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Abstract

We construct the basis of a stochastic calculus for so-called Volterra processes, i.e., processes which are defined as tt
stochastic integral of a time-dependent kernel with respect to a standard Brownian motion. For these processes which are natur
generalization of fractional Brownian motion, we construct a stochastic integral and show some of its main properties: regularity
with respect to time and kernel, transformation under an absolutely continuous change of probability, possible approximation
schemes and Ité formula.

0 2004 Elsevier SAS. All rights reserved.

Résumé

Nous jetons les bases d'un calcul stochastique pour les processus de type Volterra, c'est-a-dire définis comme l'intégrale
stochastique d’'un noyau déterministe dépendant du temps par rapport & un mouvement brownien ordinaire. L'hypothése d
base sur le noyau porte sur la régularité de I'opérateur intégral associé, que I'on suppose continu de I'espace des fonctions c
carré intégrable dans un espace de fonctions holdériennes.

L'intégrale stochastique est définie comme limite de sommes discrétes, de type Stratonovitch. On montre ensuite que la limite
s’exprime au moyen du gradient et de la divergence au sens du calcul de Malliavin. La régularité trajectorielle du processus
obtenu dépend étroitement de la régularité du noyau initial. On s’intéresse ensuite a une formule d’ltd pour les processus
ainsi construits. Cette formule est établie pour des processus “simples” définis comme intégrale stochastique de processt
cylindriques. Le papier se termine en donnant la regle de transformation des intégrales stochastiques lors d’'un changemelr
absolument continu de probabilité.
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1. Introduction

In the past few years, more than twenty papers have been devoted to the definition of a stochastic integral witt
respect to fractional Brownian motion or other “related” processes, see for instance [11] and references therein. Re
mind that fractional Brownian process of Hurst indéxe (0, 1), denoted byB* | is the unique centered Gaussian
process whose covariance kernel is given by

1%
Ru(s.t) =E[BH BH] dzef%’(s”’ )
where

def '2—2H)cosmH)
"~ mH@A-2H)

Among other properties, this process ha#/ifinite variation and a finite generalized covariation of order 4 for
H > 1/4 (see [17,13] for the definition), has Hélder continuous trajectories of any order les&thad has the
following representation property:

t

BH (1) = f Ky (t,s)dB, (1)
0

whereB is a one-dimensional standard Brownian motion &nid deterministic kernel with an intricate expression

(see [10]). Therefore, a “related” process means altogether a process withpfirat@ation, called a process with

rough paths in [6,18], or a process with Hélder continuous sample-paths as in [15,26] and also a process of the
form (1) with a general kernel as in [3,5,8,12].

This is the last track that we will follow here. Our present work, which is the expanded version of [8], differs
from the other two papers [3,5] in two ways. First, the method to define the stochastic integral is different. In these
two papers, the kernel is regularized, if needed, to obtain a semi-martingale. The second step is then to use th
classical theory of stochastic integration and then pass to the limit after a stochastic integration by parts in the
sense of the Malliavin calculus. We here use an approach based on convergence of discrete sums. It should t
already noted that for smooth integrands, their notion of integral and ours coincide. The other difference is to be
found in the kind of hypothesis put oK. In [3,5], hypothesis are made on the regularity of the functim, s)
itself. We here work with assumptions on the linear map> [ K (z, s) f(s)ds. Properties ofK (z,s) and K f
are, of course, intimately related but we think that working with the latter gives more insight on the underlying
problems.

As far as fractional Brownian motion is concerned, it is well known that it is a very hard task to establish an I1td
formula for an Hurst index less than4. We prove here such a formula for any Hurst index. It turns out that the
key tool is symmetrization as already emphasized in [17], see Eq. (29). In essence, it is similar to the rearrangemen
done in the definition of a principal value in the theory of distributions, where the singular terms are canceled by
difference.

In Section 2, we recall basic definitions and properties of deterministic fractional calculus. In Section 3, we
introduce the class of processes, named \olterra processes, that we will study. We then give a few propertie:
of their sample-paths. In Section 4, we deal with a Stratonovitch-like definition of the stochastic integral with
respect to Volterra processes. Section 5 is devoted to the time regularity of the previously constructed integral anc
in Section 6, we establish an 1t6 formula. In the last section, we show how the Stratonovitch integral is related
to a Skorohod-like integral and how a It6-like process constructed from such an integral is modified through an
absolutely continuous change of probability.
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2. Preliminaries

This section is only devoted to the presentation of the tools of deterministic fractional calculus we shall use in
the sequel. For € £1([0, 1]; dr) (denoted by for short) the left and right fractional integrals gfare defined
by:

1l Hx) déf%y) of FO@—n""td, x>0,

1
(I~ f)(x) dif%/f(t)(t—x)y‘ldt, x <1,

wherey >0 and/). =12 =1d. Foranyy >0, p,g > 1, any f € £” andg € £ wherep~t + 471 <y, we
have:

1 1
/f(S)(Ig+g)(S)dS=f(1fff)(5)g(8)d& 2)
0 0

The Besov—Liouville spaclﬂ(’)’+ (LP) = I;f,, is usually equipped with the norm:
Mg fliz, = 1fllcr- ©)

Analogously, the Besov—Liouville spadf%, (LP):=1, , is usually equipped with the norm:

11,7 fliz, =1 £l
We then have the following continuity results (see [15,21]):

Proposition 1.

() fFo<y <1l 1<p<l/y, thenlg+ is a bounded operator from” into £7 withg = p(1—yp)~L.

(i) ForanyO<y <landanyp > 1, Z)‘,ﬁp is continuously embeddedHiol(y —1/p) provided thaty —1/p > O.
Hol(v) denotes the space of Hélder-continuous functions, null at @ineguipped with the usual norm.

(iif) Forany0 <y < B < 1, Hol(8) is compactly embedded #), ..

(iv) Byl . respectivelyl,””, we mean the inverse map B, . respectively;” . The relation/;, 163+ f= Igfﬁ f
holds wheneveg > 0, y + 8 > 0and f € £1.

(v) Foryp <1, the spacei}‘,ﬁp andZ, , are canonically isomorphic. We will thus use the notafigr), to denote
any of this spaces. This property is not true any morefor- 1, see Lemma.3and text below Definitiot3.

We now define the Besov—Liouville spaces of negative order and show that they are in duality with Besov—
Liouville of positive order (it is likely that this exists elsewhere in the literature but we have not found any reference
so far). Denote byp, the space of* functions defined of0, 1] and such thap®) (0) = 0. Analogously, seD_
the space o> functions defined of0, 1] and such thap® (1) = 0. They are both equipped with the projective
topology induced by the semi-normps(¢) = 3~ <, 9" ]|o. Let D'y, resp.D’_, be their strong topological dual.

It is straightforward thaD, is stable bylg)’+ andD_ is stableli’,, for anyy € R. Hence, guided by (2), we can
define the fractional integral of any distribution (i.e., an elemeri'ofor D', ):

ForTeD ; I}, T: ¢eD_— (T, . ¢)p p .
ForT € Dy; 1] T: ¢ € Dy > (T, I{id)p, D, -
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We introduce now our Besov spaces of negative order by

Definition 2. Fory > 0 andr > 1, Ifw (resp.ZZ,, ) is the space of distributions such thVéLT (resp.]f,T )
belongs taZ”. The norm of an element in this space is the norm dg;T in L" (resp. oflf, T).

Theorem 3.For y > 0 andr > 1, the dual space oI;ﬁ,. (resp.Z,,,) is canonically isometrically isomorphic to
I7(L7) (resp.I, (L)) wherer* = r(r — )71,

Proof. LetT be inD’_, we have:

sup [(T.¢)|= sup [T.Ig¢)|= sup [{(I]_T.9)
¢: H¢III;r=l villyler=1 Yilyler=1
hence by the Hahn—Banach theorem,
Te),) < sup |(T.¢)| <00 & [/ TeL”,
¢t lpll,+ =1
v.r
and||T||(I;r)/ = ||T||,;_y(£r*). The same reasoning also holds (ﬁy,)/. O

Theorem 4.For g >y > 0andr > 1, If_ is continuous front”, . intoZy_ .

Proof. SinceT belongstdl”, , = (Z,,r+), we have:

(LT, )| = (T, 15.9)| <l ol

B—v
e =clIETT Bl o

Thus,If_T is a continuous linear form oﬁ;r_ﬁ,,* and thus belongs to the dual of this space which, according to
the previous theorem, is exactrg_w. O

Forn > 0 andp € [1, +00), the Slobodetzki spac§,, , is the closure of?! functions with respect to the
semi-norm:
p |f(x) = fDIP
i1, = [ [ v
[0,1]?

Forn =0, we simply haveSg , = L” ([0, 1]). We then have the following continuity results (see [15,26]):
Proposition 5.

(i) ForanyO<y <landanyp > 1, S, , is continuously embeddedHol(y — 1/ p) provided thaty —1/p > 0.
Hol(v) denotes the space of Hélder-continuous functions, null at ineguipped with the usual norm.
For0<y <1/p. S, , is compactly embedded i¥~7?) ([0, 1]). Moreover, if p = 2, the embedding of
S,.p into L2([0, 1]) is Hilbert-Schmidt.

(i) Itis provedin[15]thatforl > a > b > ¢ > Othat we the following embeddings are continu¢@gen compagt

Sap CT, CSep: (4)

(iif) Forany0 <y < B <1, Hol(8) is compactly embedded &), .
(iv) Leta >0, 1< p<g <oo.Supposéh =a —1/p +1/q > 0. ThenS, , is continuously embedded &), ,,
seg[1].
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One of the key property we shall use, is this result due to Tambaca [22].

Lemma2.1.Letr,s €[0,1/2) and letr =r +s —1/2> 0. For f € S; 2, g € S;.2, the productfg belongs taS; »
and we have

1f8lls, . <clflls,.lgls,,-

From this lemma and the embeddings of Eq. (4), we have:

Corollary 6. Letr,s € [—00,1/2) and letr <r +s —1/2. For f € Z; 2, g € Z; 2, the productfg belongs tdZ; »
and we have

1f8llz,, <cllflz, lgllz,,-

We will need a similar result in the simpler situation wheiis greater than /2.

Lemma 2.2.Letr > 1/2, for f andg in Z, 2, we have

fglls,. <clflls,.lglls,,- (5)

Proof. Sincer > 1/2, f andg are continuous anflif |l < ¢l f|s,,- The same holds fag. Thus,

2 _ 2 2 _ 2
||fg”§n2<//<lf(x)l () — g7 | 18T/ ) — /() )dxdy

|x_y|1+2r |x_y|1+2r

<c(If15NglE,, + el 113, ,)

and the result follows. O

One could probably work with only one family of spaces (i.e., eithg or S, ,) but depending on the prop-
erties, some are easier to verify in the setting of Riemann—Liouville spaces and some in the setting of Slobodetzk
spaces, see for instance the property below.

Lemma23.Lety >y >1/2and f € S, 2 then(f — f(1))1)0,, belongs taS; ».

Proof. First note thatf is (y — 1/2)-Holder continuous thus that — £ (¢) is well defined. Moreover,

// I(f(x) = f(D) o —(f(y)—f(t))l[o,z]lzd d

lx — y|1+27
[01
If(x) — ) |f(x) — f()I?
/ |x—y|1+2~ dxdy+2 // |x—y|1+27 dx dy
[0,¢]2 [0,¢]x[t,1]
|x_t|2)/ 1 )
<clflI5 o142 /]’|x_ |1+2~dxdy <clflz, O

[0,£]1x[t,1]
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3. Volterra processes
Consider that we are given a deterministic Hilbert—Schmidt linear kiagatisfying:

Hypothesis |. There existsr > 0 such thaik is continuous, one-to-one, frof? ([0, 1]) into Zo+v1/2,2. Moreover,
K is triangular, i.e., for any € [0, 1], the setV; = {f: f(t) =0 fort < A} is invariant byk .

Remark 7. SinceK is Hilbert—Schmidt from£2([0, 1]) into itself, there exists a measurable ker#@l, -) such
that

1
Kf(t):/K(t,s)f(s)ds.
0
The triangularity ofK is equivalent tak (¢, s) =0 fors > ¢, i.e.,

t
Kf(t):/K(t,s)f(s)ds.
0

Consider now the kernet(z, s) defined by
INS
R(1,s) := / K@, r)K(s,r)dr.
0

The map associated ®, i.e., Rf (¢t) = fol R(t,s) f(s)ds, is equal toK K* and for anyBs, ..., B, anyt1, ..., t,,
we have

> BibR(i. 1)) = f K (X Bie )@?ds >0,
i,J

so thatR(¢, s) is a positive kernel and we can speak of the centered Gaussian process of covarianck.Keshel
X be this process and be the subject of our study.

Lemma 3.1.The procesX has a modification with a.s. continuous sample-paths.

Proof. We have
N tAS
E[(X,— /K(t r) dr—i—/K(s r) dr—Z/K(t r)K (s, r)dr
0
(K(t, ) — K(s, '))(f) - (K(t, ) — K, '))(S)

1

<c|t—s|“(/

1/2
(K(t,r) — K(s,r))zdr> .

0
Expanding the square in the last integral, we get the right-hand side of the first equation, thus
E[(X, — X2 <l — s

Kolmogorov lemma entails thaX has a modification with Holder continuous sample paths of any order less
thana. O
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We thus now work on the Wiener spage= Co([0, 1]; R), the Cameron—Martin space I = K (£2([0, 1]))
and P, the probability onf2 under which the canonical process, denotedibys a centered Gaussian process of
covariance kerneR. The norm of: = K (g) in H is the norm ofg in £2([0, 1]).

A mapping¢ from £2 into some separable Hilbert spageis called cylindrical if it is of the formg (w) =
Zflzlfi((vi,l, w), ..., (vix, w))x; Where for each, f; € C3°(R",R) and(v;,;, j=1,...,n) is a sequence of
£2* such that(v; ;, j=1,...,n) (wherey; ; is the image ofv; ; under the injection2* — £2([0,1]) ) is an
orthonormal system of2([0, 1]). For such a function we defirép as

Vo)=Y 3; fi((vir. ). ..., (Vi w))bi; ®x;.
i,j=1
From the quasi-invariance of the Wiener measure [24], it followsVWhigta closable operator ai¥’ (£2; ), p > 1,

and we will denote its closure with the same notation. The poweYsarke defined by iterating this procedure. For
p > 1,k € N, we denote by, () the completion ofy-valued cylindrical functions under the following norm

k

lplpa =Y IV Dl o2 soc20me-
i=0

Remark 8. Note that the Sobolev spac§g , enjoy the useful property gf-admissibility (after [14]) and thus for
any O<y <1and anyp > 1, the space®, (S, ) andS,, , (D, ) are isomorphic.

The divergence, denotéds the adjoint ofV: v belongs to Dorp § whenever for any cylindricap,

1
E ugVyg ds
[

0

<cll@llee

and for such a process

1
E|:/MSVS¢ dsj| = E[¢pSu].

0
It is easy to show (see [10]) théB; := §(1j0,1)), ¢ > O} is a standard Brownian motion such tliat= | u dB, for
any square integrable adapted processasd which satisfies
t
X =/K(t,s)dBS.
0

Moreover, B and X have the same filtration. In view of the last identity and becakise lower triangular, we
decided to name such a process, a Gaussian Volterra process. The analysis of processes of the same Rind where
is replaced by a jump processes is the subject of our current investigations with N. Savy.

Example 1.The first example is the so-called Lévy fractional Brownian motion of Hurst iddiedefined as

t
1 H-1/2
— | (t — dB;.
T(H+1/2) /( $) s
0
This amounts to say th& = Igi*l/z, thus that Hypotheses | and Il are immediately satisfied, withH, in view

of the semi-group properties of fractional integration.



130 L. Decreusefond / Ann. I. H. Poincaré — PR 41 (2005) 123-149

Example 2. The other classical example is the fractional Brownian motion with stationary increments of Hurst
index H, for which

t—rf-Y2 /1 1 1, ¢
K(t,r)=K =——"F(Z-HH-Z,H+-,1-- |1 ) 6
(t,r)=Kp(t,r) rar a7 H 5 H+ 5. 1=~ Lon() (6)

The Gauss hyper-geometric functidiic, 8, v, z) (see [19]) is the analytic continuation on
CxCxC\{-1-2,..}x{zeC, Arg|l—z| <n}

of the power series

+00

Z(Ol)k(ﬂ)k X
=y Wik!
and
(@o=1 and (a)k[jzefmﬁ(iy=a(a+1)...(a+k—1).

We know from [21] thatk 5 is an isomorphism front2([0, 1]) ontoI;_“,Jrl/Z2 and

Kpf=12xY2- 02 =12 0 for B < 172,

Kpf =14 xHV2 72270 ¢ gor g > 172,
It follows easily that Hypotheses | and Il are satisfied with H.
Example 3.Beyond these two well-known cases, we can investigate the casé of) = Ky (¢, s) for a deter-
ministic functionH . This is the process studied in [4]. It seems interesting to analyze since statistical investigations
via wavelets have shown that the local Hélder exponent of some real signals (in telecommunications) is varying

with time and this situation can not be reflected with a model based on fBm since its Holder regularity is everywhere
equal and strictly less to its Hurst index.

Lemma 3.2.For f € £2, for H; > Hy >y > 0, we have
Kt f () = K f (O] < clt =511 £l z2, 7
|K by f(5) — Ki f (s)| < c|[Hi— Ha| || f |l z2, 8
wherec is a constant independent éf;, H> and f.
Proof. Since H> is greater thary, Ky, f belongs toZ, 1/, and (7) follows directly from the embedding of
Zy41/22 into Hol(y).
Another expression of the hyper-geometric function is given by:

1
— I'(c) c=1/q _ Nc—=b=1.q —a
F(a,b,c,z)—r(b)r(c_b) 7 (1-1) (1—zt) “dkt.
0

Classical and tedious computations show thatHos [h1 + ¢, ho — €],

’

<ce sup  |Kp(t,s)
He(Hy. Hy)

9 kais)
ag " HS
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wherec, = Suf¢o 1y 11 Inz|. It thus entails that

|Kp,(t,s) — Kpy(t,8)| <ce  sup  |Kp(t,s)||Hz — Hal.
He(H1,Hp)

Cauchy—Schwarz inequality yields to (8)O

Theorem 9.Let H belong t0S1/214,2 and be such thanf, H () > 1/2, thenK (¢, s) = K (t, s) satisfied for
anya <inf, H(r) —1/2.

Proof. Let f belong to£?, sety =inf, H(r) and leta < y — 1/2. According to the previous lemma, we have

) [ Kun S0 = K f ()
1K = [ 0= J0lOF g g
[0,1)2
Kt f () — Kugy £ ()2 IKt) f(8) — Kres) f(9)]?
gz/ PR dtds+2/ 52 drds
[0,1]2 [0,1)2
|t —s|?" |H(t) — H(s)|?
<C||f||£2//| |l+20[ d[dS‘i‘C”f”Lz/‘/AwdldS
[0,1]2 [0,1]2

The right-hand side is finite by hypothesis and tiu#s continuous fromC? into S1/24a,2. O

4. Stratonovitch integral

Starting from scratch and trying to define a stochastic integral with respecthp a limit of a sequence of
finite sums, we have two main choices: Either we quamtizer more probably &) or we quantizeB (likely dB)
and then derive a quantization akdThe first approach yields two possibilities: for a partitionvhose points are
denoted by G=79 <11 <--- <t, =T, we can consider

RS (u) =Y u(t)AX; or (9)
tiemw
1 fig1
SS,(u):Z;(fu(s)ds)AXi, (20)
LEeEm ! i

where6; =t,+1 — t; and AX; = X(t;+1) — X (¢;). They are both reminiscences of respectively Riemann and
Skorohod-Stratonovitch sums as defined in [20].
In the other approach, we first lineariBeand then look at the approximation &fit yields to. Let

1
B™(t) = B(t;) + G—ABi(l —t) fortelt, tiva),
;
and

tig1

1 1
X7 (t) = Z - / K(t,s)ds AB; = Z Q—K(l[,i,,iﬂ])(t)ABi.

LEem ! LEem !
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It follows that it is reasonable to consider
T

1
Ri):=)" = { / uin K(l[,, m])(r)dr}AB,,
0

LET

under the additional hypothesis that for @ny 0, the functionk (1;o ;) is differentiable with a square integrable
derivative. Fom sufficiently smooth in the sense of the calculus of variations, we have

tiv1 T
R”(u)-s(z / u(t)~ K(lz,t,m)(r)drlt,,,H)+Z / / Vs K(l[t,,,ﬂxz)dtdr

tem tiem

Using K7, the formal adjoint ofC := 1011 o K on £2([0, T1), we have

tiy1
R} (u) :5( f K*}u(t)dt) + Z [/ IC5 (Vu)(2) dt dr. (12)
1 en A z,en 2
[tl lt+1]

We now recognize the Skorohod—Stratonovitch sum associated to the standard BrownianAraniibio the
integrandC}.u. For the sequel to be meaningful, we need to assume that thé(neajsts. This is guaranteed for
a>1/2, sinceZ;;Ll/z,2 is embedded in the set of absolutely continuous functions with square integrable derivative,
but fora < 1/2, we need to introduce an additional hypothesis.

Hypothesis Il. We assume that for arly € [0, 1], the mapk = 1011 o K is a densely defined, closable operator

from £2([0, T) into itself and that its domain contains a dense sutizestable by the mapsr, foranyT € [0, 1],
wherepr f = f1j0,7). We denote byC its adjoint in£2([0, T]). We assume furthermore thiaff is continuous

from I%;Z—a,p into L7 ([0, T]), forany p > 2
Remark 10.In the preceding example®, may be taken t@1/o_q)+ 2

Remark 11.For the sake of simplicity, we will speak of the domainskoand KC%. independently of the position
of a with respect to 12. It must be plain that fog > 1/2, DomK = £2([0, 1]) and DomiCi. = £2([0, T]).

Remark 12. Denote bye, the Dirac mass at point Slncel (e:) = 10,17, We have
K*(Ljo,1) = K*(e1) = K (2, ).
This means thak’; is identical to the operator denoted b§” in [5].
Notation 1. For anyp > 1, we denote byp™* the conjugate op. For any linear mapi, we denote byA%., its

adjoint in £2([0, T']). We denote by: any irrelevant constant appearing in the computatiomsay vary from one
line to another.

Definition 13. Assume that Hypothesis | holds far> 1/2. We say that: is Stratonovitch integrable o, 7']
whenever the family R(«), defined in (11), converges in probability jas goes to 0. In this case the limit will be

denoted bnyT u, o dX;.

This definition could be theoretically extendeddo< 1/2 but would be practically unusable. Indeed, as we
shall see below, whew < 1/2, the convergence of the second sumigf(x) requires that belongs taZy ;4.2



L. Decreusefond / Ann. I. H. Poincaré — PR 41 (2005) 123-149 133

for somen > 0 andK’}. to be continuous from this space to a space of Hélder functions. Simog2 o — 1/2 >
0, the two spaces!olfn_“ (L2([0, T1)) and I%JI”_“(LZ([O, T1)) are not canonically isomorphic (if belongs to
the first one them(0) = 0 whereas whem belongs to the lattey (7)) = 0). We thus have to specify to which

oneu belongs exactly. In view of the example of the Lévy fractional Brownian wiigfre= 1;1;1/2’ it is more
convenient to assume thabelongs tol;f”’H(Lz([O, T1)) and thus that(7T') is equal to 0. That raises a problem
because the restriction of an elementl f”’H(Lz([O, T1)) to a shorter interval, saj0, S], does not belong to
11 (£2(10, 1)) s0 that, we can not sef u(r) o dX, as [y u(r)ljo,s)(r) o dX,.

On the other hand, sinda — u(5))1;0,s51 belongs tdslf”_H(LZ([O, S1)) as soon as belongs to

1 (£2(10, T1)),

it is reasonable to consideét} (u — u(T)). For the limit to stay the same, we have to add the te(i) X (T).
Indeed, the well-known relationship (see [20,24])

1
3(aé) =adt — / V,a&(r)dr, (12)
0

for a € D1 andé € £2(2 x [0, 1]), entails that
RF(u) =R} (u — u(T)) + u(T)X™(T). (13)
As a conclusion, for < 1/2, the definitive definition is

Definition 14 (Definition for @ < 1/2). Assume that Hypotheses | and Il hold fer< 1/2. We say that: is
Stratonovitch integrable of®, 7'], whenever the family R(u — u(T')) converges in probability asr| goes to 0.
In this case, we set

T
/us o dX, = ‘ Ii‘m0R§ (u —u(T)) + u(T)X(T). (14)
0

In view of the preceding discussion, the following lemma will play a key role in the sequel.

Lemma 4.1.For T € (0, 1], let pr f denote the restriction of to [0, T). For any f € DomK, f belongs to
DomK7., prf belongs tabomK] and we have
prKi(pr ) = K7 (f). (15)

Proof. SinceK is triangular, forg € D, prg belongs to DoniC andpr Kg = pr K (prg) = Kprg. By derivation,
it follows that pr Kg = prKprg = Kprg, so that, forf € DomK?,

t 1 1
/f(S)/Cg(S)dS = /(Prf)(S)/Cg(S)ds = /.f(S)(PT/Cg)(S)dS
0 0 0
1
= /f(s)’C(PTg)(S) ds <C||PT8||£2([0,1])=C||g||52([o,T])'
0

By density, this identity remains true fgre Dom/C, thus this means thaft belongs to DoniC}. and thatpr f
belongs to DonfC.
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For g € £2([0, T]) N Domk, we denote by its extension taC2([0, 7']) defined byz(s) = 0 wheneves > T.
We have

T 1

1
/ prKipr F(s)g(s)ds = / K pr f () pras) ds = / prFOK(pra)(s)ds
0 0 0

T T
- / F($)Kg(s)ds = / K5 £ ()g(s) ds,
0 0

where the last equality follows by the first part of the proof and the definition of the adjoint of a linear map. Since
g can be arbitrary, (15) follows by identificationo

Theorem 15.Leta < 1/2 and p > 2. Assume that Hypotheskand Il hold. Assume furthermore that there exists

o > 1/p andn > 0, such thatCj is continuous froml(}fp into Hol(n). If u belongs ton,l(I(};g’p), for some

e > 0, then for anyT < [0, 1], there exists a measurable and integrable process, denotde-ysuch that, for
anys, any0O<a<b <1,

- b 1

E /|K§(Vr(u—u(T)))(s)—Dru(r)|pdrj| SCE|:/|s—r|""7||Vru||;1 dr:|. (16)
Ly 0 o+e,p
Moreover,
o »
A P
E /DTu(r) dr . :| <c||u||D,)1l(I££,p). a7
-"0 1p

Proof. Sinceo > 1/p, u is continuous and we can speak unambiguously(@f). The assumed continuity &
entails thatCy. (u — u(T)) belongs tdD,, 1(Hol(n)) and that

b 1

E[/W,/C;(u —u(T))(s) — Vo K5 (u — u (D)) (0)]” drj| < cE|:/ |s — r|'"7||v,u||;l, drj|. (18)

ote,p
a 0

Consider(g,, n > 1) a one-dimensional positive mollifier, we can defin@ Br a.s..Dru(r) by
T

Dru(r) =n|Lmoo/¢n(r)iC*;(v,u)(r —r)dr.
0

Hence,Dru(r) is measurable with respect®, r) and according to (18), we have (16). Substituting 0 ito(18),
we get

T
= p < p
E|:/|DTu(r)| ds:| \c||u||Dp’1(I&V_p).
0
This means thafd 5Tu(s) ds belongs toZlfp and that (17) holds. O

Remark 16.For a simple process(w, s) =Y (w)x(s) whereY belongs tdD, 1 andx to Il}f we have

+e,p?
Dru(r) = K5 (x — x(T))(r).V, Y.
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Note that we can not writ&”. (x — x(7))(r) askC}.(x)(r) — x(T)K3. (1) (r) since the constant functron equaltp 1
is not inI(}fp. Furthermore, we can not get rid of the text7") sinceprx does not belong ta, (,,p (itis not null at
time 1).

Example 1 (continued. In this case] = IH Y2 is continuous fromzlp into IHQ 1/2.p . This latter space is
embedded in a space of Holderian functrons provideddhatl/2 — o + 1/p.

Example 2(continued. According to [21],K% = x1/2~ ”IH Y2 H-1/2 and since 2L+ H —1/2) = 2H + 1> 1,
we infer from [21, Lemma 10.1] tha€] is continuous frorr:E1 intoZ,", 1/2,p foranyo > 0.

Theorem 17.Leta < 1/2 and p > 2. Assume that Hypotheskand|l hold. Assume furthermore that there exists
o > 1/p andn > 0, such thatj is continuous frorrf1 into Hol(#). If u belongs taD,, (72 otep)s for some
¢ > 0, thenu is Stratonovitch integrable of®, T'] for anyT €0, 1], and

T T
/u(s) ° dxs=5(1c;u)+/13Tu(s)ds+u(r)X(T). (19)
0 0

Proof. For the latest sum aR7 (u — u(7T')), we have according to Theorem 15,

|: p:|
li+1%i4+1

<cE Z—/ f|K?V,(u—u(T))(s)—5Tu(r)|pdsdr:|

l

tiv1liy1 T

Z—/ / (u—u(T))(s)dsdr—/ﬁTu(r)dr
i 0

tiemw

| tiem g
1

Liv1tiy1

<cE Z—//u_rm”wun% dsdr:|
o+e,p

ten’

< Clﬂl””llullp -
(I(T+F p)

Therefore, the latest sum & (u — u(T)) converges inL”(£2) (and thus in probability) tcfoT 5Tu(s)ds. In
order to conclude, note that in virtue of the continuity of the divergence, the first teR¥ @f — «(7)) tends to
8(K5(u —u(T))), see [20]. O

Lemma 4.2.Under the assumptions of Theord for any0 < S < T < 1, uljg,g) is Stratonovitch integrable on
[0, T] and we have

T s
/(u(r) — u(8))L0,51(r) o dX, :/u(r) o dX,, (20)
0 0
forany0< S <T <L
Proof. According to Eqg. (12) and to Lemma 4.1, we have

RT(ps(u—u($))) = RE (u —u(S)) + u(S)X™ ().
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According to Theorem 17, the right-hand side sum converges sa ihg§ is Stratonovitch integrable di®, 7']
and Eq. (20) follows by remarking thats (u — u(S))(T) =0. O

Remark 18. For the hypothesisk’] is continuous froni(}fp into Hol(n)” to hold, in view of the examples cited
above, this requires thatto be greater than/2 —« +1/p + 1.

Fora > 1/2, the mapK is still a regularizing operator so that the hypothesis are much weaker. Following the
very same lines, we can prove:

Theorem 19.Leta > 1/2. Assume that Hypothedigolds. Assume furthermore tht is continuous front? into

I(;—l/z,p for somep > (« — 1/2)~ L. If u belongs taD, 1(LP), then, for anyT € [0, 1], there exists a measurable

and integrable process, denoted By« such that, for almost any,
~ 1 12—
E[|V: KCu(s) — Dru)|["TV7 < els — rl* Y212 | V,ull Lo x10.11-

Moreover,

: p
E[ fDTM(r)dr } gc““”]]l;p’l([,br
0 Hol(1—1/p)
Remark 20.For a simple process(w, s) =Y (w)x(s) whereY belongs tdD, 1 andx to I(};g,p, we have

Dru(r) =K (x)(r).V, Y.
Itis here not necessary to substracT’) to x since/’j is a continuous map.

Theorem 21.Assume that Hypothesisholds fora > 1/2. Assume furthermore that; is continuous from_?
into Ia_—l/Z,p for somep > (@ — 1/2)~ 1. If u belongs toD,, 1(L?), then for anyT € [0, 1], u is Stratonovitch
integrable on[0, T'] and
T T
/us o dX; =5(1C’;u)+/[)w(s)ds.
0 0

Remark 22. The difference in this case is that ([0, 1]) is stable by the mapgr so that we immediately have:
T 1
/u(s) o dX; :/u(s)l[oj](s) o dXj,
0 0
in both Theorems 17 and 21.

Coming back to SS(u), we have:

tiv1 liq1

1 1

SS(u) = 8(2 o / ugds (K (tiv1,-) — K (1, -))) +> o / (K (V) (tir1) — K (V.us) (7)) ds
Lem ! i tiemw ! 1

The trace-like term is similar to those we had to treat in the previous theorems. The difference is that its limit is

formally fol(lCV)su(s)ds instead ofj&V(ICju)(s)ds in Theorems 15 and 19. We thus need some assumptions
on the regularity of the map+— V,u(r). Such hypothesis are much harder to verify than properties of the map
s — V,u(s). This restriction reduces the interest of this approach.
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Theorem 23. Assume that Hypothesisholds fora > 1/2. Assume furthermore thd€ is continuous from
LP([0, 1)) into Ioll/z,p for somep > (¢ — 1/2)~ 1. If u belongs taD,, 1(L£7 ([0, 1])), then there exists a mea-

surable and integrable process, denotedfby such that, for almost any

E[|(KV)su(r) — Du(r)|] < cls = r[" |1 D.u() b, 10 qo.1)- (21)
Moreover,
: p
E[ f Du(r)dr } <elluly, ergo): (22)
0 Hol(1-1/p)

Furthermore K.« belongs tabomé and the familySS; (u) converges inL2(£2) to S(Kru) + fOT Du(s) ds.

Remark 24.Foru belonging taD,, 1(L” ([0, 1])) of the formu = Y.x with u inD,, 1 andx € L7 ([0, 1]), we have
Du(r) =K(V.Y)(")x(r) and Diu(r)=V,YKi(x)(r).

It follows that
1 1

/ﬁu(r) dr:/blu(r) dr. (23)

0 0

By linearity, cylindric functional ofD, 1(£” ([0, 1])) also satisfy this identity. According to (22) and (19), this
remains true for any € D, 1 (L7 ([0, 11)).

Remark 25.Fora < 1/2, one could also state a similar theorem but it would be practically of little use since it is
rather hard to determine whether

1
E[ / [ v.u(s)uémwds] is finite.
0

5. Regularity

There are two kinds of regularity results which may be interesting: continuity with respect to the time variable
and continuity with respect to the kernel. Actually, when one thinks to the generalized fBm (see Example 3), the
complete identification of the model requires the perfect knowledge of the fun&tidBince that seems out of
reach, one can naturally ask how much an erroHowill modify the stochastic integral of a given integrand. The
trace-like term can be controlled via Theorems 19 and 15. We are now interested in the divergence part. We denot
by [|K] lle, p» the norm ofKC] as a map frondy 2, , into L7,

Theorem 26.Leta € (0,1/2) and 1 < p < (1/2 — «)~L, assume that assumptiohsind Il hold. Assume fur-
thermore that there existse (0, 1/p — (1/2 — «)) such thatu belongs toD,, 1(Z1/2—«+e,p). Then, the process
{8(ICfu), t € [0, 1]} admits a modification with-Holder continuous paths for arfy< ¢, and we have the maximal
inequality

* < *
”(S(IC ”)||LP(Q;IEP*+M*) <clk ”mp||”||Dp,1(11/2—a+e,p)'
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Proof. Since ¥2—« +¢ is strictly less than Ap, we know that for anyl” € [0, 1], pru belongstdy/,_q+¢, p, S€E
Proposition 1. In view of Lemma 4.1, we ha¥6C;u) = § (K7 (u1j0,11)). Therefore, forg € C* andy a cylindric
real-valued functional,

1

E[/

0

8C} (uljo,)g (1) o w} =E / / C3 (w0, (r)g (1) V- cl dr}

~[0,112

1
=E| | Kiultg) )V, v dr:| =E[6 (KK .1 9)v].
-0

Thus,
1
/5(/Cju)g(t)dt=3( Tw.Ilg) P-as. (24)
0

Sincep < (1/2— )71, 1/2 -« < 1/p, we can then apply Corollary 6 with=1/2 —a, r =1/p — & and
s =1/2— a + ¢. Sinceg is deterministic, we have

HS(ICI(MI]:!Lg)) “LP(.Q) < CHIC* ”a,p ||I/£ ||]D)p_1(21/2_u+g,p) ||I;|:_l—g||21/[,_g_p . (25)

We then obtain that foy € L7 (£2), for g € 1)1z,

1

E|:/8/C’£(ul[o,,l)g(t) dr 1//j|

0

< C||’C*||a,p I ||Lp* (£2) ||g||(11—/p_1_§ p)/ [|ue ||]D)2,1(81/2,O,,1,)~ (26)

It follows that{s (KC*u), t € [0, 1]} belongs taq L?"(§2; T~
and that

))’, which is isomorphic td.? (2; Z,”

1+1/p—&,p l/p+§,p*)’

k k
“(S(K. M)HLP(.Q;IEP*%W*) sclk ”avp||M||DI),1(Il/2—a+s4p)'

This induces that there exists a modificatio &fC; «), ¢ € [0, 1]} with £-Holder continuous sample-pathso

Remark 27.Note that 1 belongs t@1/2_ » for anye > 0, thus we retrieve thaX; = § (K] p;u) has a version with
(o — &)-Holder continuous sample-paths.

If e >1/p—1/2+ «, we cannot apply Lemma 2.1 any more, since 1/2 — « + ¢ would be greater than/p.
This is more than a technical problem: in this situation, wes, Z;+1/2—«,p, u iS continuous ancgru does not
necessary belongs . 11/>_«.p, SO that the whole principle of the above proof fails. However, as Lemma 2.3
shows, if we considepr (v — u(T)) instead ofPru, this function belongs t@;11/2>_«, p, for a smallers. Thus,
we have:

Theorem 28.Leta € (0,1/2) and p > 1, assume that assumptiohand Il hold. Assume furthermore that there

existse € (1/p — 1/2+ a)™, 1) such thatu belongs to]D),,,l(Ig‘H/zfa’p). Then, for anyz < ¢, the process

{8(CF(w — u(r))),t € [0, 1]} admits a modification wittg-Holder continuous paths and we have the maximal
inequality

”(S(IC*(” - ”('))) HLP(Q;ZEP*%YP*) < C”IC*”a,p||”||Dp.1(I;+l/2,w)'

(27)
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Proof. Note that we are allowed to consider u(r) since ¥Yp —1/2+ o < ¢ implies thate +1/2—a > 1/p

and thus thaf;rl/z_mp is embedded in Hét + 1/2 — a — 1/p). The very same techniques as above show that

1
/a(ic;‘ (4 —u()))gt)de =8(K5 (ulig — 1= (ug))), P-as.
0
A classical integration by parts and then a fractional integration by parts (see (2)) give that
1
/S(IC;“ (u—u(®))g()dr = —8(K5 (11 Iy ul;_g))). P-as.
0
Now, we clearly have

1 ,.7-¢ ¢ —nr=¢%,,1¢
13- (Igr uly-g) ”Il,z,w = Mo uly-glz_s .,

Applying Corollary 6 witht =1/2—a+e—1/p+¢’,t = —(1/24+a), s+ =1/2—a+candr+s=t+1/p+¢’
for somes’ > 0 sufficiently small, we get

1 —_ —_
I (5 gl uli )| oy < el wlzo M-8z, = cliullz- lglz-
=Cllu — — .
” ||Il/2—ot+a.p ||g||I—l+l/p—s+s’,p

It follows as in the previous proof thas (K} (u — u())), t > 0} belongs toL? (£2;
and that the maximal inequality (27) holdso

Zl+/p*+5,p*) (with 8 = ¢ — ¢&')

Theorem 29.For any « € [1/2,1), assume that assumptidnholds. Letu belong toDD, 1(£?) with ap > 1.
The proces$s (Kyu), t € [0, 1]} admits a modification witlie — 1/ p)-Holder continuous paths and we have the
maximal inequality

180 | Lo ooty < NNl 2llulln, -

Proof. We begin as in Theorem 26 until Eq. (24). Since- 1/2, it is clear thatk is continuous fromZ?([0, 1)
into Z, 12,2 thus thatC* is continuous fronf(;fl/z’2 in £2([0, 1). SinceZ,—1/22 is continuously embedded in

£3=07 it follows that £/¢ = (£Y/ @@y s continuously embedded i /2_4 2. Sinceu belongs tdD, 1(LP),
the generalized Holder inequality implies that
Ml gll gam < Null 2o 158N piamsymt-
It follows that {8 (KC¥u), ¢ € [0, 1]} belongs toL.? (£2; If(l_a c1/pyt) with
s || Lr(@:TF ) S clKilla2lulp,;-
L (1-a+1/p)L

The proof is completed remarking that-11/(1 —« + 1/p) 1 =a — 1/p so that[{r(l_()hLl/p),1 is embedded in
Hollw —1/p). O

Remark 30. Let H; and H, belong t0S51/214,2, and be such that inff; (r) > 1/2, i =1,2. SetK(t,s) =
Kun(t,s) —Kn,i (t, s). According to Theorem 9, such a kernel satisfies | foraryinf, H(t) —1/2. Moreover,
with a very slight modification of the proof of Theorem 9, one can show that

sup IIKfIl <cllHr— H2ll8,5,4 25
I£1l p2=1
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hence that

”Kik”()l,z <cllH1— H2||31/2+a.2~

Remark 31. These results extend similar results in [3] in the sense that the assumptions on the kernel and on the
integrand are here much weaker for the same conclusion.

6. 1t formula

We are now interested in non-linear transformations of 1td-like processes:

t

Z(1) =Z+/M(S) o dXj, (28)
0

for a sufficiently regulaw. The Ité formula for fBm-like processes has already a long history. There are two
technical barriers: it is relatively easy to prove Itd formuladas 1/2, since we then have a process more regular
than the ordinary Brownian motion and all the limiting procedures are straightforward (cf. [7,9,10]). Harder is the
situation wherex belongs to(0, 1/2], Alos et al. [2] obtained a formula for the fBm of Hurst index greater than
1/4. By a very different procedure, Gradinaru et al. [17] were able to inclydeiri the domain of validity of
the formula. In another different approach, Feyel et al. [16] also gave a formula for any Hurst index via analytic
continuation of the formula obtained far> 1/2. Carmona et al. [5] obtained an It6 formula ter> 1/6, for
a class of processes similar to our so-called Volterra processes. For a restricted set of integveads!l now
establish an 1t6 formula valid for any € (0, 1).

The following results owe much to the paper [5] which gave me the hope that it was possible to go beyond the
barrier /4, to the paper [3] which gives the simplest expression of the 1t6 formula and to the work [17] which
emphasizes the importance of symmetrization. Actually, the key remark is that there exist integi@nakich

1
Ry(u) == h_lf(lqpﬂrhu(s) — ICIp,u(s))(lCip,+hu(s) + ICIpm(s)) ds
0

1
h_l/KIpr,z+hu(s)lC’{(pt + prgn)u(s)ds
0

1

—pt / (K% prnie(s)? — K pru(s)2) s, (29)
0

has a finite limit. Ifu = 1, sinceljo;) = I (s), it follows from the definition ofK that K] p,1 = K(z,.) and
thus R, (1) = h~Y(R(t + h,t + h) — R(z,1)), whereR is the covariance kernel of. For instance, ifX is the

fBm with stationary increments, this expression is proportionalth(( + 7)2* — +2*). The different barriers can

be explained from the behavior of this last term, whose limit is clegflyl. Whena > 1/2, this is a bounded
function ofr so easily controllable in the limiting procedures. leoe (1/4,1/2), it is no longer bounded but still

in £2([0, 1]). When,« < 1/4, we only have arC? integrable function for - p~! < 2u. In the last two cases, the
limiting procedures are much more involved but still feasible for cylindrical processes as show the next lemma.

Hypothesis lIl. Let R the set of processes such ttRt(x), as defined in (29), has a finite limit ih'(£2). We
assume thak’; is such thaik is non-empty.
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Lemma6.1.Letx € (0, 1), be given and assume that HypothesdsandIll hold. Letu be a cylindrical process,
belonging toR. Let

ne = inf{n: 2no > 1}.

Forany f € C;%, i.e.,nq-times differentiable with bounded derivatives, we have

1
d 1 d
EE[f(Zz)w] =E[f(Z)(KV) (ut)y)] + EE[f%Zt)wE / Icimu)(s)st}
0

t
+ E[U(t)f’/(zz)w(/CV)z(/(Kv)ru(r) dr)]
0

+ E[u() f"(Z)s((KV) (Kipuw)) ¥ ]. (30)

Proof. Introduce the functiorg as
a+b a+b
(S0 )=o)

This function is even, satisfies

g@ ) =2 (@+b)/2) and g(—b > “) =f(b) - f(@).

Applying the Taylor formula t@ between the points 0 an@d — a)/2, we get

1

22 ; : +b b—a)®
fb) = fla)= X%) FIFSTTis )+t p@itD <“ 5 > ( (2;3)! /,\2"*1g<2"> (ra+ (1—1)b) da.
]=
We thus have
l’la—l _21

E[(f Ziw) — FZ0)¥]= Y

j=0

. . b
e e ()

1
1
+ WE|:(Zl+h _ Zt)(Zna) / r2na—1g(2na)(rzl +(1- r)Zt+h) dr w:| . (31
0

We need to prove that, when divided hythe latter quantity has a limit whengoes to 0. It turns out that the
sole contributing term is the first one. We first show thais chosen sufficiently large so that the last term vanish.
Since Z belongsL?($2; Hol(x — ¢)) for any ¢ > 0, and sinceg®«) is bounded, the last term is bounded by a
constant time#2%«(@=¢) Hence, this last term divided byvanishes when goes to 0. We next deal with the first
order term. Since is cylindric,

t
Z0 = 50K prn) + / K5 (Vs pra) (s) ds. (32)
0

Substitute Eq. (32) into the first order term and use integration by parts formula, this yields to:
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Zt Zt
E[(z,+h - z»ﬁ(%)w}

Z Z Z Z
= E[ / K (pr.s1n) (s) Vs (f(%)xﬁ) ds} + E[f/(%)xﬁ / K3 (pr.a4n Vi) (5) ds}

Z,+7Z
=E|:f <M)/‘K1(Pt 14-htt) ($) Vi sti|

+E[f <M> / I (prs e ntt) (5) Vs (@) ds}

+E[f<M> /ICl(p,,+hVSu)(s)dsj| ZA

We can writeA; as

t+h
A= E[ / u(s) (V)5 ds f(%)w}
t

by dominated convergence, it is then easily shown that
Ilimoh—lAl = E[u(®) f'(Z)(KV) ¥ ] (33)

By direct calculations, since is cylindric, we have

t+h

/lCl(p, t+n Vsu)(s)ds = /(]CV);M(S) ds,

thus,
lim n=tA3 =E[f"(Z)y (KV)u(®)]. (34)

ExpandingV,(Z, + Z;1), we obtain

1
Zi+Z
2A2= E[f”(%)w f K1(pti+n) ($)KI(prtt + pranu)(s) ds:|

Z Z
+E| (M) /’Cl(l?t ) ()8 ( »{(p,+p,+h)vsu)ds}

Zi+7Z
+E / K (prsnit) (5)V ( / (pr + Pren) KKV u(r) dr) ds f(ﬂﬂ} =2 B

~0
According to Hypothesis I,

1
. d ”
]!ILnOh_lBlzE[E/Ki(p,u)(s)zdsf (Zt)l/fj| (35)
0
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It is rather clear that
t
llimolrlBg =2E|:u(t)(ICV),(/(ICV),u(r) dr) f”(z,)w}. (36)
0

To deal withBz, we need to apply once more the integration by parts formula. This gives,

11

Zi+7Z
Bz = E|://’CI(Pt,HthM)(S)VsIQ(Pt + pran)u(r)ds drf”(_ ’+2 t+h)1ﬁ:|
00

1 1
Z Z
+ E{ / K5 (Prrehit) (5) / K5 ((pr + pran) Vo) )V, (f(%)w) o ds}.
0 0

It follows from this expression that

1
,!‘L“oh_lBFZE[ / (/CV)tqu,u)(r)vr(u<r>f”<zz>1/f)dr}
0

= 2E[u() f"(Z)y8((KV). K3 pu) |- (37)

The remaining terms are of the form

1o (ZtZ
E|:(Zt+h — Zt)21+1f(2]+l)<%>wi|

1
= E|: / K1(Pr,+nu) () Vs <(Zt+h A <%>V/> dsi|
0

Zi+ Zivh

+ E[(zz+h —Zn% f<2f“>( 5

1
>¢ / K1 (pri+n Vsu)(s) ds} =C1+Co.
0

By dominated convergence, it is clear thatC, vanishes ag goes to 0. As tay, it can be split into three parts
Zi+Zivn

C1= 2jE|:(Zt+h — Zt)zj_lf(zj-i'l)( 5

1
)’ﬁ/‘/CT(Pt,HhM)(S)Vs(Zt-i-h —Z;)ds
0

2 2

— 1 -
P (2] Zi+Ziyn Zi+Zign
+E| (Ziyn — 2% f@+2 (7*>w / Kk (prienit) (5) Vs (7’*> ds
- 0

2

i Zi+Z 7 3
+E| (Zyan — Z,)fo(2f+1)<’4’+h> /ICT(pt,t+hu)(s)sz ds} =Y D
L 0 i=1

By dominated convergencg; 1 D3 vanishes ag goes to 0. Expanding the Gross—Sobolev derivativ®inwe
get
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1

. 7 7 .

2D; = E[f@f“) (%) (Zivn — Z0¥y / (P rentt) () (et + prinu) (s) ds}
0

1

j Zi+7Z j * *

+E| f@+2 (%)(zw —Z)¥y f K (a1 ()8 (K5 (pr Vst + pryn Vsit)) ds}
0

2

~ 1 1
; Z;+7Z i
+E f(2]+2)< ¢t + t+h>(zt+h _ ZI)ZJW/‘}CI(p,’Hhu)(s)VX (f(pt + pr+n) V) u(r) dr> ds:|.
- 0 0

Following the reasoning applied t#,, we see that all the terms in the integrals are converging a.s. (when divided
by k) to a finite limit, since there still is a factaiZ, ., — Z;)%/, with j > 0, the product converges to 0. By
dominated convergence, the convergence can be seen to holdsi, thush—1D, goes to 0 a& goes to 0. The
really difficult term isD1. For the sake of clarity, we only treat the cgse 1. Forj =1,

1
Z,+7Z
Dy = E|:(Z,+h - Z,)f“(%)lﬂ/IC’{(pt,Hhu)(s)Vs(ZHh - Z) ds]

Z Z
=2E[<zt+h - Zz)f(3)<M) / K5 (pranie)(s) ds}

I Z+Z
+ 2E| (Zigh — Z;)f(3)<%>w/]CI(pt,t-‘rhu)(s)s(’CI((pt + pran)Vsit)) ds]
- 0

2

— 1 1
Zi+ 7 * "
+ 2E| (Zyn — zaf“)(’—’*h)w / K5 (Pr,4n)(5) / K5 (V2 (pr + pranyue) (r) dr ds].
- 0 0

Dominated convergence implies that the last term, divided byanishes a& goes to 0. For the two other sum-
mands, the idea is always the same, each time there is a divergence term, we apply integration by parts formule
Then, each new term is treated by the previous methods. For instance, the most difficult term to handle is one o
the term which comes from derivative of the divergence in the first summand:

1 1
V4 V4
E|:f(3)< f+2_t+h)1///Vr(v//q(pz,ﬂrhu)(s)zds) T(Pz,z+hu)(r)drj|
0 0

_ 1 1
7 7
=E f(3)< s t+h> //’CI(PZ,H-hM)(S)ICI(Pt,whVru)(S)ICI(Pt,t—&-hU)(”) dr d5:|
00
_ t+h 1
Z Z
—E f‘%%)w / u(s)K( f i(pmhvru)<.)ici<pt,t+hu)<r>dr)(s)ds].
L t 0

Once again, in this form, it is clear that this term, dividedipygonverges to 0. All the remaining term are treated
likewise and do not contribute. Thus from Eq. (30) follows from (33), (34), (35), (36) and (37).

Sinceu is cylindric, all the terms of (30) are integrable with respeat, twe thus have
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Corollary 32. Under the assumptions of the previous lemma, we have,

t t 1
1 d
E[fZ)y]=E[f()v]+ E[ / F(ZHKV)s (us)¥) ds} + EE[W f f”(zs)a / $psu(r)?dr ds:|
0 0

0
t

+ E[lﬁ/M(S)f”(Zs)(/CV)s(/(’Cv)ru(r) dr) dS]
0

0
t

+ E|:'/f f M(S)f”(ZS)(S( Tp‘s(/CV)sM) d5:|a
0
for anyyr such thatVys belongs tdbomKC.

Since(KV) is a derivation operator, we obtain after a few manipulations:

t t 1
1 d
E[/(Z)v] = E[f ()] + E[ / KDY (£ (Zou(s)¥) ds] + EE[‘” / Fz)g / K pote(r)?dr ds]
0 0 0

t

- E[w / u(s) f"(Z) KK (psu)(s) dS].
0
This means that for any, we have a.e.,

t t 1
f(Zr)zf(X)+/f’(Zs)u(S) o dXs+%/f”(Zs)%//CTpsu(r)zdrds
0 0 0

t

- / u(s) f"(Z)KK3 (psu)(s) ds. (38)
0

Remark 33.We have proved so far that a “regular” Ité formula holds for processes of the form (32) eyiindric

and belonging t&k, for anya € (0, 1). It must be noted that, in Example 1 and 2, it is well known tRatontains
constant functions. As a consequence, we have established an It6 formula for the non-linear transformations o
both Lévy and classical fractional Brownian motion, valid for all Hurst indexes.

Remark 34.In [8], we announced an It6 formula for generahnd anyx € (0, 1). This is unfortunately wrong

for o € (0, 1/2). Actually, starting from (38), the problem is now to pass to the limit. For the very first term of the
right-hand side of (38), we need to find a class of procegdes which f o Z.u is Stratonovitch integrable. The

most restrictive part is to find conditions under which this process has a “trace” in the sense of Theorem 15. It is
important to note that

1
Vi Zi =Kipi(u —u@®)(r) + (K3 p: Vi (4 — u(®)) + V, /(ICV)S (u—u(®))(s)ds
0

+XOVeu(t) +u()K(t,r)
and thus, we have
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K(V.Z))(r) = K(KIp: (1 — u(®))) (r) + K8 (K1 pe V.(u — u(0)))) ()
t
+ IC(V, /(ICV)S(u —u(t))(s) ds> )+ K(XOV.u@®)r) + K@K, ))@).
0

It is possible to impose hypothesis arsuch that the first four terms of the previous equations have a signification
whenr = ¢. Unfortunately, for the very last term, we have

d
Ku®)K@,))0) = u(t) 5= R, $)ls=r-

In the case of the fBm with stationary increments, this is equal, up to a constaiit) te® 1 — (r — 5)2*~1),_,.
Since this quantity is infinite for < 1/2, we have not been able to go beloyi21

Remark 35. If we do not have a trace term we can state the following result.

Theorem 36.Let« € (0, 1), be given and assume that Hypothelsdsand Il hold. Letu be a cylindric process,
belonging toR. Let

neg :=inf{n: 2na > 1}.
Let

Forany f € C;*, i.e.,nq-times differentiable with bounded derivatives, we have

t 1
1 d
F(Z)=fx)+8(Kf(u.f o 2)) + E/f”(Zs)&//Cfpsu(r)zdrds
0 0

t

+/M(S)f”(2s)5( 1ps(KV)su) ds,

0

for anyt, a.s.
Proof. The proof is exactly the same as the previous one.

If u =1, we get the same result as in [3,5,10,16] valid for any (0, 1). If K =1d, i.e., X is an ordinary
Brownian motion, and is not necessarily adapted, this formula coincides with that given in [23].

7. Skorohod integral

Since the ternijT 5Tu(s) ds is a trace-like term, it is reasonable to introduce the following definitions. We now
introduce a stochastic integral defined

Definition 37. We denote by Do+, the set of processesbelonging a.s. to Dorit* and such thakC*u belongs
to Domé. We denote by Doriy, the set of processesin Doméyc« such thatvC*u is P-a.s. a trace class operator.
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Definition 38. Foru € Domdy, we define the stochastic integraliofvith respect taX by
1 1
/ ug * dx, & / (K*u)(s) 8 By + trace(V (K*u)).
0 0

To define the integral af between time 0 and we use Lemma 4.1:

Definition 39. Foru € Domdy, we define the stochastic integraliofvith respect taX between 0 and by
t 1 t
/us * dX; = /(p,u)(s) * dX = /(IC;‘M)(S)(SBS +traC€(p,V(lC;‘u)),
0 0 0
where the second equality follows by (15).

Eqg. (23) has its equivalent in this setting:

Lemma 7.1.Assume that and Il hold. Letu € DomK* belong toID)2,1(£2([O, 1])) and be such thaVu belong
(a.s) toDomK. ThentracgV (K*u)) is finite ifftrace(K'V)u) is finite and they are equal.

Proof. Since DoniC* N DomK is a dense subset 8, one can findh;, i > 1} an ONB of£2 where for anyi, h;
belongs to DoniC* N Domk. Setr, the orthogonal projection id? onto the vector space spannediy. . . , h,,.
Let Vi =o{8h;,i =1,..., k} and consideny , = m,E[ P1/xu|Vi] whereP; denote the Ornstein—Uhlenbeck semi-
group of the Wiener process. It is known, see [25, Lemma B.6.1], that can be written as

n
Ukn = Zfl."(ahl, ..., 8hp)h; wheref; e C™ for anyi,
i=1
and thatu , converges ta in D, 1. Furthermore, it is clear that we have
trace( (K V)ug, ) = traceZ 3; fI(8ha, ..., 8hi)hi ® Kh
i,j

i,j

1
=" 9; f"(6h1, ...,Shk)/hi(,v)(Khj)(,v) ds
0

1
- Z 3; f1'(Shy, ..., 8hy) /(/C*h,-)(s)hj(s) ds
ij 0

= trace(V (K*ux »)). (39)
Moreover, if tracé(XCV)u) exists a.s., then the series

> KV by @ hi) rag 2 IS CONVErgent.
Thus, by Cauchy—Schwarz inequality,
|trace( (K V)ux,,) — tracg(KXV)u)|

<D (K = KV, hi @ hi) pog o + Y KKV, by @ hi) g o]

i<n i>n
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<KV W = urn) | pog 2 + DV, hi @ hi) o o
As n goes to infinity, the rightmost term converges a.s. to 0, hence $00, one can find: such that
P< > (KVyu, hi @ hi) pog 2 > e/2) <e/2.
i>n
SinceKk is a closed map, for this value af one can find,, such that
P(| (V) = g, )| p2g 2 > €/20) < €/2.
For suchw andk,,, we have
P(|tracq (KV)uy, ») — trac(KV)u)| > €) <e.

Hence there exists a subsequeritg n;) such that trac&XV)uy; ;) converges P-almost surely, thus that
tracgV (K*u)) is finite and that the two expressions are equal: (4¢E€*u)) = tracg (KV)u).
The very same reasoning holds true when #&¢&*u)) is finite. O

Following [20], we know that when belongs to the domain of the two integrals (that of Definition 13 and that
of the last definition), these two integrals coincide.

A nice feature of this version of the stochastic integral is that we can compute its transformation under absolutely
continuous change of probability.

Theorem 40.Let T (w) = w + Kv(w) be such thav belongs th),,,l(EZ) forsomep > 1and7T*P « P. Letu be
such thats andu o T belong toDomdx+ and VK*u and V(K*u o T) are a.s. trace class operators. Then,

1

1 1
(/u(s) * dXs) oT:/(uoT)(s) * dX +/lC*(uoT)(s)v(s)ds.
0 0

0
Proof. Theorem B.6.12 of [25] stands that
S(K*uyoT =8(K*(uoT)) + / K*(u o T)(s)v(s) ds + tracg (VK *u) o T.Vv).

Proposition B.6.8 of [25] implies that
tracg(VK*u) o T.Vv) = tracgV(K*u o T)) — tracg VK*u) o T.

The proof is completed by substituting the latter equation into the fornter.

Foru deterministic ana adapted, this means that the law of the pro¢9€§as dax, — fé K*u(s)v(s)ds, t > 0},
underT*P, is identical to theP-law of the proces{;fO’ ugdXy, t >0}

8. Conclusion

We have set the basis of a stochastic calculus with respect to Volterra processes. The stochastic integral, whic
is originally defined a la Stratonovitch, is shown to be expressible with the usual tools of the Malliavin calculus
(gradient and divergence). For this integral, we have been able to prove some regularity results which reminds of
maximal inequalities for martingales. At last, we established Ité formula for processes of the form (32) with
cylindrical and belonging t&R for any «. It is now an open problem to exhibit a larger class of processes, i.e.,
ideally relaxing the hypothesis thatis cylindric, for which this formula still holds.
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