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Abstract

We construct the basis of a stochastic calculus for so-called Volterra processes, i.e., processes which are defin
stochastic integral of a time-dependent kernel with respect to a standard Brownian motion. For these processes which
generalization of fractional Brownian motion, we construct a stochastic integral and show some of its main properties: r
with respect to time and kernel, transformation under an absolutely continuous change of probability, possible appro
schemes and Itô formula.
 2004 Elsevier SAS. All rights reserved.

Résumé

Nous jetons les bases d’un calcul stochastique pour les processus de type Volterra, c’est-à-dire définis comme
stochastique d’un noyau déterministe dépendant du temps par rapport à un mouvement brownien ordinaire. L’hyp
base sur le noyau porte sur la régularité de l’opérateur intégral associé, que l’on suppose continu de l’espace des fo
carré intégrable dans un espace de fonctions höldériennes.

L’intégrale stochastique est définie comme limite de sommes discrètes, de type Stratonovitch. On montre ensuite qu
s’exprime au moyen du gradient et de la divergence au sens du calcul de Malliavin. La régularité trajectorielle du p
obtenu dépend étroitement de la régularité du noyau initial. On s’intéresse ensuite à une formule d’Itô pour les p
ainsi construits. Cette formule est établie pour des processus “simples” définis comme intégrale stochastique de
cylindriques. Le papier se termine en donnant la règle de transformation des intégrales stochastiques lors d’un ch
absolument continu de probabilité.
 2004 Elsevier SAS. All rights reserved.

MSC:60H05; 60H07; 60G15

Keywords:Fractional Brownian motion; Malliavin calculus; Stochastic integral

Mots-clés :Calcul de Malliavin ; Intégrale stochastique ; Mouvement brownien fractionnaire

E-mail address:laurent.decreusefond@enst.fr (L. Decreusefond).
0246-0203/$ – see front matter 2004 Elsevier SAS. All rights reserved.
doi:10.1016/j.anihpb.2004.03.004



124 L. Decreusefond / Ann. I. H. Poincaré – PR 41 (2005) 123–149

gral with
rein. Re-
an

for

on
h
ss of the

iffers
n these
o use the
ts in the
should be
is to be

rlying

an Itô
t the
ngement
eled by

3, we
roperties
al with
gral and
related
ugh an
1. Introduction

In the past few years, more than twenty papers have been devoted to the definition of a stochastic inte
respect to fractional Brownian motion or other “related” processes, see for instance [11] and references the
mind that fractional Brownian process of Hurst indexH ∈ (0,1), denoted byBH , is the unique centered Gaussi
process whose covariance kernel is given by

RH (s, t) = E[BH
s BH

t ] def= VH

2

(
s2H + t2H − |t − s|2H

)
,

where

VH
def= �(2− 2H)cos(πH)

πH(1− 2H)
.

Among other properties, this process has 1/H -finite variation and a finite generalized covariation of order 4
H > 1/4 (see [17,13] for the definition), has Hölder continuous trajectories of any order less thanH and has the
following representation property:

BH (t) =
t∫

0

KH (t, s)dBs, (1)

whereB is a one-dimensional standard Brownian motion andK is deterministic kernel with an intricate expressi
(see [10]). Therefore, a “related” process means altogether a process with finitep-variation, called a process wit
rough paths in [6,18], or a process with Hölder continuous sample-paths as in [15,26] and also a proce
form (1) with a general kernel as in [3,5,8,12].

This is the last track that we will follow here. Our present work, which is the expanded version of [8], d
from the other two papers [3,5] in two ways. First, the method to define the stochastic integral is different. I
two papers, the kernel is regularized, if needed, to obtain a semi-martingale. The second step is then t
classical theory of stochastic integration and then pass to the limit after a stochastic integration by par
sense of the Malliavin calculus. We here use an approach based on convergence of discrete sums. It
already noted that for smooth integrands, their notion of integral and ours coincide. The other difference
found in the kind of hypothesis put onK. In [3,5], hypothesis are made on the regularity of the functionK(t, s)

itself. We here work with assumptions on the linear mapf �→ ∫
K(t, s)f (s)ds. Properties ofK(t, s) andKf

are, of course, intimately related but we think that working with the latter gives more insight on the unde
problems.

As far as fractional Brownian motion is concerned, it is well known that it is a very hard task to establish
formula for an Hurst index less than 1/4. We prove here such a formula for any Hurst index. It turns out tha
key tool is symmetrization as already emphasized in [17], see Eq. (29). In essence, it is similar to the rearra
done in the definition of a principal value in the theory of distributions, where the singular terms are canc
difference.

In Section 2, we recall basic definitions and properties of deterministic fractional calculus. In Section
introduce the class of processes, named Volterra processes, that we will study. We then give a few p
of their sample-paths. In Section 4, we deal with a Stratonovitch-like definition of the stochastic integr
respect to Volterra processes. Section 5 is devoted to the time regularity of the previously constructed inte
in Section 6, we establish an Itô formula. In the last section, we show how the Stratonovitch integral is
to a Skorohod-like integral and how a Itô-like process constructed from such an integral is modified thro
absolutely continuous change of probability.
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2. Preliminaries

This section is only devoted to the presentation of the tools of deterministic fractional calculus we shal
the sequel. Forf ∈ L1([0,1]; dt) (denoted byL1 for short) the left and right fractional integrals off are defined
by:

(I
γ

0+f )(x)
def= 1

�(γ )

x∫
0

f (t)(x − t)γ−1 dt, x � 0,

(I
γ

1−f )(x)
def= 1

�(γ )

1∫
x

f (t)(t − x)γ−1 dt, x � 1,

whereγ > 0 andI0
0+ = I0

1− = Id. For anyγ � 0, p,q � 1, any f ∈ Lp andg ∈ Lq wherep−1 + q−1 � γ , we
have:

1∫
0

f (s)(I
γ

0+g)(s)ds =
1∫

0

(I
γ

1−f )(s)g(s)ds. (2)

The Besov–Liouville spaceI γ

0+(Lp) := I+
γ,p is usually equipped with the norm:

‖I γ

0+f ‖I+
γ,p

= ‖f ‖Lp . (3)

Analogously, the Besov–Liouville spaceI γ

1−(Lp) := I−
γ,p is usually equipped with the norm:

‖I−γ

1− f ‖I−
γ,p

= ‖f ‖Lp .

We then have the following continuity results (see [15,21]):

Proposition 1.

(i) If 0< γ < 1, 1< p < 1/γ, thenI
γ

0+ is a bounded operator fromLp into Lq with q = p(1− γp)−1.

(ii) For any0< γ < 1 and anyp � 1, I+
γ,p is continuously embedded inHol(γ −1/p) provided thatγ −1/p > 0.

Hol(ν) denotes the space of Hölder-continuous functions, null at time0, equipped with the usual norm.
(iii) For any0< γ < β < 1, Hol(β) is compactly embedded inIγ,∞.

(iv) By I
−γ

0+ , respectivelyI−γ

1− , we mean the inverse map ofI
γ

0+ , respectivelyI γ

1− . The relationI γ

0+I
β

0+f = I
γ+β

0+ f

holds wheneverβ > 0, γ + β > 0 andf ∈ L1.

(v) For γp < 1, the spacesI+
γ,p andI−

γ,p are canonically isomorphic. We will thus use the notationIγ,p to denote
any of this spaces. This property is not true any more forγp > 1, see Lemma2.3and text below Definition13.

We now define the Besov–Liouville spaces of negative order and show that they are in duality with B
Liouville of positive order (it is likely that this exists elsewhere in the literature but we have not found any refe
so far). Denote byD+ the space ofC∞ functions defined on[0,1] and such thatφ(k)(0) = 0. Analogously, setD−
the space ofC∞ functions defined on[0,1] and such thatφ(k)(1) = 0. They are both equipped with the projecti
topology induced by the semi-normspk(φ) = ∑

j�k ‖φ(j)‖∞. LetD′+, resp.D′−, be their strong topological dua

It is straightforward thatD+ is stable byI γ

0+ andD− is stableI γ

1− , for anyγ ∈ R. Hence, guided by (2), we ca
define the fractional integral of any distribution (i.e., an element ofD′− or D′+):

ForT ∈D′−; I
γ

0+T : φ ∈ D− �→ 〈T , I
γ

1−φ〉D′−,D− ,

ForT ∈D′+; I
γ
−T : φ ∈ D+ �→ 〈T , I

γ
+φ〉D′ ,D .
1 0 + +
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We introduce now our Besov spaces of negative order by

Definition 2. For γ > 0 andr > 1, I+−γ,r (resp.I−−γ,r ) is the space of distributions such thatI
γ

0+T (resp.I γ

1−T )
belongs toLr . The norm of an elementT in this space is the norm ofI γ

0+T in Lr (resp. ofI γ

1−T ).

Theorem 3.For γ > 0 and r > 1, the dual space ofI+
γ,r (resp.I−

γ,r ) is canonically isometrically isomorphic t

I
−γ

1− (Lr∗
) (resp.I−γ

0+ (Lr∗
)) wherer∗ = r(r − 1)−1.

Proof. Let T be inD′+, we have:

sup
φ: ‖φ‖I+

γ,r
=1

∣∣〈T ,φ〉∣∣ = sup
ψ : ‖ψ‖Lr =1

∣∣〈T , I
γ

0+φ〉∣∣ = sup
ψ : ‖ψ‖Lr =1

∣∣〈I γ

1−T ,φ〉∣∣
hence by the Hahn–Banach theorem,

T ∈ (I+
γ,r )

′ ⇔ sup
φ: ‖φ‖I+

γ,r
=1

∣∣〈T ,φ〉∣∣ < ∞ ⇔ I
γ

1−T ∈ Lr∗
,

and‖T ‖(I+
γ,r )

′ = ‖T ‖
I

−γ

1− (Lr∗ )
. The same reasoning also holds for(I−

γ,r )
′. �

Theorem 4.For β � γ � 0 andr > 1, I
β

1− is continuous fromI−−γ,r into I−
β−γ,r .

Proof. SinceT belongs toI−−γ,r = (Iγ,r∗)′, we have:∣∣〈Iβ

1−T ,φ〉∣∣ = ∣∣〈T , I
β

0+φ〉∣∣ � c‖Iβ

0+φ‖Iγ,r∗ = c‖Iβ−γ

0+ φ‖Lr∗ .

Thus,Iβ

1−T is a continuous linear form onI+
γ−β,r∗ and thus belongs to the dual of this space which, accordin

the previous theorem, is exactlyI−
β−γ,r . �

For η > 0 andp ∈ [1,+∞), the Slobodetzki spaceSη,p is the closure ofC1 functions with respect to th
semi-norm:

‖f ‖p

Sη,p
=

∫ ∫
[0,1]2

|f (x) − f (y)|p
|x − y|1+pη

dx dy.

Forη = 0, we simply haveS0,p = Lp([0,1]). We then have the following continuity results (see [15,26]):

Proposition 5.

(i) For any0< γ < 1 and anyp � 1, Sγ,p is continuously embedded inHol(γ −1/p) provided thatγ −1/p > 0.

Hol(ν) denotes the space of Hölder-continuous functions, null at time0, equipped with the usual norm.
For 0 < γ < 1/p, Sγ,p is compactly embedded inLp(1−γp)−1

([0,1]). Moreover, ifp = 2, the embedding o
Sγ,p into L2([0,1]) is Hilbert–Schmidt.

(ii) It is proved in[15] that for1� a > b > c > 0 that we the following embeddings are continuous(even compact)

Sa,p ⊂ I+
b,p ⊂ Sc,p. (4)

(iii) For any0< γ < β < 1, Hol(β) is compactly embedded inSγ,∞.

(iv) Let a > 0, 1 < p � q < ∞. Supposeb = a − 1/p + 1/q > 0. ThenSa,p is continuously embedded inSb,q ,

see[1].
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One of the key property we shall use, is this result due to Tambaca [22].

Lemma 2.1.Let r, s ∈ [0,1/2) and lett = r + s − 1/2� 0. For f ∈ Ss,2, g ∈ Sr,2, the productfg belongs toSt,2

and we have:

‖fg‖St,2 � c‖f ‖Sr,2‖g‖Ss,2.

From this lemma and the embeddings of Eq. (4), we have:

Corollary 6. Let r, s ∈ [−∞,1/2) and lett < r + s − 1/2. For f ∈ Is,2, g ∈ Ir,2, the productfg belongs toIt,2

and we have:

‖fg‖It,2 � c‖f ‖Ir,2‖g‖Is,2.

We will need a similar result in the simpler situation wherer is greater than 1/2.

Lemma 2.2.Let r > 1/2, for f andg in Ir,2, we have

‖fg‖Sr,2 � c‖f ‖Sr,2‖g‖Sr,2. (5)

Proof. Sincer > 1/2, f andg are continuous and‖f ‖∞ � c‖f ‖Sr,2. The same holds forg. Thus,

‖fg‖2
Sr,2

�
∫ ∫
[0,1]2

( |f (x)|2(g(x) − g(y))2

|x − y|1+2r
+ |g(y)|2(f (x) − f (y))2

|x − y|1+2r

)
dx dy

� c
(‖f ‖2∞‖g‖2

Sr,2
+ ‖g‖2∞‖f ‖2

Sr,2

)
,

and the result follows. �
One could probably work with only one family of spaces (i.e., eitherIα,p or Sα,p) but depending on the prop

erties, some are easier to verify in the setting of Riemann–Liouville spaces and some in the setting of Slo
spaces, see for instance the property below.

Lemma 2.3.Letγ > γ̃ > 1/2 andf ∈ Sγ,2 then(f − f (t))1[0,t] belongs toSγ̃ ,2.

Proof. First note thatf is (γ − 1/2)-Hölder continuous thus thatf − f (t) is well defined. Moreover,∫ ∫
[0,1]2

|(f (x) − f (t))1[0,t] − (f (y) − f (t))1[0,t]|2
|x − y|1+2γ̃

dx dy

=
∫ ∫
[0,t]2

|f (x) − f (y)|2
|x − y|1+2γ̃

dx dy + 2
∫ ∫

[0,t]×[t,1]

|f (x) − f (t)|2
|x − y|1+2γ̃

dx dy

� c‖f ‖2
γ,2

(
1+ 2

∫ ∫
[0,t]×[t,1]

|x − t |2γ−1

|x − y|1+2γ̃
dx dy

)
� c‖f ‖2

γ̃ ,2. �
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3. Volterra processes

Consider that we are given a deterministic Hilbert–Schmidt linear map,K, satisfying:

Hypothesis I.There existsα > 0 such thatK is continuous, one-to-one, fromL2([0,1]) into Iα+1/2,2. Moreover,
K is triangular, i.e., for anyλ ∈ [0,1], the setNλ = {f : f (t) = 0 for t � λ} is invariant byK .

Remark 7. SinceK is Hilbert–Schmidt fromL2([0,1]) into itself, there exists a measurable kernelK(·, ·) such
that

Kf (t) =
1∫

0

K(t, s)f (s)ds.

The triangularity ofK is equivalent toK(t, s) = 0 for s > t, i.e.,

Kf (t) =
t∫

0

K(t, s)f (s)ds.

Consider now the kernelR(t, s) defined by

R(t, s) :=
t∧s∫
0

K(t, r)K(s, r)dr.

The map associated toR, i.e.,Rf (t) = ∫ 1
0 R(t, s)f (s)ds, is equal toKK∗ and for anyβ1, . . . , βn any t1, . . . , tn,

we have∑
i,j

βiβjR(ti , tj ) =
∫

K∗(∑
βj εtj

)
(s)2 ds � 0,

so thatR(t, s) is a positive kernel and we can speak of the centered Gaussian process of covariance kernR. Let
X be this process and be the subject of our study.

Lemma 3.1.The processX has a modification with a.s. continuous sample-paths.

Proof. We have

E
[
(Xt − Xs)

2] =
t∫

0

K(t, r)2 dr +
s∫

0

K(s, r)2 dr − 2

t∧s∫
0

K(t, r)K(s, r)dr

= K
(
K(t, ·) − K(s, ·))(t) − K

(
K(t, ·) − K(s, ·))(s)

� c|t − s|α
( 1∫

0

(
K(t, r) − K(s, r)

)2 dr

)1/2

.

Expanding the square in the last integral, we get the right-hand side of the first equation, thus

E
[
(Xt − Xs)

2]1/2 � c|t − s|α.

Kolmogorov lemma entails thatX has a modification with Hölder continuous sample paths of any order
thanα. �



L. Decreusefond / Ann. I. H. Poincaré – PR 41 (2005) 123–149 129

of

f

or

r

d where
We thus now work on the Wiener spaceΩ = C0([0,1];R), the Cameron–Martin space isH = K(L2([0,1]))
andP, the probability onΩ under which the canonical process, denoted byX, is a centered Gaussian process
covariance kernelR. The norm ofh = K(g) in H is the norm ofg in L2([0,1]).

A mappingφ from Ω into some separable Hilbert spaceH is called cylindrical if it is of the formφ(w) =∑d
i=1 fi(〈vi,1,w〉, . . . , 〈vi,n,w〉)xi where for eachi, fi ∈ C∞

0 (Rn,R) and (vi,j , j = 1, . . . , n) is a sequence o
Ω∗ such that(ṽi,j , j = 1, . . . , n) (where ṽi,j is the image ofvi,j under the injectionΩ ↪→ L2([0,1]) ) is an
orthonormal system ofL2([0,1]). For such a function we define∇φ as

∇φ(w) =
∑
i,j=1

∂jfi

(〈vi,1,w〉, . . . , 〈vi,n,w〉)ṽi,j ⊗ xi.

From the quasi-invariance of the Wiener measure [24], it follows that∇ is a closable operator onLp(Ω;H), p � 1,
and we will denote its closure with the same notation. The powers of∇ are defined by iterating this procedure. F
p > 1, k ∈ N, we denote byDp,k(H) the completion ofH-valued cylindrical functions under the following norm

‖φ‖p,k =
k∑

i=0

‖∇ iφ‖Lp(Ω;H⊗L2([0,1])⊗i ).

Remark 8. Note that the Sobolev spacesSα,p enjoy the useful property ofp-admissibility (after [14]) and thus fo
any 0< γ < 1 and anyp � 1, the spacesDp,k(Sα,p) andSα,p(Dp,k) are isomorphic.

The divergence, denotedδ is the adjoint of∇: v belongs to Domp δ whenever for any cylindricalφ,∣∣∣∣∣E
[ 1∫

0

us∇sφ ds

]∣∣∣∣∣ � c‖φ‖Lp

and for such a processv,

E

[ 1∫
0

us∇sφ ds

]
= E[φδu].

It is easy to show (see [10]) that{Bt := δ(1[0,t]), t � 0} is a standard Brownian motion such thatδu = ∫
us dBs for

any square integrable adapted processesu and which satisfies

Xt =
t∫

0

K(t, s)dBs.

Moreover,B andX have the same filtration. In view of the last identity and becauseK is lower triangular, we
decided to name such a process, a Gaussian Volterra process. The analysis of processes of the same kinB

is replaced by a jump processes is the subject of our current investigations with N. Savy.

Example 1.The first example is the so-called Lévy fractional Brownian motion of Hurst indexH , defined as

1

�(H + 1/2)

t∫
0

(t − s)H−1/2 dBs.

This amounts to say thatK = I
H+1/2
0+ , thus that Hypotheses I and II are immediately satisfied, withα = H, in view

of the semi-group properties of fractional integration.
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Example 2. The other classical example is the fractional Brownian motion with stationary increments of
indexH, for which

K(t, r) = KH (t, r) := (t − r)H−1/2

�(H + 1/2)
F

(
1

2
− H,H − 1

2
,H + 1

2
,1− t

r

)
1[0,t)(r). (6)

The Gauss hyper-geometric functionF(α,β, γ, z) (see [19]) is the analytic continuation on

C × C × C\ {−1,−2, . . .} × {z ∈ C, Arg |1− z| < π}
of the power series

+∞∑
k=0

(α)k(β)k

(γ )kk! zk,

and

(a)0 = 1 and (a)k
def= �(a + k)

�(a)
= a(a + 1) . . . (a + k − 1).

We know from [21] thatKH is an isomorphism fromL2([0,1]) ontoI+
H+1/2,2 and

KH f = I2H
0+ x1/2−H I

1/2−H

0+ xH−1/2f for H � 1/2,

KH f = I1
0+xH−1/2I

H−1/2
0+ x1/2−H f for H � 1/2.

It follows easily that Hypotheses I and II are satisfied withα = H .

Example 3.Beyond these two well-known cases, we can investigate the case ofK(t, s) = KH(t)(t, s) for a deter-
ministic functionH . This is the process studied in [4]. It seems interesting to analyze since statistical investi
via wavelets have shown that the local Hölder exponent of some real signals (in telecommunications) is
with time and this situation can not be reflected with a model based on fBm since its Hölder regularity is ever
equal and strictly less to its Hurst index.

Lemma 3.2.For f ∈ L2, for H1 > H2 � γ > 0, we have∣∣KH2f (s) − KH2f (t)
∣∣ � c|t − s|γ ‖f ‖L2, (7)∣∣KH1f (s) − KH2f (s)
∣∣ � c|H1 − H2|‖f ‖L2, (8)

wherec is a constant independent ofH1,H2 andf .

Proof. SinceH2 is greater thanγ, KH2f belongs toIγ+1/2,2, and (7) follows directly from the embedding
Iγ+1/2,2 into Hol(γ ).

Another expression of the hyper-geometric function is given by:

F(a, b, c, z) = �(c)

�(b)�(c − b)

1∫
0

tc−1(1− t)c−b−1(1− zt)−a dt.

Classical and tedious computations show that forH ∈ [h1 + ε,h2 − ε],∣∣∣∣ d

dH
KH (t, s)

∣∣∣∣ � cε sup
∣∣KH (t, s)

∣∣,

H∈(H1,H2)
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f

and
wherecε = supt∈[0,1] |tε ln t |. It thus entails that∣∣KH2(t, s) − KH1(t, s)
∣∣ � cε sup

H∈(H1,H2)

∣∣KH (t, s)
∣∣|H2 − H1|.

Cauchy–Schwarz inequality yields to (8).�
Theorem 9.Let H belong toS1/2+α,2 and be such thatinft H(t) > 1/2, thenK(t, s) = KH(t)(t, s) satisfiesI for
anyα < inft H(t) − 1/2.

Proof. Let f belong toL2, setγ = inft H(t) and letα < γ − 1/2. According to the previous lemma, we have

‖Kf ‖2
S1/2+α,2

=
∫ ∫
[0,1]2

|KH(t)f (t) − KH(s)f (s)|2
|t − s|2+2α

dt ds

� 2
∫ ∫
[0,1]2

|KH(t)f (t) − KH(t)f (s)|2
|t − s|2+2α

dt ds + 2
∫ ∫
[0,1]2

|KH(t)f (s) − KH(s)f (s)|2
|t − s|2+2α

dt ds

� c‖f ‖2
L2

∫ ∫
[0,1]2

|t − s|2γ

|t − s|1+2α
dt ds + c‖f ‖2

L2

∫ ∫
[0,1]2

|H(t) − H(s)|2
|t − s|2+2α

dt ds.

The right-hand side is finite by hypothesis and thusK is continuous fromL2 into S1/2+α,2. �

4. Stratonovitch integral

Starting from scratch and trying to define a stochastic integral with respect toX by a limit of a sequence o
finite sums, we have two main choices: Either we quantizeX (or more probably dX) or we quantizeB (likely dB)
and then derive a quantization of dX. The first approach yields two possibilities: for a partitionπ whose points are
denoted by 0= t0 < t1 < · · · < tn = T , we can consider

RSπ (u) =
∑
ti∈π

u(ti)�Xi or (9)

SSπ (u) =
∑
ti∈π

1

θi

( ti+1∫
ti

u(s)ds

)
�Xi, (10)

where θi = ti+1 − ti and �Xi = X(ti+1) − X(ti). They are both reminiscences of respectively Riemann
Skorohod–Stratonovitch sums as defined in [20].

In the other approach, we first linearizeB and then look at the approximation ofX it yields to. Let

Bπ(t) = B(ti) + 1

θi

�Bi(t − ti ) for t ∈ [ti , ti+1),

and

Xπ(t) =
∑
ti∈π

1

θi

ti+1∫
K(t, s) ds �Bi =

∑
ti∈π

1

θi

K(1[ti ,ti+1])(t)�Bi.
ti
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It follows that it is reasonable to consider

Rπ
T (u) :=

∑
ti∈π

1

θi

{ T∫
0

u(t)
d

dt
K(1[ti ,ti+1])(t)dt

}
�Bi,

under the additional hypothesis that for anyb > 0, the functionK(1[0,b]) is differentiable with a square integrab
derivative. Foru sufficiently smooth in the sense of the calculus of variations, we have

Rπ
T (u) = δ

( ∑
ti∈π

1

θi

T∫
0

u(t)
d

dt
K(1[ti ,ti+1])(t)dt 1[ti ,ti+1]

)
+

∑
ti∈π

1

θi

ti+1∫
ti

T∫
0

∇ru(t)
d

dt
K(1[ti ,ti+1])(t)dt dr.

UsingK∗
T , the formal adjoint ofK := I−1

0+ ◦ K onL2([0, T ]), we have

Rπ
T (u) = δ

( ∑
ti∈π

1

θi

ti+1∫
ti

K∗
T u(t)dt

)
+

∑
ti∈π

1

θi

∫ ∫
[ti ,ti+1]2

K∗
T (∇ru)(t)dt dr. (11)

We now recognize the Skorohod–Stratonovitch sum associated to the standard Brownian motionB and to the
integrandK∗

T u. For the sequel to be meaningful, we need to assume that the mapK exists. This is guaranteed fo
α � 1/2, sinceI+

α+1/2,2 is embedded in the set of absolutely continuous functions with square integrable deri
but forα < 1/2, we need to introduce an additional hypothesis.

Hypothesis II. We assume that for anyT ∈ [0,1], the mapK = I−1
0+ ◦ K is a densely defined, closable opera

fromL2([0, T ]) into itself and that its domain contains a dense subset,D, stable by the mapspT , for anyT ∈ [0,1],
wherepT f ≡ f 1[0,T ). We denote byK∗

T its adjoint inL2([0, T ]). We assume furthermore thatK∗
1 is continuous

from I1−
1/2−α,p into Lp([0, T ]), for anyp � 2.

Remark 10. In the preceding examples,D may be taken toI(1/2−α)+,2.

Remark 11. For the sake of simplicity, we will speak of the domains ofK andK∗
T independently of the positio

of α with respect to 1/2. It must be plain that forα > 1/2, DomK = L2([0,1]) and DomK∗
T = L2([0, T ]).

Remark 12.Denote byεt the Dirac mass at pointt . SinceI1
1−(εt ) = 1[0,t], we have

K∗(1[0,t]) = K∗(εt ) = K(t, .).

This means thatK∗
t is identical to the operator denoted byI

KH
t in [5].

Notation 1. For anyp � 1, we denote byp∗ the conjugate ofp. For any linear mapA, we denote byA∗
T , its

adjoint inL2([0, T ]). We denote byc any irrelevant constant appearing in the computations,c may vary from one
line to another.

Definition 13. Assume that Hypothesis I holds forα � 1/2. We say thatu is Stratonovitch integrable on[0, T ]
whenever the family RπT (u), defined in (11), converges in probability as|π | goes to 0. In this case the limit will b

denoted by
∫ T

0 us ◦ dXs .

This definition could be theoretically extended toα < 1/2 but would be practically unusable. Indeed, as
shall see below, whenα < 1/2, the convergence of the second sum ofRπ(u) requires thatu belongs toI1+η−α,2
T
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for someη > 0 andK∗
T to be continuous from this space to a space of Hölder functions. Since 1+ η − α − 1/2 >

0, the two spacesI1+η−α

0+ (L2([0, T ])) and I
1+η−α

T − (L2([0, T ])) are not canonically isomorphic (ifu belongs to
the first one thenu(0) = 0 whereas whenu belongs to the latter,u(T ) = 0). We thus have to specify to whic
oneu belongs exactly. In view of the example of the Lévy fractional Brownian whereK∗

T = I
H−1/2
T − , it is more

convenient to assume thatu belongs toI1+η−H

T − (L2([0, T ])) and thus thatu(T ) is equal to 0. That raises a proble

because the restriction of an element ofI
1+η−H

T − (L2([0, T ])) to a shorter interval, say[0, S], does not belong to

I
1+η−H

S− (L2([0, S])) so that, we can not see
∫ S

0 u(r) ◦ dXr as
∫ T

0 u(r)1[0,S](r) ◦ dXr .

On the other hand, since(u − u(S))1[0,S] belongs toI1+η−H

S− (L2([0, S])) as soon asu belongs to

I
1+η−H

T −
(
L2([0, T ])),

it is reasonable to considerRπ
T (u − u(T )). For the limit to stay the same, we have to add the termu(T )X(T ).

Indeed, the well-known relationship (see [20,24])

δ(aξ) = aδξ −
1∫

0

∇raξ(r)dr, (12)

for a ∈ D2,1 andξ ∈ L2(Ω × [0,1]), entails that

Rπ
T (u) = Rπ

T

(
u − u(T )

) + u(T )Xπ(T ). (13)

As a conclusion, forα < 1/2, the definitive definition is

Definition 14 (Definition for α < 1/2). Assume that Hypotheses I and II hold forα < 1/2. We say thatu is
Stratonovitch integrable on[0, T ], whenever the family RπT (u − u(T )) converges in probability as|π | goes to 0.
In this case, we set

T∫
0

us ◦ dXs = lim|π |→0
Rπ

T

(
u − u(T )

) + u(T )X(T ). (14)

In view of the preceding discussion, the following lemma will play a key role in the sequel.

Lemma 4.1.For T ∈ (0,1], let pT f denote the restriction off to [0, T ). For anyf ∈ DomK∗
1, f belongs to

DomK∗
T , pT f belongs toDomK∗

1 and we have

pT K∗
1(pT f ) ≡ K∗

T (f ). (15)

Proof. SinceK is triangular, forg ∈D, pT g belongs to DomK andpT Kg = pT K(pT g) = KpT g. By derivation,
it follows thatpT Kg = pT KpT g = KpT g, so that, forf ∈ DomK∗

1,∣∣∣∣∣
t∫

0

f (s)Kg(s)ds

∣∣∣∣∣ =
∣∣∣∣∣

1∫
0

(pT f )(s)Kg(s)ds

∣∣∣∣∣ =
∣∣∣∣∣

1∫
0

f (s)(pT Kg)(s)ds

∣∣∣∣∣
=

∣∣∣∣∣
1∫

0

f (s)K(pT g)(s)ds

∣∣∣∣∣ � c‖pT g‖L2([0,1]) = c‖g‖L2([0,T ]).

By density, this identity remains true forg ∈ DomK, thus this means thatf belongs to DomK∗
T and thatpT f

belongs to DomK∗.
1
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For g ∈ L2([0, T ]) ∩ DomK, we denote bỹg its extension toL2([0, T ]) defined byg̃(s) = 0 whenevers � T .
We have

T∫
0

pT K∗
1pT f (s)g(s)ds =

1∫
0

K∗
1pT f (s)pT g̃(s)ds =

1∫
0

pT f (s)K(pT g̃)(s)ds

=
T∫

0

f (s)Kg(s)ds =
T∫

0

K∗
T f (s)g(s)ds,

where the last equality follows by the first part of the proof and the definition of the adjoint of a linear map.
g can be arbitrary, (15) follows by identification.�
Theorem 15.Let α < 1/2 andp � 2. Assume that HypothesesI and II hold. Assume furthermore that there exi
σ > 1/p and η > 0, such thatK∗

1 is continuous fromI1−
σ,p into Hol(η). If u belongs toDp,1(I1−

σ+ε,p), for some

ε > 0, then for anyT ∈ [0,1], there exists a measurable and integrable process, denoted byD̃T u such that, for
anys, any0� a < b < 1,

E

[ b∫
a

∣∣K∗
T

(∇r

(
u − u(T )

))
(s) − D̃T u(r)

∣∣p dr

]
� cE

[ 1∫
0

|s − r|pη‖∇ru‖p

I1−
σ+ε,p

dr

]
. (16)

Moreover,

E

[∥∥∥∥∥
.∫

0

D̃T u(r)dr

∥∥∥∥∥
p

I+
1,p

]
� c‖u‖p

Dp,1(I1−
σ+ε,p)

. (17)

Proof. Sinceσ > 1/p, u is continuous and we can speak unambiguously ofu(T ). The assumed continuity ofK∗
1

entails thatK∗
T (u − u(T )) belongs toDp,1(Hol(η)) and that

E

[ b∫
a

∣∣∇rK∗
T

(
u − u(T )

)
(s) − ∇rK∗

T

(
u − u(T )

)
(τ )

∣∣p dr

]
� cE

[ 1∫
0

|s − τ |pη‖∇ru‖p

I1−
σ+ε,p

dr

]
. (18)

Consider(ϕn,n � 1) a one-dimensional positive mollifier, we can define P⊗ dr a.s.,D̃T u(r) by

D̃T u(r) = lim
n→∞

T∫
0

ϕn(τ)K∗
T (∇ru)(τ − r)dτ.

Hence,D̃T u(r) is measurable with respect to(ω, r) and according to (18), we have (16). Substituting 0 tos in (18),
we get

E

[ T∫
0

∣∣D̃T u(r)
∣∣p ds

]
� c‖u‖p

Dp,1(I1−
σ,p)

.

This means that
∫ .

0 D̃T u(s)ds belongs toI+
1,p and that (17) holds. �

Remark 16.For a simple processu(ω, s) = Y(ω)x(s) whereY belongs toDp,1 andx to I1−
σ+ε,p, we have

D̃T u(r) = K∗
T

(
x − x(T )

)
(r).∇rY.
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Note that we can not writeK∗
T (x − x(T ))(r) asK∗

T (x)(r) − x(T )K∗
T (1)(r) since the constant function equal to,

is not inI1−
σ,p . Furthermore, we can not get rid of the termx(T ) sincepT x does not belong toI1−

σ,p (it is not null at
time 1).

Example 1 (continued). In this case,K∗
1 = I

H−1/2
1− is continuous fromI1−

σ,p into I+
σ+α−1/2,p . This latter space is

embedded in a space of Hölderian functions provided thatσ > 1/2− α + 1/p.

Example 2(continued). According to [21],K∗
1 = x1/2−H I

H−1/2
1− xH−1/2 and since 2(1+H − 1/2) = 2H + 1> 1,

we infer from [21, Lemma 10.1] thatK∗
1 is continuous fromI1−

σ,p into I+
σ+α−1/2,p, for anyσ � 0.

Theorem 17.Let α < 1/2 andp � 2. Assume that HypothesesI and II hold. Assume furthermore that there exi
σ > 1/p and η > 0, such thatK∗

1 is continuous fromI1−
σ,p into Hol(η). If u belongs toDp,1(I1−

σ+ε,p), for some
ε > 0, thenu is Stratonovitch integrable on[0, T ] for anyT ∈ [0,1], and

T∫
0

u(s) ◦ dXs = δ(K∗
T u) +

T∫
0

D̃T u(s)ds + u(T )X(T ). (19)

Proof. For the latest sum ofRπ
T (u − u(T )), we have according to Theorem 15,

E

[∣∣∣∣∣∑
ti∈π

1

θi

ti+1∫
ti

ti+1∫
ti

K∗
T ∇r

(
u − u(T )

)
(s)ds dr −

T∫
0

D̃T u(r)dr

∣∣∣∣∣
p]

� cE

[ ∑
ti∈π

1

θi

ti+1∫
ti

ti+1∫
ti

∣∣K∗
T ∇r

(
u − u(T )

)
(s) − D̃T u(r)

∣∣p ds dr

]

� cE

[ ∑
ti∈π

1

θi

ti+1∫
ti

ti+1∫
ti

|s − r|pη‖∇ru‖p

I1−
σ+ε,p

ds dr

]

� c|π |pη‖u‖p

Dp,1(I1−
σ+ε,p)

.

Therefore, the latest sum ofRπ
T (u − u(T )) converges inLp(Ω) (and thus in probability) to

∫ T

0 D̃T u(s)ds. In
order to conclude, note that in virtue of the continuity of the divergence, the first term ofRπ

T (u − u(T )) tends to
δ(K∗

T (u − u(T ))), see [20]. �
Lemma 4.2.Under the assumptions of Theorem17, for any0 � S � T � 1, u1[0,S] is Stratonovitch integrable o
[0, T ] and we have

T∫
0

(
u(r) − u(S)

)
1[0,S](r) ◦ dXr =

S∫
0

u(r) ◦ dXr, (20)

for any0 � S � T � 1.

Proof. According to Eq. (12) and to Lemma 4.1, we have

Rπ
T

(
pS

(
u − u(S)

)) = Rπ
S

(
u − u(S)

) + u(S)Xπ(S).
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According to Theorem 17, the right-hand side sum converges so thatu1[0,S] is Stratonovitch integrable on[0, T ]
and Eq. (20) follows by remarking thatpS(u − u(S))(T ) = 0. �
Remark 18. For the hypothesis “K∗

1 is continuous fromI1−
σ,p into Hol(η)” to hold, in view of the examples cite

above, this requires thatσ to be greater than 1/2− α + 1/p + η.

For α > 1/2, the mapK is still a regularizing operator so that the hypothesis are much weaker. Followin
very same lines, we can prove:

Theorem 19.Letα > 1/2. Assume that HypothesisI holds. Assume furthermore thatK∗
1 is continuous fromLp into

I−
α−1/2,p for somep > (α − 1/2)−1. If u belongs toDp,1(Lp), then, for anyT ∈ [0,1], there exists a measurab

and integrable process, denoted bỹDT u such that, for almost anyr,

E
[∣∣∇rK∗

T u(s) − D̃T u(r)
∣∣p]1/p � c|s − r|α−1/2−1/p‖∇ru‖Lp(Ω×[0,1]).

Moreover,

E

[∥∥∥∥∥
.∫

0

D̃T u(r)dr

∥∥∥∥∥
p

Hol(1−1/p)

]
� c‖u‖p

Dp,1(Lp)
.

Remark 20.For a simple processu(ω, s) = Y(ω)x(s) whereY belongs toDp,1 andx to I1−
σ+ε,p, we have

D̃T u(r) = K∗
T (x)(r).∇rY.

It is here not necessary to substractx(T ) to x sinceK∗
1 is a continuous map.

Theorem 21.Assume that HypothesisI holds forα > 1/2. Assume furthermore thatK∗
1 is continuous fromLp

into I−
α−1/2,p for somep > (α − 1/2)−1. If u belongs toDp,1(Lp), then for anyT ∈ [0,1], u is Stratonovitch

integrable on[0, T ] and

T∫
0

us ◦ dXs = δ(K∗
T u) +

T∫
0

D̃T u(s)ds.

Remark 22.The difference in this case is thatLp([0,1]) is stable by the mapspT so that we immediately have:

T∫
0

u(s) ◦ dXs =
1∫

0

u(s)1[0,T ](s) ◦ dXs,

in both Theorems 17 and 21.

Coming back to SSπ (u), we have:

SSπ (u) = δ

( ∑
ti∈π

1

θi

ti+1∫
ti

us ds
(
K(ti+1, ·) − K(ti, ·)

)) +
∑
ti∈π

1

θi

ti+1∫
ti

(
K(∇.us)(ti+1) − K(∇.us)(ti)

)
ds

The trace-like term is similar to those we had to treat in the previous theorems. The difference is that its
formally

∫ 1
0 (K∇)su(s)ds instead of

∫ 1
0 ∇(K∗

1u)(s)ds in Theorems 15 and 19. We thus need some assump
on the regularity of the maps �→ ∇su(r). Such hypothesis are much harder to verify than properties of the
s �→ ∇ru(s). This restriction reduces the interest of this approach.
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Theorem 23. Assume that HypothesisI holds for α > 1/2. Assume furthermore thatK is continuous from
Lp([0,1]) into I−

α−1/2,p for somep > (α − 1/2)−1. If u belongs toDp,1(Lp([0,1])), then there exists a mea

surable and integrable process, denoted byD̂u such that, for almost anyr,

E
[∣∣(K∇)su(r) − D̂u(r)

∣∣] � c|s − r|η‖D.u(r)‖Dp,1(Lp([0,1])). (21)

Moreover,

E

[∥∥∥∥∥
.∫

0

D̂u(r)dr

∥∥∥∥∥
p

Hol(1−1/p)

]
� c‖u‖p

Dp,1(Lp([0,1])). (22)

Furthermore,K∗
T u belongs toDomδ and the familySSπ (u) converges inL2(Ω) to δ(K∗

T u) + ∫ T

0 D̂u(s)ds.

Remark 24.Foru belonging toDp,1(Lp([0,1])) of the formu = Y.x with u in Dp,1 andx ∈ Lp([0,1]), we have

D̂u(r) = K(∇.Y )(r)x(r) and D̃1u(r) = ∇rYK∗
1(x)(r).

It follows that

1∫
0

D̂u(r)dr =
1∫

0

D̂1u(r)dr. (23)

By linearity, cylindric functional ofDp,1(Lp([0,1])) also satisfy this identity. According to (22) and (19), th
remains true for anyu ∈ Dp,1(Lp([0,1])).

Remark 25.For α < 1/2, one could also state a similar theorem but it would be practically of little use sinc
rather hard to determine whether

E

[ 1∫
0

∥∥∇.u(s)
∥∥2
S1+η−α,2

ds

]
is finite.

5. Regularity

There are two kinds of regularity results which may be interesting: continuity with respect to the time v
and continuity with respect to the kernel. Actually, when one thinks to the generalized fBm (see Example
complete identification of the model requires the perfect knowledge of the functionH . Since that seems out o
reach, one can naturally ask how much an error onH will modify the stochastic integral of a given integrand. T
trace-like term can be controlled via Theorems 19 and 15. We are now interested in the divergence part. W
by ‖K∗

1‖α,p, the norm ofK∗
1 as a map fromI1/2−α,p into Lp.

Theorem 26.Let α ∈ (0,1/2) and 1 < p < (1/2 − α)−1, assume that assumptionsI and II hold. Assume fur
thermore that there existsε ∈ (0,1/p − (1/2 − α)) such thatu belongs toDp,1(I1/2−α+ε,p). Then, the proces
{δ(K∗

t u), t ∈ [0,1]} admits a modification with̃ε-Hölder continuous paths for anỹε < ε, and we have the maxima
inequality:∥∥δ(K∗

. u)
∥∥

Lp(Ω;I+
1/p∗+ε̃,p∗ )

� c‖K∗‖α,p‖u‖Dp,1(I1/2−α+ε,p).



138 L. Decreusefond / Ann. I. H. Poincaré – PR 41 (2005) 123–149

2.3

re

al
Proof. Since 1/2−α+ε is strictly less than 1/p, we know that for anyT ∈ [0,1], pT u belongs toI1/p−α+ε,p, see
Proposition 1. In view of Lemma 4.1, we haveδ(K∗

t u) = δ(K∗
1(u1[0,t])). Therefore, forg ∈ C∞ andψ a cylindric

real-valued functional,

E

[ 1∫
0

δK∗
1(u1[0,t])g(t)dt ψ

]
= E

[∫ ∫
[0,1]2

K∗
1(u1[0,t])(r)g(t)∇rψ dt dr

]

= E

[ 1∫
0

K∗
1(uI1

1−g)(r)∇rψ dr

]
= E

[
δ
(
K∗

1(u.I1
1−g)

)
ψ

]
.

Thus,

1∫
0

δ(K∗
t u)g(t)dt = δ

(
K∗

1(u.I1
1−g)

)
P-a.s. (24)

Sincep < (1/2 − α)−1, 1/2 − α < 1/p, we can then apply Corollary 6 witht = 1/2 − α, r = 1/p − ε̃ and
s = 1/2− α + ε. Sinceg is deterministic, we have∥∥δ

(
K∗

1(u.I1
1−g)

)∥∥
Lp(Ω)

� c‖K∗‖α,p‖u‖Dp,1(I1/2−α+ε,p)‖I1
1−g‖I1/p−ε̃,p

. (25)

We then obtain that forψ ∈ Lp∗
(Ω), for g ∈ (I−

1/p−1−ε̃,p
)′,∣∣∣∣∣E

[ 1∫
0

δK∗
1(u1[0,t])g(t)dt ψ

]∣∣∣∣∣ � c‖K∗‖α,p‖ψ‖Lp∗
(Ω)‖g‖(I−

1/p−1−ε̃,p
)′ ‖u‖D2,1(S1/2−α,p). (26)

It follows that{δ(K∗
t u), t ∈ [0,1]} belongs to(Lp∗

(Ω;I−
−1+1/p−ε̃,p

))′, which is isomorphic toLp(Ω;I+
1−1/p+ε̃,p∗),

and that∥∥δ(K∗
. u)

∥∥
Lp(Ω;I+

1/p∗+ε̃,p∗ )
� c‖K∗‖α,p‖u‖Dp,1(I1/2−α+ε,p).

This induces that there exists a modification of{δ(K∗
t u), t ∈ [0,1]} with ε̃-Hölder continuous sample-paths.�

Remark 27.Note that 1 belongs toI1/2−ε,2 for anyε > 0, thus we retrieve thatXt = δ(K∗
1ptu) has a version with

(α − ε)-Hölder continuous sample-paths.

If ε > 1/p − 1/2+α, we cannot apply Lemma 2.1 any more, sinces = 1/2−α + ε would be greater than 1/p.
This is more than a technical problem: in this situation, i.e.,u ∈ Iε+1/2−α,p, u is continuous andpT u does not
necessary belongs toIε+1/2−α,p, so that the whole principle of the above proof fails. However, as Lemma
shows, if we considerpT (u − u(T )) instead ofPT u, this function belongs toIε+1/2−α,p, for a smallerε. Thus,
we have:

Theorem 28.Let α ∈ (0,1/2) andp > 1, assume that assumptionsI and II hold. Assume furthermore that the
existsε ∈ ((1/p − 1/2 + α)+,1) such thatu belongs toDp,1(I−

ε+1/2−α,p). Then, for anyε̃ < ε, the process
{δ(K∗

t (u − u(t))), t ∈ [0,1]} admits a modification with̃ε-Hölder continuous paths and we have the maxim
inequality:∥∥δ

(
K∗

.

(
u − u(·)))∥∥

Lp(Ω;I+
1/p∗+ε̃,p∗ )

� c‖K∗‖α,p‖u‖
Dp,1(I−

ε+1/2−α,p). (27)
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Proof. Note that we are allowed to consideru − u(t) since 1/p − 1/2 + α < ε implies thatε + 1/2 − α > 1/p

and thus thatI−
ε+1/2−α,p is embedded in Hol(ε + 1/2− α − 1/p). The very same techniques as above show th

1∫
0

δ
(
K∗

t

(
u − u(t)

))
g(t)dt = δ

(
K∗

1

(
uI1

1−g − I1
1−(ug)

))
, P-a.s.

A classical integration by parts and then a fractional integration by parts (see (2)) give that

1∫
0

δ
(
K∗

t

(
u − u(t)

))
g(t)dt = −δ

(
K∗

1

(
I1
1−(I

−ζ

0+ uI
ζ

1−g)
))

, P-a.s.

Now, we clearly have∥∥I1
1−(I

−ζ

0+ uI
ζ

1−g)
∥∥
I1/2−α,p

= ‖I−ζ

0+ uI
ζ

1−g‖I−1/2−α,p
.

Applying Corollary 6 withζ = 1/2−α+ε−1/p+ε′, t = −(1/2+α), s+ζ = 1/2−α+ε andr +s = t +1/p+ε′
for someε′ > 0 sufficiently small, we get∥∥K∗

1

(
I1
1−(I

−ζ

0+ uI
ζ

1−g)
)∥∥

Lp � c‖I−ζ

0+ u‖I−
s,p

‖I ζ

1−g‖I−
r,p

= c‖u‖I−
s+ζ,p

‖g‖I−
r−ζ,p

= c‖u‖I−
1/2−α+ε,p

‖g‖I−
−1+1/p−ε+ε′,p

.

It follows as in the previous proof that{δ(K∗
t (u − u(t))), t � 0} belongs toLp(Ω;I+

1/p∗+ε̃,p∗) (with ε̃ = ε − ε′)
and that the maximal inequality (27) holds.�
Theorem 29.For any α ∈ [1/2,1), assume that assumptionI holds. Letu belong toDp,1(Lp) with αp > 1.
The process{δ(K∗

t u), t ∈ [0,1]} admits a modification with(α − 1/p)-Hölder continuous paths and we have t
maximal inequality:∥∥δ(K∗

. u)
∥∥

Lp(Ω;Hol(α−1/p))
� c‖K∗

1‖α,2‖u‖Dp,1.

Proof. We begin as in Theorem 26 until Eq. (24). Sinceα > 1/2, it is clear thatK is continuous fromL2([0,1])
into Iα−1/2,2 thus thatK∗ is continuous fromI ′

α−1/2,2 in L2([0,1]). SinceIα−1/2,2 is continuously embedded i

L(1−α)−1
, it follows thatL1/α = (L1/(1−α))′ is continuously embedded inI1/2−α,2. Sinceu belongs toDp,1(Lp),

the generalized Hölder inequality implies that

‖uI1
1−g‖L1/α � ‖u‖Lp‖I1

1−g‖L(α−1/p)−1 .

It follows that{δ(K∗
t u), t ∈ [0,1]} belongs toLp(Ω;I+

1,(1−α+1/p)−1) with∥∥δ(K∗
. u)

∥∥
Lp(Ω;I+

1,(1−α+1/p)−1)
� c‖K∗

1‖α,2‖u‖Dp,1.

The proof is completed remarking that 1− 1/(1 − α + 1/p)−1 = α − 1/p so thatI+
1,(1−α+1/p)−1 is embedded in

Hol(α − 1/p). �
Remark 30. Let H1 and H2 belong toS1/2+α,2, and be such that inft Hi(t) > 1/2, i = 1,2. SetK(t, s) =
KH1(t)(t, s)−KH2(t)(t, s). According to Theorem 9, such a kernel satisfies I for anyα < inft H(t)−1/2. Moreover,
with a very slight modification of the proof of Theorem 9, one can show that

sup
‖f ‖ =1

‖Kf ‖ � c‖H1 − H2‖S1/2+α,2,
L2
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hence that

‖K∗
1‖α,2 � c‖H1 − H2‖S1/2+α,2.

Remark 31. These results extend similar results in [3] in the sense that the assumptions on the kernel an
integrand are here much weaker for the same conclusion.

6. Itô formula

We are now interested in non-linear transformations of Itô-like processes:

Z(t) = z +
t∫

0

u(s) ◦ dXs, (28)

for a sufficiently regularu. The Itô formula for fBm-like processes has already a long history. There are
technical barriers: it is relatively easy to prove Itô formula forα > 1/2, since we then have a process more reg
than the ordinary Brownian motion and all the limiting procedures are straightforward (cf. [7,9,10]). Harde
situation whereα belongs to(0,1/2], Alòs et al. [2] obtained a formula for the fBm of Hurst index greater t
1/4. By a very different procedure, Gradinaru et al. [17] were able to include 1/4 in the domain of validity of
the formula. In another different approach, Feyel et al. [16] also gave a formula for any Hurst index via a
continuation of the formula obtained forα � 1/2. Carmona et al. [5] obtained an Itô formula forα > 1/6, for
a class of processes similar to our so-called Volterra processes. For a restricted set of integrandsu, we will now
establish an Itô formula valid for anyα ∈ (0,1).

The following results owe much to the paper [5] which gave me the hope that it was possible to go bey
barrier 1/4, to the paper [3] which gives the simplest expression of the Itô formula and to the work [17] w
emphasizes the importance of symmetrization. Actually, the key remark is that there exist integrandsu for which

Rh(u) := h−1

1∫
0

(
K∗

1pt+hu(s) −K∗
1ptu(s)

)(
K∗

1pt+hu(s) +K∗
1ptu(s)

)
ds

= h−1

1∫
0

K∗
1pt,t+hu(s)K∗

1(pt + pt+h)u(s)ds

= h−1

1∫
0

(
K∗

1pt+hu(s)2 −K∗
1ptu(s)2)ds, (29)

has a finite limit. Ifu ≡ 1, since1[0,t) = I ∗
1 (εt ), it follows from the definition ofK that K∗

1pt1 = K(t, .) and
thusRh(1) = h−1(R(t + h, t + h) − R(t, t)), whereR is the covariance kernel ofX. For instance, ifX is the
fBm with stationary increments, this expression is proportional toh−1((t + h)2α − t2α). The different barriers ca
be explained from the behavior of this last term, whose limit is clearlyt2α−1. Whenα > 1/2, this is a bounded
function of t so easily controllable in the limiting procedures. Forα ∈ (1/4,1/2), it is no longer bounded but sti
in L2([0,1]). When,α < 1/4, we only have anLp integrable function for 1− p−1 < 2α. In the last two cases, th
limiting procedures are much more involved but still feasible for cylindrical processes as show the next lem

Hypothesis III. Let R the set of processes such thatRh(u), as defined in (29), has a finite limit inL1(Ω). We
assume thatK∗ is such thatR is non-empty.
1
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Lemma 6.1.Letα ∈ (0,1), be given and assume that HypothesesI, II and III hold. Letu be a cylindrical process
belonging toR. Let

nα := inf{n: 2nα > 1}.
For anyf ∈ Cnα

b , i.e.,nα-times differentiable with bounded derivatives, we have

d

dt
E
[
f (Zt )ψ

] = E
[
f ′(Zt )(K∇)t

(
u(t)ψ

)] + 1

2
E

[
f ′′(Zt )ψ

d

dt

1∫
0

K∗
1(ptu)(s)2 ds

]

+ E

[
u(t)f ′′(Zt )ψ(K∇)t

( t∫
0

(K∇)ru(r)dr

)]

+ E
[
u(t)f ′′(Zt )δ

(
(K∇)t (K∗

1ptu)
)
ψ

]
. (30)

Proof. Introduce the functiong as

g(x) = f

(
a + b

2
+ x

)
− f

(
a + b

2
− x

)
.

This function is even, satisfies

g(2j+1)(0) = 2f (2j+1)
(
(a + b)/2

)
and g

(
b − a

2

)
= f (b) − f (a).

Applying the Taylor formula tog between the points 0 and(b − a)/2, we get

f (b) − f (a) =
n−1∑
j=0

2−2j

(2j + 1)! (b − a)2j+1f (2j+1)

(
a + b

2

)
+ (b − a)2n

(2n)!
1∫

0

λ2n−1g(2n)
(
λa + (1− λ)b

)
dλ.

We thus have

E
[(

f (Zt+h) − f (Zt )
)
ψ

] =
nα−1∑
j=0

2−2j

(2j + 1)!E
[
(b − a)2j+1f (2j+1)

(
a + b

2

)
ψ

]

+ 1

2nα!E
[
(Zt+h − Zt)

(2nα)

1∫
0

r2nα−1g(2nα)
(
rZt + (1− r)Zt+h

)
dr ψ

]
. (31)

We need to prove that, when divided byh, the latter quantity has a limit whenh goes to 0. It turns out that th
sole contributing term is the first one. We first show thatnα is chosen sufficiently large so that the last term van
SinceZ belongsL2(Ω;Hol(α − ε)) for any ε > 0, and sinceg(2nα) is bounded, the last term is bounded by
constant timesh2nα(α−ε). Hence, this last term divided byh vanishes whenh goes to 0. We next deal with the fir
order term. Sinceu is cylindric,

Zt = δ(K∗
1ptu) +

t∫
0

K∗
1(∇sptu)(s)ds. (32)

Substitute Eq. (32) into the first order term and use integration by parts formula, this yields to:
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E

[
(Zt+h − Zt)f

′
(

Zt + Zt+h

2

)
ψ

]
= E

[∫
K∗

1(pt,t+hu)(s)∇s

(
f ′

(
Zt + Zt+h

2

)
ψ

)
ds

]
+ E

[
f ′

(
Zt + Zt+h

2

)
ψ

∫
K∗

1(pt,t+h∇su)(s)ds

]
= E

[
f ′

(
Zt + Zt+h

2

)∫
K∗

1(pt,t+hu)(s)∇sψ ds

]
+ E

[
f ′′

(
Zt + Zt+h

2

)
ψ

∫
K∗

1(pt,t+hu)(s)∇s

(
Zt + Zt+h

2

)
ds

]

+ E

[
f ′

(
Zt + Zt+h

2

)
ψ

1∫
0

K∗
1(pt,t+h∇su)(s)ds

]
=

3∑
i=1

Ai.

We can writeA1 as

A1 = E

[ t+h∫
t

u(s)(K∇)sψ ds f ′
(

Zt + Zt+h

2

)
ψ

]
,

by dominated convergence, it is then easily shown that

lim
h→0

h−1A1 = E
[
u(t)f ′(Zt )(K∇)tψ

]
. (33)

By direct calculations, sinceu is cylindric, we have

1∫
0

K∗
1(pt,t+h∇su)(s)ds =

t+h∫
t

(K∇)su(s)ds,

thus,

lim
h→0

h−1A3 = E
[
f ′(Zt )ψ(K∇)tu(t)

]
. (34)

Expanding∇s(Zt + Zt+h), we obtain

2A2 = E

[
f ′′

(
Zt + Zt+h

2

)
ψ

1∫
0

K∗
1(pt,t+hu)(s)K∗

1(ptu + pt+hu)(s)ds

]

+ E

[
f ′′

(
Zt + Zt+h

2

)
ψ

1∫
0

K∗
1(pt,t+hu)(s)δ

(
K∗

1(pt + pt+h)∇su
)
ds

]

+ E

[ 1∫
0

K∗
1(pt,t+hu)(s)∇s

( 1∫
0

(pt + pt+h)(K∇)ru(r)dr dr

)
ds f ′′

(
Zt + Zt+h

2

)
ψ

]
=

3∑
i=1

Bi.

According to Hypothesis III,

lim
h→0

h−1B1 = E

[
d

dt

1∫
K∗

1(ptu)(s)2 ds f ′′(Zt )ψ

]
. (35)
0
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It is rather clear that

lim
h→0

h−1B3 = 2E

[
u(t)(K∇)t

( t∫
0

(K∇)ru(r)dr

)
f ′′(Zt )ψ

]
. (36)

To deal withB2, we need to apply once more the integration by parts formula. This gives,

B2 = E

[ 1∫
0

1∫
0

K∗
1(pt,t+h∇ru)(s)∇sK∗

1(pt + pt+h)u(r)ds drf ′′
(

Zt + Zt+h

2

)
ψ

]

+ E

[ 1∫
0

K∗
1(pt,t+hu)(s)

1∫
0

K∗
1

(
(pt + pt+h)∇su

)
(r)∇r

(
f ′′

(
Zt + Zt+h

2

)
ψ

)
dr ds

]
.

It follows from this expression that

lim
h→0

h−1B2 = 2E

[ 1∫
0

(K∇)t (K∗
1ptu)(r)∇r

(
u(t)f ′′(Zt )ψ

)
dr

]

= 2E
[
u(t)f ′′(Zt )ψδ

(
(K∇)tK∗

1ptu
)]

. (37)

The remaining terms are of the form

E

[
(Zt+h − Zt)

2j+1f (2j+1)

(
Zt + Zt+h

2

)
ψ

]

= E

[ 1∫
0

K∗
1(pt,t+hu)(s)∇s

(
(Zt+h − Zt)

2j f (2j+1)

(
Zt + Zt+h

2

)
ψ

)
ds

]

+ E

[
(Zt+h − Zt)

2j f (2j+1)

(
Zt + Zt+h

2

)
ψ

1∫
0

K∗
1(pt,t+h∇su)(s)ds

]
= C1 + C2.

By dominated convergence, it is clear thath−1C2 vanishes ash goes to 0. As toC1, it can be split into three parts

C1 = 2jE

[
(Zt+h − Zt)

2j−1f (2j+1)

(
Zt + Zt+h

2

)
ψ

1∫
0

K∗
1(pt,t+hu)(s)∇s(Zt+h − Zt)ds

]

+ E

[
(Zt+h − Zt)

2j f (2j+2)

(
Zt + Zt+h

2

)
ψ

1∫
0

K∗
1(pt,t+hu)(s)∇s

(
Zt + Zt+h

2

)
ds

]

+ E

[
(Zt+h − Zt)

2j f (2j+1)

(
Zt + Zt+h

2

) 1∫
0

K∗
1(pt,t+hu)(s)∇sψ ds

]
=

3∑
i=1

Di.

By dominated convergence,h−1D3 vanishes ash goes to 0. Expanding the Gross–Sobolev derivative inD2, we
get
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2D2 = E

[
f (2j+2)

(
Zt + Zt+h

2

)
(Zt+h − Zt)

2jψ

1∫
0

K∗
1(pt,t+hu)(s)K∗

1(ptu + pt+hu)(s)ds

]

+ E

[
f (2j+2)

(
Zt + Zt+h

2

)
(Zt+h − Zt)

2jψ

1∫
0

K∗
1(pt,t+hu)(s)δ

(
K∗

1(pt∇su + pt+h∇su)
)
ds

]

+ E

[
f (2j+2)

(
Zt + Zt+h

2

)(
Zt+h − Zt

)2j
ψ

1∫
0

K∗
1(pt,t+hu)(s)∇s

( 1∫
0

(pt + pt+h)(K∇)ru(r)dr

)
ds

]
.

Following the reasoning applied toA2, we see that all the terms in the integrals are converging a.s. (when di
by h) to a finite limit, since there still is a factor(Zt+h − Zt)

2j , with j > 0, the product converges to 0. B
dominated convergence, the convergence can be seen to hold inL1(Ω), thush−1D2 goes to 0 ash goes to 0. The
really difficult term isD1. For the sake of clarity, we only treat the casej = 1. Forj = 1,

D1 = E

[
(Zt+h − Zt)f

(3)

(
Zt + Zt+h

2

)
ψ

1∫
0

K∗
1(pt,t+hu)(s)∇s(Zt+h − Zt)ds

]

= 2E

[
(Zt+h − Zt)f

(3)

(
Zt + Zt+h

2

)
ψ

1∫
0

K∗
1(pt,t+hu)(s)2 ds

]

+ 2E

[
(Zt+h − Zt)f

(3)

(
Zt + Zt+h

2

)
ψ

1∫
0

K∗
1(pt,t+hu)(s)δ

(
K∗

1

(
(pt + pt+h)∇su

))
ds

]

+ 2E

[
(Zt+h − Zt)f

(3)

(
Zt + Zt+h

2

)
ψ

1∫
0

K∗
1(pt,t+hu)(s)

1∫
0

K∗
1

(∇(2)
r,s (pt + pt+h)u

)
(r)dr ds

]
.

Dominated convergence implies that the last term, divided byh, vanishes ash goes to 0. For the two other sum
mands, the idea is always the same, each time there is a divergence term, we apply integration by parts
Then, each new term is treated by the previous methods. For instance, the most difficult term to handle
the term which comes from derivative of the divergence in the first summand:

E

[
f (3)

(
Zt + Zt+h

2

)
ψ

1∫
0

∇r

( 1∫
0

K∗
1(pt,t+hu)(s)2 ds

)
K∗

1(pt,t+hu)(r)dr

]

= E

[
f (3)

(
Zt + Zt+h

2

)
ψ

1∫
0

1∫
0

K∗
1(pt,t+hu)(s)K∗

1(pt,t+h∇ru)(s)K∗
1(pt,t+hu)(r)dr ds

]

= E

[
f (3)

(
Zt + Zt+h

2

)
ψ

t+h∫
t

u(s)K
( 1∫

0

K∗
1(pt,t+h∇ru)(.)K∗

1(pt,t+hu)(r)dr

)
(s)ds

]
.

Once again, in this form, it is clear that this term, divided byh, converges to 0. All the remaining term are trea
likewise and do not contribute. Thus from Eq. (30) follows from (33), (34), (35), (36) and (37).�

Sinceu is cylindric, all the terms of (30) are integrable with respect tot , we thus have
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Corollary 32. Under the assumptions of the previous lemma, we have,

E
[
f (Zt )ψ

] = E
[
f (x)ψ

] + E

[ t∫
0

f ′(Zs)(K∇)s
(
u(s)ψ

)
ds

]
+ 1

2
E

[
ψ

t∫
0

f ′′(Zs)
d

ds

1∫
0

K∗
1psu(r)2 dr ds

]

+ E

[
ψ

t∫
0

u(s)f ′′(Zs)(K∇)s

( s∫
0

(K∇)ru(r)dr

)
ds

]

+ E

[
ψ

t∫
0

u(s)f ′′(Zs)δ
(
K∗

1ps(K∇)su
)
ds

]
,

for anyψ such that∇ψ belongs toDomK.

Since(K∇) is a derivation operator, we obtain after a few manipulations:

E
[
f (Zt )ψ

] = E
[
f (x)ψ

] + E

[ t∫
0

(K∇)s
(
f ′(Zs)u(s)ψ

)
ds

]
+ 1

2
E

[
ψ

t∫
0

f ′′(Zs)
d

ds

1∫
0

K∗
1psu(r)2 dr ds

]

− E

[
ψ

t∫
0

u(s)f ′′(Zs)KK∗
1(psu)(s)ds

]
.

This means that for anyt , we have a.e.,

f (Zt ) = f (x) +
t∫

0

f ′(Zs)u(s) ◦ dXs + 1

2

t∫
0

f ′′(Zs)
d

ds

1∫
0

K∗
1psu(r)2 dr ds

−
t∫

0

u(s)f ′′(Zs)KK∗
1(psu)(s)ds. (38)

Remark 33.We have proved so far that a “regular” Itô formula holds for processes of the form (32) withu cylindric
and belonging toR, for anyα ∈ (0,1). It must be noted that, in Example 1 and 2, it is well known thatR contains
constant functions. As a consequence, we have established an Itô formula for the non-linear transform
both Lévy and classical fractional Brownian motion, valid for all Hurst indexes.

Remark 34. In [8], we announced an Itô formula for generalu and anyα ∈ (0,1). This is unfortunately wrong
for α ∈ (0,1/2). Actually, starting from (38), the problem is now to pass to the limit. For the very first term o
right-hand side of (38), we need to find a class of processesu for which f ◦ Z.u is Stratonovitch integrable. Th
most restrictive part is to find conditions under which this process has a “trace” in the sense of Theorem
important to note that

∇rZt = K∗
1pt

(
u − u(t)

)
(r) + δ

(
K∗

1pt∇r

(
u − u(t)

)) + ∇r

t∫
0

(K∇)s
(
u − u(t)

)
(s)ds

+ X(t)∇ru(t) + u(t)K(t, r)

and thus, we have
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ation

,

now

or.
K(∇.Zt )(r) = K
(
K∗

1pt

(
u − u(t)

))
(r) +K

(
δ
(
K∗

1pt∇.

(
u − u(t)

)))
(r)

+K
(

∇.

t∫
0

(K∇)s
(
u − u(t)

)
(s)ds

)
(r) +K

(
X(t)∇.u(t)

)
(r) +K

(
u(t)K(t, ·))(t).

It is possible to impose hypothesis onu such that the first four terms of the previous equations have a signific
whenr = t . Unfortunately, for the very last term, we have

K
(
u(t)K(t, ·))(t) = u(t)

∂

∂s
R(t, s)|s=t .

In the case of the fBm with stationary increments, this is equal, up to a constant, tou(t)(s2α−1 − (t − s)2α−1)s=t .
Since this quantity is infinite forα < 1/2, we have not been able to go below 1/2.

Remark 35. If we do not have a trace term we can state the following result.

Theorem 36.Let α ∈ (0,1), be given and assume that HypothesesI, II and III hold. Letu be a cylindric process
belonging toR. Let

nα := inf{n : 2nα > 1}.
Let

Zt = δ(K∗
1ptu).

For anyf ∈ Cnα

b , i.e.,nα-times differentiable with bounded derivatives, we have

f (Zt ) = f (x) + δ
(
K∗

t (u.f ′ ◦ Z)
) + 1

2

t∫
0

f ′′(Zs)
d

ds

1∫
0

K∗
1psu(r)2 dr ds

+
t∫

0

u(s)f ′′(Zs)δ
(
K∗

1ps(K∇)su
)
ds,

for any t , a.s.

Proof. The proof is exactly the same as the previous one.�
If u ≡ 1, we get the same result as in [3,5,10,16] valid for anyα ∈ (0,1). If K = Id, i.e., X is an ordinary

Brownian motion, andu is not necessarily adapted, this formula coincides with that given in [23].

7. Skorohod integral

Since the term
∫ T

0 D̃T u(s)ds is a trace-like term, it is reasonable to introduce the following definitions. We
introduce a stochastic integral defined

Definition 37. We denote by DomδK∗ , the set of processesu belonging a.s. to DomK∗ and such thatK∗u belongs
to Domδ. We denote by DomδX, the set of processesu in DomδK∗ such that∇K∗u is P-a.s. a trace class operat
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Definition 38. Foru ∈ DomδX , we define the stochastic integral ofu with respect toX by

1∫
0

us ∗ dXs
def=

1∫
0

(K∗u)(s) δBs + trace
(∇(K∗u)

)
.

To define the integral ofu between time 0 andt , we use Lemma 4.1:

Definition 39. Foru ∈ DomδX , we define the stochastic integral ofu with respect toX between 0 andt by

t∫
0

us ∗ dXs =
1∫

0

(ptu)(s) ∗ dXs =
t∫

0

(K∗
t u)(s) δBs + trace

(
pt∇(K∗

t u)
)
,

where the second equality follows by (15).

Eq. (23) has its equivalent in this setting:

Lemma 7.1.Assume thatI and II hold. Letu ∈ DomK∗ belong toD2,1(L2([0,1])) and be such that∇u belong
(a.s.) to DomK. Thentrace(∇(K∗u)) is finite iff trace((K∇)u) is finite and they are equal.

Proof. Since DomK∗ ∩ DomK is a dense subset ofL2, one can find{hi, i � 1} an ONB ofL2 where for anyi, hi

belongs to DomK∗ ∩ DomK. Setπn the orthogonal projection inL2 onto the vector space spanned byh1, . . . , hn.
Let Vk = σ {δhi, i = 1, . . . , k} and consideruk,n = πnE[P1/ku|Vk] wherePt denote the Ornstein–Uhlenbeck sem
group of the Wiener processX. It is known, see [25, Lemma B.6.1], thatuk can be written as

uk,n =
n∑

i=1

f n
i (δh1, . . . , δhk)hi wherefi ∈ C∞ for anyi,

and thatuk,n converges tou in D2,1. Furthermore, it is clear that we have

trace
(
(K∇)uk,n

) = trace
∑
i,j

∂j f
n
i (δh1, . . . , δhk)hi ⊗Khj

=
∑
i,j

∂j f
n
i (δh1, . . . , δhk)

1∫
0

hi(s)(Khj )(s)ds

=
∑
i,j

∂j f
n
i (δh1, . . . , δhk)

1∫
0

(K∗hi)(s)hj (s)ds

= trace
(∇(K∗uk,n)

)
. (39)

Moreover, if trace((K∇)u) exists a.s., then the series∑
i

〈
(K∇)u,hi ⊗ hi

〉
L2⊗L2 is convergent.

Thus, by Cauchy–Schwarz inequality,∣∣trace
(
(K∇)uk,n

) − trace
(
(K∇)u

)∣∣
�

∑〈
(K∇)uk,n − (K∇)u,hi ⊗ hi

〉
L2⊗L2 +

∑∣∣〈(K∇)u,hi ⊗ hi

〉
L2⊗L2

∣∣

i�n i>n
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that

solutely

ral, which
lculus

minds of
with
, i.e.,
� n.
∥∥(K∇)(u − uk,n)

∥∥
L2⊗L2 +

∑
i>n

∣∣〈(K∇)u,hi ⊗ hi

〉
L2⊗L2

∣∣.
As n goes to infinity, the rightmost term converges a.s. to 0, hence forε > 0, one can findn such that

P

(∑
i>n

〈
(K∇)u,hi ⊗ hi

〉
L2⊗L2 > ε/2

)
� ε/2.

SinceK is a closed map, for this value ofn, one can findkn such that

P
(∥∥(K∇)(u − ukn,n)

∥∥
L2⊗L2 > ε/2n

)
� ε/2.

For suchn andkn, we have

P
(∣∣trace

(
(K∇)ukn,n

) − trace
(
(K∇)u

)∣∣ > ε
)
� ε.

Hence there exists a subsequence(kj , nj ) such that trace((K∇)ukj ,nj
) converges P-almost surely, thus th

trace(∇(K∗u)) is finite and that the two expressions are equal: trace(∇(K∗u)) = trace((K∇)u).
The very same reasoning holds true when trace(∇(K∗u)) is finite. �
Following [20], we know that whenu belongs to the domain of the two integrals (that of Definition 13 and

of the last definition), these two integrals coincide.
A nice feature of this version of the stochastic integral is that we can compute its transformation under ab

continuous change of probability.

Theorem 40.LetT (ω) = ω + Kv(ω) be such thatv belongs toDp,1(L2) for somep > 1 andT ∗P � P . Letu be
such thatu andu ◦ T belong toDomδK∗ and∇K∗u and∇(K∗u ◦ T ) are a.s. trace class operators. Then,( 1∫

0

u(s) ∗ dXs

)
◦ T =

1∫
0

(u ◦ T )(s) ∗ dXs +
1∫

0

K∗(u ◦ T )(s)v(s)ds.

Proof. Theorem B.6.12 of [25] stands that

δ(K∗u) ◦ T = δ
(
K∗(u ◦ T )

) +
∫

K∗(u ◦ T )(s)v(s)ds + trace
(
(∇K∗u) ◦ T .∇v

)
.

Proposition B.6.8 of [25] implies that

trace
(
(∇K∗u) ◦ T .∇v

) = trace
(∇(K∗u ◦ T )

) − trace(∇K∗u) ◦ T .

The proof is completed by substituting the latter equation into the former.�
Foru deterministic andv adapted, this means that the law of the process{∫ t

0 us dXs − ∫ t

0 K∗u(s)v(s)ds, t � 0},
underT ∗P , is identical to theP -law of the process{∫ t

0 us dXs, t � 0}.

8. Conclusion

We have set the basis of a stochastic calculus with respect to Volterra processes. The stochastic integ
is originally defined à la Stratonovitch, is shown to be expressible with the usual tools of the Malliavin ca
(gradient and divergence). For this integral, we have been able to prove some regularity results which re
maximal inequalities for martingales. At last, we established Itô formula for processes of the form (32)u
cylindrical and belonging toR for any α. It is now an open problem to exhibit a larger class of processes
ideally relaxing the hypothesis thatu is cylindric, for which this formula still holds.
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