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Abstract

Evans–Hudson flows are constructed for a class of quantum dynamical semigroups with unbounded generator
algebras, which appeared in [Rev. Math. Phys. 5 (3) (1993) 587–600]. It is shown that these flows are unital and c
Ergodicity of the flows for the semigroups associated with partial states is also discussed.
 2005 Elsevier SAS. All rights reserved.

Résumé

Les flots d’Evans–Hudson sont construits pour une classe de semi-groupes dynamiques quantiques à générateu
sur une algèbre UHF, définie dans la référence [Rev. Math. Phys. 5 (3) (1993) 587–600]. On montre que ces flots p
l’unité et sont covariants. L’ergodicité des flots associés à des états partiels est également discutée.
 2005 Elsevier SAS. All rights reserved.

1. Introduction

Quantum dynamical semigroups, to be abbreviated as QDS, constitute a natural generalization of
Markov semigroups arising as expectation semigroups of Markov processes. A QDS{Tt : t � 0} on aC∗-algebraA
is aC0-semigroup of completely positive mapsTt onA. Given such a QDS, it is interesting and important to lo
for a dilation in the sense of Evans–Hudson, i.e. a family of∗-homomorphismsηt :A → A′′ ⊗B(Γ (L2(R+,k0)))
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wherek0 is some separable Hilbert space andΓ (·) denotes the symmetric Fock space, satisfying a suitable q
tum stochastic differential equation. This problem has been completely solved for QDS with bounded ge
by Goswami, Sinha and Pal [2,4], where a canonical Evans–Hudson flow for an arbitrary QDS with bound
erator has been constructed. However, only partial success has been achieved for QDS with unbounded
It is perhaps too much to expect a complete general theory for an arbitrary QDS. It may be wiser to look for
Hudson flow for special classes of QDS. In [3] for example, the authors gave a general theory of dilation f
on aC∗-algebraA, which is covariant with respect to an action of a Lie group and also symmetric with resp
a given faithful semifinite trace. However, in the present article, we shall try to construct an Evans–Huds
for another class of QDS on a UHFC∗-algebra, studied by T. Matsui in [6]. This construction has some simila
with the earlier one, but the action of the discrete groupZ

d instead of a Lie group action as in [3] makes the pres
model somewhat different from that of [3]. We have not only proved the existence of a dilation in Section 3,
also able to prove in Section 4 that the Evans–Hudson (EH) flow is indeed covariant with respect to theZ

d action.
Some ergodicity properties of the flows are also discussed briefly in Section 5.

2. Notation and preliminaries

T. Matsui [6] constructed a class of conservative QDS on the UHFC∗-algebraA generated as theC∗-completion
of infinite tensor product

⊗
j∈Zd MN(C), whereN andd are two fixed positive integers. ThisC∗-algebra can

also be described as the inductive limit of full matrix algebras{MNn(C), n � 1} with respect to the imbeddin
MNn ⊆ MNn+1 by sendinga to a ⊗ 1. The unique normalized trace tr onA is given by tr(x) = 1

Nn Tr(x), for
x ∈ MNn(C), where Tr denotes the ordinary trace onMNn(C). For x ∈ MN(C) and j ∈ Z

d , let x(j) denote an
element inA whosej th component isx and rest are identity ofMN(C). For a simple tensor elementa ∈ A, let
a(j) be thej th component ofa. The support ofa, denoted by supp(a) is defined to be the set{j ∈ Z

d : a(j) �= 1}.
For a general elementa ∈ A such thata = ∑∞

n=1 cnan with an’s simple tensor elements inA andcn’s complex
coefficients, we define supp(a) := ⋃

n∈N
supp(an) and we set|a| = cardinality of supp(a). For anyΛ ⊆ Z

d , let
AΛ denote the∗-subalgebra generated by elements ofA with supportΛ. WhenΛ = {k}, we writeAk instead
of A{k}. Let Aloc be the∗-subalgebra ofA generated by elementsa ∈ A of finite support or equivalently b
{x(j): x ∈ MN(C), j ∈ Zd}. ClearlyAloc is dense inA. For k ∈ Zd , the translationτk onA is an automorphism
determined byτk(x

(j)) := x(j+k) ∀x ∈ MN(C) andj ∈ Z
d . Thus, we get an actionτ of the infinite discrete group

Z
d on A. For x ∈ A we denoteτk(x) by xk . The algebraA is naturally sitting insideh0 = L2(A, tr), the GNS

Hilbert space for(A, tr). It is easy to see thatτk extends to a unitary onh0, to be denoted by the same symbolτk ,
giving rise to a unitary representationτ of the groupZd on h0, which implements the actionτ . It is also clear tha
this action extends as an action ofZ

d by normal automorphisms on the von Neumann algebraA′′.
We also need another dense subset ofA, which is in a sense like the first Sobolev space inA. For this, we need

to note thatMN(C) is spanned by a pair of noncommutative representatives{U,V } of ZN = {0,1, . . . ,N − 1}
such thatUN = V N = 1 ∈ MN(C) and UV = wV U , wherew ∈ C is the primitiveN th root of unity. These
U,V can be chosen to be theN × N circulant matrices. In particular forN = 2, a possible choice is given b
U = σx andV = σz, whereσx andσz denote the Pauli-spin matrices. Forj ∈ Z

d and (α,β) ∈ G ≡ ZN × ZN ,

we setσj ;α,β(x) = [U(j)αV (j)β, x] ∀x ∈ A, ‖x‖1 = ∑
j ;α,β ‖σj ;α,β(x)‖ andC1(A) = {x ∈ A: ‖x‖1 < ∞}. It is

easy to see that‖x∗‖1 = ‖τj (x)‖1 = ‖x‖1 and sinceC1(A) contains the dense∗-subalgebraAloc, C1(A) is a
denseτ invariant∗-subalgebra ofA. Let G := ∏

j∈Zd G be the infinite direct product of the finite groupG at
each lattice site. Thus eachg ∈ G hasj th componentg(j) = (αj ,βj ) with αj ,βj ∈ ZN . For g ∈ G we define
its support by supp(g) = {j ∈ Z

d : g(j) �= (0,0)} and |g| = cardinality of supp(g). Let us consider the projectiv

unitary representation ofG, given byG � g 
→ Ug = ∏
j∈Zd U(j)αj

V (j)βj ∈ A. For a given completely positiv
mapT onA, we formally define the Linbladian
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ps
L=
∑
k∈Zd

Lk,

whereLkx = τkL0(τ−kx), ∀x ∈A,

with L0(x) = −1

2

{
T (1), x

}+ T (x), (2.1)

and{A,B} := AB + BA.
In particular we consider the LindbladianL for the completely positive mapT ,

T x :=
∞∑

n=0

a∗
nxan, ∀x ∈A,

associated with a sequence of elements{an}n�0 in A, with an =∑
g∈G cn,gUg such that

∑∞
n=0

∑
g∈G |cn,g||g|2 <

∞. Matsui has proven the following in the paper referred earlier [6].

Theorem 2.1.(i) The mapL formally define above is well defined onC1(A) and the closureL̂ of L/C1(A) is the
generator of a conservative QDS{Pt : t � 0} onA,

(ii) The semigroup{Pt } leavesC1(A) invariant.

The semigroupPt satisfies

Pt (x) = x +
t∫

0

Ps

(
L̂(x)

)
ds, ∀x ∈ Dom(L̂).

Since 1∈ C1(A) andL̂(1) = L(1) = 0, it follows thatPt (1) = 1,∀t � 0.
Following [6], we say thatPt is ergodic if there exists an invariant stateψ satisfying∥∥Pt (x) − ψ(x)1

∥∥→ 0 ast → ∞, ∀x ∈A. (2.2)

In [6], the author has discussed some criteria for ergodicity of the QDSPt . Some examples of such semigrou
associated with partial states on the UHF algebra and their perturbation are given.

For a stateφ on MN(C) and k ∈ Z
d , the partial stateφk on A is determined byφk(x) = φ(x(k))x{k}c , for

x = x(k)x{k}c , wherex(k) ∈ Ak and x{k}c ∈ A{k}c . We can find a natural numberN ′ and elements{L(m): m =
1,2, . . . ,N ′} in MN(C) such that

φ(x) =
N ′∑

m=1

L(m)∗xL(m) ∀x ∈ MN(C) and
N ′∑

m=1

L(m)∗L(m) = 1.

For m = 1, . . . ,N ′, let us consider the elementL
(m)
0 ∈ A0 with the zeroth component beingL(m). Now for k ∈ Z

d

andm = 1, . . . ,N ′, writing L
(m)
k = τk(L

(m)
0 ), the partial stateφk is given by,

φk(x) =
N ′∑

m=1

L
(m)∗
k xL

(m)
k ∀x ∈ A.

By (2.1), the LinbladianLφ corresponding to the partial stateφ0 is formally given by

Lφ(x) =
∑

Lφ
k (x),
k∈Zd
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quantum

r

where

Lφ
k (x) = φk(x) − x = 1

2

N ′∑
m=1

[
L

(m)∗
k , x

]
L

(m)
k + L

(m)∗
k

[
x,L

(m)
k

]
.

It follows from Theorem 2.1 thatLφ is defined onC1(A). Moreover, the closurêLφ of Lφ/C1(A) generates a
conservative QDSP φ

t onA given by

P
φ
t

(∏
k∈Λ

x(k)

)
=
∏
k∈Λ

{
φ(x(k)) + e−t

(
x(k) − φ(x(k))

)}
.

We note that the mapΦ defined by,

Φ

(∏
k∈Λ

x(k)

)
= lim

t→∞P
φ
t

(∏
k∈Λ

x(k)

)
=
∏
k∈Λ

φ(x(k))

extends as a state onA which is the unique invariant state for the ergodic QDSP
φ
t . For any real numberc, we

consider the perturbation

L(c)(x) = Lφ(x) + cL(x), ∀x ∈ C1(A).

It is clear thatL(c) is the Linbladian associated with the completely positive map

T (x) =
N ′∑

m=1

L
(m)∗
k xL

(m)
k + c

∞∑
l=0

a∗
l xal, ∀x ∈A

and by Theorem 2.1 it follows that the closureL̂(c) of L(c)/C1(A) generate a QDSP (c)
t . Moreover, one has

Theorem 2.2 [6]. There exists a constantc0 such that for0 � c � c0 the above QDSP (c)
t is ergodic with the

invariant stateΦ(c) satisfying∥∥P (c)
t (x)

∥∥
1 � 2e−(1−c/c0)t‖x‖1,

(2.3)∥∥P (c)
t (x) − Φ(c)(x)1

∥∥� 4

N2
e−(1−c/c0)t‖x‖1, ∀x ∈ C1(A).

Remark 2.3.The invariant stateΦ(c) corresponding to the ergodic QDSP (c)
t is given by

Φ(c)(x) = Φ(x) + c

∞∫
0

Φ
(
L
(
P

(c)
t (x)

))
dt, ∀x ∈ C1(A).

Let us conclude the present section with a brief discussion on the fundamental integrator processes of
stochastic calculus, introduced by Hudson and Parthasarathy [5]. Letk = L2(R+,k0) wherek0 = l2(Zd) with the
canonical orthonormal basis{ej : j ∈ Z

d} andΓ = Γsym(k), the symmetric Fock space overk. For f ∈ k, we
denote bye(f ) the exponential vector inΓ associated withf :

e(f ) =
⊕
n�0

1√
n!f

(n),

wheref (n) = f ⊗ f ⊗ · · · ⊗ f︸ ︷︷ ︸
n-copies

for n > 0 and by conventionf (0) = 1. Forf = 0, e(f ) is called the vacuum vecto

in Γ . Let C be the space of all bounded continuous functions fromR to k , so thatE(C) ≡ {e(f ): f ∈ C} is
+ 0
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total in Γ (k). Any f ∈ L2(R+,k0) decomposes asf = ∑
k∈Zd fkek with fk ∈ L2(R+). We take the freedom t

use the same symbolfk to denote the function inL2(R+,k0) as well, whenever it is clear from the context. T
fundamental processes{Λj

i : i, j ∈ Z
d} associated with the orthonormal basis{ej : j ∈ Z

d} are given by

Λi
j (t) = aχ[0,t]⊗ei

for i �= 0, j = 0

= a
†
χ[0,t]⊗ej

for i = 0, j �= 0

= ΛMχ[0,t]⊗|ej 〉〈ei | for i, j �= 0

= t1 for i = j = 0,

whereMχ[0,t] is the multiplication operator onL2(R+) by characteristic function of the interval[0, t]. For details
the reader is referred to [10] and [7].

3. Evans–Hudson type dilation

In this section we investigate the possibility of constructing EH flows for the QDS on UHFC∗-algebra, discusse
in the previous section. Although the question is not answered in full generality, EH flows for a class of Q
constructed.

Let r = ∑
g∈G cgUg ∈ A such that

∑
g∈G |cg||g|2 < ∞. The LindbladianL associated with the elementr , i.e.

associated with the CP mapT , T (x) = r∗xr, ∀x ∈ A, takes the form

L(x) =
∑
k∈Zd

δ
†
k (x)rk + r∗

k δk(x), (3.1)

whererk := τk(r) andδk, δ
†
k are bounded derivation onA given by

δk(x) = [x, rk] and δ
†
k (x) := (

δk(x
∗)
)∗ = [r∗

k , x], ∀x ∈A. (3.2)

It follows from [6] that the closureL̂ of L/C1(A) is the generator of a contractive QDSPt on A. In or-
der to construct an EH flow for the QDSPt , we would like to solve the following QSDE inB(L2(A, tr)) ⊗
B(Γ (L2(R+,k0))):

djt (x) =
∑
j∈Zd

jt

(
δ

†
j (x)

)
daj (t) +

∑
j∈Zd

jt

(
δj (x)

)
da

†
j (t) + jt

(
L̂(x)

)
dt,

(3.3)
j0(x) = x ⊗ 1Γ , x ∈Aloc.

Let us first look at the corresponding Hudson–Parthasarathy equation inL2(A, tr) ⊗ Γ (L2(R+,k0)), given by

dUt =
{∑

j∈Zd

[
r∗
j daj (t) − rj da

†
j (t)

]− 1

2

∑
j∈Zd

r∗
j rj dt

}
Ut,

(3.4)
U0(x) = 1L2⊗Γ .

However, though eachrj ∈ A and hence is inB(L2(A, tr)), Eq. (3.4) does not in general admit a solution since〈
u,

∑
r∗
j rju

〉
=

∑
‖rju‖2 ∀u ∈ L2(A, tr),
j∈Zd j∈Zd



510 D. Goswami et al. / Ann. I. H. Poincaré – PR 41 (2005) 505–522

ponding

ution of a

ite
is not convergent in general and hence
∑

j∈Zd rj ⊗ ej does not define an element inA⊗ k0. For example, letr be

the single-supported unitary elementU(k) ∈ A for somek ∈ Z
d so thatrj = U(k+j) is a unitary for eachj ∈ Z

d

and hence∑
j∈Zd

‖rju‖2 =
∑
j∈Zd

‖u‖2 = ∞.

However, as we shall see, in many situation there exist Evans–Hudson flows, even though the corres
Hudson–Parthasarathy equation (3.4) does not admit a solution.

Remark 3.1.There are some cases when an Evans–Hudson flow can be seen to be implemented by a sol
Hudson–Parthasarathy equation. For example, given a self adjointr ∈A

dVt = Vt

{ ∑
k∈Zd

(
S∗

k dak(t) − Sk da
†
k (t)

)− 1

2

∑
k∈Zd

S∗
k Sk dt

}
, V0 = 1,

whereSk is defined bySk(x) = [rk, x] for x ∈A ⊆ L2(A, tr), admits a unique unitary solution and

x 
→ Vt (x ⊗ 1)V ∗
t

gives an Evans–Hudson dilation forPt [8,9].

Let a, b ∈ ZN be fixed andW = UaV b ∈ MN(C). We consider the following representation of the infin
product groupG′ :=∏

j∈Zd ZN , given by

G′ � g 
→ Wg =
∏

j∈Zd

W(j)αj
, whereg = (αj ).

For anyy ∈A, y =∑
g∈G cgUg and forn � 1 we define

ϑn(y) =
∑
g∈G

|cg||g|n.

Now we considerr ∈A, r =∑
g∈G′ cgWg such that

∑
g∈G′ |cg||g|2 < ∞. It is clear thatϑ1(r) =∑

g∈G′ |cg||g| <
∞. We note that anyx ∈ Aloc can be written asx = ∑

h∈G chUh, with complex coefficientsch satisfyingch = 0
for all h such that supp(h) ∩ supp(x) is empty. So

ϑn(x) =
∑
h∈G

|ch||h|n < ∞ for n � 1,

and it is clear that

ϑn(x) � |x|n
∑
h∈G

|ch| � cn
x

wherecx = |x|(1+∑
h∈G |ch|). Let us consider the formal LindbladianL associated with the elementr ,

L=
∑
k∈Zd

Lk,

whereLk(x) = 1
2δ

†
k (x)rk + r∗

k δk(x).
For n � 1, we denote the set of integers{1,2, . . . , n} by In and for 1� p � n, P = {l1, l2, . . . , lp} ⊆ In with

l1 < l2 < · · · < lp , we define a map from then-fold Cartesian product ofZd to that ofp copies ofZd by

k̄(I ) = (k , k , . . . , k ) 
→ k̄(P ) := (k , k , . . . , k )
n 1 2 n l1 l2 lp
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and similarly,ε̄(P ) := (εl1, εl2, , . . . , εlp ) for a vectorε̄(In) = (ε1, ε2, , . . . , εn) in then-fold Cartesian product o
{−1,0,1}.

For brevity of notations, we writēε(P ) ≡ c ∈ {−1,0,1} to mean that allεli = c and denotēk(In) and ε̄(In)

by k̄(n) andε̄(n) respectively. Settingδε
k = δ

†
k ,Lk andδk depending uponε = −1,0 and 1 respectively, we writ

R(k̄) = rk1rk2 · · · rkp andδ(k̄, ε̄) = δ
εp

kp
· · · δε1

k1
for any k̄ = (k1, k2, . . . , kp) and ε̄ = (ε1, ε2, . . . , εp). Now we have

the following useful lemma,

Lemma 3.2.Let r, x and constantcx be as above. Then

(i) For anyn � 1,∑
k̄(n)

∥∥δ(k̄(n), ε̄(n)
)
(x)

∥∥�
(
2ϑ1(r)cx

)n ∀x ∈Aloc,

whereε̄(n) is such thatεl �= 0, ∀l ∈ In.
(ii) For anyn � 1 and k̄(n),

Lkn · · ·Lk1(x) = 1

2n

∑
p=0,1,...,n

∑
P⊆In: |P |=p

R
(
k̄(P c)

)∗
δ
(
k̄(n), ε̄(P )(n)

)
(x)R

(
k̄(P )

)
,

whereε̄(P )(n) is such that̄ε(P )(P ) ≡ −1 and ε̄(P )(P
c) ≡ 1.

(iii) For anyn � 1,p � n,P ⊆ In and ε̄(n) such that̄ε(P ) contains all those components equal to0, we have,∑
k̄(n)

∥∥δ(k̄(n), ε̄(n)
)
(x)

∥∥� ‖r‖p
(
2ϑ1(r)cx

)n �
(
1+ ‖r‖)n(2ϑ1(r)cx

)n
.

(iv) Let m1,m2 � 1; x, y ∈ Aloc and ε̄′(m1), ε̄
′′(m2) be two fixed tuples. Then forn � 1 and ε̄(n) as in (iii) , we

have, ∑
k̄(n),k̄′(m1),k̄

′′(m2)

∥∥δ(k̄(n), ε̄(n)
){

δ
(
k̄′(m1), ε̄

′(m1)
)
(x) · δ(k̄′′(m2), ε̄

′′(m2)
)
(y)

}∥∥
� 2n

(
1+ ‖r‖)2n+m1+m2

(
2ϑ1(r)cx,y

)n+m1+m2,

wherecx,y = max{cx, cy}.

Proof. (i) As r∗ is again of the same form asr , it is enough to observe the following:∑
kn,...,k1

∥∥[rkn, · · · [rk1, x]] · · ·]∥∥�
(
2ϑ1(r)cx

)n ∀x ∈Aloc.

In order to prove this let us consider

LHS=
∑

kn,...,k1

∑
gn,...,g1∈G′; h∈G

|cgn | · · · |cg1||ch|
∥∥[τknWgn, · · · [τk1Wg1,Uh]] · · ·]

∥∥.
We note that for any two commuting elementsA,B in A, [A, [B,x]] = [B, [A,x]]. Thus, for the commutato
[τknWgn, · · · [τk1Wg1,Uh]] · · ·] to be nonzero, it is necessary to have(supp(gi) + ki) ∩ supp(h) �= φ for eachi =
1,2, . . . , n. Clearly the number of choices of suchki ∈ Z

d is at most|gi | · |h|. Thus we get,∑ ∥∥[rkn, · · · [rk1, x]] · · ·]∥∥�
∑

|cgn | · · · |cg1||ch||gn| · · · |g1||h|n2n �
(
2ϑ1(r)cx

)n
.

kn,...,k1 gn,...,g1∈G′; h∈G
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(ii) The proof is by induction. For anyk ∈ Z
d we have,

Lk(x) = 1

2

∑
k∈Zd

δ
†
k (x)rk + r∗

k δk(x),

so it is trivially true for n = 1. Let us assume it to be true for somem > 1 and for anykm+1 ∈ Zd consider
Lkm+1Lkm · · ·Lk1(x). By applying the statement forn = m we get,

Lkm+1Lkm · · ·Lk1(x) = 1

2m+1

∑
p=0,1,...,m

∑
P⊆Im: |P |=p

[
δ∗
km+1

{
R
(
k̄(P c)

)∗
δ
(
k̄(m), ε̄(P )(m)

)
(x)R

(
k̄(P )

)}
rkm+1

+ r∗
km+1

δkm+1

{
R
(
k̄(P c)

)∗
δ
(
k̄(m), ε̄(P )(m)

)
(x)R

(
k̄(P )

)}]
.

Sincerk ’s are commuting with each other, the above expression becomes

1

2m+1

∑
p=0,1,...,m

∑
P⊆Im: |P |=p

[
R
(
k̄(P c)

)∗
δ∗
km+1

δ
(
k̄(m), ε̄(P )(m)

)
(x)R

(
k̄(P )

)
rkm+1

+ r∗
km+1

R
(
k̄(P c)

)∗
δkm+1δ

(
k̄(m), ε̄(P )(m)

)
(x)R

(
k̄(P )

)]
= 1

2m+1

∑
p=0,1,...,m+1

∑
P⊆Im+1: |P |=p

R
(
k̄(P c)

)∗
δ
(
k̄(m + 1), ε̄(P )(m + 1)

)
(x)R

(
k̄(P )

)
.

(iii) By simple application of (ii),

δ
(
k̄(n), ε̄(n)

)
(x) = 1

2p

∑
q=0,1,...,p

∑
Q⊆P : |Q|=q

R
(
k̄(P \ Q)

)∗
δ
(
k̄(n), ε̄(Q,P )(n)

)
(x)R

(
k̄(Q)

)
, (3.5)

whereε̄(Q,P )(n) is defined to be the map from then-fold Cartesian product of{−1,0,1} to itself, given byε̄(n) 
→
ε̄(Q,P )(n) such that̄ε(Q,P )(Q) ≡ −1, ε̄(Q,P )(P \Q) ≡ 1 andε̄(Q,P )(In \P) = ε̄(In \P). Now (iii) follows from (i).

(iv) By (3.5) we have,

LHS= 1

2p

∑
k̄(n),k̄′(m1),k̄

′′(m2)

∑
q=0,1,...,p

∑
Q⊆P : |Q|=q

∥∥R(k̄(P \ Q)
)∗

× δ
(
k̄(n), ε̄(Q,P )(n)

)[
δ
(
k̄′(m1), ε̄

′(m1)
)
(x) · δ(k̄′′(m2), ε̄

′′(m2)
)
(y)

]
R
(
k̄(Q)

)∥∥.
Now applying the Leibnitz rule, it can be seen to be less than or equal to

‖r‖p

2p

∑
k̄(n),k̄′(m1),k̄

′′(m2)

∑
q=0,1,...,p

∑
Q⊆P : |Q|=q

∑
l=0,1,...,n

∑
L⊆In: |L|=l

∥∥δ(k̄(L), ε̄(Q,P )(L)
)
δ
(
k̄′(m1), ε̄

′(m1)
)
(x)

∥∥
× ∥∥δ(k̄(Lc), ε̄(Q,P )(L

c)
)[

δ
(
k̄′′(m2), ε̄

′′(m2)
)
(y)

]∥∥.
Using (iii), we obtain,

LHS� (1+ ‖r‖)n
2p

∑
q=0,1,...,p

p!
(p − q)!q!

∑
l=0,1,...,n

n!
(n − l)! l!

(
1+ ‖r‖)l+m1

(
2ϑ1(r)cx

)l+m1

× (
1+ ‖r‖)n−l+m2

(
2ϑ1(r)cy

)n−l+m2

� 2n
(
1+ ‖r‖)2n+m1+m2

(
2ϑ1(r)cx,y

)n+m1+m2. �
Now we are in a position to prove the following result about existence of an Evans–Hudson flow for QPt

associated with the elementr ∈ A discussed above.
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m

as
Theorem 3.3.(a)For t � 0, there exists a unique solutionjt of the QSDE,

djt (x) =
∑
j∈Zd

jt (δ
†
j x)daj (t) +

∑
j∈Zd

jt (δj x)da
†
j (t) + jt (L̂x)dt, (3.6)

j0(x) = x ⊗ 1Γ , ∀x ∈ Aloc,

such thatjt (1) = 1, ∀t � 0.
(b) For x, y ∈ Aloc andu,v ∈ h0, f, g ∈ C,〈

ue(f ), jt (xy)ve(g)
〉= 〈

jt (x
∗)ue(f ), jt (y)ve(g)

〉
. (3.7)

(c) jt extends uniquely to a unitalC∗-homomorphism fromA into A′′ ⊗B(Γ ).

Proof. We note first thatAloc is a dense∗-subalgebra ofA.
(a) As usual, we solve the QSDE by iteration. Fort0 � 0, t � t0 andx ∈ Aloc, we set

j
(0)
t (x) = x ⊗ 1Γ and

(3.8)

j
(n)
t (x) = x ⊗ 1Γ +

t∫
0

∑
j∈Zd

j (n−1)
s

(
δ

†
j (x)

)
daj (s) +

∑
j∈Zd

j (n−1)
s

(
δj (x)

)
da

†
j (s) + j (n−1)

s

(
L̂(x)

)
ds.

Then foru ∈ h0 andf ∈ C, we can show by induction, that

∥∥{j (n)
t (x) − j

(n−1)
t (x)

}
ue(f )

∥∥� (t0cf )n/2

√
n!

∥∥ue(f )
∥∥∑

k̄(n)

∑
ε̄(n)

∥∥δ(k̄(n), ε̄(n)
)
(x)

∥∥, (3.9)

wherecf = 2eγf (t0)(1+ ‖f ‖2∞), with γf (t0) = ∫ t0
0 (1+ ‖f (s)‖2)ds. Forn = 1, by the basic estimate of quantu

stochastic integral [10,7],∥∥{j (1)
t (x) − j

(0)
t (x)

}
ue(f )

∥∥2

=
∥∥∥∥∥
{ t∫

0

∑
j∈Zd

δ
†
j (x)daj (s) +

∑
j∈Zd

δj (x)da
†
j (s) + L̂(x)ds

}
ue(f )

∥∥∥∥∥
2

� 2eγf (t0)
∥∥e(f )

∥∥2
t∫

0

{∑
j∈Zd

∥∥δ†
j (x)u

∥∥2 +
∑
j∈Zd

∥∥δj (x)u
∥∥2 + ∥∥L̂(x)u

∥∥2
}(

1+ ∥∥f (s)
∥∥)2 ds

� cf t0
∥∥e(f )

∥∥2
{∑

j∈Zd

∥∥δ†
j (x)u

∥∥+ ∥∥δj (x)u
∥∥+ ∥∥Lj (x)u

∥∥}2

.

Thus (3.9) is true forn = 1. Inductively assuming the estimate for somem > 1, we have by the same argument
above,∥∥{j (m+1)

t (x) − j
(m)
t (x)

}
ue(f )

∥∥2

=
∥∥∥∥∥
{ t∫

0

∑
j∈Zd

[
j (m)
sm

(
δ

†
j (x)

)− j (m−1)
sm

(
δ

†
j (x)

)]
daj (sm) +

∑
j∈Zd

[
j (m)
sm

(
δj (x)

)− j (m−1)
sm

(
δj (x)

)]
da

†
j (sm)

+ [
j (m)
sm

(
L̂(x)

)− j (m−1)
sm

(
L̂(x)

)]
dsm

}
ue(f )

∥∥∥∥∥
2
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of

n.
� 2eγf (t0)

t∫
0

{∑
j∈Zd

∥∥[j (m)
sm

(
δ

†
j (x)

)− j (m−1)
sm

(
δ

†
j (x)

)]
ue(f )

∥∥2

+
∑
j∈Zd

∥∥[j (m)
sm

(
δj (x)

)− j (m−1)
sm

(
δj (x)

)]
ue(f )

∥∥2

+ ∥∥[j (m)
sm

(
L̂(x)

)− j (m−1)
sm

(
L̂(x)

)]
ue(f )

∥∥2
}(

1+ ∥∥f (sm)
∥∥2)

dsm

� cf

t∫
0

[ ∑
j∈Zd

{∥∥[j (m)
sm

(
δ

†
j (x)

)− j (m−1)
sm

(
δ

†
j (x)

)]
ue(f )

∥∥
+

∑
j∈Zd

∥∥[j (m)
sm

(
δj (x)

)− j (m−1)
sm

(
δj (x)

)]
ue(f )

∥∥+ ∥∥[j (m)
sm

(
L̂(x)

)− j (m−1)
sm

(
L̂(x)

)]
ue(f )

∥∥}]2

dsm.

Now applying (3.9) forn = m, we get the required estimate forn = m + 1 and furthermore by the estimate
Lemma 3.2(iii),∥∥{j (n)

t (x) − j
(n−1)
t (x)

}
ue(f )

∥∥� 3n (t0cf )n/2

√
n!

∥∥ue(f )
∥∥(1+ ‖r‖)n(1+ 2ϑ1(r)cx

)n
.

Thus it follows that the sequence{j (n)
t (x)ue(f )} is Cauchy. We definejt (x)ue(f ) to be limn→∞ jt

(n)ue(f ), that
is

jt (x)ue(f ) = xu ⊗ e(f ) +
∑
n�1

{
j

(n)
t (x) − j

(n−1)
t (x)

}
ue(f ) (3.10)

and one has∥∥jt (x)ue(f )
∥∥�

∥∥ue(f )
∥∥[‖x‖ +

∑
n�1

3n (t0cf )n/2

√
n!

(
1+ ‖r‖)n(1+ 2ϑ1(r)cx

)n]
. (3.11)

Uniqueness follows by setting,

qt (x) = jt (x) − j ′
t (x)

and observing

dqt (x) =
∑
j∈Zd

qt

(
δ

†
j (x)

)
daj (t) +

∑
j∈Zd

qt

(
δj (x)

)
da

†
j (t) + qt

(
L(x)

)
dt, q0(x) = 0.

Exactly similar estimate as above shows that, for alln � 1,∥∥qt (x)ue(f )
∥∥� (t0cf )n/2

√
n!

∥∥ue(f )
∥∥∑

k̄(n)

∑
ε̄(n)

∥∥δ(k̄(n), ε̄(n)
)
(x)

∥∥.
Since by Lemma 3.2(iii) the sum grows asnth power,qt (x) = 0 ∀x ∈Aloc, showing the uniqueness of the solutio
As 1∈Aloc with Lk(1) = δ

†
k (1) = δk(1) = 0 it follows from the QSDE (3.6) thatjt (1) = 1.

(b) Forue(f ), ve(g) ∈ h ⊗ E(C) andx, y ∈Aloc, we have, by induction,〈
j

(n)
t (x∗)ue(f ), ve(g)

〉= 〈
ue(f ), j

(n)
t (x)ve(g)

〉
.

Now asn tends to∞, we get〈
j (x∗)ue(f ), ve(g)

〉= 〈
ue(f ), j (x)ve(g)

〉
.
t t
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era-
We define

Φt(x, y) = 〈
ue(f ), jt (xy)ve(g)

〉− 〈
jt (x

∗)ue(f ), jt (y)ve(g)
〉
.

Setting(ζk(l), ηk(l)) = (δk, id), (id, δk), (δ
†
k , id), (id, δ

†
k ), (Lk, id), (id,Lk) and (δ

†
k , δk) for l = 1,2, . . . ,7 re-

spectively, one has∣∣Φt(x, y)
∣∣

� cn
f,g

∑
ln,...,l1

t∫
0

sn−1∫
0

· · ·
s1∫

0

∑
kn,...,k1

∣∣Φs1

(
ζkn(ln) · · · ζk1(l1)x, ηkn(ln) · · ·ηk1(l1)y

)∣∣ds0 · · · dsn−1

∀n � 1, (3.12)

wherecf,g = (1+ t0
1/2)(‖f ‖∞ + ‖g‖∞). By the quantum Ito formula and cocycle properties of structure op

tors, i.e.L̂(xy) = xL̂(y) + L̂(x)y +∑
k∈Zd δ

†
k (x)δk(y), we have,

Φt(x, y) =
t∫

0

∑
k

{
Φs

(
δk(x), y

)+ Φs

(
x, δk(y)

)}
fk(s)ds +

t∫
0

∑
k

{
Φs

(
δ

†
k (x), y

)+ Φs

(
x, δ

†
k (y)

)}
ḡk(s)ds

+
t∫

0

∑
k

{
Φs

(
Lk(x), y

)+ Φs

(
x,Lk(y)

)+ Φs

(
δ

†
k (x), δk(y)

)}
ds,

which gives the estimate forn = 1:

∣∣Φt(x, y)
∣∣� cf,g

∑
l=1,...,7

t∫
0

∑
k

∣∣Φs

(
ζk(l)(x), ηk(l)(y)

)∣∣ds. (3.13)

If we now assume (3.12) for somem > 1, an application of (3.13) gives the required estimate forn = m + 1.
At this point we note the following, which can be verified easily by (3.10), (3.11) and Lemma 3.2(iv).
(1) For anyn-tuple(l1, l2, . . . , ln) in {1,2, . . . ,7}∑

kn,...,k1

∥∥js

(
ζkn(ln) · · · ζk1(l1)(x) · ηkn(ln) · · ·ηk1(l1)(y)

)
ve(g)

∥∥
� Cg,x,y

{(
1+ ‖r‖)(1+ 2ϑ1(r)cx,y

)}2n∥∥ve(g)
∥∥, (3.14)

where for anyg ∈ C

Cg,x,y = 1+
∑
m�1

3m (t0cg)
m/2

√
m!

{(
1+ ‖r‖)(1+ 2ϑ1(r)cx,y

)}2m
.

(2) For anys � t0, p � n andε̄(p),∑
k̄(p)

∥∥js

{
δ
(
k̄(p), ε̄(p)

)
(y)

}
ve(g)

∥∥� Cg,x,y

{(
1+ ‖r‖)(1+ 2ϑ1(r)cx,y

)}n∥∥ve(g)
∥∥. (3.15)

(3) Sinceϑp(x) = ϑp(x∗) and{δ(k̄(p), ε̄(p))(x)}∗ can also be written asδ(k̄(p), ε̄′(p))(x∗) for someε̄′(p), we
have ∑∥∥js

{
δ
(
k̄(p), ε̄(p)

)
(x)

}∗
ue(f )

∥∥� Cf,x,y

{(
1+ ‖r‖)(1+ 2ϑ1(r)cx,y

)}n∥∥ue(f )
∥∥. (3.16)
k̄(p)
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or

dson
n

For any fixedn-tuple(l1, . . . , ln), it is easy to observe from the definition ofΦs that∑
k̄(n)

∣∣Φs

(
ζkn(ln) · · · ζk1(l1)x, ηkn(ln) · · ·ηk1(l1)y

)∣∣
�

∑
kn,...,k1

∥∥ue(f )
∥∥ · ∥∥js

(
ζkn(ln) · · · ζk1(l1)x · ηkn(ln) · · ·ηk1(l1)y

)
ve(g)

∥∥
+ ∥∥js

{(
ζkn(ln) · · · ζk1(l1)(x)

)∗}
ue(f )

∥∥ · ∥∥js

(
ηkn(ln) · · ·ηk1(l1)(y)

)
ve(g)

∥∥.
The estimates (3.14), (3.15) and (3.16) yield:∑

k̄(n)

∣∣Φs

(
ζkn(ln) · · · ζk1(l1)x, ηkn(ln) · · ·ηk1(l1)y

)∣∣
�
{(

1+ ‖r‖)(1+ 2ϑ1(r)cx,y

)}2n∥∥ue(f )
∥∥ · ∥∥ve(g)

∥∥(Cg,x,y + Cf,x,yCg,x,y)

= C
{(

1+ ‖r‖)(1+ 2ϑ1(r)cx,y

)}2n
,

with C = ‖ue(f )‖ · ‖ve(g)‖(Cg,x,y + Cf,x,yCg,x,y).
Now by (3.12),

∣∣Φt(x, y)
∣∣� C

(7t0cf,g)
n

n!
{(

1+ ‖r‖)(1+ 2ϑ1(r)cx,y

)}2n
, ∀n � 1,

which impliesΦt(x, y) = 0.
(c) Let ξ = ∑

cjuj e(fj ) be a vector in the algebraic tensor product ofh0 andE(C). If y ∈ A+
loc, y is actually

anN |y| × N |y|-dim positive matrix and hence it admits a unique square root
√

y ∈ A+
loc. For anyx ∈ A+

loc, setting
y = √‖x‖1− x so thaty ∈ A+

loc, we get

∥∥jt (y)ξ
∥∥2 = 〈

jt (y)ξ, jt (y)ξ
〉=∑

c̄icj

〈
jt (y)uie(fi), jt (y)uj e(fj )

〉
=
∑

c̄icj

〈
uie(fi), jt

(‖x‖1− x
)
uj e(fj )

〉
(by (b))

= ‖x‖ · ‖ξ‖2 − 〈
ξ, jt (x)ξ

〉
,

where we have used the fact that 1∈ Aloc andjt (1) = 1. Now letx ∈ Aloc be arbitrary and applying the above f
x∗x as well as (b) we get,∥∥jt (x)ξ

∥∥2 = 〈
jt (x)ξ, jt (x)ξ

〉=∑
c̄icj

〈
jt (x)uie(fi), jt (x)uj e(fj )

〉
=
∑

c̄icj

〈
uie(fi), jt (x

∗x)uj e(fj )
〉= 〈

ξ, jt (x
∗x)ξ

〉
� ‖x∗x‖ · ‖ξ‖2 = ‖x‖2 · ‖ξ‖2

or ∥∥jt (x)ξ
∥∥� ‖x‖ · ‖ξ‖.

This inequality obviously extends to allξ ∈ h0 ⊗ Γ . Noting thatjt (1) = 1, ∀t , we get∥∥jt (x)
∥∥� ‖x‖ and ‖jt‖ = 1.

Thusjt extends uniquely to a unitalC∗-homomorphism satisfying the QSDE (3.6) and hence is an Evans–Hu
flow onA with Pt as its expectation semigroup. That the range ofjt is inA′′ ⊗B(Γ ) is clear from the constructio
of j . �
t
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ivial
ts a
We have also obtained an Evans–Hudson type dilation for the QDSP
φ
t associated with the partial stateφ0. It

may be noted that the generatorL̂φ of P
φ
t satisfies

L̂φ(x) =
∑
k∈Zd

1

2

N ′∑
m=1

[
L

(m)∗
k , x

]
L

(m)
k + L

(m)∗
k

[
x,L

(m)
k

]
, ∀x ∈ Aloc.

Now we have the following,

Theorem 3.4.Let L̂φ andP
φ
t be as discussed earlier. Then:

(a) For eachk ∈ Z
d and t � 0 there exists a unique solutionη(k)

t for the QSDE,

dη
(k)
t (x) = η

(k)
t

(
N ′∑

m=1

[
L

(m)
k

∗
, x(k)

])
dak(t) + η

(k)
t

(
N ′∑

m=1

[
x(k),L

(m)
k

])
da

†
k (t) + η

(k)
t

(
Lφ

k x(k)

)
dt,

(3.17)
j0(x(k)) = x(k) ⊗ 1Γ , ∀x(k) ∈Ak,

as a unital∗-homomorphism fromAk intoAk ⊗B(Γ ). Moreover, for differentk andk′, η
(k)
t andη

(k′)
t commute

in the sense that,η(k)
t (x(k)) andη

(k′)
t (xk′) commute for everyx(k) ∈ Ak andxk′ ∈ Ak′ ;

(b) There exists a unique unital∗-homomorphismηt fromAloc into A′′ ⊗ B(Γ ) such that it coincide withη(k)
t on

Ak ;
(c) ηt extends uniquely as a unitalC∗-homomorphism fromA into A′′ ⊗B(Γ ).

Proof. (a) For anyk ∈ Z
d andt � 0 let us consider the QSDE (3.17). Here we have only finitely many nontr

structure maps on the finite dimensional unitalC∗-algebraAk , satisfying the structure equation. So there exis
unique solutionη(k)

t as a unital∗-homomorphism fromAk into Ak ⊗ B(Γ ). Since for differentk andk′ the asso-

ciated structure maps commute and for anyx(k) ∈ Ak andx(k′) ∈ Ak′ , Ito term absent ind(η
(k)
t (x(k))η

(k′)
t (x(k′))), it

follows thatη(k)
t (x(k)) andη

(k′)
t (x(k′)) commute.

(b) For any finiteΛ ⊆ Z
d, t � 0 and simple tensor elementxΛ =∏

k∈Λ x(k) ∈AΛ, the mapη(Λ)
t given by

η
(Λ)
t (xΛ) :=

∏
k∈Λ

η
(k)
t (x(k))

is well defined fromAΛ to AΛ ⊗ B(Γ ) asη
(k)
t ’s commute. Differentiatingη(Λ)

t (xΛ) with respect tot , it follows
thatη(Λ)

t (xΛ) satisfies the QSDE,

dη
(Λ)
t (xΛ) =

∑
k∈Λ

η
(Λ)
t

(
N ′∑

m=1

[
L

(m)∗
k , xΛ

])
dak(t) +

∑
k∈Λ

η
(Λ)
t

(
N ′∑

m=1

[
xΛ,L

(m)
k

])
da

†
k (t) + η

(Λ)
t

(
Lφ

k xΛ

)
dt,

(3.18)
η

(Λ)
0 (xΛ) = xΛ ⊗ 1Γ .

We now want to show

η
(Λ)
t (xy) = η

(Λ)
t (x) · η(Λ)

t (y), for simple tensor elementsx, y ∈Aloc. (3.19)

Since eachη(k)
t is unital andη

(Λ′)
t agrees withη(Λ)

t for simple tensor elements inAΛ wheneverΛ is a finite
subset ofΛ′, it is suffices to show ( 3.19) forx, y ∈ AΛ, whereΛ ⊆ Z

d is a finite set. Forx = ∏
k∈Λ x(k) and

y =∏
y ∈ A we have,
k∈Λ (k) Λ
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. Thus

t. Let

-
erators.

ith
η
(Λ)
t (xy) = η

(Λ)
t

∏
k∈Λ

(x(k)y(k)) =
∏
k∈Λ

η
(k)
t (x(k)y(k))

=
∏
k∈Λ

η
(k)
t (x(k))η

(k)
t (y(k)) =

∏
k∈Λ

η
(k)
t (x(k))

∏
k∈Λ

η
(k)
t (y(k)).

Similarly

η
(Λ)
t (x∗) = (

η
(Λ)
t (x)

)∗
. (3.20)

Noting that any elementx ∈ Aloc can be written as a linear combination of simple tensor elements{Ug: g ∈ G},
sayx =∑

g∈G cgUg with cg = 0 when supp(g) is outside supp(x) = Λ, we define

ηt (x) =
∑
g∈G

cgη
(Λ)
t (Ug).

Forx andy ∈Aloc, with x =∑
g∈G cgUg andy =∑

h∈G chUh, such that supp(x) = supp(y) = Λ,

ηt (xy) = ηt

( ∑
g,h∈G

cgchUgUh

)

=
∑

g,h∈G
cgchη

(Λ)
t (UgUh) =

∑
g,h∈G

cgchη
(Λ)
t (Ug)η

(Λ)
t (Uh) (by (3.19))

= ηt

(∑
g∈G

cgUg

)
ηt

(∑
h∈G

chUh

)
= ηt (x)ηt (y).

It follows from (3.20) thatηt (x
∗) = (ηt (x))∗ ∀x ∈ Aloc. Thusηt is a unital∗-homomorphism fromAloc into

A′′ ⊗B(Γ ).
(c) We recall thatA+

loc is closed under taking square root, as already noted in the proof of Theorem 3.3(c)

for x ∈Aloc,
√‖x‖21− x∗x ∈A+

loc. Sinceηt is a unital∗-homomorphism onAloc,

ηt

(‖x‖21− x∗x
)
� 0⇒ ηt (x

∗x) � ‖x‖21⇒ ∥∥ηt (x
∗x)

∥∥� ‖x‖2 ⇒ ∥∥ηt (x)
∥∥� ‖x‖.

Soηt extends uniquely as a unitalC∗-homomorphism fromA into A′′ ⊗B(Γ ). �

4. Covariance of the Evans–Hudson flows

In this section we shall prove that the Evans–Hudson flows constructed in the last section are covarianB
be aC∗ (or von Neumann) algebra,G be a locally compact group with an actionα on B. Let {Tt : t > 0} be a
covariant QDS onB with respect toα, i.e.

αg ◦ Tt (x) = Tt ◦ αg(x), ∀t � 0, g ∈ G, x ∈ B.

Then a natural question arises whether there exists a covariant Evans–Hudson dilation for{Tt }. The question is dis
cussed in [1] for uniformly continuous QDS. There is no such general result for QDS with unbounded gen

We shall show that the Evans–Hudson flows{jt } and{ηt } constructed in the previous section are covariant w
respect to the actionsτ andλ of Z

d , whereλ will be introduced later in this section.
It can be easily observed that

δkτj = τj δk−j and δ
†
kτj = τj δ

†
k−j , ∀j, k ∈ Z

d , (4.1)

and we have the following lemma,
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Lemma 4.1.

(i) L̂τj (x) = τj L̂(x) ∀x ∈ Dom(L̂),
(ii) Ptτj = τjPt , i.e.Pt is covariant.

Proof. (i) We note thatC1(A) is invariant underτ and thus forx ∈ C1(A),

L
(
τj (x)

)= 1

2

∑
k∈Zd

δ
†
k

(
τj (x)

)
rk + r∗

k δk

(
τj (x)

)

= 1

2

∑
k∈Zd

τj δ
†
k−j (x)rk + rk

∗τj δk−j (x) (by (4.1))

= 1

2
τj

{ ∑
k∈Zd

δ
†
k−j (x)rk−j + r∗

k−j δk−j (x)

}
= τj

(
L(x)

)
.

For x ∈ Dom(L̂), we choose a sequence{xn} in C1(A) and an elementy ∈ A such thaty = L̂(x), xn converge to
x andL(xn) converge toy. As τj is an automorphism for anyj ∈ Z

d , τj (xn) andτjL(xn) converge toτj (x) and
τj (y) respectively. Sincexn ∈ C1(A) andL(τj (xn)) = τjL(xn), we get

τj (x) ∈ Dom(L̂) and L̂τj (x) = τj L̂(x).

(ii) By (i), for x ∈ Dom(L̂) and 0� s � t we have,

d

ds
Ps ◦ τj ◦ Pt−s(x) = Ps ◦ L̂ ◦ τj ◦ Pt−s(x) − Ps ◦ τj ◦ L̂ ◦ Pt−s(x) = 0.

This implies thatPs ◦ τj ◦ Pt−s(x) is independent ofs for everyj and 0� s � t . Settings = 0 andt respectively
and using the fact thatPt is bounded we getPtτj = τjPt . �

We note thatjt :A → A′′ ⊗ B(Γ (L2(R+,k0))), wherek0 = l2(Zd) with a canonical basis{ek}, as mentioned
earlier. We define the canonical bilateral shifts by sj ek = ek+j , ∀j, k ∈ Z

d and letγj = Γ (1⊗ sj ) be the second
quantization of 1⊗ sj , i.e.γj e(

∑
fl(·)el) = e(

∑
fl(·)el+j ). This defines a unitary representation ofZ

d in Γ . We
set an actionσ = τ ⊗ λ of Z

d onA′′ ⊗B(Γ ), whereλj (y) = γjyγ−j ∀y ∈ B(Γ ).
By definition of fundamental processesak(t) given byak(t)e(g) = ∫ t

0 gk(s)ds e(g), it can be observed that

λjak(t)e(g) = γjak(t)γ−j e(g) = γjak(t)e
(∑

〈g, el+j 〉(·)el

)

=
t∫

0

〈g, ek+j 〉(s)ds γj

(
e
(∑

〈g, el+j 〉(·)el

))

=
t∫

0

〈g, ek+j 〉(s)ds e
(∑

〈g, el+j 〉(·)el+j

)

= ak+j (t)e(g).

Since〈e(f ), λjak(t)e(g)〉 = 〈λja
†
k (t)e(f ),e(g)〉, it follows that

λjak(t) = ak+j (t) and λja
†
k (t) = a

†
k+j (t). (4.2)
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we

e

te

s–
t

nt

at
Theorem 4.2.The Evans–Hudson flowjt of the QDSPt is covariant with respect to the actionsτ andσ , i.e.

σj jt τ−j (x) = jt (x) ∀x ∈A, t � 0 andk ∈ Z
d .

Proof. For a fixedj ∈ Z
d we setj ′

t = σj jt τ−j , ∀t � 0. Using the QSDE (3.6) and Lemma 4.1, (4.1), (4.2)
have forx ∈Aloc,

j ′
t (x) − j ′

0(x)

=
t∫

0

∑
k∈Zd

σj js

(
δ

†
k

(
τ−j (x)

))
dak(s) +

t∫
0

∑
k∈Zd

σj js

(
δk

(
τ−j (x)

))
da

†
k (s) +

t∫
0

σj js

(
L̂
(
τ−j (x)

))
ds

=
t∫

0

∑
k∈Zd

σj jsτ−j

(
δ

†
k+j (x)

)
dak+j (s) +

t∫
0

∑
k∈Zd

σj jsτ−j

(
δk+j (x)

)
da

†
k+j (s) +

t∫
0

σj jsτ−j

(
L̂(x)

)
ds

=
t∫

0

∑
k∈Zd

j ′
s

(
δ

†
k (x)

)
dak(s) +

t∫
0

∑
k∈Zd

j ′
s

(
δk(x)

)
da

†
k (s) +

t∫
0

j ′
s(L̂x)ds.

Sincej ′
0(x) = σj j0τ−j (x) = σj (τ−j (x) ⊗ 1Γ ) = x ⊗ 1Γ = j0(x), it follows from the uniqueness of solution of th

QSDE (3.6) thatj ′
t (x) = jt (x) for all t � 0 andx ∈ Aloc. As bothj ′

t andjt are bounded maps, we havej ′
t = jt . �

Remark 4.3.By similar arguments as above, the Evans–Hudson flow for the QDSP
φ
t associated with partial sta

φ0 can be seen to be covariant with respect to the same actions.

5. Ergodicity of the Evans–Hudson flows

Let us recall the ergodic QDSP φ
t associated with the partial stateφ0, for which we have constructed an Evan

Hudson flowηt in Section 3. It may be noted thatP
φ
t has the unique invariant stateΦ. We have the following resul

on ergodicity ofηt with respect to the weak operator topology.

Theorem 5.1.The Evans–Hudson flowηt of the ergodic QDSP φ
t is ergodic with respect to the unique invaria

stateΦ, in the sense that

ηt (x) → Φ(x) ⊗ 1Γ weakly∀x ∈A.

Proof. Sinceηt andP
φ
t are norm contractive,Aloc is norm-dense inA, andP

φ
t (x) converges toΦ(x)1 for all

x ∈ A, it is enough to show thatηt (x) − P
φ
t (x) ⊗ 1Γ → 0 weakly ast → ∞. Furthermore, it suffices to show th

〈ξ1, (ηt (x) − P
φ
t (x) ⊗ 1Γ )ξ2〉 → 0 ast → ∞, whereξ1, ξ2 vary over the linear span of vectors of the formve(f ),

with f =∑
|k|�n fk ⊗ ek for somen andfk ’s are inL1(R+) ∩ L2(R+).

For notational simplicity denoting the bounded derivations onA,

x 
→
N ′∑

m=1

[
x,L

(m)
k

]
and x 
→

N ′∑
m=1

[
L

(m)∗
k , x

]
by ρ andρ

† respectively. We note thatη satisfies the QSDE
k k t
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e

.

le-
for the
ion para-

same

ensions,

, Comm.

v/math-

.

dηt (x) =
∑
k∈Zd

ηt

(
ρ

†
k (x)

)
dak(t) +

∑
k∈Zd

ηt

(
ρk(x)

)
da

†
k (t) +

∑
k∈Zd

ηt

(
Lφ

k (x)
)
dt,

(5.1)
η0(x) = x ⊗ 1Γ , ∀x ∈ Aloc.

For t � 0, u, v ∈ h0 andf,g ∈ L2(R+,k0) ∩ L1(R+,K0) such thatf = ∑
|k|�n fk ⊗ ek andg = ∑

|k|�n gk ⊗ ek

andx ∈ Aloc, we consider the following,∣∣〈ue(f ),
[
ηt (x) − P

φ
t (x) ⊗ 1Γ

]
ve(g)

〉∣∣
=
∣∣∣∣∣
〈
ue(f ),

[ t∫
0

∑
k∈Zd

ηq

{
ρk

(
P

φ
t−q(x)

)}
da

†
k (q) + ηq

{
ρ

†
k

(
P

φ
t−q(x)

)}
dak(q)

]
ve(g)

〉∣∣∣∣∣
�

∑
|k|�n

t∫
0

∣∣〈ue(f ), ηq

{
ρk

(
P

φ
t−q(x)

)}
ve(g)

〉∣∣∥∥g(q)
∥∥dq

+
∑
|k|�n

t∫
0

∣∣〈ue(f ), ηq

{
ρ

†
k

(
P

φ
t−q(x)

)}
ve(g)

〉∣∣∥∥f (q)
∥∥dq.

As ηt , P
φ
t are contractive,P φ

t (x) tends toΦ(x)1 ast tends to∞ andρk, ρ
†
k are uniformly bounded withρk(1) =

ρ
†
k (1) = 0 for all k ∈ Z

d , we have,∣∣〈ue(f ), ηq

{
ρk

(
P

φ
t−q(x)

)}
ve(g)

〉∣∣ and
∣∣〈ue(f ), ηq

{
ρ

†
k

(
P

φ
t−q(x)

)}
ve(g)

〉∣∣� M,

for some constantM independent oft andq. The fact thatf,g ∈ L1(R+,K0) allows us to conclude that both th
terms of the above expression tend to 0 ast tends to∞. This completes the proof.�
Remark 5.2.ηt (x) does not converge strongly, for if it did, thenx 
→ Φ(x) ⊗ 1Γ would be a homomorphism, i.e
Φ would be a multiplicative nonzero functional on the UHF algebraA, contradictory to the fact thatA does not
have any such functional.

Remark 5.3. If we look at the perturbation of the ergodic QDSP φ
t by the QDS associated with some sing

supportedr ∈ A0, then by the same arguments used in the construction of the Evans–Hudson flow
unperturbed semigroup one can obtain an Evans–Hudson flow for the perturbed one. For small perturbat
meterc � 0 for whichP

(c)
t is ergodic, the associated Evans–Hudson flow is also ergodic with respect to the

invariant state in the above sense.
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