 2E/(YS" _TM (g5, Y. Z0) — §(s)) ds
t t

T
+2n /(Y;’ —YH[() — Ly~ — (¥ — Ly)” | ds.
1t
For the last integrand, it is easy to check tgt — Y)[(Y" — L)~ — (Y — L,)~]1 < 0. We then have

T
E|Y! —7,”|2+E/ |Z! — Z"2dr
t

T
< ZE/(YS" —Y)[g(s, Y, Z)) — g(s)] ds
t

T T
< ZE/ (1Y) — Y|+ 1Y = Yl] - |g(s. Y, Z0) — g(s)| ds + 2Ef(n —Yy)[g(s. Y, Z!) — g(s)] ds.
t t

Since|Y" — Y|+ |Y" — Y| - 0in L2.(0, T) and|g(-, ¥, Z") — g(-)| is uniformly bounded in.2.(0, T), thus
the first integral of the right side converges to zermas- oo. For the second term, sind&”}>° ; converges
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strongly toY in L2 (0, T) and{Z"}72, converges strongly t& in LY #(0,T), andg is Lipschitz in(Y, Z), thus
{g(-,Y", Z™)}>2 , converges strongly t(-, Y., Z.) = g(-) in LY (0, T) But{g(-, Y", Z")}°° ; is also bounded in
L? %(0,T). Thus it must converges weakly foin L2 70, 7). Thus the second integral also converges to zero. It
follows thaty” — Y" andZ" — Z" are both converges to zero. This= Y, Z = Z. ) o

For (d) < (e), we first prove (d¥= (e): LetY be the smallest supersolution that domindtegith Y = &£. Thus
(Y,Z,A) e L%(0,T; R%) x D3 %(0, T) solves (i), (i) in the Def|n|t|on 2.2 of RBSDE. We only need to prove the
Skorohod condition (iii), i.e., for each* e D;(o T) such thatL, < L* < Y;, we have

/ (Y- — L7 )di, =0, as. (44)
We denote the discrete part afby A?, and the continuous part b§*: A = A° + A¢. From (40), we have

Z Y- — L )(A — A )_/(Y_—L _)dA¢ =o. (45)

o<r<T

The continuous part of isY¢ := Y 4+ A%. Then, withgo(r) = 0, Y€ is the smallesto-supersolution that dominates
L¢ = L* + A4 with terminal conditiony’s. = & + A%,

We now follow Proposition 4.2 to construct a penalization sequeérttez”, A") € DZ.(0, T) x L%.(0, T; RY) x
D2.(0,T) as follows

T T
Y,”:Y§+/n(ysn —L;')*ds—/zgf dB;,

t t
t

A} = /n(Y;’ — L)™ ds.
0
According to Proposition 4.2, the triplg”, Z", A") converges taY<, Z, A°) in the sense of (36) and, for each
stopping timer < T, asn — oo,
Y! /Y:, Viel[0,T], as.,
A" — AS,  strongly inL?(Fr). (46)
On the other hand, for eaeh < n, since

0= — LT — L™ > — LT — LS~

’

we have
T

/(Y;“ — LSt dAr =0. (47)
0
For eachr € [0, T'], we define

Dl =inf{s >0 (Y —LOT A —L{ )T =0} AT,
D :=infls>1: (Y] —LOT A —L{ )T =0} AT.
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Since(Y" — LSt 7 (Ys — LE)* thus D" < D1 < D,. On the other hand, for a.e.€ 2, if D, > ¢, then for
eachr <7 < Dy, we have(YS — L™ > §(w), t < s <1, for a positives > 0. Since
0< (Y — L)Y — (1" = LOT <Yy = 1" \/0,

thus, for a sufficiently large:(w), we have(Y™ — L)t > 0,s € [¢,7]. ThusD" > 7. It follows that, for each,
lim,,_. o D" = D;, almost surely. On the other hand, by (47) we have

Aty — A7 =0, (48)

We letn — co. By the convergence of” in the sense of (46), we deriv,,, — A¢ = 0. By lettingm — oo, and
with (48) we get

{AS, — A} =0.

Thus
T T
/(Y,c — LY)dAS = f(Y;‘ — LS )dAY =0, as.
0 0

This with (45) it follows that (44) holds.

(e) = (d): Since the solutioriY, Z, A) of RBSDE with the lower obstaclg is unique. Thus by (d} (e), Y
must be the smallegt-supersolution that dominatés

Through(e) & (d) < (c) < (b) we can prove that the smallessupersolutiory with Y7 = £ that dominateg.
(given in (b)) must satisfied the generalized Skorohod reflecting condition (7). Thus we have (@) This
with the existence theorem, i.e., Proposition 4.3, of the smallestpersolution given in (b), it follows that the
solutionY of RBSDE of type (&) exists. This proves the existence part of Theorem 2.1. Finally the uniqueness of
RBSDE given in Proposition 2.2 gives (&} (b). The proof is complete. O

The following comparison theorem of RBSDEs is a by-product of the above results. It will be used in the
proof of the existence of RBSDE with two reflecting barriers. This comparison theorem of RBSDE was introduced
in [14], for the case wherg is continuous.

Theorem 4.2(Comparison)We assume that lower obstadles L2.(0, T) satisfies(5). Letg?, g2 be two coeffi-
cients ofBSDE satisfying the standard conditiofl) and (2), fori = 1, 2, let (Y?, Z', A") be the solution of the
RBSDEwith the lower obstaclé. € LZ.(0, T):

T T
Y/ =g"+/g"(s, Y;,Zé)dsth"T—Aﬁ—/Zé dB;. (49)

t t
Namely, the triplgY?, Z, A’) satisfieqi)—(iii) in Definition2.2. Assume that
g, y,2) <g%tt.y.2), V(y.z2)eRxR? ae., as. (50)
and&l < &2 a.s. Then we have

Yr<Y? <i1<T, as. (51)
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Moreover,

(AL — A — (A2- A% >0, YO<s<t<T, as. (52)

Proof. For each =1, 2, consider the following penalization BSDE for the RBSDE (49):

T T T
Y/ =g +/gi(s,Yf’i,Z;"")ds—l—n/(Ls —ymht ds—fz;“‘ dB,.
t

t t

By the comparison theorem of BSDEs we qé’tl < Y,"'Z,Vn e N. Thanks to Proposition 4.2, as— oo, Y™/
converge tar’ the solutions of RBSDE, far= 1, 2. We immediately have (51).
Moreover the increasing processg€s' :=n fé (Ly — YV ds satisfies

(ARt Amly (A2 A72) >0, foreachO<s <1 <T.

Again by Proposition 4.2(A§”1) and(Af“z) respectively convergence IA)} and A,2 weakly in L2(F;). We then
have (52). O

5. Penalization method for RBSDE with two obstacles and some basic estimates

In the preceding section, the existence result of RBSDE is proved by a penalization approach. This is a construc-
tive method since the penalized equation (33) is a standard BSDE to which many existing numerical results can be
applied. We now proceed to prove the existence of RBSDE reflected by two obstacles by using this approach. The
penalized BSDEs we need are:

T T T T
Y =€+ / g(s, Y, ZW My ds +m /(LS —ymmytds — n/(Ys’"’" — Uyt ds — / Z" dBy
t t

t t

or
T T
Y=g+ / g, Y Z ds + AP — A — (K7 = KM — f Z{"" dB; (53)
t t
with
t t
AP =m /(LS —y/rhtds, KM =n/(Y;"’" — Uyt ds.
0 0
Here the basic idea is simple: we first fix anand letn — oo, then letm — oco. The two increasing process&s
and A, which are the limits ofK™" and A™", will be proved to be the two increasing processes in RBSDE (17)
we are looking for. In Section 6.2, we will prove that the quadrypté-”, z™m_ A™™m K™™) also converges to
the solution(Y, Z, A, K) of RBSDE asn — oc.
We begin with establishing several basic estimategfér”, ™", A™" K™"). These estimates are useful not

only to the proof the existence of RBSDE provided in the next section, also to the further development of numerical
solutions.
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Proposition 5.1.We assumél5) and (16) of (H). Then there exists a constafif independent from: andn, such
that the following estimate hold f¢563):

T
E[ sup (Y,’”’")Z] + E[f |Z§”’"|2ds:| +E[(AT"?] + E[(K7™)?] < C. (54)
o<t<T 0

To prove this result, we need the following lemma.

Lemma 5.1. There exists a quadruple’, Z*, A*, K*) € D%(0, T) x L%(0, T; R?) x D30, T) x D3%(0,T),
such that
T

T
Yt*=§+/g(s,Y;‘,Z:‘)ds+A>}—A;k—(K;—Kt*)—/Z;kst, (55)
t t

whereA*, K* are both increasing, and; < Y, <U,, a.e., a.s.

Proof. For the procesX satisfying (16), we seX; = X; + (¢ — X7)1y=r). We haveL, < X; < U, and

T
XF—&— f Z00B, + (€ — Xp)Lyr) + (A2 — A% — (K9 — KO)
t

T T
=£+ / g(s, X5, 20 ds + (A9 — A9) + (€ — X)) Lp=1) + / [g(s, X}, 2] ds
t

t
T

T
— (K9 —Kto)—/[g(s,X;‘,Z?)]+ds—/Z?st.
t t

We denotez* = z° and

t
AT = A0+ (6 — X)) Lyer) + [ [5(s. X7, Z%] " d,
0

t
K=K+ (& — X)) Yyery + / [(s, X7, ZS)]+ ds.
0

Then(Y*, Z*, A*, K*) satisfies (65) and <Y*<U. O

Proof of Proposition 5.1. Let (Y*, Z*, A*, K*) be given as in Lemma 5.1 and lgt*, Z*) and (Y, Z™) be
respectively the solutions of following two BSDEs:

T T
Yﬁ:g+/g(s,x;“,zj)ds+(A>;—A;*)—/Z;*st,
t t
and
T T
Y;=s+/g<s,Y;,Z;)ds—(K?—K,*>—/Z.Zst~

t t
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From the comparison theorem of a standard BSDE, we have< Y < Y,", thus¥;" > L,, ¥, < U,. For
m,neN, Y+, Z")and(Y~, Z™) satisfy respectively,

T T T
Y,+=g+/g(s, Ys+,zj)ds+(A’;—A;*)+m/(Ls—YS+)+ds—/zdeS,
t

t t

T T T
Y;:g+/g(s, Ys’,Z;)ds—(K;—K,*)—n/(Y;—Us)+ds—/Z;dBS.
t t t

Always by comparison theorem,
Y, <yM <y, veel0,T], as.
It follows that

E[Oztung(YIm,n)z] < maX{E[KS:Jng(Yf)Z], E[Ogstung(Y;)Z]} <C. (56)

In order to obtain the uniform estimate faf.", we consider the following BSDE:

T T T
Y"=¢ —i—/g(s, Y™, Z™yds — (K — K))+m /(Ls — Y™t ds — / Z" dB;. (57)
t t 1
We compare it with the BSDE (55). Observe that the solukiérof (55) satisfied.; < Y,;* < U, thus we can add
the zero sunm flT(LS — Y;)~ ds to the right side of (55). Since4] > 0, it then follows again from the comparison

theorem of BSDE that;* > ¥/ and thusU;, > ¥, 1 € [0, T]. Consequently, the termm [ (Y7 — U,)* ds is

zero and thus can be add to the right side of BSDE (57). We then compare this BSDE, with the mentioned additional
terms, with BSDE (53). With &/ > 0, we can, once again, apply the comparison theorem to dﬁﬂve Y.

But this implies that

t t
0<A™ :=m /(LS — Y™t ds <m /(LS — Y™t ds=A".
0 0

ConsequenthE[(A7")?] < E[(AT)?], for eachm, n =1,2,....
Thus it suffices to estimatg[(A”')?]. By (57), the painY™, Z™), with Y := Y" — K*, satisfies the BSDE

T T

T
zng_KT+/gk*(s,?SM,Z;ﬁ)ds+m/(Ls_K:_?Smﬁds_fi;"dBS, (58)
t

t t

where we denotgk-(s, y,z) = g(s, ¥y + K, z). This gk« satisfies also the usual conditions (1) and (2) of BSDE.
But this sequence of BSDEs (58), far=1, 2, ..., is just the penalized BSDE farx «-supersolution that dom-
inatesL — K* with terminal condition?? = ¢ — K7. We then can apply the boundedness estimate (37) in
Proposition 4.2 to derive

E[(A"?]<C, andthus E[(A}")?]<C.

Here the constar@ does not depend on, n.
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The proof of the estimatE[(K?”")z] < C is similar. We then use the standard technique of BSDE to apply
m,n, 2.
|<:

It&’s formula to|Y,

T T T
E[|Y,m’"|2]+E|:/|Z§"'”|2ds:| <C<1+/|Y{”’"|2ds) +a/|Z§"*”|2ds+E[ess sup(L;“)z]
t t t

0<1<T

+ E[ess sup(U,‘)Z] + E[(AF™?] + E[(K7™)?).
0<t<T

Leta = % we finally get the estimate def[foT |ZI"2ds]. O

We now pass limit in the penalization BSDE (53). By the comparison theorem of BSDESs, we knaw'tgt
is increasing inm for each fixedz, and decreasing in for each fixedn. In (53) we fixm and setg™ (s, y, z) =
g(s,v,2) +m(Ly — y)T. Like g itself, the functiong™ also satisfies the standard conditions (1) and (2), with
Lipschitz constank + m in the place ok. Thanks to Proposition 4.2, we have the following convergence:

Lemma 5.2 Whem — oo, the triple(y™", Z™" K™") converges tY™, Z™, K™) € D2.(0, T) x L2-(0, T; RY)
x DZ(0, T) in the following sense

E [SQY™" =y 24|z —Zz"P)dt -0, pell,2),
E[Y"" - Y’ -0, Vtel0,T],

T, —m,n (59)
E [y (Z"" = ZNgdt -0, Ve L%(0,7),
E[(K"" —K"¢]— 0, V¢elL?(Fr), Vre[0,TI.
The limit(Y™, Z™, K™) is the solution of the following RBSDE with one upper obstétle
T T T
Y"=¢ +/g(s, YY", ZMds+m | (Ly —Y"tds — (KF — K") — / Z" dB,. (60)
t t t
We also have, foreach< j,0<r <t < T,
K, —K/>K,—K!>0. (61)

Moreover, withA" = m fé (Ls — Y")™ ds, we have the following estimatinere exists a constait, independent
of m, such that

T

sup E(Y")% + E[ 1ZM12dr + E(AT)? + E(K1)? < C, (62)

0<t<T
0

whereA” :=m [ (Ls — Y")* ds.

Proof. The convergence of (59) and Eq. (60) result directly from Proposition 4.2 and Proposition 4.3 in which the
coefficientg(t, y, z) is replaced by (¢, y, z) + m(L; — y)™ and the lower obstacle by the upper obstacle .
Observe that (60) can be regarded as the following RBSDE with upper obstacle

T T
th=g+/gm(s, YS’",Z;”)ds—(K’T"—K{”)—/Z;"dBS,

t t
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whereg™ (s, y, z) :== g™ (s, y,z) +m(Ls — y)T. Sinceg' (¢, y,z) < g/(t,y,z), fori < j, thus (61) is a direct result
of comparison Theorem 4.2.

Since by(y™", z™" K™") are uniformly bounded by (54), their strong and weak limitd.fhare also uni-
formly bounded. O

6. Proof of Theorem 2.3: the existence of RBSDE with two obstacles
6.1. Proof of Theorem 2.3 and some results of convergence

We now proceed the

Proof of Theorem 2.3 — the part of existence and some results of convergend&e write Eq. (60) in the forward
form:
t t

Y=Y - /g(s, Y, Z7"ds + K" — A7 + / Z! dB. (63)
0 0
Using the Burkholder—Davis—Gundy inequality and (62), we have
E( sup (Y,’")Z) <C.
o<i<T

From the comparison Theorem 4.2 is increasing inm. This with Y™ < U, it follows that, there exists a
process’, such thatr™ 7Y < U and thus

E( sup (Y,)2> <C. (64)
0T

We also have the following.2-convergence:

T
E(/|Y{"—Y,|2dt> — 0. (65)
0

By Lemma 5.2 the sequencE™)>_, satisfy all conditions of the monotonic limit Theorem 3.1. It follows that its
limit Y is in D;(O, T) and has the following form:

T T

Y :$+/g§)d5+AT — A — (Kt —Kt)—/stBm

t t
where(g®, Z) € L2.(0, T; R x R?) is the weak limit of{(g(-, Y™, Z™), Z™)}>°_, in L%.(0, T; R x R?). For each
t€[0,T1, A, is a weak limit of{A"}>_, in L%(F,), K, is the strong limit off K*}>°_, in L%(F;). A andK are
increasing processes ID%E(O, T). Furthermore, for any < [0, 2), we have

T
lim E/|Z?’—Z‘Y|Pds:0. (66)
m—00
0
It follows thatg(-, Y™, Z™) — g(-, Y., Z.) in L?, and thus
T T
Yt 25 —i—/g(s, YSV Zs)ds +AT - At - (KT - Kt) - / Zs st» (67)
t t

i.e. condition (ii) of Definition 2.3 is satisfied.
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Since for eaclm € N, Y™ < U, thusY < U. Notice thatE[(A’;')Z] < C.Asm — 0, we have

T 2 T 2
0< E[(/(LS—YS)WS) i|:E|:<-/(LS—YSm)+ds> }g%—w
0 0

and thusY > L. So (iii) of Definition 2.3 holds.

It remains to prove the two Skorohod reflecting conditions (iv) in Definition 2.3. For the upper ob&teantel
a procesd/* sz(o, T) such thatr™ < U* < U, we havefOT(U,*_ —Y")dK;" =0. This with(U;. — Y/") >
U -Y-)>0 yieldstT(Ut*_ —Y,)dK;" =0. We recall that/(K; — K/") > 0 andK} /' K7 in L2(Fp). It
follows from

T
0< / (U7 = Vi) d(K, = KP) < (Ky = KJ) max (U7~ ¥,0)
te€l0,
0

that the reflecting condition in Definition 2.3 for the upper boundary holds:

T
/(U;L - Ylf)dK[ = O
0

We now proceed to prove the reflecting condition for the lower obstacWe consider the following BSDE:
T T T

?;n:g+/g(s,?sm,2;")ds+m/@s—?gl)+ds—(1<T —Kt)—/zg”dBS. (68)
t

t

~

We denotel” := Y™ — K and rewrite the above BSDE
T T T
?tnl ZE - KT +/gK(S7 ?Sm7 Zzn)ds +m/(LS - KS - ?g‘m)-‘r ds - / Zzn dBS’
t t t

where we setgx(r,y,z) := g(t,y + K;,z). We observe that this is just the penalization equation of the
form (33), (32) withgk in the place ofg and L — K in the place ofL. From Theorem 4.2, a; — oo, we
have the limit:
T T
Vo=t Kr+ ek T Zods+dr— 4~ [ Zods,. (69)
t t
HereY is thesz(O, T)-strong limit of Y, Z is theL%C(O, T; RY)-weak limit andL"-(0, T'; RY)-strong limit of
Z™ and, for each, A, is the L2(F,)-weak limit of
t T
A;” =m /(LX - 1?:")+ ds :m/(LS — K, — ?sm)+ ds.
0 t
Theorem 4.2 also tells us that the linlite D%(O, T) is the smallesg-supersolution withf7 = £ — K that
dominated. — K. But on the other hand, using comparison theorem of BSDE to (68) and (60), wé& Have’,”.
Thus, for each <1,
t t
Am _ Am =m/(L, —Y"tdr> m/(L, —Y™tdr=A"— A",
N

N
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Thus their weak limits satisfied, — A; > A, — A,. Observe that, by (67) — K is also agkx -supersolution:
T T
Y, —K,=§ _KT+/8K(S,YA‘ — K, Zg)ds + Ar — A, _/stBs~
t t

Compare this with (69), we haué < Y. ThusY — K must be¥ — K, the smallest g -supersolution with terminal
conditioné — K that dominated, — K. It follows from Theorem 4.1, (ay> (b) thatY — K satisfies the Skorohod
reflecting condition (iii) of Definition 2.2 with the obstacle’ — K. But this implies that, for each* D%(O, T)
suchthatr > L* > L, we have

T T
/(Yt— - L;k_)dAt - / (Yt— - Kt— - (L;k_ - Kt—)) dAt - O,
0 0

namely, the reflecting condition for the lower bouhdThus all conditions in Definition 2.3 are satisfied. The proof
is complete. O

We now give an equivalent relation between a double obstacles reflected BSDE and sgrsdiesion. We
observe that the solutiofY, Z, A, K) of the reflected BSDE with double obstacles can be rewrite to

T T
Y,—Kt=§—KT+/gK(s,YS,ZS)ds+AT—A,—/stBs (70)
t t

wheregk (¢, y, z) :=g(t, y + K4, z). We have

Theorem 6.1. The following two claims are equivalefd). The quadruple(Y, Z, A, K) is the solution of the
reflected BSDE with double obstaclesandU; (b) Y — K is the smallesgx -supersolution that dominatds— K
with terminal conditiort — K1, andY + A is the largestg_ 4-subsolution that dominated iy + A with terminal
conditioné + Ar.

Proof. If (Y, Z, A, K) is the solution of the reflected BSDE with double obstadleendU. Then it is clear that
the triple(Y — K, Z, A) is the solution of the reflected BSDE (70) with the lower obstacleK > L — K. But by
Theorem 4.1 (a} (b), this is equivalent to say thét— K is the smallesg x -supersolution that dominatés— K
with terminal conditioré — K7. The same argument is applied for the upper obstaate.

6.2. A direct penalization scheme for RBSDE with two obstacles

A shortcoming of the sequence of the penalized BSDEs (53) is that we have to pass limit two times. Numerically,
it is not easy to be realized. But we can apply our established results to prove that, when we forcés3) and
let m — oo, the penalization BSDE still converges to the RBSDE with two obstacles. In this setting, (53) becomes

T T T
y/"" =& —i—/g(s, y ",z ds —}—m/(Ls — Y™™t ds —m /(US — Y™~ ds
1 1

t
T
- / ZmmdB;. (71)
t
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We then claim

Theorem 6.2.Let (Y, Z, A, K) be the solution of the double obstacle RBSQF) formulated in Definitior.3.
Then, asn — oo, we have the following convergendé” ™ — Y;, vt € [0, T], a.s., and

T
lim E(/ |y — Y,|2dt> -0, (72)
m—00
0
lim Ef|Z;"’m—Zs|pds=0, pell 2. (73)
m—00

Sketch of proof. To prove the convergence OF”-™, Z"™™ A™™_ K™m) e rewrite the solutiory™, 2, k™)
of RBSDE (60) with one upper obstadleto

T T T
;n:g+/g(s,y;",z;ﬁ)ds+m/(Ls—y;")+ds—1€';’—1€,'"—/z;"dBS,
t t t

and, symmetrically, the solutioy™, z", a™) of the RBSDE with one lower obstacle

T T T

yf’=$+/g(s,22”,§§”)ds+(6_l’%’—C_li")—m/(Us—XZ”)_ds—/g’s"st.

t t t

Sincey™ > L, andy;" < U, we can addnft (Us — yI")~ ds to the first BSDE andnf, (Ly — y’”)+ds to the
second one. By comparison theorem of RBSDE, we héve: Y™™ < y™. But this with y™ \ ¥ andy Y

it follows that, almost surelyy,"" — Y;, t € [0, T]. From (65) fory™ and the corresponding result fof’, we
obtain (72). B

Applying a technique similar to the proof of Theorem 3.1, i.e., for each pair of stopping tidesQ t < T
we apply I1t&’s formula tag | Y™ — ¥;|? on[o, t]. We can obtain (73). O

Remark 6.1.We can also prove that, for each stopping tim€ 7, we have(A?"", KI""™) — (A, K.), weakly
in L2(Fr).
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