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Abstract

In quantum physics, the state space of a countable chainefl)-level atoms becomes, in the continuous field limit, a Fock
space with multiplicityz. In a more functional analytic language, the continuous tensor product spad@oeécopies of the
spaceiC"+1 is the symmetric Fock spadQ(Lz(R+; C™)). In this article we focus on the probabilistic interpretations of these
facts. We show that they correspond to the approximation oitlienensional normal martingales by means of obtuse random
walks, that is, extremal random walksIt¥ whose jumps take exactly+ 1 different values. We show that these probabilistic
approximations are carried by the convergence of the matrix b?sjs of Qn C"*1 to the usual creation, annihilation and
gauge processes on the Fock space.

0 2005 Elsevier SAS. All rights reserved.
Résumé

En physique quantique, I'espace d’état d'une chaine dénombrable d’atgmed aniveaux devient, dans la limite continue,
un espace de Fock de multiplicité De maniére plus analytique, le produit tensoriel continu de copié¥'dé indexées par
RT est I'espace de Fock symétriqﬂg(Lz(RJf; C™)). Dans cet article, nous nous intéressons aux interprétations probabilistes
de ces résultats. Nous montrons qu'ils correspondent a I'approximation de martingales nardiatessionnelles par des
marches aléatoires obtuses, c’est-a-dire des marches aléatoires exténi@feslale les sauts prennent exactement 1
valeurs différentes. Nous montrons que ces approximations sont contenues dans la convergence de la base/tgnodéue

I'espace des matrices sy C"+1 vers les processus de création, annihilation et nombre de I'espace de Fock:
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1. Introduction

In functional analysis, the tensor product of a family of Hilbert spaces indexed by a continuous set, is a well-
understood notion (see the very complete book [6]) which leads to notions such as “Fock spaces” or “symmetric
space associated to a measured space”.

A physical interpretation of those continuous tensor product spaces consists in considering them as the contin-
uous field limit of a countable chain of quantum system state spaces (such as a spin chain, for example).

The interesting point in these constructions is that, forn @lN, the continuous tensor product space

(CnJrl
®

is the symmetric Fock spadg (L?(R™; C")). In a more physical language, the continuous field limit of the state
space of a countable chain @f + 1)-level atoms is a Fock space with multiplicity A rigourous setting in which
such an approximation is made true is developed in [1].

Both spacegy C"*+1 and Iy (L2(R*; C")) admit natural probabilistic interpretations. In particular, the Fock
spacel" (L2(R*; C")) admits natural probabilistic interpretations in terms:edimensional normal martingales,
such as:-dimensional Brownian motiom-dimensional Poisson processdimensional Azéma martingales, etc.

(cf. [2] and [3]). The aim of this article is to understand how the approximatioA @?(R*; C")) by means of
spacesxy C"*1 can be interpreted in probabilistic terms.

The structure of the spa@@y C+D suggests that we are dealing with random walks whose jumpgiaké)
different values.

In this article we show that the key point of this approximation is the notiarbtiise random walksleveloped
in [4]. They are the centered and normalized random variabl®$ which take exactlyn + 1) different values.

These obtuse random variables are naturally associated to an algebraic objectesa|léesymmetrid-tensor
and the associated random walk satisfiebsarete-time structure equatioifhis structure equation allows us to
represent the multiplication operators by this random walk in terms of some basic oper@Wl.

Considering the approximation of the Fock spageL?(R*; C")) by means of spacel®)y C"*+1, we obtain the
approximation of a continuous-time normal martingale. The sesqui-symmetric 3-t2rtken converges to a so-
calleddoubly-symmetri@-tensorwhich is the key of the structure equation describing the probabilistic behaviour
of that normal martingale (jumps, continuous and purely discontinuous. payts

This article is organized in the following way. In Section 2 we introduce the state space of the atom chain
and the associated operators. In Section 3, we describe obtuse random villkshair structure equations and
their representations as operators on the state space of the atom chains. In Section 4 we introduce Fock space ar
its quantum stochastic calculus, and the relation of these objects with the atom chains. In Section 5 we describe
structure equations for normal martingales and the information given by these equations in a special case. In
Section 6 we put together all of our tools and prove convergence in law of random walks to well-identified normal
martingales. In Section 7 we review some explicit and illustrative examples.

2. Thestructure of the atom chain

We here introduce the mathematical structure and notations associated to th€sp&tel. As the reader
will easily see, this only means choosing a particular basis for the vectors and for the operators on that space. The
physical-like terminology that we use from time to time is not necessary for the sequel, but is relevant (and used in
references such as [5]).

Consider the spad@’** in which we choose an orthonormal basis denote¢kbyx?, ..., X"}. This space and
this particular choice of an orthonormal basis physically represent either a particle esttited state’ and a
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ground state?, or a site which is either empty2) or occupied by a type particle (X’). We often writeX© for 2
when we need unified notations, but it is important in the sequel to distinguish one of the basis states.
Together with this basis @&+ we consider the following natural basis 6{C"*1) = M,,1(C):

a;’.Xk =8 XY,

foralli, j,k=0,...,n. The operator’ puts ani-level state into g-level state.
We now consider a chain of copies of this system, like a chaim &f 1)-level atoms. That is, we consider the
Hilbert space

Td = ® Cn+1’

ieN

the countable tensor product, indexed¥hyof copies ofC" 1 with respect to the stabilizing sequence of vectors
By this we mean that a natural orthonormal basis @fi$ described by the family

{XA;AEP}

where

— P is the set of finite subsets = {(n1,i1), ..., (nx, ix)} of N x {1, ..., n} such that the:;'s are two by two
different. Another way to describe the sRtis to identify it to the set of sequencédy),n With values in
{0, ..., n}, but taking only finitely many times a value different from 0.

— X4 denotes the vector

PR  NRIX'1INR®---NRX2R---

of T®, where Xt appears in the copy number, X2 appears in the copyz,.... When A is seen as a
sequencéAy)cn as above, thel 4 is advantageously writtef®), X 4, -

The physical meaning of this basis is easy to understand: we have a chain of sites, ind&kezhi®ach site
there is an atom in the ground state or an atom at energy level 1... . The above basiX yexpecifies that there
is an atom at level, in the siten1, an atom at leveb in the siteny, . .., all the other sites being at the ground state.
The space @ is what we shall call thén + 1)-level atom chain

We denote byzj. (k) the natural ampliation of the operato'y to T® which acts aszz; on the copy numbek

of C"*1 and as the identity on the other copies. These operators relate naturally to the creation and annihilation
operators of the Fermionic Fock space or
Note, for information only, that the operatcn§(k) form a basis of the algebi&(T®) of bounded operators on

T®. That is, the von Neumann algebra generated byz;'lnk), i,j=0,...,n,keN,is the whole of5(T®) (for
T@® admits no subspace which is non-trivial and invariant under this algebra).

3. Obtuserandom walksin R”

We now abandon for a while this structure in order to concentrate on the probabilistic and algebraic structure of
the obtuse random variables. The spadewill return naturally when describing the obtuse random walks.

Let X be a random variable ilR” which takes exactly: + 1 different valuesv, ..., v,+1 with respective
probability o1, ..., o,41 (all different from O by hypothesis). We assume, for simplicity, tRais defined on its
canonical spacéA, A, P), thatis,A={1,...,n + 1}, Ais theo-field of subsets ofi, the probability measurg
is given byP({i}) = «; and X is given byX (i) =v;, foralli =1,...,n 4+ 1.

Such a random variablg is calledcentered and normalizafl E[X] = 0 and Cov¥X) = I.
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A family of elementsy, ..., v,4+1 of R” is called arobtuse systerifi
(vi,vj)=-1

foralli # j.

We consider the coordinates', ..., X" of X in the canonical basis @&”, together with the random variable
2 on(A, A, P) which is deterministic and always equal to 1.

We putX’ to be the random variablg (j) = Vi X' () andQ(j) = J/@j. For any element = (a1, ..., a,)
of R" we putd = (1, aq, ..., a,) € R"T1,

The following proposition is rather straightforward and left to the reader.

Proposition 1. The following assertions are equivalent.
() X is centered and normalized. _
(i) The(n +1) x (n + 1)-matrix (£2, X1, ..., X") is unitary.

(i) The(n + 1) x (n + 1)-matrix (/a1 01, . .., /Uu+1 Up+1) IS UNItary.
(iv) The familyvy, ..., v,41 IS an obtuse system & and

_ 1
1+ ol

o

Let T be a 3-tensor ilR", that is, a linear mapping froR” to M, (R). We write T,fj for the coefficients of"
in the canonical basis @&", that is,

n
(TW), ;=D T %
k=1
Such a 3-tensdf is calledsesqui-symmetrii

() G, j. k)~ T} is symmetric and
(i) G, j,1,m)—> 3 T T™ + 881 is symmetric.

Theorem 2. If X is a centered and normalized random variabl&if, taking exactly: + 1 values, then there exists
a sesqui-symmetrig-tensorT such that

X®X=1+TX). 1)

Proof. By Proposition 1, the matrix,/ay 1, ..., /@11 V,+1) iS unitary. In particular the matrigiy, . .., U,41)
is invertible and so is its adjoint matrix. But the latter is the matrix whose columns are the values of the random
variables2, X1, ..., X,. As a consequence, these- 1 random variables are linearly independent. They thus form
abasis ofL2(A, A, P) foritis an + 1 dimensional space.

The random variabl&’ X/ belongs taL.2(A, A, P) and can thus be written as

n
X'x/ =317 x*,
k=0

for some real coefficientf,jj, k=0,...,n,i,j=1,...,n, whereX? denotes2. The fact thafE[X*] = 0 and
E[X'X/] = §; implies Ty’ = 8;;. This gives the representation (1). THais sesqui-symmetric is obtained from
the relations

T/ =E[X'X/]
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and
YT 4 s =EIX XXX O
k

There is actually a natural bijection between the set of sesqui-symmetric 3-tensors and the set of obtuse random
variables. The following result was obtained in [4], Theorem 2, pp. 268—-272, which is far from obvious but which
we shall not really need here.

Theorem 3. The formulas
S={xeR”; x®x=I+T(x)}
and
T(x)=) pyy.x)y®y,
yes

wherep, = 1/(1+ ||x||?), define a bijection between the set of sesqui-symntgasorsT” onR" and the set of
obtuse system$in R”.

Now we wish to consider the random walks which are induced by obtuse systems. That is, on the probability
space(AN, A®N p®Ny we consider a sequenc (p)) yen of independent random variables with the same law
as a given centered normalized random varidble

Recalling the notations of Section 2, for aAaye P, we define the random variable

Xa= [] X'
(p,i)eA

with the convention

Xp=1.
Proposition 4. The family{X 4; A € P} forms an orthonormal basis of the spac& AN, A®N  peN)

Proof. For anyA, B € P we have
(Xa. Xp) =E[XXp] =E[Xaas]E[X55]

by the independence of thé(p). For the same reason, the first teBX 44 ] gives 0 unlessAAB = ¢, that is
A = B. The second terlﬁ[X/ZmB] is then equal t(ﬂ(p’i)eA E[X(p)?] = 1. This proves the orthonormal character
of the family {X4; A € P}.

Let us now prove that it generates a dense subspade?©f, A®Y, P®N). Had we considered random
walks indexed by{0, ..., N} instead ofN, the X4, A C {0, ..., N} would have formed an orthonormal basis of
L2(AN, A®N  p®N)y for their dimensions are equal. Now any elemgrif L2(AN, A®N p®N) can be approxi-
mated by a sequend¢y)y such thatfy € L2(AN, A2V p®N) for all N, by taking conditional expectations on
the trajectories ok up totimeN. O

For every obtuse random varialfe we thus obtain a Hilbert space
To(X) = L2(AY, A%, peN),

with a natural orthonormal bas{X 4; A € P} which emphasizes the independence of Xh@)’s. In particular
there is a natural isomorphism between all the spa@g€X]) which consists in identifying the associated bases.
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In the same way, all these canonical spac@gX) of obtuse random walks are naturally isomorphic to the atom
chain T& of previous section (again by identifying their natural orthonormal bases).

Of course this identification of Hilbert spaces does not mean much for the moment: in particular, it loses all
the probabilistic properties of the random variab¥p), be it individual (the law) or collective (probabilistic
independence) properties.

The only way to recover the full probabilistic information & (p) in the Hilbert space formalism associated to
T is to consider thenultiplication operatorby X’ (p) instead of the Hilbert space elemeri(p). Indeed, if we
know the representation indl of the operatoM x: ., of multiplication byX!(p) on T®(X), we know everything
about the random variabl&’ (p) and its relation with other random variables. The above idea is what makes
guantum probabilistic tools relevant for the study of classical probability; following this idea, the next theorem
is one of the keys of this article. It is what allows us to translate probabilistic properties into operator-theoretic
language, showing thall the obtuse random walks IR" can be represented in a single spa@e With very
economical means: linear combinations of the operai_"p(rp).

Theorem 5. Let X be an obtuse random variable, IeX (p)) ,en be the associated random walk on the canonical
spaceT® (X). LetT be the sesqui-symmetiBetensor associated t&. Let U be the natural unitary isomorphism
fromTd(X) to To; then, forallp e N, i ={1,...,n}, we have

n
. .
UMyx,(nU* =al(p) +ay(p)+ >_ T/ af (p).
ji=1

Proof. It suffices to compute the action 8# x,(,) on the basis elemens,, A € P. Denote by (p, -) ¢ A” the
claim “for noi does(p, i) belong toA”. Then, by Theorem 1, there exists a sesquisymmetric teRsnrR” such
that

n
Xi(p)Xa=1(pyeaXi(p)Xa+ Z Lp,peaXi(p)Xa
i=1

n
=1y gaXavipi) + Y L. neaXi ()X (P)X avi(p.)))
j=1

n
=1(pygaXav(pi)) + D Lip.jrea (&/ +y 1 XZ(P))XA\{m/)}
j=1 !

n n

=L(py¢aXavip.) T Lip.ireaXa\(p.i) + Z Z Lip. peaTy’ Xavip. nutp.in)
j=1l1=1

and we recognize the formula for

ad(p)Xa+ah(p)Xa+ Y Tal(pXa. O
p.l

Let us now return to quantum probabilistic structures and describe the Fock space and its approximation by the
atom chain.

4, Approximation of the Fock space by atom chains

We recall the structure of the bosonic Fock spécand its basic objects (see e.qg. [3] or [7] for details).
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Let & = I(L?(R*; C")) be the symmetric (bosonic) Fock space over the sg¢®*; C"). We shall here
give a very efficient presentation of that space, the so-c@lgdhardet interpretatiomf the Fock space.

Let 7 ={1,...,n} and letP be the set of finite subsefgss, i1), ..., (sk, ix)} of RT x I such that the; are
mutually distinct (we use the same symbol as in the discrete case; the context will always prevent confusion). Then
P =, P(k) whereP (k) is the set ok-elements subsets & x I. By ordering theR"-part of the elements of
o € P(k), the setP (k) can be identified to the increasing simplEx = {0 <11 < --- <} x I of RF x I. Thus
P (k) inherits a measured space structure from the product of Lebesgue mea®fra the counting measure
on /. This also gives a measure structure®iif we specify that oriP(0) = {#} we put the measur&;. Elements
of P are usually denoted hy, the measure o is denoted by the infinitesimdl . Theo -field obtained this way
onP is denotedr.

We identify any element € P with a family {01, ..., 0,} of (two by two disjoint) subsets & where

o = {s eR™: (s, 1) ea}.

For as € R we denote by(s}; the elementr = {0, ..., 0, {s},9, ..., ?} of P where{s} is at thei-th position.
TheFock spaced is the spaceLZ(P, F,do). An elementf of @ is thus a measurable functigh: » — C such
that

||f||2=/|f<o>\2do<oo.
P

One can define, in the same w&}, »; and @, ) by replacingR™ with [a, b] C RT. There is a natural isomor-
phism betweemP[g ;| ® P, +oof aNAP given byh @ g +— f wheref (o) = h(o N[0, t]) g(o N (¢, +o0[). Define
also1 to be thevacuum vectarthat is,1(o) = §y(0).

Definey/ € @ by

_ LG ifo={s},
Xi(0) = {0 otherwise

Then x; belongs to®o ;. We even have(,i — xi e @ for all s <t. This last property allows to define a
so-calledto integralon @. Indeed, lei(g} ), >0 be families in®, fori =1, ..., n, such that

(i) ¢+ |lg'|l is measurable,
(i) g; € @po,, forall ¢,
(iii) fo~ llgilIZdr < oo,

then one definey"; [~ g/ dx/ to be the limiting of

S 1 Tj+1
ZZ? / Ptjg;ds®()(,'j+1—)(;j) (2)
i=1j=0"7 J i
whereP; is the orthogonal projection ontdo ) and{z;, j € N} is a partition ofR*, and the limit is taken along
a s_equence_of refining partitions with mes_h size going to zero. Notetﬁlaje_q7 ft]ﬁl Py, g5 ds belongs tod(o ;1
which explains the tensor product symbol in (2).
We getthaf)", [~ g dx/ is an element of> with

Z/gzd)(t =Z/ng;’n2dt. ®)
0 0

2
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Let f € L2(P); one can easily define tlierated It6 integralon &.

In(f)=/f(0)dxzi11-"dxf:
P

by iterating the definition of the I1t6 integral. We use the following notation:

In(f):/f(g)dXU
P

which we extend, in an obvious way, to ariye @. We then have the following important representation.

Theorem 6. Any elemeny of @ admits anabstract chaotic representation

7= [ 1@z
P

with
uﬂF=waw%o
P

and anabstract predictable representation
o0
r=ro1+ Y [ viray
i
with

|UV=¢ﬂmF+§:/umfw$
o

where[ D! f1(0) = f (o U{s}:)loclos|-

Let us now recall the definitions of the basic noise operaipfs, i,j=0,
defined by

[a?flr="D>" flo\ish).

s€o;N[0,1]
t
wwyw=ffwume,
0

[difle)=">_  f(o\{s}iUls))

s€o;N[0,1]
fori, j £0and
ad(t) =11.

There is a good common domain to all these operators, namely

D= {fe(bg /|o||f(a)|2da <oo}.
P

...,n,on®. They are respectively
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letS={0=1n<t <---<t, <---} be a partition ofRT ands(S) = sup |f;+1 — t;| be the diameter of.
For fixedS, define®, = @y, 1,,,], i € N. We then haveb =~ ®p€N @, (with respect to the stabilizing sequence
(]l)peN)-

For all p € N, define fori, j A0

i X’ip+1 — X’lp
X' (p)=——=¢ d)p,
Vip+1—1p
. ab(ty11) —ah(t
af)(p) _ 0( p+l) o( p) Pl]’
Vip+1—1Ip

ali(p) = Py(aj(tpy1) —d'(tp)) Py,
a%(tp1) —a(tp)
Vit
where Py; is the orthogonal projection ont?(P (1)) and where the above definition @?(p) is understood to be

valid on @, only, with a?(p) being the identity operatal on the othersp,’s (the same is automatically true for
aé, as.). We putag(p) =1.

ad(p) = Py

Proposition 7. We have

ab(p) X7 (p) =81,

aé)]l:O,

as (P X (p) =i X (p),
i _

aj]l—O,

ad(p)Xi(p) =0,
ad(p)1 =X/ (p).

Thus the action of the operatan% on theX’(p) is similar to the action of the corresponding operators on the
atom chain of section two. We are now going to construct the atom chain ig@side
We are still given a fixed partitio§. Define T@ (S) to be the space of vectoyse @ which are of the form

f=Y f(M)Xa

AePyn

With [ 112 = X 4epy 1f (A7 < 00).

The space ®(S) is thus clearly identifiable to the atom chaidTthe operatorg’.(p) act on T (S) exactly
in the same way as the corresponding operators@n\We have completely embeddfed the toy Fock space into the
Fock space.

LetS={0=1n<n<---<t, <---} be afixed partition oR*. The space ®(S) is a closed subspace @f.
We denote byPs the operator of orthogonal projection frofnonto T (S).

We are now going to prove that the Fock spdceand its basic operaton%(t) can be approached by the toy
Fock spaces @ (S) and their basic operato::%f (p).

We are given a sequence),) ,en of partitions which are getting finer and finer and whose diam&isy)
tends to 0 wherp tends to+oco. Let To (p) = T (S,) and letP, be the orthogonal projector onta?S),), for
all peN.
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Theorem 8.

(i) Foreveryf e @ there exists a sequencg,) ,en such thatf, e T@(p), forall p e N, and(f,) pen cOnverges
to fin ®.
(i) Foralli,jlet

1
gij = 5(80,' =+ 80;)-

IfS,={0=1 <1f <--- <1t} <---}, thenfor alls € RT, the operators
> W10k
kil <t
converge strongly o to ' (¢).
Proof. (i) As the S, are refining then th¢P,), form an increasing family of orthogonal projectionsdn Let
Py, =V, P,. Clearly, for alls <¢, all i we have thaty, — x; belongs to Ra®,,. But by the construction of the

Ito integral and by Theorem 5, we have that fije— x! generatep. Thus Py, = I. Consequently iff € &, the
sequencef, = P, f satisfies the statements.

(i) The convergence OEk,z,fgz (t,f’Jrl -1 Pyfiig ’(k) to a (t) is easy from the definitions whan 0. Let us
check the case oif’ We have, forf € D

| & a-dawr]|o= ¥ togpggn X flors),

kil <t kit <t seanltf 1l 4]

Put? =inf{t] € Sp; 1 >1}. We have

> i~ al) - af

kil <t
f‘ Z Lonp? o2, y11=1 Z flo\{s}) -
P ktf<t secrﬂ[tkp | seaN[0,]
2
<2 / 2 / ) R Y flenisy)
P seoNlr,tP] P k t,{)él seaﬂ[lkp [If+1]

For any fixeds, the terms inside each of the integrals above converge to 0 whends to+-oco. Furthermore we
have, for large enough,

/

t+1

)3 frf\{s}‘ < [io1 X 1515 da—// o1+ )| (0)|?dor ds
P

seoN[t,tP] s€o
[ s<r+1

< (t+1)/(|a| +1)|f ) do
P

which is finite for f € D;
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2
do

> Yo o =2 > flo\isy)

P k<t seonlif 1l 4]

</< Z Lonu il a1>2 Z f(U\{S})DZdO </< Z Z |f(0\{S})‘>2d0

. .P : p.p P ) P .p
Pk t <t sea Nt ,tHl] P k,tk gtseaﬂ[tk ’tk+l]

seo seo
s<tP s<t?

=f< > |f(o\{s})|)2do=/|o| > !f(o\{s})|2do<(z+1)/(|a|+1)\f(o>!2do
P P P

in the same way as above. So we can apply Lebesgue’s theorem. This proves (ii).

5. Multidimensional structure equations

Let us recall some basic facts about normal martingal&2'irExcept for Theorem 13, all the statements in this
section are taken from [4].

In the same way as the Fock spate= I'(L2(R*; C)) admits probabilistic interpretations in terms of one-
dimensional normal martingales (see [3]), the multiple Fock sphce I'(L?(R*; C*)) admits probabilistic
interpretations in terms of multidimensional normal martingales. The point here is that the extension of the notion
of normal martingale, structure equation. .. to the multidimensional case is not so immediate. Some interesting
algebraic structures appear.

A martingaleX = (X1, ..., X") with values inR" is callednormalif Xo = 0 and if, for alli and j, the process
Xix] — 8;jt is a martingale. This is equivalent to saying that

(X', X7}, =8t
for all r e R™, or else this is equivalent to saying that the process
(X', X7, — 8t

is a martingale.
A normal martingaleX = (x1,..., X" in R" is said tosatisfy a structure equatioifieach of the martingales
[X*', X/]; — §;;t is a stochastic integral with respectXo

t
n
(X', X7, = 8;jt +Zf T, (s) dx*
k=17
where theTkij are predictable processes.

Any family {Af{j; i, j,ke{l,...,n}} of real numbers is identified to a 3-tensor, that is, a linear m&pm R”
to R" @ R" by

n
(Ax)ij =Y Al xi.
k=1

Such a family is said to beliagonalizable in some orthonormal basfsthere exists an orthonormal basis
{el,...,e"} of R” for which

Aek = Iy ek ® ek
forallk=1,.. n and for someigenvaluess, ..., A, € R.

A family {A;{’; i,j,ke{l, ..., n}}is calleddoubly symmetridf
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() G, Jj, k) A} is symmetric on(1,...,n)3 and
(i) G.j.i",j) e Y0y AY AN is symmetric or(1, ..., n}.

Theorem 9. For a family{AZj; i, j,ke{l,...,n}} of real numbers, the following assertions are equivalent.

(i) A is doubly symmetric.
(ii) A is diagonalizable in some orthonormal basis.

This means that the condition of being doubly symmetric is the exact extension to 3-tensors of the symmetry
property for matrices (2-tensors): it is the necessary and sufficient condition for being diagonalizable in some
orthonormal basis.

Afamily {x1, ..., x*} of elements oR is calledorthogonal familyif the x* are all different from 0 and are two
by two orthogonal.

Theorem 10. There is a bijection between the doubly symmetric familiex R” and the orthogonal familiex’
which is given by

1
Af=gw(x,f>x®x

and
E:{XGR”\{O}; Ax:x@x}.

These algebraic preliminaries are used to determine the behaviour of the multidimensional normal martingales.

Theorem 11. Let X be a normal martingale ifR" satisfying a structure equation

t
n
(X', X7, =8t + Z/ T/ (s) dx*.
k=1}
Then for a.a(z, w) the famin{Tkij (s,w); i, j,k=1,...,n}is doubly symmetric. IE; (w) is its associated orthog-
onal system and if, (w) denotes the orthogonal projection ontd; (w))*, then the continuous part of is given
by

n t

xp' =3 [l axls
=19
the jumps ofX happen only at totally inaccessible times and they satisfy
AX(w) € Xy (w).

We can now study a basic example. The simplest case occursigeconstant irr. Contrarily to the unidi-
mensional case, this situation is already rather rich.

Proposition 12. Let T be a doubly symmetric family dR*. Let X' be its associated orthogonal system. Bebe
a standard Brownian motion with values in the Euclidian space. For eachx € X, let N* be a Poisson process
with intensity] x| 2. We assum@ and all theN* to be independent. Then the martingale

X, =B, + Z(N,x — llxI %)
xeXx
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satisfies the constant coefficient structure equation
n
(X', XN =8t + )T Xf.
k=1
Conversely, every normal martingale which is solution of the above equation has the sameXlaw as

Finally, let us recall a particular case of a theorem proved in [2], which has the advantage of not needing the
introduction of quantum stochastic integrals and of being sufficient for our purpose.

Theorem 13. Let X be a normal martingale ifR"” which satisfies a structure equation of the above form

n
(X', X1, =8t + ZT,jf xk,
k=1
Then(X,); possesses the chaotic representation property. Furthermore, the 8pa@e F, P), where(2, F, P)
is the canonical space associated wtty),, is naturally isomorphic tap, by identification of the chaotic expan-
sion of f with the elemenf of ® whose abstract chaotic expansion has the same coefficients.
Within this identification the operator of multiplication B} is equal to

n
Myr =adn) +afn)+ Y Tl @).
ij=1

6. Convergenceto normal martingales

Now we can close the circle under the form of a kind of commutative diagram and establish some convergence
theorem.

Starting from an obtuse random variabdelepending on a parameter R, with associated sesqui-symmetric
tensor7, we associate a sequence,) yen of i.i.d. random variables with the same lawXsBy Theorem 2, the
renormalized sequence

X(k)=vh X (k)
satisfies the discrete time structure equation

XoX=hi+TX)
whereT,’ = VhT,”. The tensoff is h sesqui-symmetric, i.gi, j, k) — T}’ is symmetric and
(i") G, j,1,m) > Y, T T + hs;;61, is symmetric.

Theorem 5 shows that the associated multiplication operat&? i3ygiven by
n
UMz, 4o U* =Vh(alk) +ah0) + > T/ af k).
jil=1
By Proposition 7 we can embed this situation inside the Fock spaaed we get a family of operators @nsuch
that
> UMg,pU*
k<[t/h]
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converges strongly o to

n
. .
Xi=al() +ah()+ Y S)'a 1)
Ji1=1

if the limits Sl.’l =limy,_o fi’l exist, by Theorem 8. Because of relatiori)(@bove, the limit tensos is automati-
cally doubly-symmetric.

Thus by Theorem 13, the operatdfs are the canonical multiplication operators by a normal martingale, solu-
tion of the structure equation

n
(X', X7) =6t + )85 XF.
k=1

From the above we see that only the coefficiehjts which admit a limits,’, wheni — 0, contribute to the
limit normal martingale(X;),>o. This means that only the coefficier5’ which have a dominant term of order
1/+/h will contribute non-trivially to the limit. A smaller dominant term gives 0 in the limit and a larger dominant
term will not admit a limit.

If the obtuse random variablg is given one direction for which its probability is of ordierthen, by Proposi-
tion 1(iv), the length of the jump in that direction is of ordetih. The associated tensor will then get tem,jé
of order ¥+/h too (Theorem 3). Thus in the limit this terms will participate to the tersdBy Proposition 12,
these term§,’(-’ will participate to the Poisson-type behaviour of the normal martingale.

In the same way one gets easily conviced that the directioXswdfich are visited with a probability of constant
order, or of bigger order thalnwill contribute to the diffusive part of the martingale.

Note that, in order to understand the above discussion in probabilistic terms it is not necessary to go through the
representation in terms of creation and annihilation operators. One can directly approximate a normal martingale
in R" by some obtuse random walks (this was achieved explicitly in [8]). Our purpose here was not to detail this
approximation, but to show how it is naturally related to the approximation of the Fock space by state spaces of
(n + 1)-level atom chains.

We have already a convergence of the random walk to a normal martingale of which the law is given by Theo-
rem 12. Yet this strong convergence of multiplication operators is not easy to translate into probabilistic language,
because determining which random variables%a2, 7, P) are sent t@® by identification is not an easy problem
(it amounts to studying the integrability properties of the chaotic expansion of random variables). We actually en-
counter here a limitation of the operator-theoretic tools: proving the convergence in law in the above case through
the quantum setup is surprisingly difficult. Displaying this difficult proof is of little interest in this paper, so that
we are content with a simpler, classical proof.

Theorem 14. With the above notations, the random variable
[t/h]

Vi Y X (k)

k=1

converges tdX; in law, for all 7.

Proof. Fora in R" we consider the quantity

[¢/h]
E(exp i<A, Vi X(k)>>.

k=1
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By the independence of theé(p)’s it is equal to
E(expi(x, \/}_zX))Wh]

so that we consider
o ip
E(expi(h, vVAX)) =14 > —E((1. VhX)?):
p!
p=1
now it is easy to prove by induction that, fpr> 3,

EXy... Xip=h Y Tpegae. gl o < Y spzss s l+o(1)>
k1,..., kp 2 ka, kp 2

where the negligible term(@) is bounded by
(n+1”sup T/ — 57|.
i,j.k

Let us assume that we are working in an orthogonal basis which is diagonal for theSgsserTheorem 9); then

S,‘;-" =1if i = j =k are in a given set of indices and all other coefficients are zero.
An application of Lebesgue’s dominated convergence theorem now gives

[t/h] [t/ h]
E(expi<)\,\/ﬁ ZX(k)>> (1——ZA2+hZZ—+o(h))
k=1

p=3jeZ
which converges ak goes to zero, to
exp(t Z(—ﬁ) +1) (expir; —ixj — 1))
j¢L 2 jeL ' :
which from Proposition 12 is the characteristic functionXef O

7. Some approximations of 2-dimensional noises

We end this article by computing some simple and illustrative examples in the eage
We consider, in the case= 2, an obtuse random variablewhich takes the valuaeg = (a, 0), v2 = (b, ¢) and
v3 = (b, d) with respective probabilitieg, ¢, r. In order thatX be obtuse we put

1/p—1, b=-1/a, c=+/1/g—1—-b%, d=—\/1/r—1—b2

Let us callS this set of values foX and p; the probability associated toe S. The associated sesqui-symmetric
3-tensolT is given by

T()=) psls.x)s ®s.
ses

For example, in the cage=1/2,q =1/3andr =1/6 we getu =1,b = —1,c =1 andd = —2. The tensofl
is then given by

(0 -
o= (—y —x—y)

if v = (x, y). Thus the multiplication operator by, is equal to
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Xlzaé+ag—a§

and the multiplication operator by, is equal to
Xzzag—i—ag— (a%—i—a%—l—a%).

Now we consider a random wallX (k))x>0 made of independent copies of this random variablewith time
steph. In the framework of the Fock space approximation described above, the operator

> VX
k; kh<t
converges, both in the sense of convergence of multiplication operators and in law, to
ad(t) +ad(t)
and the operator
> Vi Xk
k; kh<t
converges to
ad(r) + ad ().
This means that the limit process(z) is a 2-dimensional Brownian motion. Indeed, the above representation
shows that the associated doubly-symmetric tedsc null and thusX satisfies the structure equation
d[X].’ Xl]l = dt’
d[X1, X2], =0,
which is exactly the structure equation verified by two independent Brownian motions.
Itis clear, that whatever the values pfq, r are, if they are independent of the time step paranigtere will
always obtain a 2-dimensional Brownian motion as a limit of this random walk.
When some of the probabilitigs, g or r depend ork the behaviour is very different. Let us follow two exam-

ples.
Inthe casep =1/2,q = h andr =1/2 — h we get

1
a=1 b=-1 c=—+0hLY?, d=-2Vh+oh*>?.
Vh

For the tensofl” we get

0+ 0(h5/2) —y +0(h?)
Tw)= (—y+o(h2) —j—’g —x+o(h1/2))'

The multiplication operators are then given by
X1=a}+ad — a3+ 0(h?)
and

1
Xo = a% +ag — (a% +a%) + —a% + O(hl/z).

Vh

In the same limit as above we thus obtain the operators

at (@) +ad()
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and
ad(t) +ad(r) — as().

This means that the coordinak () is a Brownian motion and»(¢) is an independent Poisson process, with
intensity 1 and directed upwards. Indeed, the associated ténisogiven by

D (v) = (8 _Oy>

and the associated structure equation is
diX1, X1], = dt,
d[X1, X2]; =0,
d( X2, X2];, =dr +dX2(¢)

which is the structure equation of the process we described.
The last example we shall treat is the case 1 — 2k, ¢ = r = h. We get, for the dominating terms

11 11 11
a=~2Vh, b=-— c d=

NN ARG N NN
and
11 11
Xi=at+ad— ——dal+——"—a}
SRRV VAV W
2 0 11 1 2
Xz:ao—i—az—ﬁﬁ(az—l—al).

The limit process is then solution of the structure equation

1
d[ X1, X1], =df — NG dX(1),

7

1
di X1, Xol, = 5 dX> (1),

1
d[ X2, X2]; =df — —dX1(2).
[X2, X2, NG 1(2)

The associated tensor is easy to diagonalise and one finds the eigenvectors
(=1/+/2,1/v/2) and (—1/v/2,—1/v/?2).

The limit process is made of two independent Poisson processes, with intensity 2 and respective ¢dirécfipn
and(—1, -1).
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