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Abstract

In quantum physics, the state space of a countable chain of(n+ 1)-level atoms becomes, in the continuous field limit, a Fo
space with multiplicityn. In a more functional analytic language, the continuous tensor product space overR

+ of copies of the
spaceCn+1 is the symmetric Fock spaceΓs(L

2(R+;C
n)). In this article we focus on the probabilistic interpretations of th

facts. We show that they correspond to the approximation of then-dimensional normal martingales by means of obtuse ran
walks, that is, extremal random walks inR

n whose jumps take exactlyn + 1 different values. We show that these probabilis
approximations are carried by the convergence of the matrix basisai

j
(p) of

⊗
N C

n+1 to the usual creation, annihilation an
gauge processes on the Fock space.
 2005 Elsevier SAS. All rights reserved.

Résumé

En physique quantique, l’espace d’état d’une chaîne dénombrable d’atomes à(n+1) niveaux devient, dans la limite continu
un espace de Fock de multiplicitén. De manière plus analytique, le produit tensoriel continu de copies deC

n+1 indexées par
R

+ est l’espace de Fock symétriqueΓs(L
2(R+;C

n)). Dans cet article, nous nous intéressons aux interprétations probab
de ces résultats. Nous montrons qu’ils correspondent à l’approximation de martingales normalesn-dimensionnelles par de
marches aléatoires obtuses, c’est-à-dire des marches aléatoires extémales deR

n dont les sauts prennent exactementn + 1
valeurs différentes. Nous montrons que ces approximations sont contenues dans la convergence de la base canoniqai

j
(p) de

l’espace des matrices sur
⊗

N C
n+1 vers les processus de création, annihilation et nombre de l’espace de Fock.

 2005 Elsevier SAS. All rights reserved.
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1. Introduction

In functional analysis, the tensor product of a family of Hilbert spaces indexed by a continuous set, is
understood notion (see the very complete book [6]) which leads to notions such as “Fock spaces” or “sy
space associated to a measured space”.

A physical interpretation of those continuous tensor product spaces consists in considering them as th
uous field limit of a countable chain of quantum system state spaces (such as a spin chain, for example).

The interesting point in these constructions is that, for alln ∈ N, the continuous tensor product space⊗
R+

C
n+1

is the symmetric Fock spaceΓs(L
2(R+;C

n)). In a more physical language, the continuous field limit of the s
space of a countable chain of(n + 1)-level atoms is a Fock space with multiplicityn. A rigourous setting in which
such an approximation is made true is developed in [1].

Both spaces
⊗

N
C

n+1 andΓs(L
2(R+;C

n)) admit natural probabilistic interpretations. In particular, the F
spaceΓ (L2(R+;C

n)) admits natural probabilistic interpretations in terms ofn-dimensional normal martingale
such asn-dimensional Brownian motion,n-dimensional Poisson process,n-dimensional Azéma martingales, e
(cf. [2] and [3]). The aim of this article is to understand how the approximation ofΓ (L2(R+;C

n)) by means of
spaces

⊗
N

C
n+1 can be interpreted in probabilistic terms.

The structure of the space
⊗

N
C

(n+1) suggests that we are dealing with random walks whose jumps take(n+1)

different values.
In this article we show that the key point of this approximation is the notion ofobtuse random walks, developed

in [4]. They are the centered and normalized random variables inR
n which take exactly(n + 1) different values.

These obtuse random variables are naturally associated to an algebraic object calledsesqui-symmetric3-tensor
and the associated random walk satisfies adiscrete-time structure equation. This structure equation allows us
represent the multiplication operators by this random walk in terms of some basic operators of

⊗
N

C
n+1.

Considering the approximation of the Fock spaceΓs(L
2(R+;C

n)) by means of spaces
⊗

N
C

n+1, we obtain the
approximation of a continuous-time normal martingale. The sesqui-symmetric 3-tensorΦ then converges to a so
calleddoubly-symmetric3-tensorwhich is the key of the structure equation describing the probabilistic beha
of that normal martingale (jumps, continuous and purely discontinuous parts. . . ).

This article is organized in the following way. In Section 2 we introduce the state space of the atom
and the associated operators. In Section 3, we describe obtuse random walks inR

n, their structure equations an
their representations as operators on the state space of the atom chains. In Section 4 we introduce Fock
its quantum stochastic calculus, and the relation of these objects with the atom chains. In Section 5 we
structure equations for normal martingales and the information given by these equations in a special
Section 6 we put together all of our tools and prove convergence in law of random walks to well-identified
martingales. In Section 7 we review some explicit and illustrative examples.

2. The structure of the atom chain

We here introduce the mathematical structure and notations associated to the space
⊗

N
C

n+1. As the reader
will easily see, this only means choosing a particular basis for the vectors and for the operators on that sp
physical-like terminology that we use from time to time is not necessary for the sequel, but is relevant (and
references such as [5]).

Consider the spaceCn+1 in which we choose an orthonormal basis denoted by{Ω,X1, . . . ,Xn}. This space and
this particular choice of an orthonormal basis physically represent either a particle withn excited statesXi and a
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ground stateΩ , or a site which is either empty (Ω) or occupied by a typei particle (Xi ). We often writeX0 for Ω

when we need unified notations, but it is important in the sequel to distinguish one of the basis states.
Together with this basis ofCn+1 we consider the following natural basis ofL(Cn+1) = Mn+1(C):

ai
jX

k = δkiX
j ,

for all i, j, k = 0, . . . , n. The operatorai
j puts ani-level state into aj -level state.

We now consider a chain of copies of this system, like a chain of(n + 1)-level atoms. That is, we consider th
Hilbert space

TΦ =
⊗
i∈N

C
n+1,

the countable tensor product, indexed byN, of copies ofCn+1 with respect to the stabilizing sequence of vectorsΩ .
By this we mean that a natural orthonormal basis of TΦ is described by the family

{XA;A ∈ P}
where

– P is the set of finite subsetsA = {(n1, i1), . . . , (nk, ik)} of N × {1, . . . , n} such that theni ’s are two by two
different. Another way to describe the setP is to identify it to the set of sequences(Ak)k∈N with values in
{0, . . . , n}, but taking only finitely many times a value different from 0.

– XA denotes the vector

Ω ⊗ · · · ⊗ Ω ⊗ Xi1 ⊗ Ω ⊗ · · · ⊗ Ω ⊗ Xi2 ⊗ · · ·
of TΦ, whereXi1 appears in the copy numbern1, Xi2 appears in the copyn2, . . . . WhenA is seen as a
sequence(Ak)k∈N as above, thenXA is advantageously written

⊗
k XAk

.

The physical meaning of this basis is easy to understand: we have a chain of sites, indexed byN; on each site
there is an atom in the ground state or an atom at energy level 1. . . . The above basis vectorXA specifies that ther
is an atom at leveli1 in the siten1, an atom at leveli2 in the siten2, . . . , all the other sites being at the ground sta
The space TΦ is what we shall call the(n + 1)-level atom chain.

We denote byai
j (k) the natural ampliation of the operatorai

j to TΦ which acts asai
j on the copy numberk

of C
n+1 and as the identity on the other copies. These operators relate naturally to the creation and ann

operators of the Fermionic Fock space overC
n.

Note, for information only, that the operatorsai
j (k) form a basis of the algebraB(TΦ) of bounded operators o

TΦ. That is, the von Neumann algebra generated by theai
j (k), i, j = 0, . . . , n, k ∈ N, is the whole ofB(TΦ) (for

TΦ admits no subspace which is non-trivial and invariant under this algebra).

3. Obtuse random walks in R
n

We now abandon for a while this structure in order to concentrate on the probabilistic and algebraic stru
the obtuse random variables. The space TΦ will return naturally when describing the obtuse random walks.

Let X be a random variable inRn which takes exactlyn + 1 different valuesv1, . . . , vn+1 with respective
probabilityα1, . . . , αn+1 (all different from 0 by hypothesis). We assume, for simplicity, thatX is defined on its
canonical space(A,A,P ), that is,A = {1, . . . , n + 1}, A is theσ -field of subsets ofA, the probability measureP
is given byP({i}) = αi andX is given byX(i) = vi , for all i = 1, . . . , n + 1.

Such a random variableX is calledcentered and normalizedif E[X] = 0 and Cov(X) = I .



394 S. Attal, Y. Pautrat / Ann. I. H. Poincaré – PR 41 (2005) 391–407

le

ts

andom
orm

m

A family of elementsv1, . . . , vn+1 of R
n is called anobtuse systemif

〈vi, vj 〉 = −1

for all i �= j .
We consider the coordinatesX1, . . . ,Xn of X in the canonical basis ofRn, together with the random variab

Ω on (A,A,P ) which is deterministic and always equal to 1.
We putX̃i to be the random variablẽXi(j) = √

αj Xi(j) andΩ̃(j) = √
αj . For any elementv = (a1, . . . , an)

of R
n we putv̂ = (1, a1, . . . , an) ∈ R

n+1.
The following proposition is rather straightforward and left to the reader.

Proposition 1. The following assertions are equivalent.

(i) X is centered and normalized.
(ii) The(n + 1) × (n + 1)-matrix (Ω̃, X̃1, . . . , X̃n) is unitary.
(iii) The(n + 1) × (n + 1)-matrix (

√
α1 v̂1, . . . ,

√
αn+1 v̂n+1) is unitary.

(iv) The familyv1, . . . , vn+1 is an obtuse system ofR
α and

αi = 1

1+ ‖vi‖2
.

Let T be a 3-tensor inRn, that is, a linear mapping fromRn to Mn(R). We writeT
ij
k for the coefficients ofT

in the canonical basis ofRn, that is,(
T (x)

)
i,j

=
n∑

k=1

T
ij
k xk.

Such a 3-tensorT is calledsesqui-symmetricif

(i) (i, j, k) 	→ T
ij
k is symmetric and

(ii) (i, j, l,m) 	→∑
k T

ij
k T lm

k + δij δlm is symmetric.

Theorem 2. If X is a centered and normalized random variable inR
n, taking exactlyn+1 values, then there exis

a sesqui-symmetric3-tensorT such that

X ⊗ X = I + T (X). (1)

Proof. By Proposition 1, the matrix(
√

α1 v̂1, . . . ,
√

αn+1 v̂n+1) is unitary. In particular the matrix(v̂1, . . . , v̂n+1)

is invertible and so is its adjoint matrix. But the latter is the matrix whose columns are the values of the r
variablesΩ,X1, . . . ,Xn. As a consequence, thesen+1 random variables are linearly independent. They thus f
a basis ofL2(A,A,P ) for it is an + 1 dimensional space.

The random variableXiXj belongs toL2(A,A,P ) and can thus be written as

XiXj =
n∑

k=0

T
ij
k Xk,

for some real coefficientsT ij
k , k = 0, . . . , n, i, j = 1, . . . , n, whereX0 denotesΩ . The fact thatE[Xk] = 0 and

E[XiXj ] = δij impliesT
ij

0 = δij . This gives the representation (1). ThatT is sesqui-symmetric is obtained fro
the relations

T
ij = E[XiXj ]
k
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and ∑
k

T
ij
k T lm

k + δij δlm = E[XiXjXlXm]. �

There is actually a natural bijection between the set of sesqui-symmetric 3-tensors and the set of obtus
variables. The following result was obtained in [4], Theorem 2, pp. 268–272, which is far from obvious but
we shall not really need here.

Theorem 3. The formulas

S = {x ∈ R
n; x ⊗ x = I + T (x)

}
and

T (x) =
∑
y∈S

py〈y, x〉y ⊗ y,

wherepx = 1/(1+ ‖x‖2), define a bijection between the set of sesqui-symmetric3-tensorsT on R
n and the set o

obtuse systemsS in R
n.

Now we wish to consider the random walks which are induced by obtuse systems. That is, on the pro
space(AN,A⊗N,P ⊗N), we consider a sequence(X(p))p∈N of independent random variables with the same
as a given centered normalized random variableX.

Recalling the notations of Section 2, for anyA ∈ P , we define the random variable

XA =
∏

(p,i)∈A

Xi(p)

with the convention

X∅ = 1.

Proposition 4. The family{XA; A ∈ P} forms an orthonormal basis of the spaceL2(AN,A⊗N,P ⊗N).

Proof. For anyA,B ∈P we have

〈XA,XB〉 = E[XAXB ] = E[XA�B ]E[X2
A∩B ]

by the independence of theX(p). For the same reason, the first termE[XA�B ] gives 0 unlessA�B = ∅, that is
A = B. The second termE[X2

A∩B ] is then equal to
∏

(p,i)∈A E[Xi(p)2] = 1. This proves the orthonormal charac
of the family{XA; A ∈ P}.

Let us now prove that it generates a dense subspace ofL2(AN,A⊗N,P ⊗N). Had we considered rando
walks indexed by{0, . . . ,N} instead ofN, theXA, A ⊂ {0, . . . ,N} would have formed an orthonormal basis
L2(AN,A⊗N,P ⊗N), for their dimensions are equal. Now any elementf of L2(AN,A⊗N,P ⊗N) can be approxi-
mated by a sequence(fN)N such thatfN ∈ L2(AN,A⊗N,P ⊗N), for all N , by taking conditional expectations o
the trajectories ofX up to timeN . �

For every obtuse random variableX, we thus obtain a Hilbert space

TΦ(X) = L2(AN,A⊗N,P ⊗N),

with a natural orthonormal basis{XA; A ∈ P} which emphasizes the independence of theX(p)’s. In particular
there is a natural isomorphism between all the spaces TΦ(X) which consists in identifying the associated bas
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In the same way, all these canonical spaces TΦ(X) of obtuse random walks are naturally isomorphic to the a
chain TΦ of previous section (again by identifying their natural orthonormal bases).

Of course this identification of Hilbert spaces does not mean much for the moment: in particular, it lo
the probabilistic properties of the random variablesXi(p), be it individual (the law) or collective (probabilisti
independence) properties.

The only way to recover the full probabilistic information onXi(p) in the Hilbert space formalism associated
TΦ is to consider themultiplication operatorby Xi(p) instead of the Hilbert space elementXi(p). Indeed, if we
know the representation in TΦ of the operatorMXi(p) of multiplication byXi(p) on TΦ(X), we know everything
about the random variableXi(p) and its relation with other random variables. The above idea is what m
quantum probabilistic tools relevant for the study of classical probability; following this idea, the next th
is one of the keys of this article. It is what allows us to translate probabilistic properties into operator-th
language, showing thatall the obtuse random walks inRn can be represented in a single space TΦ with very
economical means: linear combinations of the operatorsai

j (p).

Theorem 5. LetX be an obtuse random variable, let(X(p))p∈N be the associated random walk on the canon
spaceTΦ(X). LetT be the sesqui-symmetric3-tensor associated toX. LetU be the natural unitary isomorphism
from TΦ(X) to TΦ; then, for allp ∈ N, i = {1, . . . , n}, we have

UMXi(p)U
∗ = a0

i (p) + ai
0(p) +

n∑
j,l=1

T
jl
i a

j
l (p).

Proof. It suffices to compute the action ofMXi(p) on the basis elementsXA, A ∈ P . Denote by “(p, ·) /∈ A” the
claim “for no i does(p, i) belong toA”. Then, by Theorem 1, there exists a sesquisymmetric tensorT onR

n such
that

Xi(p)XA = 1(p,·)/∈AXi(p)XA +
n∑

j=1

1(p,j)∈AXi(p)XA

= 1(p,·)/∈AXA∪{(p,i)} +
n∑

j=1

1(p,j)∈AXi(p)Xj (p)XA\{(p,j)}

= 1(p,·)/∈AXA∪{(p,i)} +
n∑

j=1

1(p,j)∈A

(
δij +

∑
l

T
ij
l Xl(p)

)
XA\{(p,j)}

= 1(p,·)/∈AXA∪{(p,i)} + 1(p,i)∈AXA\(p,i) +
n∑

j=1

n∑
l=1

1(p,j)∈AT
ij
l XA\{(p,j)}∪{(p,i)}

and we recognize the formula for

a0
i (p)XA + ai

0(p)XA +
∑
p,l

T
ij
l a

j
l (p)XA. �

Let us now return to quantum probabilistic structures and describe the Fock space and its approximatio
atom chain.

4. Approximation of the Fock space by atom chains

We recall the structure of the bosonic Fock spaceΦ and its basic objects (see e.g. [3] or [7] for details).
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Let Φ = Γs(L
2(R+;C

n)) be the symmetric (bosonic) Fock space over the spaceL2(R+;C
n). We shall here

give a very efficient presentation of that space, the so-calledGuichardet interpretationof the Fock space.
Let I = {1, . . . , n} and letP be the set of finite subsets{(s1, i1), . . . , (sk, ik)} of R

+ × I such that thesi are
mutually distinct (we use the same symbol as in the discrete case; the context will always prevent confusio
P =⋃k P(k) whereP(k) is the set ofk-elements subsets ofR

+ × I . By ordering theR+-part of the elements o
σ ∈ P(k), the setP(k) can be identified to the increasing simplexΣk = {0 < t1 < · · · < tk} × I of R

k × I . Thus
P(k) inherits a measured space structure from the product of Lebesgue measure onR

k and the counting measu
on I . This also gives a measure structure onP if we specify that onP(0) = {∅} we put the measureδ∅. Elements
of P are usually denoted byσ , the measure onP is denoted by the infinitesimaldσ . Theσ -field obtained this way
onP is denotedF .

We identify any elementσ ∈ P with a family {σ1, . . . , σn} of (two by two disjoint) subsets ofR+ where

σi = {s ∈ R
+; (s, i) ∈ σ

}
.

For as ∈ R
+ we denote by{s}i the elementσ = {∅, . . . ,∅, {s},∅, . . . ,∅} of P where{s} is at thei-th position.

TheFock spaceΦ is the spaceL2(P,F ,dσ). An elementf of Φ is thus a measurable functionf :P → C such
that

‖f ‖2 =
∫
P

∣∣f (σ )
∣∣2 dσ < ∞.

One can define, in the same way,P[a,b] andΦ[a,b] by replacingR
+ with [a, b] ⊂ R

+. There is a natural isomo
phism betweenΦ[0,t] ⊗ Φ[t,+∞[ andΦ given byh ⊗ g 	→ f wheref (σ ) = h(σ ∩ [0, t]) g(σ ∩ (t,+∞[). Define
also1 to be thevacuum vector, that is,1(σ ) = δ∅(σ ).

Defineχi
t ∈ Φ by

χt (σ ) =
{

1[0,t](s) if σ = {s}i ,
0 otherwise.

Thenχt belongs toΦ[0,t]. We even haveχi
t − χi

s ∈ Φ[s,t] for all s � t . This last property allows to define
so-calledItô integralonΦ. Indeed, let(gi

t )t�0 be families inΦ, for i = 1, . . . , n, such that

(i) t 	→ ‖gi
t ‖ is measurable,

(ii) gi
t ∈ Φ[0,t] for all t ,

(iii)
∫∞

0 ‖gi
t ‖2 dt < ∞,

then one defines
∑

i

∫∞
0 gi

t dχi
t to be the limit inΦ of

n∑
i=1

∞∑
j=0

1

tj+1 − tj

tj+1∫
tj

Ptj g
i
s ds ⊗ (χi

tj+1
− χi

tj
) (2)

wherePt is the orthogonal projection ontoΦ[0,t] and{tj , j ∈ N} is a partition ofR+, and the limit is taken along
a sequence of refining partitions with mesh size going to zero. Note that1

tj+1−tj

∫ tj+1
tj

Ptj gs ds belongs toΦ[0,tj ],
which explains the tensor product symbol in (2).

We get that
∑

i

∫∞
0 gi

t dχi
t is an element ofΦ with∥∥∥∥∥∑

∞∫
gt dχt

∥∥∥∥∥
2

=
∑ ∞∫

‖gi
t ‖2 dt. (3)
i 0 i 0
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Let f ∈ L2(P); one can easily define theiterated Itô integralonΦ.

In(f ) =
∫
P

f (σ )dχ
i1
t1

· · ·dχ
in
tn

by iterating the definition of the Itô integral. We use the following notation:

In(f ) =
∫
P

f (σ )dχσ

which we extend, in an obvious way, to anyf ∈ Φ. We then have the following important representation.

Theorem 6. Any elementf of Φ admits anabstract chaotic representation

f =
∫
P

f (σ )dχσ

with

‖f ‖2 =
∫
P

∣∣f (σ )
∣∣2 dσ

and anabstract predictable representation

f = f (∅)1 +
∑

i

∞∫
0

Di
t f dχi

t

with

‖f ‖2 = ∣∣f (∅)
∣∣2 +

∑
i

∞∫
0

‖Di
sf ‖2 ds

where[Di
sf ](σ ) = f (σ ∪ {s}i )1σ⊂[0,s[.

Let us now recall the definitions of the basic noise operatorsai
j (t), i, j = 0, . . . , n, onΦ. They are respectivel

defined by[
a0
i (t)f

]
(σ ) =

∑
s∈σi∩[0,t]

f
(
σ \ {s}i

)
,

[ai
0f ](σ ) =

t∫
0

f
(
σ ∪ {s}i

)
ds,

[ai
j f ](σ ) =

∑
s∈σi∩[0,t]

f
(
σ \ {s}i ∪ {s}j

)
for i, j �= 0 and

a0
0(t) = tI.

There is a good common domain to all these operators, namely

D =
{
f ∈ Φ;

∫
|σ |∣∣f (σ )

∣∣2 dσ < ∞
}
.

P
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Let S = {0 = t0 < t1 < · · · < tp < · · ·} be a partition ofR+ andδ(S) = supi |ti+1 − ti | be the diameter ofS .
For fixedS , defineΦp = Φ[tp,tp+1], i ∈ N. We then haveΦ �⊗p∈N

Φp (with respect to the stabilizing sequen
(1)p∈N).

For allp ∈ N, define fori, j �= 0

Xi(p) =
χi

tp+1
− χi

tp√
tp+1 − tp

∈ Φp,

ai
0(p) = ai

0(tp+1) − ai
0(tp)√

tp+1 − tp
P1],

ai
j (p) = P1]

(
ai
j (tp+1) − ai

j (tp)
)
P1],

a0
j (p) = P1]

a0
j (tp+1) − a0

j (tp)
√

tp+1 − tp
,

whereP1] is the orthogonal projection ontoL2(P(1)) and where the above definition ofa0
i (p) is understood to be

valid onΦp only, with a0
i (p) being the identity operatorI on the othersΦq ’s (the same is automatically true fo

ai
0, ai

j ). We puta0
0(p) = I .

Proposition 7. We have{
ai

0(p)Xj (p) = δij1,

ai
01 = 0,{

ai
j (p)Xk(p) = δikX

j (p),

ai
j1 = 0,{

a0
j (p)Xi(p) = 0,

a0
j (p)1 = Xj(p).

Thus the action of the operatorsai
j on theXi(p) is similar to the action of the corresponding operators on

atom chain of section two. We are now going to construct the atom chain insideΦ.
We are still given a fixed partitionS . Define TΦ(S) to be the space of vectorsf ∈ Φ which are of the form

f =
∑

A∈PN

f (A)XA

(with ‖f ‖2 =∑A∈PN
|f (A)|2 < ∞).

The space TΦ(S) is thus clearly identifiable to the atom chain TΦ; the operatorsai
j (p) act on TΦ(S) exactly

in the same way as the corresponding operators on TΦ. We have completely embedded the toy Fock space into
Fock space.

Let S = {0 = t0 < t1 < · · · < tp < · · ·} be a fixed partition ofR+. The space TΦ(S) is a closed subspace ofΦ.
We denote byPS the operator of orthogonal projection fromΦ onto TΦ(S).

We are now going to prove that the Fock spaceΦ and its basic operatorsai
j (t) can be approached by the to

Fock spaces TΦ(S) and their basic operatorsai
j (p).

We are given a sequence(Sp)p∈N of partitions which are getting finer and finer and whose diameterδ(Sp)

tends to 0 whenp tends to+∞. Let TΦ(p) = TΦ(Sp) and letPp be the orthogonal projector onto TΦ(Sp), for
all p ∈ N.
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Theorem 8.

(i) For everyf ∈ Φ there exists a sequence(fp)p∈N such thatfp ∈ TΦ(p), for all p ∈ N, and(fp)p∈N converges
to f in Φ.

(ii) For all i, j let

εij = 1

2
(δ0i + δ0j ).

If Sp = {0= t
p

0 < t
p

1 < · · · < t
p
k < · · ·}, then for allt ∈ R

+, the operators∑
k;tpk �t

(t
p

k+1 − t
p
k )εij ai

j (k)

converge strongly onD to ai
j (t).

Proof. (i) As theSp are refining then the(Pp)p form an increasing family of orthogonal projections inΦ. Let
P∞ = ∨pPp. Clearly, for alls � t , all i we have thatχi

t − χi
s belongs to RanP∞. But by the construction of th

Itô integral and by Theorem 5, we have that theχi
t − χi

s generateΦ. ThusP∞ = I . Consequently iff ∈ Φ, the
sequencefp = Ppf satisfies the statements.

(ii) The convergence of
∑

k,t
p
k �t (t

p

k+1 − t
p
k )

εij
ai
j (k) to ai

j (t) is easy from the definitions wheni �= 0. Let us

check the case ofa0
i . We have, forf ∈D[ ∑

k; tpk �t

√
t
p

k+1 − t
p
k a0

i (k)f

]
(σ ) =

∑
k; tpk �t

1|σ∩[tpk ,t
p
k+1]|=1

∑
s∈σ∩[tpk ,t

p
k+1]

f
(
σ \ {s}).

Put tp = inf{tpk ∈ Sp; t
p
k � t}. We have∥∥∥∥ ∑

k; tpk �t

√
t
p

k+1 − t
p
k a0

i (k) − a0
i (t)f

∥∥∥∥2

=
∫
P

∣∣∣∣ ∑
k; tpk �t

1|σ∩[tpk ,t
p
k+1]|=1

∑
s∈σ∩[tpk ,t

p
k+1]

f
(
σ \ {s})− ∑

s∈σ∩[0,t]
f
(
σ \ {s})∣∣∣∣2 dσ

� 2
∫
P

∣∣∣∣ ∑
s∈σ∩[t,tp]

f
(
σ \ {s})∣∣∣∣2 dσ + 2

∫
P

∣∣∣∣ ∑
k; tpk �t

1|σ∩[tpk ,t
p
k+1]|�2 ×

∑
s∈σ∩[tpk ,t

p
k+1]

f
(
σ \ {s})∣∣∣∣2 dσ.

For any fixedσ , the terms inside each of the integrals above converge to 0 whenp tends to+∞. Furthermore we
have, for large enoughp,

∫
P

∣∣∣∣ ∑
s∈σ∩[t,tp]

f
(
σ \ {s})∣∣∣∣2 dσ �

∫
P

|σ |
∑
s∈σ

s�t+1

∣∣f (σ \ {s})∣∣2 dσ =
t+1∫
0

∫
P

(|σ | + 1
)∣∣f (σ )

∣∣2 dσ ds

� (t + 1)

∫
P

(|σ | + 1
)∣∣f (σ )

∣∣2 dσ

which is finite forf ∈ D;
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eresting
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is
∫
P

∣∣∣∣ ∑
k;tpk �t

1|σ∩[tpk ,t
p
k+1]|�2

∑
s∈σ∩[tpk ,t

p
k+1]

f
(
σ \ {s})∣∣∣∣2 dσ

�
∫
P

( ∑
k; t

p
k �t

1|σ∩[tpk ,t
p
k+1]|�2

∣∣∣∣ ∑
s∈σ∩[tpk ,t

p
k+1]

f
(
σ \ {s})∣∣∣∣)2

dσ �
∫
P

( ∑
k;tpk �t

∑
s∈σ∩[tpk ,t

p
k+1]

∣∣f (σ \ {s})∣∣)2

dσ

=
∫
P

( ∑
s∈σ
s�tp

∣∣f (σ \ {s})∣∣)2

dσ =
∫
P

|σ |
∑
s∈σ
s�tp

∣∣f (σ \ {s})∣∣2 dσ � (t + 1)

∫
P

(|σ | + 1
)∣∣f (σ )

∣∣2 dσ

in the same way as above. So we can apply Lebesgue’s theorem. This proves (ii).�

5. Multidimensional structure equations

Let us recall some basic facts about normal martingales inR
n. Except for Theorem 13, all the statements in t

section are taken from [4].
In the same way as the Fock spaceΦ = Γ (L2(R+;C)) admits probabilistic interpretations in terms of on

dimensional normal martingales (see [3]), the multiple Fock spaceΦ = Γ (L2(R+;C
n)) admits probabilistic

interpretations in terms of multidimensional normal martingales. The point here is that the extension of the
of normal martingale, structure equation. . . to the multidimensional case is not so immediate. Some int
algebraic structures appear.

A martingaleX = (X1, . . . ,Xn) with values inR
n is callednormal if X0 = 0 and if, for alli andj , the process

Xi
t X

j
t − δij t is a martingale. This is equivalent to saying that

〈Xi,Xj 〉t = δij t

for all t ∈ R+, or else this is equivalent to saying that the process

[Xi,Xj ]t − δij t

is a martingale.
A normal martingaleX = (X1, . . . ,Xn) in R

n is said tosatisfy a structure equationif each of the martingale
[Xi,Xj ]t − δij t is a stochastic integral with respect toX:

[Xi,Xj ]t = δij t +
n∑

k=1

t∫
0

T
ij
k (s)dXk

s

where theT ij
k are predictable processes.

Any family {Aij
k ; i, j, k ∈ {1, . . . , n}} of real numbers is identified to a 3-tensor, that is, a linear mapA from R

n

to Rn ⊗ Rn by

(Ax)ij =
n∑

k=1

A
ij
k xk.

Such a family is said to bediagonalizable in some orthonormal basisif there exists an orthonormal bas
{e1, . . . , en} of R

n for which

Aek = λk ek ⊗ ek

for all k = 1, . . . , n and for someeigenvaluesλ1, . . . , λn ∈ R.
A family {Aij ; i, j, k ∈ {1, . . . , n}} is calleddoubly symmetricif
k
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s

(i) (i, j, k) 	→ A
ij
k is symmetric on{1, . . . , n}3 and

(ii) (i, j, i′, j ′) 	→∑n
k=1 A

ij
k A

i′j ′
k is symmetric on{1, . . . , n}4.

Theorem 9. For a family{Aij
k ; i, j, k ∈ {1, . . . , n}} of real numbers, the following assertions are equivalent.

(i) A is doubly symmetric.
(ii) A is diagonalizable in some orthonormal basis.

This means that the condition of being doubly symmetric is the exact extension to 3-tensors of the sy
property for matrices (2-tensors): it is the necessary and sufficient condition for being diagonalizable i
orthonormal basis.

A family {x1, . . . , xk} of elements ofR is calledorthogonal familyif the xi are all different from 0 and are tw
by two orthogonal.

Theorem 10. There is a bijection between the doubly symmetric familiesA of R
n and the orthogonal familiesΣ

which is given by

Af =
∑
x∈Σ

1

‖x‖2
〈x,f 〉x ⊗ x

and

Σ = {x ∈ R
n \ {0}; Ax = x ⊗ x

}
.

These algebraic preliminaries are used to determine the behaviour of the multidimensional normal mar

Theorem 11. LetX be a normal martingale inRn satisfying a structure equation

[Xi,Xj ]t = δij t +
n∑

k=1

t∫
0

T
ij
k (s)dXk

s .

Then for a.a.(t,ω) the family{T ij
k (s,ω); i, j, k = 1, . . . , n} is doubly symmetric. IfΣt(ω) is its associated orthog

onal system and ifπt (ω) denotes the orthogonal projection onto(Σt (ω))⊥, then the continuous part ofX is given
by

X
c,i
t =

n∑
j=1

t∫
0

π
ij
s dX

j
s ;

the jumps ofX happen only at totally inaccessible times and they satisfy

�Xt(ω) ∈ Σt(ω).

We can now study a basic example. The simplest case occurs whenT is constant int . Contrarily to the unidi-
mensional case, this situation is already rather rich.

Proposition 12. Let T be a doubly symmetric family onRn. LetΣ be its associated orthogonal system. LetB be
a standard Brownian motion with values in the Euclidian spaceΣ⊥. For eachx ∈ Σ , let Nx be a Poisson proces
with intensity‖x‖−2. We assumeB and all theNx to be independent. Then the martingale

Xt = Bt +
∑(

Nx
t − ‖x‖−2t

)
x

x∈Σ
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satisfies the constant coefficient structure equation

[Xi,Xj ]t = δij t +
n∑

k=1

T
ij
k Xk

t .

Conversely, every normal martingale which is solution of the above equation has the same law asX.

Finally, let us recall a particular case of a theorem proved in [2], which has the advantage of not need
introduction of quantum stochastic integrals and of being sufficient for our purpose.

Theorem 13. LetX be a normal martingale inRn which satisfies a structure equation of the above form:

[Xi,Xj ]t = δij t +
n∑

k=1

T
ij
k Xk

t .

Then(Xt )t possesses the chaotic representation property. Furthermore, the spaceL2(Ω,F ,P ), where(Ω,F ,P )

is the canonical space associated with(Xt )t , is naturally isomorphic toΦ, by identification of the chaotic expan
sion off with the elementf̃ of Φ whose abstract chaotic expansion has the same coefficients.

Within this identification the operator of multiplication byXk
t is equal to

MXk
t
= a0

k (t) + ak
0(t) +

n∑
i,j=1

T
ij
k ai

j (t).

6. Convergence to normal martingales

Now we can close the circle under the form of a kind of commutative diagram and establish some conv
theorem.

Starting from an obtuse random variableX depending on a parameterh ∈ R
+, with associated sesqui-symmet

tensorT , we associate a sequence(Xp)p∈N of i.i.d. random variables with the same law asX. By Theorem 2, the
renormalized sequence

X̃(k) = √
hX(k)

satisfies the discrete time structure equation

X̃ ⊗ X̃ = hI + T̃ (X̃)

whereT̃
ij
k = √

hT
ij
k . The tensor̃T is h sesqui-symmetric, i.e.(i, j, k) 	→ T

ij
k is symmetric and

(ii ′) (i, j, l,m) 	→∑
k T

ij
k T lm

k + hδij δlm is symmetric.

Theorem 5 shows that the associated multiplication operator byX̃ is given by

UMX̃i (k)U
∗ = √

h
(
a0
i (k) + ai

0(k)
)+ n∑

j,l=1

T̃
j l
i a

j
l (k).

By Proposition 7 we can embed this situation inside the Fock spaceΦ and we get a family of operators onΦ such
that ∑

UMX̃i (k)U
∗

k�[t/h]
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converges strongly onD to

Xt = a0
i (t) + ai

0(t) +
n∑

j,l=1

S
jl
i a

j
l (t)

if the limits S
jl
i = limh→0 T̃

j l
i exist, by Theorem 8. Because of relation (ii′) above, the limit tensorS is automati-

cally doubly-symmetric.
Thus by Theorem 13, the operatorsXt are the canonical multiplication operators by a normal martingale, s

tion of the structure equation

[Xi,Xj ]t = δij t +
n∑

k=1

S
ij
k Xk

t .

From the above we see that only the coefficientsT̃
ij
k which admit a limitSij

k , whenh → 0, contribute to the

limit normal martingale(Xt )t�0. This means that only the coefficientsT
ij
k which have a dominant term of ord

1/
√

h will contribute non-trivially to the limit. A smaller dominant term gives 0 in the limit and a larger domi
term will not admit a limit.

If the obtuse random variableX is given one direction for which its probability is of orderh, then, by Proposi
tion 1(iv), the length of the jump in that direction is of order 1/

√
h. The associated tensor will then get termsT

ij
k

of order 1/
√

h too (Theorem 3). Thus in the limit this terms will participate to the tensorS. By Proposition 12,
these termsSij

k will participate to the Poisson-type behaviour of the normal martingale.
In the same way one gets easily conviced that the directions ofX which are visited with a probability of consta

order, or of bigger order thanh will contribute to the diffusive part of the martingale.
Note that, in order to understand the above discussion in probabilistic terms it is not necessary to go thr

representation in terms of creation and annihilation operators. One can directly approximate a normal m
in R

n by some obtuse random walks (this was achieved explicitly in [8]). Our purpose here was not to de
approximation, but to show how it is naturally related to the approximation of the Fock space by state sp
(n + 1)-level atom chains.

We have already a convergence of the random walk to a normal martingale of which the law is given by
rem 12. Yet this strong convergence of multiplication operators is not easy to translate into probabilistic la
because determining which random variables inL2(Ω,F ,P ) are sent toD by identification is not an easy proble
(it amounts to studying the integrability properties of the chaotic expansion of random variables). We actu
counter here a limitation of the operator-theoretic tools: proving the convergence in law in the above case
the quantum setup is surprisingly difficult. Displaying this difficult proof is of little interest in this paper, so
we are content with a simpler, classical proof.

Theorem 14. With the above notations, the random variable

√
h

[t/h]∑
k=1

X(k)

converges toXt in law, for all t .

Proof. Forλ in R
n we consider the quantity

E

(
exp i

〈
λ,

√
h

[t/h]∑
X(k)

〉)
.

k=1
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By the independence of theX(p)’s it is equal to

E
(
exp i〈λ,

√
hX〉)[t/h]

so that we consider

E
(
exp i〈λ,

√
hX〉)= 1+

∞∑
p=1

ip

p!E
(〈λ,

√
hX〉p);

now it is easy to prove by induction that, forp � 3,

E(X̃i1, . . . , X̃ip ) = h
∑

k1,...,kp−2

T̃
i1i2
k1

T̃
k1i3
k2

· · · T̃ kp−2ip−1
ip

= h

( ∑
k1,...,kp−2

S
i1i2
k1

S
k1i3
k2

· · ·Skp−2ip−1
ip

+ o(1)

)
where the negligible term o(1) is bounded by

(n + 1)p sup
i,j,k

∣∣T̃ ij
k − S

ij
k

∣∣.
Let us assume that we are working in an orthogonal basis which is diagonal for the tensorS (see Theorem 9); the
S

ij
k = 1 if i = j = k are in a given set of indicesI and all other coefficients are zero.

An application of Lebesgue’s dominated convergence theorem now gives

E

(
exp i

〈
λ,

√
h

[t/h]∑
k=1

X(k)

〉)
=
(

1− h

2

∑
j

λ2
j + h

∞∑
p=3

∑
j∈I

ipλ
p
j

p! + o(h)

)[t/h]

which converges ash goes to zero, to

exp

(
t
∑
j /∈I

(
−λ2

j

2

)
+ t
∑
j∈I

(
exp iλj − iλj − 1

))
which from Proposition 12 is the characteristic function ofXt . �

7. Some approximations of 2-dimensional noises

We end this article by computing some simple and illustrative examples in the casen = 2.
We consider, in the casen = 2, an obtuse random variableX which takes the valuesv1 = (a,0), v2 = (b, c) and

v3 = (b, d) with respective probabilitiesp,q, r . In order thatX be obtuse we put

a =√1/p − 1, b = −1/a, c =
√

1/q − 1− b2, d = −
√

1/r − 1− b2.

Let us callS this set of values forX andps the probability associated tos ∈ S. The associated sesqui-symmet
3-tensorT is given by

T (v) =
∑
s∈S

ps〈s, x〉s ⊗ s.

For example, in the casep = 1/2, q = 1/3 andr = 1/6 we geta = 1, b = −1, c = 1 andd = −2. The tensorT
is then given by

T (v) =
(

0 −y

−y −x − y

)
if v = (x, y). Thus the multiplication operator byX is equal to
1
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X1 = a1
0 + a0

1 − a2
2

and the multiplication operator byX2 is equal to

X2 = a2
0 + a0

2 − (a1
2 + a2

1 + a2
2).

Now we consider a random walk(X(k))k�0 made of independent copies of this random variableX, with time
steph. In the framework of the Fock space approximation described above, the operator∑

k;kh�t

√
hX1(k)

converges, both in the sense of convergence of multiplication operators and in law, to

a0
1(t) + a1

0(t)

and the operator∑
k;kh�t

√
hX2(k)

converges to

a0
2(t) + a2

0(t).

This means that the limit processX(t) is a 2-dimensional Brownian motion. Indeed, the above represent
shows that the associated doubly-symmetric tensorΦ is null and thusX satisfies the structure equation

d[X1,X1]t = dt,

d[X1,X2]t = 0,

d[X2,X2]t = dt

which is exactly the structure equation verified by two independent Brownian motions.
It is clear, that whatever the values ofp,q, r are, if they are independent of the time step parameterh, we will

always obtain a 2-dimensional Brownian motion as a limit of this random walk.
When some of the probabilitiesp,q or r depend onh the behaviour is very different. Let us follow two exam

ples.
In the casep = 1/2, q = h andr = 1/2− h we get

a = 1, b = −1, c = 1√
h

+ O(h1/2), d = −2
√

h + o(h3/2).

For the tensorT we get

T (v) =
(

0+ o(h5/2) −y + o(h2)

−y + o(h2) − y√
h

− x + o(h1/2)

)
.

The multiplication operators are then given by

X1 = a1
0 + a0

1 − a2
2 + O(h2)

and

X2 = a2
0 + a0

2 − (a1
2 + a2

1) + 1√
h

a2
2 + O(h1/2).

In the same limit as above we thus obtain the operators

a1(t) + a0(t)
0 1
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ith

l. 1801,

994.
52.
g, 1994,
and

a2
0(t) + a0

2(t) − a2
2(t).

This means that the coordinateX1(t) is a Brownian motion andX2(t) is an independent Poisson process, w
intensity 1 and directed upwards. Indeed, the associated tensorΦ is given by

Φ(v) =
(

0 0
0 −y

)
and the associated structure equation is

d[X1,X1]t = dt,

d[X1,X2]t = 0,

d[X2,X2]t = dt + dX2(t)

which is the structure equation of the process we described.
The last example we shall treat is the casep = 1− 2h, q = r = h. We get, for the dominating terms

a = √
2
√

h, b = − 1√
2

1√
h

, c = 1√
2

1√
h

, d = − 1√
2

1√
h

,

and

X1 = a1
0 + a0

1 − 1√
2

1√
h

a2
2 + 1√

2

1√
h

a1
1,

X2 = a2
0 + a0

2 − 1√
2

1√
h

(a1
2 + a2

1).

The limit process is then solution of the structure equation

d[X1,X1]t = dt − 1√
2

dX1(t),

d[X1,X2]t = − 1√
2

dX2(t),

d[X2,X2]t = dt − 1√
2

dX1(t).

The associated tensor is easy to diagonalise and one finds the eigenvectors

(−1/
√

2,1/
√

2) and (−1/
√

2,−1/
√

2).

The limit process is made of two independent Poisson processes, with intensity 2 and respective direction(−1,1)

and(−1,−1).
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