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Abstract

Evans—Hudson flows are constructed for a class of quantum dynamical semigroups with unbounded generator on UHF
algebras, which appeared in [Rev. Math. Phys. 5 (3) (1993) 587-600]. It is shown that these flows are unital and covariant.
Ergodicity of the flows for the semigroups associated with partial states is also discussed.

0 2005 Elsevier SAS. All rights reserved.

Résumé

Les flots d’Evans—Hudson sont construits pour une classe de semi-groupes dynamiques quantiques a générateur non born
sur une algebre UHF, définie dans la référence [Rev. Math. Phys. 5 (3) (1993) 587-600]. On montre que ces flots préservent
I'unité et sont covariants. L'ergodicité des flots associés a des états partiels est également discutée.

0 2005 Elsevier SAS. All rights reserved.

1. Introduction

Quantum dynamical semigroups, to be abbreviated as QDS, constitute a natural generalization of classical
Markov semigroups arising as expectation semigroups of Markov processes. AIQDS: 0} on aC*-algebrad
is a Co-semigroup of completely positive mafison A. Given such a QDS, it is interesting and important to look
for a dilation in the sense of Evans—Hudson, i.e. a family-bbmomorphisms; : A — A” @ B(I"' (L3R, ko)))
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wherekg is some separable Hilbert space and) denotes the symmetric Fock space, satisfying a suitable quan-
tum stochastic differential equation. This problem has been completely solved for QDS with bounded generators
by Goswami, Sinha and Pal [2,4], where a canonical Evans—Hudson flow for an arbitrary QDS with bounded gen-
erator has been constructed. However, only partial success has been achieved for QDS with unbounded generato
Itis perhaps too much to expect a complete general theory for an arbitrary QDS. It may be wiser to look for Evans—
Hudson flow for special classes of QDS. In [3] for example, the authors gave a general theory of dilation for QDS
on aC*-algebraA, which is covariant with respect to an action of a Lie group and also symmetric with respect to

a given faithful semifinite trace. However, in the present article, we shall try to construct an Evans—Hudson flow
for another class of QDS on a UHF*-algebra, studied by T. Matsui in [6]. This construction has some similarity
with the earlier one, but the action of the discrete gréfipnstead of a Lie group action as in [3] makes the present
model somewhat different from that of [3]. We have not only proved the existence of a dilation in Section 3, we are
also able to prove in Section 4 that the Evans—Hudson (EH) flow is indeed covariant with respe@4adttion.

Some ergodicity properties of the flows are also discussed briefly in Section 5.

2. Notation and preliminaries

T. Matsui [6] constructed a class of conservative QDS on the UEHalgebrad generated as thé*-completion
of infinite tensor produc@lEZd My (C), whereN andd are two fixed positive integers. This*-algebra can
also be described as the inductive limit of full matrix algebiagy- (C), n > 1} with respect to the imbedding
Mpyn € Myn1 by sendinga to a @ 1. The unique normalized trace tr ofi is given by t(x) = Ni Tr(x), for
x € My»(C), where Tr denotes the ordinary trace &y (C). Forx € My(C) and j € Z¢, let x/) denote an
element inA whose jth component isc and rest are identity o#/y (C). For a simple tensor elemeate A, let
a(jy be thejth component of:. The support of:, denoted by supfp) is defined to be the s¢j z4: agy # 1}
For a general elemente A such thatz = ) o7 ; c,a, With a,’s simple tensor elements id andc,’s complex
coefficients, we define sugp := |, .y SUpfa,) and we seta| = cardinality of supgu). For anyA € 74, let
A4 denote thex-subalgebra generated by elements4ofvith supportA. When A = {k}, we write A; instead
of Ay,. Let Apc be thex-subalgebra of4 generated by elemenise A of finite support or equivalently by
(x): x e My(C), j € Z4}. Clearly Ajoc is dense inA. Fork € Z4, the translatiorr; on A is an automorphism
determined byt (x) := xUTh) vx € My (C) andj € Z¢. Thus, we get an action of the infinite discrete group
7% on A. For x € A we denoter; (x) by x;. The algebrad is naturally sitting insidéhg = L?(A, tr), the GNS
Hilbert space fol( A, tr). It is easy to see thaj}, extends to a unitary ohg, to be denoted by the same symbgl|
giving rise to a unitary representatiorof the groupZ? on hp, which implements the action It is also clear that
this action extends as an actionZst by normal automorphisms on the von Neumann algebta

We also need another dense subset pfvhich is in a sense like the first Sobolev spacelirFor this, we need
to note thatMy (C) is spanned by a pair of noncommutative representafied’} of Zy = {0,1,...,N — 1}
such thatUY = VN =1 e My(C) andUV = wVU, wherew e C is the primitive Nth root of unity. These
U,V can be chosen to be thé x N circulant matrices. In particular fa¥ = 2, a possible choice is given by
U =0, andV = o, whereo, ando, denote the Pauli-spin matrices. Fpe 74 and (o, B) € G = Zy x Zy,
we seto.q 5(x) = [UD*VDP x1vx e A, |Ix|1 = Y0 p@ andCl(A) = {x € A: ||lx|l1 < oo}. Itis
easy to see thaix*||1 = [IT;(x)[l1 = ||lx]l1 and sinceC1(A) contains the dense-subalgebradioc, C1(A) is a
denser invariant x-subalgebra ofd. Let G := Hjezd G be the infinite direct product of the finite group at
each lattice site. Thus eaghe G has jth componentg(;, = («;, 8;) with «;, 8; € Zy. For g € G we define
its support by sup) = {j € Z%: g # (0,0)} and|g| = cardinality of suppg). Let us consider the projective
unitary representation &, given byG s g = Uy =[] ez Uy (P e A, For a given completely positive
mapT on A, we formally define the Linbladian
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L=) L,

kezd
whereL;x = T Lo(T_xx), Vx € A,

with Lo(x)z—%{T(l),x} +T (), 2.1)

and{A, B} := AB + BA.
In particular we consider the Lindbladighfor the completely positive map,

o0
Tx := Za:xan, Vx € A,
n=0

associated with a sequence of elemdnfg,, >0 in A, with a, =3, g ca U, such thaty 20> ,eg lcn.gllgl? <
oo. Matsui has proven the following in the paper referred earlier [6].

Theorem 2.1.(i) The map. formally define above is well defined 6k(.A) and the closure of L/c1a4) is the
generator of a conservative QO®%;: ¢ > 0} on A,
(ii) The semigroupP;} leavesC1(A) invariant.

The semigroupP; satisfies
t
P(x)=x+ / Py(L(x))ds, V¥x e Dom(L).
0

Since 1e C1(A) and£(1) = £(1) =0, it follows thatP, (1) = 1,V > 0.
Following [6], we say thaf, is ergodic if there exists an invariant statesatisfying

H Pi(x) — 1//()6)1” — 0 ast— oo, Vx e A. (2.2)

In [6], the author has discussed some criteria for ergodicity of the @DSome examples of such semigroups
associated with partial states on the UHF algebra and their perturbation are given.

For a statep on My(C) andk € Z¢, the partial statep;, on A is determined by (x) = & (X)) Xqk)e, for
X = X(pXkye, Wherexg, € Ar and xe € Ayye. We can find a natural numbe¥’ and element§L™: m =
1,2,...,N'}in My (C) such that

N’ N
$p(x)=D LM xL™ VieMy(©) and Y LML =1
m=1 m=1
Form=1,...,N’, letus consider the elemenf™ e Ao with the zeroth component beirig™ . Now for k € Z4

andm =1,..., N, writing L,((m) =1 (Lg”)), the partial statey is given by,

N/
or(x) = Z L,(cm)'xL,(:”) Vx € A.
m=1

By (2.1), the LinbladiarC? corresponding to the partial stapg is formally given by
L=y Liw),

keZd
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where
1 ¥ . \
L@ =gn) —x =2 3 [ 2L + L [x L],
m=1

It follows from Theorem 2.1 that? is defined onC1(A). Moreover, the closuré? of L£?/CL(A) generates a
conservative QDSPf’ on A given by

Pt¢< 1_[ x(k)) = 1_[ {¢(X(k)) + e_t(X(k) — ¢(X(k)))}.

keA keA
We note that the ma@ defined by,

@ ( I1 X<k)> = lim Pz¢< [1 X<k>> =[] oxw
keA keA keA

extends as a state of which is the unique invariant state for the ergodic QBS For any real number, we
consider the perturbation

L) =L2(x) +cL(x), VxeClA.

Itis clear that£© is the Linbladian associated with the completely positive map

N’ 00
T(x)= Z L,((m)*xL,({m) + cZal*xal, Vxe A
m=1 1=0

and by Theorem 2.1 it follows that the closut&’ of L£©/CY(A) generate a QD$?,(C). Moreover, one has

Theorem 2.2[6]. There exists a constamt such that for0 < ¢ < ¢g the above QDSD,(C) is ergodic with the
invariant state® ) satisfying

| PO )|, < 2670y,
! (2.3)
[P0 = 21 < e xly, Va e CHA.

Remark 2.3.The invariant stat@ () corresponding to the ergodic QD‘$C) is given by
oo
O (x) = ®(x) +c/ @ (L(P)))dr, Vx eCLAD.
0

Let us conclude the present section with a brief discussion on the fundamental integrator processes of quantum
stochastic calculus, introduced by Hudson and Parthasarathy [$.+€t2(R.,, ko) whereko = [2(Z%) with the
canonical orthonormal basis;: j 74} and I" = I'sym(K), the symmetric Fock space ovkr For f € k, we
denote bye( /) the exponential vector if' associated withy

1
e) =P =1
n>0 ﬁ
wheref™ = f® f®---® f forn > 0 and by conventiorf @ = 1. For f =0, e(f) is called the vacuum vector
[

n-copies

in I'. Let C be the space of all bounded continuous functions fidmto ko, so that(C) = {e(f): f €C} is
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total in I" (k). Any f € L2(R., ko) decomposes ag = >,z frex With fi € L2(R..). We take the freedom to
use the same symbg}. to denote the function i?(R., ko) as well, whenever it is clear from the context. The

fundamental process«{zs{: i, j € Z4} associated with the orthonormal bafig. j e 7%} are given by

AL =ay, 06 fOri#0,j=0

+ . .
= ly0.1®e; fori=0,;#0

=AMy @lej)eil fOri, j#0

=1l fori=j=0,
whereM, , , is the multiplication operator oh2(R.) by characteristic function of the intervd, ¢]. For details
the reader is referred to [10] and [7].

3. Evans—Hudson type dilation

In this section we investigate the possibility of constructing EH flows for the QDS on@H&lgebra, discussed
in the previous section. Although the question is not answered in full generality, EH flows for a class of QDS are
constructed.

Letr =3 ,.gceUs € Asuchthaty g |celIg]? < co. The LindbladianC associated with the elementi.e.
associated with the CP md8p T (x) =r*xr, Vx € A, takes the form

Le) =Y 8 @+ i), (3.1)
keZd

wherery ;= 7 (r) andéy, 8,1 are bounded derivation QA given by
Sr(x)=[x,r] and 8;()6) = (Sk(x*))* =[r;,x], VxeA 3.2)

It follows from [6] that the closurel of £/CL(A) is the generator of a contractive QD& on A. In or-
der to construct an EH flow for the QD8,, we would like to solve the following QSDE iB(L2(A, tr)) ®
B(I"(L*(R+, Ko))):

dji(0) = D7 Je(87)) daj )+ Y i (8;00) daj (1) + ji (L),
jezd jezd
(3.3)
Jo)=x®1pr, x¢€Aqec.

Let us first look at the corresponding Hudson—Parthasarathy equatdii.ih tr) ® I'(L2(R., ko)), given by
1
du; = { Z [r;k daj(t) —rj da;r(t)] ~3 Z r;'frj dt}Ut,
jezd jezd
(3.4)
Uo(x) = 1L2®F‘
However, though each; € A and hence is iB(L2(A, tr)), Eq. (3.4) does not in general admit a solution since

<“’ Z ”;‘Frj“>= Z ||rjM||2 Vu € L?(A, tr),

jezd jezd
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is not convergent in general and hercg ;. r; ® e; does not define an elementih® ko. For example, let be

the single-supported unitary elemdnt® e A for somek € Z¢ so thatr; = U**+/ is a unitary for eacly € 24
and hence

D lrjul= " llul)? = oo

jezd jezd
However, as we shall see, in many situation there exist Evans—Hudson flows, even though the corresponding
Hudson—Parthasarathy equation (3.4) does not admit a solution.

Remark 3.1.There are some cases when an Evans—Hudson flow can be seen to be implemented by a solution of a
Hudson-Parthasarathy equation. For example, given a self adjoisat

dv, =V, { k%(s,j day () — S da] (1)) — %kg SESi dt}, Vo=1,

wheres; is defined bysy (x) = [rx, x] for x € A C L?(A, tr), admits a unique unitary solution and
x> Vix@DVF

gives an Evans—Hudson dilation féy [8,9].

Let a, b € Zy be fixed andWw = U4V’ € My (C). We consider the following representation of the infinite
product grougy’ := ]_[jezd Zy, given by

G o> W= ] WP, whereg = (a)).

jezd
Foranyy e A, y =} _,.gceUg and forn > 1 we define
() = legllgl™.
8€g

Now we consider € A, r =3 ,.g ¢, W, suchtha}_, g lcgllgl? < oo. Itis clear thaty(r) = 3 g lcgllg] <
oo. We note that any € Ajoc can be written ag = Zheg cpUp, with complex coefficients;, satisfyingc, =0
for all 4 such that sup®) N suppx) is empty. So

Pu(x) =) leallh]" < oo forn>1,

heG

and it is clear that

() < Ix" ) lenl <

heG

wherecy = [x|(1+ )¢ lenl). Let us consider the formal Lindbladighassociated with the element

whereLy (x) = 28] ()r + 181 (x).
Forn > 1, we denote the set of integels 2, ...,n} by I, and for 1< p <n, P ={i1,1o,...,1,} € I, with
Iy <lp <--- <1, ,we define a map from the-fold Cartesian product dt? to that of p copies ofZ? by

k(Ip) = (k1. ka, ... kn) > k(P) := (ki kiy, ... ki)
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and similarly,e(P) := (e, €15, 5 - - - » €l,) for a vectore(I,) = (e1, €2, , ..., &) in the n-fold Cartesian product of
{-1,0,1}. _

For brevity of notations, we writé(P) = ¢ € {—1, 0, 1} to mean that alk;, = ¢ and denoté(/,) and&(l,)
by k(n) andz(n) respectively. Setting; = ST, Ly andé, depending upor = —1, 0 and 1 respectively, we write
R(k) = riyriy -+ ri, andd(k, &) = 8,2’ . 8,‘2 for anyk = (k1, ko, ..., kp) andé = (e1, €2, ..., &,). Now we have
the following useful lemma,

Lemma 3.2.Letr, x and constant, be as above. Then
(i) Foranyn >1
> 8k ) )| < (201(r)ex)" Vx € Apec,
k(n)

whereg (n) is such that; £0, Vi € I,,.
(iiy Foranyn > 1andk(n)

Ly L) =5 > Y R(k(P))"S(k(n), 8py () ()R ((P)),
p =0,1,....n PCI,: |P|=p
wheregp)(n) is such thagpy(P) = —1andép)(P¢) = 1.
(i) Foranyn > 1, p <n, P C I, and&(n) such thate(P) contains all those components equaliave have,
Y I8k, ) )| < Ir P (201(r)ex)" < (L4 1111)" (202.0r)ex )"
kn)
(iv) Letmi,mo >1;x,y € Aioc andg’(m1), 8" (m2) be two fixed tuples. Then far> 1 andz(n) as in (iii), we
have,
> |8 (k(n), e(m)){8(k (m1), & (m1))(x) - 8 (K" (m2), 8" (m2)) M} |
k(n), k' (m1),k" (mz)

<2 (L4 e )22 (201 (M) ey ) T,

wherec, , = maxXcy, cy}.

Proof. (i) As r* is again of the same form asit is enough to observe the following:

Z ||[rkn,- Drrgs €111 < (201(7)e)” Vx € Apoe

,,,,,

In order to prove this let us consider

LHS= Z Z e, |+~ lcgllenl | [k, We,» -+ [Tky Weq, Unll-+-1]|.
kny.k1 gn,....1€G"; heG

We note that for any two commuting elementsB in A, [A, [B,x]] =[B, [A, x]]. Thus, for the commutator
[Tk, We,» -+ - [Tty Wey, Unll- -] to be nonzero, it is necessary to hageppg;) + k;) N supph) # ¢ for eachi =
1,2,...,n. Clearly the number of choices of suthe Z¢ is at most|g;| - |4|. Thus we get,

Zu[rkn,- g x11 <0 Y0 el legllenllgal -+ gallhl"2" < (201(r)cx) "

..... 8n»81€G’s heG
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(i) The proof is by induction. For ank € Z¢ we have,

1
Le) =3 3 8l + o),
kezd
so it is trivially true forn = 1. Let us assume it to be true for some> 1 and for anyk,, 1 € Z? consider
Lk, .. Lk, - Lk, (x). By applying the statement far=m we get,

m+1

1 e -
ﬁkmﬂck,,,-.-ﬁkl(x)zﬁ > > [8%,. {R(K(P)"8(k(m), &py (m)) (X)R(K(P)) }r, g
p=0,1,....m PCl,: |P|l=p
+ 17 Sk | R(K(P)) 8 (k(m), &py(m)) (x) R (k(P))}].

m+1
Sincery’s are commuting with each other, the above expression becomes

1 TR o _
il > > [R(kP) 55, 8(k(m), &(py(m)) ()R (K(P)) 1%, g

p=0.1,...m PZI,: |P|=p
+rf  R(E(PO) 8,18 (k(m). &(py(m)) ()R (k(P))]
1 , . - } _
= o1 Z Z R(k(P))"8(k(m + 1), &py(m + 1)) (x)R(k(P)).
p=0,1,....m+1 PCl,41: |P|=p
(iii) By simple application of (ii),
- 1 - . - -
S(k(n),em) () =— Y > R(k(P\ Q) 8(k(n), 8. p) () (x)R(K(Q)), (3.5)

2p
¢=0,1,...p QSP: |Ql=¢q

whereg g, py(n) is defined to be the map from thefold Cartesian product gf-1, 0, 1} to itself, given bye (n) —
g, p)(n) suchthagg py(Q) =—1,&,p)(P\ Q) =1andsg, p)(I, \ P) =&(l, \ P). Now (iii) follows from (i).
(iv) By (3.5) we have,

LHS=2% > > 2 rEeNO)

k(n),k' (m1),k" (m2) 4=0.1,....p QSP: |Q|=q
x 8(k(n), &g, py(m))[8(k' (m1), & (m1)) (x) - 8 (K" (m2), 8" (m2)) (") | R(k(Q)) |-
Now applying the Leibnitz rule, it can be seen to be less than or equal to

”;',',p 3 3 3 YooY |8k Eeg.py(L))8(K (m1), E () (1) |

k), k' (m1), k" (m2) 4=0.1,....p QSP: |Q|=q I=0,1,...n LCIy,: |L|=l
x [|8(k(L), &g, p) (L)) [ (K" (m2). & (m2)) (1]
Using (iii), we obtain,

A+ )" P! . - .
LHs< LI " o N
2v Z (p_CI)!C]!l:(; n(n_l)'l'( +||r||) ( 1(V)Cx)

q=0,1,....p
x (L4 )" "2 (201 (r)ey )" "2
2L+ )R 201,y ) T

Now we are in a position to prove the following result about existence of an Evans—Hudson flow foPQDS
associated with the element A discussed above.
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Theorem 3.3.(a) For ¢ > 0, there exists a unique solutigi of the QSDE,
djix) =Y ji@x)daj)+ Y jijx)dal(t) + ji(Lx) d, (3.6)
jezd jezd
jo)=x®1r, Vx € Apgc,

such thatj, (1) =1, vVt > 0.
(b) For x, y € Ajoc andu, v € hg, f, g €C,

(ue(f), jr(xy)ve(e)) = (ji (Fyue(f), ji (y)veg)). 3.7)
(c) j, extends uniquely to a unital*-homomorphism fromi into A” ® B(I).

Proof. We note first thatd,oc is a dense:-subalgebra ofd.
(a) As usual, we solve the QSDE by iteration. EpE O, r < 9 andx € Ajgc, We set

jl(o)(x) =x®1r and

(3.8)
J}(n)(x)=x®lr+/ Y iVl e) dajs) + D V(8 (0) dal(s) + "V (L)) ds.
o Jjezd jezd
Then foru € hg and f € C, we can show by induction, that
n .(n— C
1) = 57D o Jue ) | < 20 e ! 3.9)

k(n) €(n)
wherec; = 2e710 (14 || £[|2.), with y(to) = [o°(1+ || f(s)[1?) ds. Forn = 1, by the basic estimate of quantum
stochastic integral [10,7],

1P ) = i@ Yue(n)|?

2

H{ Z ST(x)daj(S) + Yy 5.,(x)daj.(s) + L(x) ds}ue(f)

0 Jjezd jezd

t
<2 @ecn | [{ X Iafeoul®+ 3 lascoulP + 1ol 2+ Lro e

0 Jjezd jezd

2
<cpnlen| 18]l + 3l + |2;c0u] |
jezd
Thus (3.9) is true for = 1. Inductively assuming the estimate for some- 1, we have by the same argument as
above,

{5 ) = 5™ o) Yuelh) |2

1
B H{/ Z[JY(YT)(S @) = s~ 1)(5 ()] da;(sm) + Z [ (8;00)) = j =D (8,;(0))] da (Sm)

o jezd P
2

+ [0 (L) = jgr- ”(ﬁ(x))]ds»n}ue(f)
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<ot [| 3 116} - i leoleecn

0 jEZd

+ L (35 0) = 5D (8, 00) Jue( )]

jezd

L (£G) = ™ (E) Juecs) ||2}<1+ [ 6w 1) s

t
s Cff|: Z {” [JA(IT) (‘ST(X)) Js(,T b (ST(x))]ue(f) “

0 jezd

2
+ LI 05) = 0 6 Juen] + [ (Ew) = D (G ueen ] e
jezd
Now applying (3.9) forn = m, we get the required estimate fer= m + 1 and furthermore by the estimate of
Lemma 3.2(iii),

(toc )"/?
N

Thus it follows that the sequen¢g™ (x)ue(f)} is Cauchy. We defing; (x)ue(f) to be lim,_ « j: ue(f), that
is

17 ) = 7Y o Jue( )] < 3 —L— |ue(H) | (L + I71)" (L + 2010r)ex )"

Jiue(f) =xu@e(f)+ Y (5" ) = j" P @) jue(s) (3.10)
n>1
and one has
| jroue( )| < [uehH]]| 1 [ X+ 3 —— (toc "1 (1+ )" (1+ 2ﬁ1<r)cx)”]. (3.11)
n>1 \/n_

Unigueness follows by setting,
1 (x) = ji (x) = j{ (x)
and observing
dg ()= Y q:(87(0)) daj (1) + Y (8, (0)) dal(®) +g: (L)) dr,  go(x) =0
jezd jezd

Exactly similar estimate as above shows that, fornag 1,

laoueln)] < “"Cf) Jue(H ] 3 38 (. ) ).

k(n) €(n)
Since by Lemma 3.2(iii) the sum growsth power,q, (x) = 0Vx € Ajoc, Showing the uniqueness of the solution.
As 1€ Ajgc With £, (1) = 8,1(1) =8, (1) = 0 it follows from the QSDE (3.6) thaf (1) =
(b) Forue(f), ve(g) € h ® £(C) andx, y € Ajoc, we have, by induction,
(i o ue(f), ve(g)) = (ue( ), i (x)ve(g)).
Now asn tends toco, we get

(je c*yue(f), ve(g)) = (ue(f), ji(x)ve(g)).
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We define
@, (x, y) = (ue(f), ji(xy)ve(g)) — (ji (xue( ), ji (y)ve(g)).

Setting (¢ (1), ne() = (8, id), (id, &), (57,id), (d,8}), (Ly,id), (id, £y) and (5], 8) for [ =1,2,...,7 re-
spectively, one has

|®l(-x7 y)|
t Sp—1 S1
<,y [ / Z @3y (06, () G (1205, 1y () - 4 (1)) s - s
Iy .,110 0 0 kiy..k
Vn>1, (3.12)

wherecy, = (1+ tol/z)(||f||oo + llglle)- By the quantum Ito formula and cocycle properties of structure opera-
tors, i.e.L(xy) =xL(y) + LX)y + > reza a,j(x)sk (), we have,

t t
2x.) = [ S0 010.3) + e, 8e) o)+ [ S u(6]00.3) + 0.8 0) (o)
k k

t
+ / S @ (L0, ) + Py (3, Le) + D5 (57 (), 8e(1) } s,
k

which gives the estimate far= 1:

|D:(x, y)| <y Z /Z|a> (G E), D)) | ds. (3.13)

1=1,..

If we now assume (3.12) for some > 1, an application of (3.13) gives the required estimateiferm + 1.
At this point we note the following, which can be verified easily by (3.10), (3.11) and Lemma 3.2(iv).
(1) For anyn-tuple (ly,l2,...,0;,) in{1,2,...,7}

Z H]s (Zk () -+ Ty D ) - 1, (L) - - iy (1) () ) vE() |

,,,,,

< cg,x,y{(1+ I71)(2+ 2017)ex ) |
where for anyg € C

(3.14)

_ n (tocg)""? 2
cg,x,y_1+r§ls N {(@+ 171 (1 + 201(r)ex )}

(2) For anys < 1o, p < n ande(p),
> is{s(k(p). E(p) M }ve@) | < Couy {1+ I711) (14 2020 )cr y) } [ves) |- (3.15)
k(p)
(3) Sinced, (x) = ¥, (x*) and{S(k(p), (p))(x)}* can also be written aXk(p), &' (p))(x*) for somez’(p), we
have

D is{8(kp), &) )} ue(H)]| < Cray{ (14 Ir1) (L4 2010,y )} e )] (3.16)

k(p)
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For any fixedn-tuple (4, .. ., l,), itis easy to observe from the definition &f that
Z|¢s (¢k, Tn) -+ T D)X, Mgy (L) -+ iy (12)Y) |
k(n)

< Y [ueH] - s (€r, G -+ Gy Qx - iy (o) -+ iy () y) vECE) |
kn

,,,,, k1
A+ s G ) -+ Gy QD) ) Yl | - | s (i, T) - - iy QD) () v D) |-
The estimates (3.14), (3.15) and (3.16) yield:
Z|¢s (&k, (T <+ Sy D)X, Mk, ) -+ iy (1)) |
k(n)
<{ @+ 1) (A + 2000V y) }' el )] - [ve(®) | (Cory + CrayCarry)
= C{(L+ Ir1) (14 201 ) 1!
with C = lue( )| - [lve(@) 1(Cq x,y + Crx,yCorx.y)-
Now by (3.12),

{(@+ 1) L+ 201()en ) ', V> 1,

Tt n
9 x, )| < ¢

which implies®; (x, y) = 0.
(c) Lete =) cju e(f;) be a vector in the algebraic tensor produchgfand£(C). If y € Al};c, y is actually
anNPI x NYl-dim positive matrix and hence it admits a unique square yoot Al . For anyx € A , setting

y = /Tx[T—x so thaty € A}, we get
L& = (e & ) =Y Geslinuie £, jr (use(f)
=Y dicj{uieCf). ji(IIxI11— x)uje(f))  (by (b))
= Ilxll - 117 — (&, jr (0)),

where we have used the fact that 1,0 and j; (1) = 1. Now letx € Ajqc be arbitrary and applying the above for
x*x as well as (b) we get,

|8 | = (i @g. i @)E) = el ome ). joGouse(f))
=Y Gicjluie(f). ji(*xue(f)) = (&, ji FE) < x| - 1512 = |1x |7 1512
or
e &[] < llxll - 1N
This inequality obviously extends to glle ho ® I". Noting thatj, (1) = 1, V¢, we get
ljr )| <llxll and il =1.

Thusj, extends uniquely to a unital*-homomorphism satisfying the QSDE (3.6) and hence is an Evans—Hudson
flow on A with P; as its expectation semigroup. That the rangg @f in A” ® B(I") is clear from the construction
of j;. O
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We have also obtained an Evans—Hudson type dilation for the Q‘f)Sssociated with the partial stape. It
may be noted that the generatist of P,¢ satisfies

L2 (x) = Z Z [L XL + LM [x, L], Vx € Atoe.
keZd m=1

Now we have the following,
Theorem 3.4.Let £ and Pf’ be as discussed earlier. Then

(a) For eachk € Z¢ andr > 0 there exists a unique solutioﬁk) for the QSDE,

N’ N’
dn® (x) = n(k)( S x(k)]) day (1) + m(k)( > - L;(:")]) daf (1) + 0P (L3 xq0) dbr,

(3.17)
Jo(xy) =xy @ 1r,  Vxpy € Ax,

as a unital«-homomorphism from;, into A; ® B(I"). Moreover, for differenk andk’, n (k) and n(" ) commute
in the sense tha’t;,(k) (x@)) and n,(k )(xk/) commute for every) € Ay andxy € Ay/;
(b) There exists a unique unitathomomorphismy, from Ajoc into A” ® B(I") such that it coincide W|tlw(k)

A
(c) n: extends uniquely as a unital*-homomorphism fromd into A” @ B(I").

Proof. (a) For anyk € Z¢ andt > 0 let us consider the QSDE (3.17). Here we have only finitely many nontrivial
structure maps on the finite dimensional un@&talgebraAy, satisfying the structure equation. So there exists a
unique solutiomfk) as a unitak-homomorphism from4,, into A; ® B(I"). Since for differenk andk’ the asso-
ciated structure maps commute and for agy € Ax andxy € Ay, Ito term absent iml(n,(k)(x(k))n,(k/)(x(k/))), it
follows thatnt(k) (xw)) andn,(k/)(x(k/ ) commute.

(b) For any finiteA € Z?, > 0 and simple tensor elemenj = [Tica X € Aa, the mapn(A) given by

A k
Y (xg) = H 0t ()

keA

is well defined fromAd, to A4 ® B(I') asn(k)’s commute. Differentiating;,(A) (x4) with respect ta, it follows
thatnt(A)(xA) satisfies the QSDE,

N’ N’
dp V) =Y i ( 3oL x ]) dax (D) + Y n(A)< 3 [xa. L,ﬁ'">]> daf (1) + 0™ (Lfxa) dr,

keA m=1 keA m=1
N (3.18)
V) =xa®1r.
We now want to show
n,(A)(xy) = nt(A) (x) - m(A) (y), forsimple tensor elements y € Ajgc. (3.19)

Since eachn(k) is unital andnf“’) agrees Withn;A) for simple tensor elements i, whenever/ is a finite
subset ofA’, it is suffices to show ( 3.19) far, y € A4, whereA C Z4 is a finite set. For = Moo sxte and
Y =[lkea Y € Aa We have,
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A A k
Y (xy) = l_[(x(k)J’(k)) = l_[ 0 (oY)

keA keA
=11 0t o () = I1 0t (o) I1 7 ey)-
keA keA keA
Similarly
) = (M ()" (3.20)

Noting that any element € Ajoc can be written as a linear combination of simple tensor eleménts g € G},
sayx =} ,.g U, With ¢, = 0 when suppg) is outside supfx) = A, we define

(@)=Y cen (Uy).
geg

Forx andy € Ajgc, with x = deg cgUg andy =}, o cyUp, such that supfr) = supfly) = A4,

m(xy)=nz( > CgChUgUh)

8:.heg
= > WU = Y cqenn Upni™ WUn) - (by (3.19))
g.heG g.heG
= nz(ZCgUg>m(ZChUh) =1 ()1 (¥).
geG heG

It follows from (3.20) thaty, (x*) = (n;(x))* Vx € Ajpc. Thusyn, is a unitalx-homomorphism fromA4sc into
A" @ B(I').
(c) We recall thatAr;C is closed under taking square root, as already noted in the proof of Theorem 3.3(c). Thus
for x € Aloc, v/ |1x]121 — x*x € Argc. Sincer; is a unitalx-homomorphism o qc,
ne (17— x*x) > 0= 1, (x*x) < IIx 121 = e 0| < Dl = lne 0| < 1l

Son, extends uniquely as a unit@f-homomorphism frond into A” ® B(I"). O

4. Covariance of the Evans—Hudson flows

In this section we shall prove that the Evans—Hudson flows constructed in the last section are covarant. Let
be aC* (or von Neumann) algeby& be a locally compact group with an actienon B. Let {7;: ¢ > 0} be a
covariant QDS or3 with respect tay, i.e.

agoTi(x)=Tioag(x), Vt>0, geG, xebB.

Then a natural question arises whether there exists a covariant Evans—Hudson dildfipn Tdre question is dis-
cussed in [1] for uniformly continuous QDS. There is no such general result for QDS with unbounded generators.
We shall show that the Evans—Hudson floyig and{z,} constructed in the previous section are covariant with
respect to the actionsandx of Z¢, wherex will be introduced later in this section.
It can be easily observed that

Stj=1i8; and §t;=1;8_;. Vj kel (4.2)

and we have the following lemma,
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Lemma4.1.

0] ﬁtj (x)= tjﬁ(x) Vx € Dom(£),
(i) Pitj=rt; P, i.e. P is covariant.

Proof. (i) We note thatC1(A) is invariant under and thus forc € C1(A),

1
£(rj@) =5 37 8 (0 rk +r{de(z; ()

kezd
1
=5 > rjsz_j(x)rk + 178k (x)  (by (4.1))
kezd
1
= Erj{ Z 8,1_.j(x)rk_j +r;:_j5k—j(x)} =1;(L()).
kezd

Forx e Dom(f:), we choose a sequents, } in C1(A) and an element € A such thaty = /f(x), X, converge to
x andL(x,) converge toy. As t; is an automorphism for any e Z¢, 7;(x,) andt; L(x,) converge tar;(x) and
7;(y) respectively. Since, € C1(A) andL(z;(x,)) = 7;L(x,), We get

t;(x) eDom(£) and Lrt;(x)=1;L(x).
(i) By (i), for x € Dom(£) and 0< s <  we have,

d . .
d—PS otjoPi_s(x)=PsoLotjoP_s(x)—PsotjoLoP_s(x)=0.
s

This implies thatP o 7; o P;_¢(x) is independent af for every j and 0< s < z. Settings = 0 andr respectively
and using the fact thak; is bounded we geP;t; =1; ;. O

We note thatj; : A — A” @ B(I'(L?(R., ko))), wherekq = %(Z%) with a canonical basify}, as mentioned
earlier. We define the canonical bilateral shifty s;ex = ex+;, ¥j, k € Z¢ and lety; = I'(1® s;) be the second
quantization of 1® s;, i.e.y;e(}_ fi(-)e)) =e(}_ fi(-)ei+ ;). This defines a unitary representatiorZsfin I". We
setan actiom =t ® » of Z¢ on A" @ B(I"), wherei;(y) = yjyy—;j Yy € B(I).

By definition of fundamental processes(t) given byay (r)e(g) = fé gr(s)dse(g), it can be observed that

rjap(t)e(g) = yjar(t)y—je(g) = J/jak(t)E'(Z(& el+j)(')€1)

t
= f (g, exsj)(s)ds v (e(Z(g,em)(-)ez))
0
t
:/(87ek+j>(s)dse<2(g»el+j)(')€l+j>
0
= ag+;(1)e(g).
Since(e(f), A jar()e(g)) = (Aja,:r(t)e(f), e(g)), it follows that

hjar®) =arj(t) and Ajal(t) =al, (). (4.2)
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Theorem 4.2.The Evans—Hudson floyy of the QDSP; is covariant with respect to the actionsando, i.e.

oijiit—j(x)=ji(x) VxeA, t>0andke 74,

Proof. For a fixedj € Z¢ we set;/ = ojjit—j, Yt > 0. Using the QSDE (3.6) and Lemma 4.1, (4.1), (4.2) we
have forx € Ajgc,
Ji) = jo(x)
t t t
=/ Zo,-js(a,j(z_j(x)))dak(s)+/ Zojjs((sk(z_j(x)))da,j(s)+/ajjs(£(r_j(x)))ds
0 kezd 0 kezd 0
t t t

= | > ojiet (6], (0) dar () + / 3" 07t (84 () daj, () + f o jst—;(£(x))ds

0 kezd 0 keZd 0
t t t
=/ Z js’(SZ(x)) dak(s)—i—/ Z Js 8k (x)) da,:r(s)—l-/js/(/fx) ds.
0 kezd 0 kezd 0

Sincejj(x) =0jjor—;(x) =0j(1—;(x) ® 1r) = x ® 11 = jo(x), it follows from the uniqueness of solution of the
QSDE (3.6) thayj/ (x) = j; (x) for all + > 0 andx € Ajqc. As bothj; andj, are bounded maps, we haye= j;. O

Remark 4.3.By similar arguments as above, the Evans—Hudson flow for the Q‘stsociated with partial state
¢o can be seen to be covariant with respect to the same actions.

5. Ergodicity of the Evans—Hudson flows

Let us recall the ergodic QDB,d’ associated with the partial statg, for which we have constructed an Evans—
Hudson flows, in Section 3. It may be noted thﬂ’f’ has the unique invariant stafe We have the following result
on ergodicity ofn, with respect to the weak operator topology.

Theorem 5.1.The Evans—Hudson flowy of the ergodic QDSP,¢ is ergodic with respect to the unique invariant
state®, in the sense that

n(x) > @(x)® 1y weaklyvx € A.

Proof. Sincen, and P,¢ are norm contractivedjqc is norm-dense ind, and Ptd)(x) converges tap (x)1 for all
x € A, itis enough to show that, (x) — P,¢ (x) ® 1 — 0 weakly ag — oo. Furthermore, it suffices to show that
(&1, (N (x) — P;/’ (x) ® 1r)&) — 0 ast — oo, wWhereg, & vary over the linear span of vectors of the fovat f),
with f =" <, fk ® ex for somen and fi's are inL*(Ry) N LA(R,).

For notational simplicity denoting the bounded derivations4on

N’ N’
X = Z[x, L,({m)] and x+— Z[L,inl)*, x]
m=1 m=1

by pr and ,o,;r respectively. We note that satisfies the QSDE
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dne(x) =Y me(p (0) da(®) + D me (o)) daf () + > (L7 () e,
kezd kezd kezd 61
UO(X) =X ® 1]", Vx € A|oc.
Forr>0,u,v ehgandf, g e LR, ko) N LR, Ko) such thatf = Y ki<n Jk ® e andg = 3" <, gk ® ex
andx € Ajoc, we consider the following,

|(ue(f). [n:(x) — PP (x) @ 1r Jveg))|

t
<ue<f), [ / > ng{on (PP )} dal (@) + g0 (P, ()} dak<q>} ve(g>>|

0 keZd

t

<> / \(ue(f). ng{ox (P, () Jve@))|| 8@ | dg

IkI<n

+ Y / {we(£). ng {of (P2, ) Jec))] | £ (@) .

lkI<n

As 1, Ptd’ are contractiveP;/J (x) tends tod (x)1 ast tends toco and oy, ,o,j are uniformly bounded withy (1) =
p,,:r(l) =0 forallk € Z¢, we have,

\(ue(f). g {pe(PL, ) }ve)| and |(ue(f), ng{o] (PL, (1)) }ve(e))| < M.

for some constan¥ independent of andg. The fact thatf, g € L(R,, Ko) allows us to conclude that both the
terms of the above expression tend to @ &ands tooo. This completes the proof.O

Remark 5.2.7,(x) does not converge strongly, for if it did, then— @ (x) ® 1 would be a homomorphism, i.e.
@ would be a multiplicative nonzero functional on the UHF algeHdracontradictory to the fact thad does not
have any such functional.

Remark 5.3. If we look at the perturbation of the ergodic QD‘§ by the QDS associated with some single-
supportedr € Ap, then by the same arguments used in the construction of the Evans—Hudson flow for the
unperturbed semigroup one can obtain an Evans—Hudson flow for the perturbed one. For small perturbation para-

meterc > 0 for which Pt(c) is ergodic, the associated Evans—Hudson flow is also ergodic with respect to the same
invariant state in the above sense.
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