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Abstract

Markovian bridges driven by Lévy processes are constructed from the data of an initial and a final distribution, as particular
cases of a family of time reversible diffusions with jumps. In this way we construct a large class of not necessarily continuous
Markovian Bernstein processes. These processes are also clizedaising the theory of stochastic control for jump processes.

Our construction is motivated by Euclidean quantum mechanics in momentum representation, but the resulting class of
processes is much bigger than the one needed for this purpose. A large collection of examples is included.
0 2004 Elsevier SAS. All rights reserved.

Résumé

Des ponts markoviens dirigés par des pestes de Lévy sont construits, étant donnéess distributions initiale et finale,
comme cas particuliers d’'une classe de diffusions réversibles avec sauts. On obtient ainsi une famille de processus de Bernste
markoviens non nécessairement continus, qui peuvent étre caractérisés a I'aide du contrdle stochastique pour les processus
sauts. Notre construction est motivée par la mécanique quargiglieienne en représentatiotingpulsion, mais la famille de
processus ainsi obtenue est plus vaste que celle nécessitettpapplication. Différents exemples sont présentés.
0 2004 Elsevier SAS. All rights reserved.
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1. Introduction

Euclidean quantum mechanics yields a probabilistic approach to Schrédinger equations, which relies on
the construction of time reversibléoghastic processes. A probabilistic counterpart of a quantum system with
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symmetric (more precisely, self-adjoint) Hamiltoniahis provided by considering positive solutions of two heat
equations which are adjoint with respect to the time parameter:

—h

on’ N 0

—L(q)=Hul(q) and h=(q)=Hn(q). telrvl. qeR’. (1.1)

wherefi is Planck’s constant (afterwards set equal to 1 in this paperrantlis a fixed interval, and by postulating

that the density of the law at timeof the system is given by the produgt(q)n;(¢), instead of the product of

the solution of Schrodinger’s equation with its complex conjugate. This approach allows moreover to construct
time reversible diffusion processes which precisely have thenlap)n; (¢) dg at timet, see [31,9,2] when the

Hamiltonian is a self-adjoint Schrédinger operator of the fdl —%A + V(g) andV is a scalar potential in
Kato's class. We refer the reader to [8] for a detailed survey of the relations between this method, and Feynman’s
path integral approach to quantum mechanics, when the processes have continuous trajectories.

In this paper we generalize this construction to theeaskere the above Schrddinger operator is replaced by
a pseudo-differential operator. Our motivations arefohbh First, the study of the probabilistic counterpart of
guantum mechanics in the momentum representation and its relation with the one of the position representation
the link between these representations being given by the Fourier transform which maps position operators tc
momentum operators, and scalar potdatia pseudo-differential operators. This illustrates the more general
aim of this program of construction of quantum-like reversible measures. They provide (through their Hilbert
space analytical models) fresh structural relations betwtmhastic processes generally regarded as unrelated in
probability theory. Our second motivation is to treat relativistic Hamiltonians along the line of [19], but in a time
reversible framework.

Lévy bridges have been studied and constructed by several authors, see e.g. [14] and Section VIII.3 in [4].
However, an absolute continuity condition with respect to Lebesgue measure is generally imposed on the law of
the process, thus excluding simple Poisson bridges and many other more complex processes. Our construction ¢
reversible diffusions with jumps provides, in partiagla general construction of Markovian bridges with given
initial and final distributionsr, andr,. For this we use a result of Beurling [5] which, under the assumption of
existence of densities with respect to a fixed reference mneaasserts the existence of initial and final conditions
n, andn} for (1.1) such thatr, = n,n} andr, = n,n;. In the case of Dirac measures as initial and final laws, the
processes obtained in this way are bridges in the usual sense of conditioning a Lévy (§0egss; with the
valuest, = a and&, = b. In particular we construct forward and backward Lévy processes with Dirac measures
as initial and final laws. In this case we extend existing results on the martingale representation of time-reversec
processes, cf. e.g. [23]. We also show how time reversible processes can be constructed from non-symmetric Lév
processes and generators.

We use the term “bridge” in the wide sense, i.e. a process which is determined from initial and final laws (not
necessarily Dirac measures) will be called a bridge. Bridges and more generally diffusions with jumps, reversible
on[r, v], are constructed via the forward anadkward Markov transition semi-groups

Nu (1) * ; n; (J)
77t(k)h(t,k, u,dl), and p*(s,dj,t, k) s
for s <t <uin [r,v], j.k,IeR? whereh(t, k,u,dl) and hi(s, dj,t, k) are the kernels associated to
exp(—(u — t)H) and exg—( — s)H™). In the time homogeneous case (i.e. whem* depend trivially on time)
this construction of Markov semi-groups in relation to time reversal goes back to [18] (see also [11] where it is
applied to conditioned processes), but does not seem to have been the object of systematic studiearnngin
are given as the solutions of “heat equations” for a general Lévy gendfatdth potential. This also provides a
construction of Bernstein processes [3] in the jump case, i.e. we corRra@lued stochastic processes), (.|
that satisfy the relation

p(t, k,u,dl) = hY(s.dj. 1. k),

P(z;edk | PsvF)=P(zredk|zs,zu), r<s<t<u<uv,
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where(Py)ser.v), respectively(F; ) [-»1, denotes the increasing, respectjvdecreasing, filtration generated by
(zt)rerrv]- When their paths are continuous, as we said sucbgsses have been constructed in the framework of
Euclidean quantum mechanics. We alsowlthat for the class of potentials considered in this paper, the processes
constructed are essentially the only Markovian Bernstein processes.

We proceed as follows. After recalling some notation on Lévy processes and their generators in Section 2, the
main results of the paper are presented in Sections 3 and 4. The construction of Bernstein processes with jump
is given in Section 5. In Section 6, we compute the generators of Markovian bridges and derive the associatec
stochastic differential equations driven by Lévy premes. The uniqueness of Markovian Bernstein processes
with jumps is discussed in Section 7. A variational characterization is obtained in Section 8. In particular, the
construction provides time reversible jump diffusions whose law is given in terms of positive solutions of “heat
equations” associated to the Schrédinger operator in the momentum representation.

2. Notation — Lévy processes and generators

We refer to the survey [21] and to the references therein for the notions recalled in this sectisnR%t> C
such thatV (0) > 0 and exp—:V (q)) is continuous in q and positive definite. The functisradmits the Lévy—

Khintchine representation
; 1 ~i(q.y) -
Vig)=a+i{c,q)+ E(‘LCI)B — [ (7Y —1+ig, y) Ly <) v(dy),
R4

wherea, r € R4, B is a positive definitel x d matrix, (g, ¢)p = (Bg, q), andv is a Lévy measure oR? \ {0}
satisfying [« (|2 A)v(dy) < oo. In the following we assume without loss of generality that 0, i.e.V (0) = 0.
Then the Lévy process is conservative, i.e. it has an infinite life time.éLetenote the Lévy process with
characteristic exponet(g), i.e. such that

E[e0]=¢V@  geR?, 1eR,
or

1 .
E[exp(—i(&.q))] = eXlO(—t(i(c, q)+ §<q, q)B — /(e*’“”) —1+i{q, y>1{|y|<1})v(dy))>,
Rd

g € R?, t € R. The processé, ) (.., admits the (forward) Lévy—Itd decquosition with respect to the filtration
(Pt)te[r,v]:
t t
=it [ [ s(u@vao-vanas+ [ [ suvdo e,
0 {lyI<1} 0 {lyl=1}
whereW; is a Brownian motion with covariance matrb andu (dy, ds) is the Poisson random measure
u(dy,ds)= " 8(ac,5(dy,ds)
AE#0

with compensatoE[u(dy, ds)] = v(dy)ds. Let u, denote the law of;, and letu,(dk) = u—;(—dk) whenr < 0.
The (forward) generator ak;);[,,» iS the pseudo-differential operator

1
—ViV)fk)={c,VfK)+ SAsf() + /(f(k +y) = fk) =y, VL)1 <) vdy), (2.1)

R4
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where Ap = divBV. We shall also need the time reversed Lévy proc@ss;cio,v] = (Ev—1)refo,s] Whose
(backward) generator is

—V(V)fk)=—=V(=iV)f(k)
1
=—{c, V£ (k) + SABf()+ f (fk—y)— fU) + (v, VLUO)Ly<yy)v(dy). (2.2)
Rd

In view of applications to mathematical physics we consider a perturbation of the generatpr, gf ,; by a
potentiall/ : R? — R, continuous and bounded below:

Definition 2.1.Let H = U + V(i V), i.e. for f € S(R?):
1
Hf(k)=U(k)f (k) —{c, Vfk)— EABf(k)

= [0 = 160~ . V@ )o@, ke,
R4
The operatoiV (i V) is obtained from the potentidd by considering (Euclidean) momentuvhas a variable.
The potentiall is symmetrically deduced from a differential operator, e.g. the quadratic potéhal= k2/2

in momentum representation correspond to the Laplasiam position representation. The adjoifit” of H with
respect to the Lebesgue measdikes given byH = U + V (V) with V(¢) = V(—q), i.e.

1
HY () =U k) f (k) +c, V (k) — 588 (K)

- /(f(k =) = fR) + (v, VL ©O) Ly <n)v(dy), keR?
R4
If ¢ =0, the operatoH is symmetric wherV is real-valued, that is whemis symmetric with respecttpr— —y,
which is the case in theoretical physics.
LetT; ., t <u, respectiverT;f,, s < t, denote the positive operator defined through the Feynman-Kac formula

Tl‘,uf(k) — E[f(éu)eiftu Uo)de | %‘t — k] = E[f(k + %'uit)eff(;l_t U(k+‘fr)dt], t<u,

respectively
ot * _ 1—s _

TS f) = E[fE)e™ s VED T | g7 = k] = E[ fk — §_g)e~Jo  Vk=fimnddr] g oy,
Since—V (i V) is the (forward) generator @&;):c(0,.] and—V (V) = —V(—iV) is the (backward) generator of the
time reversed Lévy process;)sco,i] = (&—s)sefo,1], We have

0 0

~Tu=-T,H and —1} =11 H

du ’ as >

orT;,, = exp(—(u — t)H) and T;ft =exp(—( — s)H™), i.e. these semi-groups are time homogeneous dinaed
U are independent of time.

We denote byhT(s,dj,t,k) and h(t,k,u,dl), 0 <s <t <u, j k1 eR? the “integral kernels” of
exp(—(t — s)H™) and exp—(u — r)H), defined by

exp(—(t—s)HT)f(k)z/f(j)hT(s,dj,t,k), and expﬁ—(u—t)H)f(k):/f(l)h(t,k,u,dl).
R4 R4
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Examples.
(1) Deterministic process.
Here,U does not necessarily vanish. ThBr= 0 andv = 0 butc # 0. SoV (g¢) =icq and
Hf(k)=—cVf(k),  H'f(k)=cVfk),

with integral kernels

1T (s, dj 1.8) = Spoqo—s) (dj)e I VbHeE=dT,
h(t, k, u, dl) — 8k+c(u7[)(dl)€_ftu U(k+C(T—f))d‘E.
(2) Lévy processed[ =0).
Without hypothesis on the absolute continuity jof, e~@"# and e~(~9H" are respectively given by
convolution with the lawx, of the Lévy process:
/n?(dj)hT(s, Jjrt.dk) =ng x u—s(dk), s <t,
R4
and
/nu(dl)h(t, dk,u,l) =ny * p—y(dk), t<u.
R4

If moreovern?(dj) = nf(jHr(dj), nu(dl) = n,()A(dl) andu,(dk) = ps (k)1 (dk) are absolutely continuous
with respect to., then

h(s, j,t,dk) = pi—s(k — jHr(dk),
and
h(t,dk,u,l) = py_i (I — k)A(K).
(3) General casef #0).
We have, by definition

/h(t,k, u,dl) f(I) = e “DH (k)
Rd
= E[f&)e™ W VEIT | g = K] = E[f (6 + e I8 U047
= / E[f G + Ry o7 UVEHE0dT 16— 1]y, (al)
Rd

= / Flk+DE[e™ o VEHEdT & 1|1, (dl)
Rd

= / FWE[e™ BTV 6 = | — Kyt (—k + ),
R4

whereu,—;(—k + dl) denotes the image measureof_; underl — k +1 (i.e. py— (—k +dl) = py— (I —
k)A(l) if w,—(dl) has the density, (1) with respect to.). Consequently we obtain

h(t, k,u,dl) = a(u — t, k, D pu_s (—k + dI), (2.3)
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with
a(u — 1,k 1) = E[e™lo Ukteode g 1 _g],
Similarly we have
hi(s.dj.t.k)=a(t —s, j. k) -5 (—k —dj). (2.4)

We end this section with a lemma that will be useful to dmsiee the forward (respectively backward) drift of a
backward (respectively forwaydlévy process in Section 3.2.

Lemma 2.2.Assume thafi, (dk) = u:(k)A(dk) is absolutely continuous with respect to a reference measure
which is invariant by translations. We have

i (k)
R R

k — k
/ym( y)V(dy)= " —C+BV|Ong(k)+/y1{|y|<1}v(dy), Ar(dk)-a.e,

and

_y(k+ k
/yif‘f EED s dy) = = — = BV logpu— () + / yl<yvdy),  Mdk)-ae.
- (k) vt

R4 R4

Proof. We have for ally € R?:

—i/ke—”“m,(k) dk =V e V@D = 17V @Dvy(g)
Rd

= —t<ic +Bg+i / y(e ' — 1{y<1})v(dy)) / ek, (k) di

R4 R4

=—it / / ye ki, (k — y) dkv(dy)

R4 R4

—t(ic+Bq)/e_[kqu,(k)dk+it/e_ikqu,(k)/yl{\y\gl}v(dy)dk

R4 R4 R4
= —it / ek (/ yir(k — y)dkv(dy) + cpus (k)
R4 R4

—BVMz(k)—Mz(k)/yl{ygl}\/(dy)).
R4

The second relation is proved from_, (k) = u,—;(—k) and

[Vloguy—i1(—k) = =Vloguy—(—k) = —BVlogu,—y (k). O
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3. Construction of Markovian bridges — main results
One of the objectives of this paper is the proof of Proposition 3.1 below. Assume that

— hi(s, dj,t, k)= hi(s, J.t,k)A(dj)andh(t, k,u,dl) = h(t, k,u,l)r(dl) are absolutely continuous with respect
oA,

— H andH" are mutually adjoint undex, i.e.h'(s, j, 1, k) = h(s, j, 1, k),

— h(s, j,t,k) =h(s, j,t, k) is continuous ir(j, k) and strictly positive for all < s < ¢.

Let z,- denotes the left limit of atr € [r, v]. The following proposition holds und¢he assumptions (A) and (B)
of Section 3.2, before Proposition 3.5.

Proposition 3.1.Let 7, (dk) and 7, (dk) be two given probability measures @&, which are assumed to be
absolutely continuous with a.e. strictly positive densities with respect to a fixed reference medheee exists
a R?-valued process$z; ):c[r,v1 With initial distribution 7, (dk) and final distributione, (dk), driven by(&/)sc[r,v1,
i.e. such thatz;); <[] SOlIves in the weak sense the stochastic integro-differential equation

—+
dz,:cdt+dW,+/y(;L(dy,dt)— Ml{ygl}v(dy)dt>
n:(z,-)
R4
2=+ Y) = (2
+/y(”’(f nfz) )”’(f ))1{|y|<1}v(dy)dt+BVIogn,(z,—)dt, (3.1)
[ACY

R4
and the law ok, at timer is n, (k)n; (k)A(dk), where

f(tfr)HJr

m=e OO, pF=e nf, r<t<v,

W is a Brownian motion with covarianceB, the canonical point process(dy,dt) has compensator

%v(dy) dt, andn}, n, are two positive initial and final conditions determined freamand,.
1 (Z—

Moreover the process;);c[r,»] iN question is a Bernstein process, i.e.
P(z; edk | Py v F,) =Pz edk|zs,2u), S<t<u,

and the joint lawP(z, € A, z, € B), for A, B two Borelians ofR¢, is of the form

P(z, €A, zp€B)= / nr@hr, i, v, myny (m)A(di)A(dm).
AXB
Note that we haved T f (k) = H f(—k), wheref (k) = f(—k), k € RY. As a consequence (k) = 7j,_ ) (—k),
where(#;)sefr,v] is solution of
{ %ﬁl‘ = Hﬁfs
(k) = nj(=k),
andn, (k) = ﬁv_(t_r)(—k), where(})¢fr,v] is solution of
{ gl = —H,
(k) = ny(=k).

Hence(z;)/¢[r,v) has same law as the reversed prodess —;—r))rer,v], Where(Z;);c(r ) is solution of the same
problem, with final lawr, (—dk) at timev and initial lawr,(—dk) at timer. If v is symmetric therH = HT, and
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if moreovern’, n, are symmetric them,, r, are symmetric and; (k) = 1,—¢—r) k), n: (k) = F;U_(t_r)(k). In this
case(z:):e[rv] IS reversible, i.e. it has same law @s_—r)):e(r,v]-

We will also prove a uniqueness result, i.e(df); <[] is @ Markovian Bernstein process with Bernstein kernel
h(s, j,t,dk,u,l)= P(z; €dk|zs = j,zy =1) such that

h(s, j,t,dk,u,Dh(s, j,u,dl)=h(s, j, t,dk)h(t, k,u,dl),
or
h(s, j t,dk,u,Dh'(s,dj,u,l) =h"(s,dj, t, k)", dk, u, 1),

s <t <u, j, k[ €R? then there exists positive density functioyi%i) andn, (m) such that

P(zy €A, zpeB)= / n;k(i)h(r, i,v,m)ny,(m)A(di)A(dm),
AxB

cf. Theorem 7.1. These results will be precisely stated in different forms and under weaker assumptions in the
following section. Proofs will be provided afterwards in several steps, which consist of more refined statements.

3.1. Existence of Markovian bridges

In the following resultj(z, k, u, dl) andh'(s, dj, t, k) need not be absolutely continuous with respect to a fixed
reference measure

Theorem 3.2.Let 1 be a fixed reference measure such thatnd HT are adjoint with respect to., and let
ne, R — R, be twoi-a.e. strictly positive initial and final conditions such that for some [r, v] (and
therefore for any such),

f 0 (o (lr(dk) = 1,
Rd
where
nr (k) = e~ H gy = / nr(Oh" (v, di 1, K,
Rd
and
nitk) =e Ty, (k) = / o (mh(t, k,v,dm), r<t<v.
Rd

Then there exists B?-valued process$z;);<[r,v] Whose density at timewith respect to is p, (k) = n; (k)n, (k),
which is forward and backward Markovian, with forward transition kernel

nu ()

p(t, k,u,dl)y=—=h(t, k,u,dl), (3.2)
1 (k)
and backward transition kernel
o
p¥(s.dj,t, k)= r’i—(J)hT(s,dj, t,k). (3.3)
un (k)

In particular, the initial and final laws ofz;) [,y are s, (di) = (i)} (i)A(di) andm, (dm) = n, (m)n}(m)A(dm).
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The above functions; (k) andn, (k) satisfy the partial integro-differential equations

an;
ot
The proof of Theorem 3.2 follows from Propositions 5.1 and 5.2 below. Once Theorem 3.2 is proved,
Proposition 3.1 follows from 3.5 and Theorem 3.3 belauich states that given two probability measures
- (di) = 7, ({)M(di) and m,(dm) = m,(m)A(dm), absolutely continuous with respect 19 it is possible to
determine two positive initial and final functiong, n, :R? — R, from the data of the initial and final laws
n, 7y Of the process, such that

9
k) =Hn*(k) and %(k):Hn,(k), telr vl (3.4)

(i) = 0 (Onr ), Ty (m) = 0y (m)n};(m),
where
Wr(l) - / Wv(m)h(ra i, U, dm)7
Rd

and
n;k(m)=/nf(i)hT(r, di,v, m),
R4
providedh (s, k, t,dj) andh'(s, dj, r, k) are absolutely continuous with respect.to
h(s,k,t,dj)=h(s,k,t, j)Ad)), (3.5)
hY(s,dj,t,k)=h"(s, j. 1, k)A(d)), (3.6)
with h(s, k, 1, j) = h(s, k, t, j) sinceH is adjoint of HT with respect to.. More precisely we have the following

result, cf. Theorem 1 of [5], Theorem 3.2 of [24], and Theorem 3.4 of [31]:

Theorem 3.3.Let 7, andx, be two probability measures. Assume thét, j, k, t) is a continuous irn(j, k) and
strictly positive function. Then there exist two measuiggi) andn, (dm) such that

w(di) = nf(di)/h(r, i, v, m)ny(dm),
R4

and

wy(dm) = nv(dm)/h(r, i, v,m)ni(di).
R4

We present several families of prases satisfying the above hypothesiartitg with the simplest examples.
Note that in the first example, the mutual adjointnessfodnd H T with respect to the (Lebesgue) measiris
satisfied without requiring the absolute continuity/df, k, u, dl) and hi(s, dj,t, k) with respect tor. We will
also present some examples where the initial and faves can not be arbitrarily chosen, when the hypothesis of
Theorem 3.3 are not fulfilled. This list of examples includes the classical Brownian bridge, however the aim of this
paper is not to focus on the Brownian case which has already been the object of several studies, cf. [6,7,24,2,31,9

Examples.

(1) Deterministic process.
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(2)

3)

N. Privault, J.-C. Zambrini / Ann. I. H. Poincaré — PR 40 (2004) 599-633

The adjoint relation betweeH and H is satisfied in the deterministic case fothe Lebesgue measure, i.e.

r<u

it
(s, dj. 1. k) = e~ L UkFeE=dry (o (dj), r<s<t<u,
<.

<

h(t ko, dl) = e~ i Ukte@=mdes, o@D, r<
Therefore, forany <s <t <u < v,

n;k(k) — n;k(k —c(t — s))e_fst U(k+c(r—t))dr’ (3.7)

e (k) =nu(k+c(u —l))eiffu Uk+c(z—1))dt (3.8)

Applying (3.7) and (3.8) successivelyin=s and: = u we obtain several expressions for the density, Git
time ¢ with respect to the Lebesgue meashre

nE e (k) = 0 (k — c(t — ))nu (k — et — u))e™ Ji Uk—ett=mdr

N
= n:‘(k —c(t — s))ns (k —c(t — s))
= n:(k —c(t— u))nu(k —c(t— u)),
Note that heréi(s, k, 7, dI) is not absolutely continuous with respect to the Lebesgue meaédireand that
it is clearly not possible to choose independently the initial and final laws.
Lévy bridges from: € R to b € R?.

TakeU = 0, and assume that,(dk), t > 0, has a density with respect to a fixed reference measuie.
wi(dk) = s (k)A(dk). Then taking
ny (k) =C(r,v,a,b)u;—r(k —a), e (k) = pe—y(k — b) = py—r (b — k),
whereC(r, v, a, b) is a normalization constant, the resulting density at timéth respect to. is
we—r(k —a)puy—t (b — k)
MUy—r(b —a)
whereC(r, v, a, b) = 1/uy—r (b — a). In this way we recover the density of the Lévy bridge in the usual sense,
obtained by conditioning the Lévy proce&s);crv] by & = a and§, = b:
dP(& e dk, & eda, & €db)
P €da, & €db)
_ e—r(k —a)pry—t (b — k)
Mo—r (b —a)
This example includes the Poisson and Brownian bridges below. Note that the absolute continpt pf
with respect tor at the initial and final times is not always satisfied simeg; (dk) = 8,(dk), nyn}(dk) =
3»(dk), for example it is satisfied for the Poisson bridge but not for the Brownian bridge.
Poisson bridge starting frome N at timer and ending ab € N at timev.

Here the kinetic tern/ vanishes, as well aB, andc = 1. Moreoven = 81, soV(g) = —(e ¢ — 1) and we
have

—Hf(k)y=fk+1) — f(k), —H fk)y=fk—1) — f(k).

The standard Poisson bridge provides anothemgt@ where the initial and final laws cannot be chosen
arbitrarily, this time becausa(s, k, u, I) is not everywhere strictly positive. Také=0,c = 1,v = 1, and the
reference measure

+00
=) b

n=—0oo

n; (kKyne (k) =

’

AP =k|&§ =a, & =b)=

A(dk).
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The simple Poisson bridge with = a andz, = b is constructed from the boundary conditions
anC(F,U,a,b)l{a}, r]v=1{b},

whereC(r, v, a, b) is a normalization constant. Then

% ——n = ke
ni (k) =C(r,v,a,b)u—r(k —a) = C(r,v,a,ble kol Lk
b—k
_ TR ot )
ne(k) = py— (b —k)=e Y 10,61 (k),

with the convention ®= 1. The resulting density at timewith respect to. is, therefore,

b—a\(t—r\"/v—1t\P7F
ny (yns (k) = 1[a,b](k)<k )( ) < > , r<t<uo,
—a)\v—r v—r

which is the expected binomial law ¢a, . . ., b} with paramete(s —r) /(v —r), obtained by conditioning, with

C(r,v,a,b) =e'™" (U@S?;_‘a). Note that hereh(r, k, u,l) = e—w—')%l[o,l](k) is not (A ® A)(dl, dk)-
strictly positive, and the initial and final laws cannot be chosen arbitrarily, e.g. one canndt kaweAlso
this setting is not directly relevant to phgs in the momentum representation siri¢e= 0.

(4) Gamma bridge starting from € R, at timer and ending ab € Ry, a < b, at timev. We haveV (¢) =
log(1+iq/p) whereg is a strictly positive parameter, anddy) = y~te ™10 o0y (y) dy, with B=0,a =0,

c= folefﬂy)’*ld)’- Moreoveru, (k) = 1j0,c0) (k)%)k’*le’ﬁk, hence

* 1 F'(v—r) k—a\'"™7" b=kt
n[(k)nf(k)_b_al-w(t_r)r‘(v_t)<b_a> (b—a) '

which is the density at timeof the Gamma bridg&: + (b — a)&— /&y~ )1<[r,v], IN Other termsz; —a) /(b —a)
has a beta distribution with parametérs- r, v — t), t € [r, v].

(5) Brownian bridge.
The Brownian bridge starting at € R and ending at € R is constructed by takindg/ = 0, u;(k) =

1 ,—3K/(=r)
e © T and
n* (k) = €0, v.a.0) —Y-a2/a-n) o () = 1 ewye,
! V27t —7) V2r(v—1)
with

C(r,v,a,b) = /27 (v — rye2 b=/ (=),
The producty; (k)n; (k) gives the usual density of the Brownian bridge with respect to the Lebesgue measure:
Jv—r oxof — v—r (k_a(v—t)—i—b(t—r))Z)
2t —r)(v—1) 2t —r)(v—1) ’
(6) Forward and backward Lévy process&s 0).

This example includes the forward and backward Wreand Poisson processes as particular cases. Taking
n¥(di) = ur(di) andn,(m) =1, we have

0y (dk) = nf s wi—r(dk) = ui(dk), n(k)=1, r<t<v,

hence(z;);elr.v) is the (forward) Lévy proces$; ) erv): 2t =&, 7 <t <v.
If n,(dm) = po(dm) andn} (i) = 1, we have

ne(dk) = ny * - (dk) = pe—o(dk), n7(k)=1, r<t<v,

n: (k)ynj (k) =

v—r
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(7)

(8)

3.2.
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hence(z;):e[r,v] iS @ backward Lévy process. This is an example of process with initigklaw(dk) and final
conditionz, = 0, respectively initial law., (dk) and final lawu, (dk).

Processes with densities with respect to the Lebesgue measure.

Here,U does not necessarily vanish. From (2.3) and (2.4), the absolute continuity conditions (3.5) and (3.6)
are satisfied if the law of;, ¢+ > 0, has a density with respect to the Lebesgue measure, e.g. in the case of
stable processes (namely such thag) = c|q|* for somex € (0, 2] andc > 0), and for Lévy processes with
Brownian componentq # 0). MoreoverH is adjoint of H T with respect to. when is the Lebesgue measure.
General casd # 0).

The conditionU # 0 is necessary in the context of Euclidean quantum mechanicss H given measure (not
necessarily the Lebesgue measure), we may work under the absolute continuity hypothesis

h(t,k,u,dl)y =h(t, k,u,)A(dl), r(dk)-a.e, (3.9)

h'(s,dj, t,k)=h'(s, j,t,k)rdj), rdk)-a.e. (3.10)
which imply thatH and H T are also adjoint with respect toif h(s, j, 1, k) = h'(t, k, s, j):

h(s, j,t,dk)A(dj)=h(s, j, t,k)A(dk)A(d])) :hT(s, J,t, Adk)N(d)) :hT(s,dj,t,k)A(dk).

In view of (2.3) and (2.4), conditions (3.9) and (3.10) are satisfied in particylar if(— j + dk) has a density
with respect tov(dk), A(dj)-a.e. This condition will be satisfied e.g./fis absolutely continuous under the
translatiork — j + k, A(dj)-a.e., andu,—s is absolutely continuous with respectito

pi—s(dk) = py—s(k)A(dk).
This hypothesis is satisfied, in particular, for the Poisson bridge, cf. Example 3 aboveyuwittk) =

. —
e—(t—S) (t;f) 1{k20} andi = lez;iooo 5k'

Stochastic differential equations and generators

In this section we present the description of Markovieddpes of Theorem 3.2 in terms of forward and backward
stochastic integro-differential equations driven®y;<(,,,. Let for f € S(RY) andg :R¢ — (0, 00):

and

1 k
Lof 00 =(e.V£00)+ 38870+ [ (k)= £ = [y V10 qp1) vty
R4
k — gk
/ g(—i—y(—)k)g()(y V£ (0))1y<yv(dy) +(Viogg k), V f (k) .
R4 ¢
* 1 gk—y)

Lof k) ={e.VIW) =585 W) = [ (fk=y) = fU) +(y. VB Lyi<n) @

Rd
k—vy)— gk
+ / $E=0) 28 W) G )1y 1<ayvidy) — (VIogg k), V£ K)),

g(k)

R4

The following result is a consequence of Proposition 6.2, which will be proved in Section 6.

Proposition 3.4.The process$z; );<[r,»] cOnstructed in Theore@2admits the forward infinitesimal generator, for

f e

S(RY)y:
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1 k
ﬁmf@)=@%Vf@»+EABf@%+/(ﬂk+Y)—f@j—bhvf@»hmgnﬂk%é¥gﬂiﬂ
t
]Rd

+/ ni(k+y)— Tlr(k)(

v, V£ ())1y<nyv(dy) +(Viogn (k), V £ (k) 5.
n: (k)

R4

and the backward infinitesimal generator

1 *(k —
ﬁ:;f(k) = (c, Vf(k)> - EABf(k) - /(f(k -y = fk)+ (y, Vf(’dﬂ-{\yKl})%v(dy)
t
Rd
*(k — — n*k
+—/ﬁm( 1&0’“( Ly, V £ ®))Lgy<nv(dy) — (Vg (). ¥ £ (),
R4 T
With the notation of Section 3 we hav,é;?f(k) =Ly f(=k) = =L, _,_, f(=k) and £,7,f(k)

n (o J(=k) = —E’t* f (—k), hence—ﬁ* and—L,, are respectlvely the forward and backward generators
t —(t—
of the reversed proces{s-zv (t—r)telrv]- If v is symmetric thenc** = —Lj,_o_p Ln = L* , and the

L* t—t)

process(z;):c[rv] iS reversible provided its initial and final laws., nv are symmetric. The knowledge of the
generators ofz;);c[-,») provides the forward and backward representation&f¢(-,; as weak solutions of
stochastic integro-differential equations. We assume that (cf. p. 434 of [22]):

(A) the functions

2 n(k+y)
OMH/1M|—7ﬁwWL

e [ IEED I, )

1z (k)
{lyl<1}

(t, k) = Vlogn; (k),

respectively
(k—y)
um»/1M|—Wﬁwwx
ni(k —y) —nfk)
k] k d k]
(t, k) — s v(dy)
{IyI<1)

(t, k) — Vlogn; k),

are bounded on compactskf, x R9.

The next proposition is a representation result tiofib¥vs from Proposition 3.4 and Theorems 13.58, 14.80 of
[22], pp. 438 and 481, using the results on martingatdblems for discontinuous processes of [25,26,30].

Proposition 3.5. The processz; )< Of Theorem3.2 is solution, in the weak sense and with respect to the
forward filtration (P;)¢frv], Of
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dz,:cdt+dW,+/y(;L(dy,dt) Ml{y<l}v(dy)dt>
ne(z¢-)
Rd
ne(Z- +y) — n:(z-)
+/yt ! niz )’ L 21y <1y v(dy) dt + BV logn, (z,-) dt,
1\&t—

R4
under a pobability P for which W; is a (forward) Brownian motion with covarianc®, and u(dy, ds) is the
canonical point process with compensai’éuv(dy)dt. In terms of backward differentials we have as well,

1t (2
with respect to the decreasing filtrati@sf; ), <[, 1,

*
(z+ — )
duzr = cdt +d, W} + / y(u*(dy, dr) — Wl{yg}wdy)dr)
Nt (z¢+)
Rd
M+ —y) —nf(z
+/ynt( o *y) U ﬁ)l{\y\gl}v(dy)dt—BV|0977?<(Zz+)dt,
Un (z4+)

R4
where W denotes a backward Brownian motion with covariarReand p.(dy, dt) is the backward Poisson
random measure with compensaWu(dy) dt.
[2AS S

This also provides théP;),¢,,j-decomposition

t

s(Zs— +
=2z +clt—r)+ M; + // (77 7()Z(Z Y) - 1{|y|<1})v(dy) ds+/BVIogns(zs—)ds,
s\ Zs—

where(M;):e[0,v] IS a(P:)sefrv)-martingale, and théF; )¢ ,j-decomposition

= —c(v—t)—i—M* // <7]57§Z3(Z Y) —1{},<1}>v(dy)ds—/BVIOgr);‘(zSJr)ds,
s s+ /

where(M;");c[0,.7 is a (backwardyF; ) <[ ,-martingale.
Examples (and particular cases of Propositidh5).

(1) Deterministic process.
In this casez;):¢[r,v) Satisfy the ordinary differential equation

dZ[ :dét :Cdt,
both in the forward and backward cases, hence
z=zr+ct—r)y=zy+clv—1), r<t<ov,

with (random) initial and final conditions,, z,. The influence oU manifests itself in the initial and final
laws, not in the dynamics.

(2) Lévy bridges fromz € R? to b € RY.
Take U = 0, and assume that,(dk) = u;(k)A(dk), t > 0, has a density with respect to a fixed reference
measure. for all # > 0. The forward stochastic integro-differential equation satisfietpyc(,,» is
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—(z;-+y—b
dz,=cdt+dW,+/y<u(dy,dt)— Mo £y )1{y<1}v(dy)dt>
me—v(z~ — b)
R4
(@~ +y—b)—pi—y(z;- = b
+/y“t v(z y ) — mr—v(2; )1{|y|g1}v(dy)dt—BVlOg/L;_U(z,— — b)dt,
Hi—v(z;— — D)

R4
i.e. using Lemma 2.2:
Mi—v(z— +y —b)

—-b
dt. (3.11)
Mi—v(Z~ —b)

dzy =dW: + / y <M(dy, dt) —

R4

v(dy) dt) —

From this equation it follows that the expectati@®iz;1)<[v] Of @ Lévy bridge always satisfies the ordinary

differential equation
d b—E
—E[z]= J r<t<o,
dt v—t

with initial condition E[z,] = a, i.e. the expectation of; follows the linear interpolation

t_
Elzil=a+ (b—a) r<t<o,
v —

between(r, a) and (v, b), which is a particular case of the harness property [16,12]. The backward stochastic
differential equation satisfied by the same proaesgc, ] is:

Me—r(Z+ +y—
Mi—r(Z+ —a)

dwzy = cdt + d W} +/y(,u,*(dy, dt) —
R4
/ Mt—r (Zﬁ- + y— a) — Mt—r (Zt+ - a)
+ [y
wi—r 2+ —a)

a)
1{y<1}v(dy)df>

Ly <yvdy)dt — BVlogus—r(z;+ —a)dt,
R4

i.e. by Lemma 2.2:

Mi—r(Zp++y —a) +

e—r 24+ — a)

a dt.

dyzy = d Wy +/y<u*(dy,dt) —
R4

v(dy) dt) L

t—r

(3) Poisson bridge starting ate N at timer and ending ab € N at timew.

If U =0, the forward (i.e(P;):<[r.v]-) Stochastic equation (3.1) satisfied by the Poisson bridge is written
dZIZdN[ns ir =4a,

where(N,”),e[r,v] is a point process starting from O at timgwith compensator

n
Nz~ +1) di = My—t(b—2z,- = 1) dt — b—a-— Nt* dt.
Ui (Zt_) Mo—r (b — Zr-) v—t
This means (see e.g. Theorem 7.4. po®®0] and references therein) th@at), <[, can be constructed by
a time change on a standard Poisson pro¢ass));cr, , i.e. the sequence of jump timefk”)lgkgm,i of

@)reprv) = (@ + N,"),e[,,v] can be obtained by induction from the jump tim@$),>1 of (N (t));er, , as

d(N/) =

T

i

k

—a—(i-1
Z/ bma=G=D 0 1ck<h_a
:l v—S
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The backward equation satisfied @y):efr.v] iS

d*Z[ :d*Ntn*a Zv =b7
where(Nt”*)te[r)v] = (—N,"_)):err.v] IS @ point process starting from 0 at timgwith backward compensator
X * -1 N +b—a
dy«(N;" ) = ”r(if;)d, =t .
Ny (z4+) r—t

(4) Gamma bridge.
The compensator is given fér< b by:

k—b
vk 4y —b) b—k—y\' 't k—b
y—1{|y|<1}v(dy)= - dy:—
b—k
0

pi—v(k —b) v—t’

which coincides with the general drift found in (3.11).
(5) Brownian bridge.
We havey; (k) = ﬁe*kz/ ) hence the forward and backward stochastic differential equations satisfied by

(Zt)te[r,v] are

-b
dzi=dW, — 2~ dt, z =a,
v—t
and

—da
d*Zr = d* W;* + “

dt, z,=0>b.

(6) Forward Lévy processe#/ (= 0).
Assuming thaj, (dk) = u; (k)1 (dk) is absolutely continuous with respectita/k) we have

dz; =cdt +dW; + / y(p,(dy, dt) — Ly <yv(dy) dt), zr =&,
R4
i.e.zr =&, r <t <v. Besides the forward generateW (i V) of (& ):¢[rv] (S€€ (2.1)) we obtain the backward
generator

1 k —
L) =(e, Vf(k) = A5k = / (f k=) = [+, Vf(k>>1{|y|<1})%v(dy)
t

R4

(v, V£ Ly <yv(dy) — (Viogu, (k), V f (k) 5.

+/ i (k —y) — pa (k)

e (k)
R4

or by Lemma 2.2 above:
pik —y)

1
dy) + ={k, V £ (k).
() v(y)+t( S )

1
Lo f (k) = —5A88f k) - /(f(k = =0+, VIK)

R4
The backward stochastic differential equation satisfiedbye(, v is:

(Z+ =)
dyzi = cdt +d W +/y ws(dy, dt) — ulmgl}v(d)’)dt)
e (zp+)
R4
ez —y) — e (Z4+)
+ /|y Ly <yvdy)ds — BVlogu(z;+)dt,
e (z4+)

R4
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i.e. fromLemma 2.2;

dyzr = d*Wz* + / y(ﬂ*(dy, dt) —
R4
In other terms we have the backward martingale decomposition

it

ez =) y)v(dy)dt> 4 ’Tdt.

e (Zp+)

v
Z
z,:M,*+/—Sds, r<t<ov,
s
t

in which M;* denotes the backward martingale part, recovering and extending some results in [23].
Backward Lévy processes.

Taking ny(dm) = po(m)A(dm) = po(dm) and i (i) = 1, we haven, (k) = ny * pr—v(k) = pu—v(k) =
wo—i (—k), andn; (k) =1,r <t < v, hence(z;)¢[0,v] is the backward Lévy process given by

dyzy = cdt -|-d>,<Wt>|< +/y(u*(dy, dt) — 1{|y|<1}v(dy) dt),
Rd
which has same law as the time reversed Lévy process) cio,»] = (—&v—s)se[o,»]- The forward generator
of (z/)re[0,v] IS

1 ok +
Ly, fk)=(c, V&) + SABf)+ / (ftk+y)— fl) =y, Vf(k))l{\y‘gl})%v(dw
t—v
Rd
_v(k — Ur—p(k
+ / 1o :y ) (k)“ t—( )<y,Vf(k>>1{|y|<1}v(dy)+(Vlogu,w(k),Vf(k))B,
t—v

R4
or from Lemma 2.2:

1
Ly f()=SApf k) + / (flk+y) = fl)—{y. Vf(K)
Rd
The forward stochastic differential equation satisfied 9y <(o,.] iS, therefore,

vk + )

dy) L k,V f(k
PR A

—v(Z- +
dz,:cdt+dW,+/y<u(dy, dt)—wlﬂﬂgl}v(dy)dt)
Me—v(Z4-)
R4
—0(Z=) = pe—v(z- + )
_/y“’ v )7 vl T g <av(dy) di + BV 1og (2, ) dt,
Me—v(Z4-)

R4
whereW; is a forward Brownian motion with covariana®, and u(dy, dt) is the forward Poisson random
H —1)(Z—+)’) . .
measure with compensatém, i.e. by Lemma 2.2:

Me—v(z- + )
lth—v(Zt—)

<t

v(dy)dt) — =
v [—

dz; =dW; —i—/y(u(dy,dt) — (3.12)
R4

and we have the forward martingale decomposition
t

Z‘,
z,:M,—/ i ds, r<t<v,
v—ys§

r
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to be compared to [23] (note that here we tagk= 0). The forward compensator @f; );<o,v] IS again

d(z;) = - dr.
v—1

4. Girsanov theorem

The next proposition shows that under certain conditions, the law of the praggsg. ,; of Proposition 3.1 is
absolutely continuous with respect to the law of the Lévy procgss:(, v]-

Proposition 4.1.Assume that =0, v ({|y| > 1}) = 0 and eitherB =0 or v =0, i.e. we are in the Brownian case
or in the jump case. Under the hypothesis of TheoBenthe law Q of (z/):¢[r.] iS absolutely continuous with
respect toP, with density given by

Q _ M (21) e_frt Ul(ze)dt
dP|p, 1 (z)

i.e. underQ, (z» + & ):efr.v] has the law ofz; )¢, Under P. Similarly we have

, r<t<uv,

a0 :n?(Zz)e,f;wz,)dr’
dP]:t ﬂﬁ(Zv)

i.e. (zy — &v—1)rerrv1 has the law ofz;)s [y, ») Under P.

r<tr<v,

Proof. Let us define

L = n:(2¢) e,fr’(](zt)dr’
nr(zr)

Assume that undeP, w(dy, dr) is the random measure with compensat@iy) dt in the Poisson case, with

telr,v].

dz; = / y(u(dy, dr) — 1y <yyv(dy) di),
Rd
or that(z;);[r,»] is @ standard Brownian motion in the Brownian case, Wity = dz; — BV logn, (z,-) dt, i.e.

dZ; ZdW[ + BV|Og77t(Z;f)dt.

Let us compute

dnize) = ni(z-) f Moz ) = @) <u(dy, dr) —
Nt (Zt—)
ly|<1

n:(z- +y)
ne(z4-)

v(dy) dt)

d
+ Ut(Zz—)<V logn: (z;-), dW’)B + Ly (z0) dt + %(ZI) dt

n:(Z— +y) — ne(z4-)
N (2;-)

= U(z- ) (zp-) dt + 1 (2-) / (u(dy.dr) —v(dy)dt)

lyI<1
+ 1t (2 )(V10gn, (z,-), dWy) 5 +(V 1097: (2,-), Vi (24-)) .

where we used (6.1) and the forward infinitesimal generator
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Ly, (k) = —Hne (k) + U (k) (k) + (Vogn (k), Vi (k))

2
+/(7m(k) m(k)>v(dy)dt+ o (21).

R4

Hence(L;):¢[rv Satisfies the (forward) stochastic integro-differential equation

nt(z- +y) — n:(z4-) (

dL;=L,- -
' ! ne(24-)

IyI<1

+L,- '<V|Og77t(sz),dWr + VloQ’?t(Zﬁ)dﬂB’ telrv].

u(dy,dr) — v(dy)dr)

Under P we have

! d(Ly,z5) = N:(z~ +y) = n:(z-)

Lg- ne(z4-)
lyI<1

v(dy)dt + BVIlogn(z;-),

and from the Girsanov theorem, foe [r, v],

t t

1
Zt__/L d(Ls,zs)=Wt—Wr+/BV|09ns(Zf)ds
-

r

t

f1
+/ / (M(dy,ds)—v(dy)ds)—/L

7d(L57ZS>
yi<y) o
=W, + //y(u(dyd) 1@~ +5) (dy)ds),
s (25-)
rA{lyl<1}

is a(Pr)relr,v1-martingale under the probabilit® defined by

d

20 =L;, r<t<uv,

dP |p

hence unde@, W, is a Brownian motion (in the Brownian case) an@ly, ds) has the compensat&Lv(dy)

Ns(z5—)
(in the pure jump case), i.€z, + &—,)i¢[r,v1 has the law ofz;)¢p»7 underP.
The proof in the backward case is simila

Examples (for Proposition4.1).

(1) Deterministic process. In this case we h&ve= P, n;(z;) = n,(z+), 0] (z:) = 0} (z0), r <t < v, and, in fact,
(Zt)te[r,v] = (gt)te[r,v]-
(2) Lévy bridges fromz € R? to b € R?.
TakeU =0, and assume that, (dk) = u; (k)1 (dk) has a density with respect 10 We have
d_Q _ Po—1(b—2z) dQ Mi—r (2t —a)

= , and —| =—, r<r<o.
dPlp,  p(b—2zr) APz, po—r@—a) =

t

(3) Poisson bridgefrome Ntob e N, a <b.
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In this case the law ofz;):<[r,»] iS @absolutely continuous with respect®g with
Q| _m@) _ (0= NP~ (b —a)!
dP|p,  nr(zr) (v—r)b= (b—2z)!

hence

dQ vy (b—a)!
X _pvr Tl
dP (v —r)b—a

Lap)(ze), r<t<v,

1=y,

with z, = a, i.e. underQ, the standard Poisson process+ & _,):c[rv] has the law of the Poisson bridge

(z¢)terr.v]- We also have

| _nm@) _ —a-p=nTb-at, o

dP 7 77;5(11)) Zt!(v_r)(b,a) la,b]\Zt), xIxV,
hence

dQ oy (b—a)

ar ¢ o pm He=ak

with z, = b, i.e. underQ, (b — &,—;):¢[rv] has the law of the Poisson bridge.

Brownian and gamma bridges.

The law of the Brownian bridge starting frome R at timer and ending ab € R is not absolutely continuous
with respect to the Wiener measure, singédi) = 8,(di) and u,(dm) = 8,(dm). The same holds for the
gamma bridge.

Forward and backward Brownian motiali & 0).

We have eithe) = P or Q is not absolutely continuous with respectRo

Forward and backward Poisson proces$es-(0).

In the standard Poisson case, backward Lévy processes give examples of jump processes vihd initial
Poisson distributiop, (k)A(dk), k <0, on—N. We havew,_, (k) = e~ @ — )% /(—=k)!, t < v, and

do| oG @07 (22!

dP Py :u'rfv(Zr) (—=z))! (w=r)"2= s
hence

d_Q =T (—z)!

= —1 0.
dP~ ¢ (w—ryo =0
It follows from Proposition 4.1 that unde® the processz, + &—):c[-v] has the law of(z;); ¢, Where
(&)ref0,+00[ IS the canonical Lévy process. Similarly we have(df);c[, is @ standard Poisson process
underpP:

d_Q — e (2e) :e_(t_v) (t—r)« Zy!

ap Fi Mo (Zy) 2! (U_V)Z"’
hence

40 _ oy 2!

= — 1, o, >0,
dP ¢ (v —r)% (=0 7

i.e. underQ, (zv — &)refr,v] = (2o — Ev—1)1elr,v] has same the law as the standard (forward) Poisson process
(Et)te[r,v]-

(7) Forward and backward Lévy process&s=£ 0 andu,, i, are absolutely continuous with respecifo



N. Privault, J.-C. Zambrini / Ann. I. H. Poincaré — PR 40 (2004) 599-633 619

Here the probabilityQ is naturally equal taP, and the proces&;);[r.»j has same law as the forward Lévy
processé)ieirvl- If (—&)ierrv] = (—&v—1)rerrv) IS @ backward Lévy process under the densit)/;—%m is
given by

d_Q _ e (ze)

dP F Mo (Zy) ’

and

dQ  wr(zr)

AP~ 1y(z0)’
i.e. (zy — &relrv) (2o — Ev—t)rerv) IS @ forward Lévy process und€r. Similarly, the processz; e, has
same law as the backward Lévy procéss;);cir.v] = (—&—v)iefr.v]- The density% |7>, is given by

d_Q _ Me—v(2r)
dap P, tr—v(zr)’

and

dQ  po(zv)

dP " (2
From Proposition 4.1, undep the processz, + &—_,)ie[rv has the law of the canonical Lévy process
EDrerrv-

Many of the above examples can be symmetrized (#ite= HT), and can then be interpreted physically, cf.
[27].

5. Reversible diffusion processes with jumps

In this section we prove Theorem 3.2 and some extensions. This provides a construction of Markovian “bridges”
with given initial and final laws since, from Theorem 343,and#, can be chosen so that the produgts, and
n¥n, equal any strictly positive initial and final probability densities fixed in advance. Define the forward and
backward Markov transition semi-groups fo r < <u andj, k,[ € R¢ by:

1u (1)

pt k,u,dl) = h(t, k,u,dl), (5.1)
0 (k)
and
* . 7]:(]) 1 .
(s,dj, t, k)= h'(s,dj,t, k). 5.2
P TS (-2

The adjointness relation betweehand H T
h(s, j,t,dk)A(d])) :hT(s,dj,t,k)A(dk)
shows that the following reversibility condition holds:
s (@djns()p(s, ji t,dk) =n3(dj)h(s, j. t, dk)n (k)
=0y (O (s, dj, 1, kymi(dk)
= p*(s,dj, t,k)n; (dk)n. (k). (5.3)
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Let us stress that this property generalizes the one utoierssince Kolmogorov, as dafihg the reversibility of a
probability measure (cf., for example, [10]). More generally we have
My, (dk) g (k1) p(ta, ka, t2, dk2) - - - p(tn—1, kn—1, tn, dkn)
=y, (dko)h(ty, ka, t2, dk2) - - - h(ta—1, kn—1, tn, dkn) 1, (kn)
= nf (k) (11, dka, 12, k2) - - BT (ta—1, dkn—1, tn, kn)y, (dky)
= p*(t1, k1, t2, dkp) - - - p* (tn—1, dkn—1, tn, kn)1;, (kn)1, (dkn),

hence the forward Markov process with transitip(y, j, z, dk) and initial law n}(dj)ns(j) has the same law
ni(dk)n, (k) as the backward Markov process with transitjoz, dk, u, ) and final lawn;; (dl)n, (1), s <t < u.

This argument is made precise in the next two propositions, without assuming tliaj, respectively;, (dk),
has a density with respect igdk).

Proposition 5.1.Letn’(di) andn, ‘RY — R be initial and final conditions such that for some [r, v],

/n?‘(dk)m(k) =1,

Rd
where
0 (dk) = / ni(dih(r i, t,dk), k)= / nu(m)h(t, k, v, dm) = e~ Oy, (k), (5.4)
R4 R4
r <t <v, and let us define
l
otk dly="Due k. u.an. (5.5)
0y (k)
Then

() p(@,k,u,dl) is aforward Markov transition kernel,
(i) the inhomogeneous Markov proce&s);c[-»1 With forward transition kernelp(t, k, u,dl) and initial
distribution s (j)n¥(dj) satisfies

P(z; edk | Ps v Fy) =Pz €dk | z5,24), r<s<t<u<uv, (5.6)
i.e. it is a Bernsteir{or reciprocal, or “local Markov” [8]) process,
(iii) the law at timer of z; is p; (dk) = n; (k)n;(dk), t € [r, v].
If moreoverH and H are adjoint with respect to some fixed reference measure
h(s, j, t,dk)A(d]) = hT(s, dj, t, k)A(dk), (5.7)
andn}(dj) = ni(j)r(dj) is absolutely continuous with respectitpthen

(iv) forall r < u, nf(dk) is absolutely continuous with respectitpwith density

n; (k) = / s, dj k) = e O w), < <,
R4
(V) (zr)rerrv7 is also a backward Markov process with transition kernel
s (J)

h'(s,dj,t.k), r<s<t, (5.8)
ny (k)

p¥(s,dj, t, k)=



N. Privault, J.-C. Zambrini / Ann. I. H. Poincaré — PR 40 (2004) 599-633 621

(vi) the law ofz; at timet is n, (k)n; (k)A(dk).

Proof. The fact(i) that p(s, j, t, dk) is a Markov transition kernel follows from the definition gfik) itself:

/p(t,k,u,dl)p(u,l, v, dm) = ””((’Z)) Wt k,u, dDh(u, 1, v, dm)
R4 K R4
_ 1Ny (m)

= h(t,k,v,dm)= p(t,k,v,dm).
e (k)

The existence of the inhomogeneous Markov pro€ess:|,, follows from e.g. Theorem 4.1.1 of [13] applied
on the (complete separable) spa&®€ More precisely, [13] yields the estience of the space-time homogeneous
Markov processt, z;)<[r,v] With transition semigroup

(. k), s, (du,dD)) = p(t, k,u,dl)8;1s(du).
Let us show that (5.6) holds for this forward Markov process. We have,for < <--- <t, < v,
P(zy, €dka, ...z, € dky)
= 1y, (dk)nsy (k1) p(ta, ka, 12, dk2) - - - p(ta—1, kn—1, tn, dkn)
= n;,(dk)h(t1, k1, 12, dk2) - - - h(tn—1, kn—1, tn, dkn) 1y, (k).
In particular, using (5.5),
P(z; €dj, zu €dl) =ng(dj)ns(j)p(s, j,u,dl) = ng(djh(s, j,u, dD)n.d),
and
P(zs €dj, zs €dk, z, €dl) =ni(dj)h(s, j,t,dk)h(t, k,u,d)n, ).
HenceP(z; e dk | z; = j, zy =) satisfies)}(dj)-a.e.:
P(z;edk|zs=j,zu=Dh(s, j,u,dl) =h(s, j, t,dk)h(t, k,u,dl).

This gives, withsy <sp <--- <5, <t <u1 <--- < uy, andintroducing the Bernstein kerrigk,,, j,,t, A, u1,11)
= P(z; € A| zs, = jn, 2uy = 11) Of Section 3,

P(zs, €dji1, ..., 25, €djn, 2t €A, zyy €dln, ..., 24, €dly)
:/nzkl(djl)h(sls jls 527d].2)"‘h(snsjn7t:dk)
A

h(t,k,u1,dlr) - -hum—1, bn—1, m, dlp)Nu,, (m)
= h(sn, ju, t, A, ur, 05, (dj)h(s1, ji, 52, dj2) - - h(sn—1, ju—1, Sn> djn)h(Sn, ju, w1, dl1)
h(ua, l1,u2,dlp) - h(um—1, ln—1, um, dlm)Nu,, Um)
= h(Sps jurt. A ur, 1) Pz, €dj1, ... 25, €djn, 2uy €dl, ...\ 2u,, €dly),
hence
P(z; €dk | Py, v Fuy) = h(sp, 25, t, dk,u1, 24,) = P(z; € dk | 25, Zuy)-

Finally, under the condition (5.7) we have

n(dk) = / nE(djh(s. j. 1, dk) = / W Gh(s. jo 1. dK)A()]) = / nr Gt (s, dj £, KA.
R4 R4 R4
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The processz;):<[-v) being constructed from the forward kernel (3.2), we show that its backward kernel is given
by (3.3) when (5.7) holds; we have

P(zs €A, 724 €dka, ..., 2, €dky)

= / nE R (s, dj. 11, ka) B (a1, dkn1, tu, dkn)ny, (dky)
A

= / p*(s,dj, 11, k) - - p*(tn—1, dkn—1, t, kn)ny, (k) 11, (k)

A
= P* (s, A, 1, kl)p*(tly dki,t2,kp) - P* (th—-1, dkn—1, tn, kn, )77;: (dkn)rltn (kn)
=p*(s, A, 1, k1) P(zyy €dka, ..., 21, €dky),

hence(z;):¢[r,v1 is also backward Markovian with transition kern€i(s, dj, t1, k1). O

Relation (5.4) can be written as
an;(dk)
at

The following similar proposition shows that Markowiaridges can also be constructed from backward Markov
processes. Propositions 5.1 and 5.2 ptate the proof of Theorem 3.2. Proposition 5.2 next is proved similarly to
Proposition 5.1.

= H'y*(dk) and %(k):Hnt(k), telrvl.

Proposition 5.2.Let :R? — R, andn,(dm) be initial and final conditions such that for some [r, v],

/ n; (kyns (dk) =1,
Rd
where

. . —(t—r)HT _x
ni () = / o dmt @, dl, vom),  ro) = / nE AT di 1, 1) = e~ PH ), (5.9)
R4 R4
r<t<v,and
ni(j)

(s, dj,t, k). 5.10
_0 (s,dj, t, k) (5.10)

p*(s.dj,t. k)=
Then

() p*(s,dj,t,k)is abackward Markov transition kernel,
(i) the inhomogeneous backward Markov proc€sd:c(s.,; With transition kernelp*(s,dj,t,k) and final
distributionn, (dl)n;; (1) satisfies

P(z; edk | Ps v Fy) = P(z; €dk | z5, zu), (5.11)
i.e. itis a Bernstein process.
(i) the law at time of z; is p; (k) = n; (k)n; (dk).
If moreoverH and H are adjoint with respect to a fixed reference measure, i.e.
h(t, k,u,dDA(dk) = hT(t, dk, u, DD, (5.12)
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andn, (dl) = n,()A(dl) is absolutely continuous with respectitpthen

(iv) n:(dk) is absolutely continuous with respecttpwith density

ni (k) = / DRt ko, dl) = =@ DHn k), 1 <u<v,

R4
(V) (zr)rerrv7 is a forward Markov process with transition kernel
/
ot dl) = "D kudn.
n: (k)

(vi) the law at timer of z; is n, (k)n; (k)A(dk).

Relation (5.9) can be written as

o

o (ky=H'n (k) and %(dk):Hn,(dk) 1 €lr vl

6. Generators

In this section we study the generators of Bernstein diffusions with jumps, solutions of forward and backward
stochastic integro-differential equations, under the assumptions of Theorem 3.2.

Definition 6.1.For f € S(RY) we define the forward generator (cf. Proposition 3.2) by

1 k
Ly fU=(c,VF(0)+ 500 f k) + f (Flk+y)— f(K) =y, Vf(k>>1{|y|<1})%v<dy)
Rd
k — k
/ mEE D =101 G )1y <v(dy) + (VIogn (), V£ (),

1z (k)
Rd

and its backward counterpart by

*

1 K —
L300 =16 £00) = 580 6= [ (7= = 00+ 7 £Op1cn) e
t
R4

(v, V£ Ly <yv(dy) — (Viogn; k), V £ (k) .

v(dy)

Jr/77?‘(16—)))—77;"(16)
n; (k)
R4
Note that;. is not the adjoint ofZ,,, which will be denoted, when needed, 0g,)". The proof of
Proposition 3.4 follows from the next proposition.

Proposition 6.2.The kernel (¢, k, u, dl) and p*(s, dj, t, k) of Proposition®.1and5.2, satisfy the partial integro-
differential equations

0
8—”@, kou,dl) = (Lo pt. k. u, dl) 6.1)
u

(Kolmogorov forward or Fokker—Planck equatipland

*

ap . .
o (5. dj 1 k) = (L3) [ p(s.dj.1.k).
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The notatlon([,,,u)lp(t k,u,dl), respectlvely(ﬁ* ) p(s dj,t, k), means that,,, respectlvelyﬁ**, acts on
the variabld, respectively, i.e. Proposition 6.2 states that

8—/f(l)p(t,k,u,dl)=/Enuf(l)p(t,k,u,dl),
u
d d

respectively

d
a/f(.])p*(svd.]vttk):/ﬁzjf(J)p(ssdjstvk)
d d

In order to prove Proposition 6.2 we will need the following.

Lemma 6.3.For f, g € S(RY), the carré du champ operatof4 7,28] associated to-H and —H' are given
respectively by

T(f. &) (k) =U k) fk)gk) +(V f(k), Vg(k)), + /(f(k + ) = fK)(gtk + y) — g(k))v(dy),
R4
and
IT(f. 9) (k) = U k) fk)g(k) +(V f (k). Vg(k)) , + / (flk—y)— fR))(gtk —y) — g(k))v(dy).
R4
Proof. An elementary computation shows that
—H(fg)=—fHg—gHf +T(f 8.
and
—H'(fg)=—fHg —gHf +T(f.9),
which is the definition of*(f, g) andI'T(f, g). O

Let the operator®; and D} be defined informally by

at

1/9
zf 77;’(<8t+ )(n;f)
By an adaptation of the method of [1] one shows tlat and D; are densely defined operators in
L2(RY, nf (kyn; (k)A(dk)). They will be called afterwards, the forward and backward derivatives, respectively.

The following lemma provides a decomposition & and D} which will be useful in the proof of
Proposition 6.2.

1/0
D f= —<— —H>(77zf)

and

Lemma 6.4.We have
d

d
— * *
D; = m +L, and D;= 5 + Lo

Proof. We have
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Ji (k)

a
szz(k)=<5—H)fz(k)+ o

e (k)
of: .
= E(k) — V@iV fitk) +(Viogn (k), V f; (k) 5

/ ni(k+y) —ne (k)
e (k)

5 1
(a_ _ H)n,(k) + =T, )k
t un

(fitk+y) = fi())v(dy)
Rd
af; 1
= 0+ (. V) + S8 filk) + / (fitk+y) = fi(k) = (v, V fi(k))Lqy1<1y) v(dy)
]Rd
Nk +y) —ns (k)

Wik ) = fid)vidy)

+(Vlogn,. V.fi (k) + /
R4
o,

1
= 0+ (e, Vfito)+ 5 A8 fi (k)

k
+/(mfh(—,:)y) (fik+y) — fi(k)) —(y,sz(k))l{ygl})v(dﬁ+<V'0977:,sz(k))3

Rd
of; 1
= 510 + (e, Vb)) + (VIogn., V (), + 5 As i (6)
k
+ / (fitk+y) = fi(k) — |y, Vﬁ(k>>1ﬂy\<1})%v(dy>
t
Rd

+/ ne(k +y) —n (k)

1 (6) (v, Vi () Ly 1<0yv (dy)

R4

ad
= <E +En,)f,(k).
The proof forD; is similar. O

Now we can easily prove Proposition 6.2.

Proof. We have for anyf € S(R?), using the decompositions of Lemma 6.4:

0 0 0 —(u—n)H
77z(k)—a FOpt koud)=— [ fOnDht ku,dl)=—]e (fn) (0]
u u ou
R4 R4

:/f(l) 8;“ (l)h(t,k,u,dl)—/Hf(l)nu(l)h(t,k,u,dl)
R4 ! R4

=/nr(l)Duf(l)h(t,k,u,dl)=/nu(l)ﬁnuf(l)h(t,k,u,dl)

R4 R4

=nz(k)/ﬁnuf(l)p(t,k,u,dl)=m(k)/f(l)(ﬁm,);rp(t,k,u,dl)-
R Rd

The dual statement is proved similarly
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Proof of Proposition 3.4. Proposition 6.2 shows that(z,) — f(;’ Ly, f(zy)du, v > 0, is a martingale for
f eSERY:

v v

d
E[f(zv) — f(z0) |f,]=/5E[f(zu) |f,]du=/E[£nuf(zu> | 7] du,
t

t

andf(zv)—f(;’ Ly, f(zu)du,v > 0,is alocal martingale fof C2(R%). A similar argument holds in the backward
case. O

7. Uniqueness of reversible diffusions

In this section we show that for the class of potentials considered in this paper the processes constructed ar
essentially the only Markovian reversible diffusiomgh jumps. As defined in Proposition 5.1 let us recall that,
more generally, a Bernstein process is a pro¢ess:(-,,1 such that

P(z; edk | Py v F) =Pz edk|zs, zu), r<s<t<u<v, (7.1)

where(Py)ser.v), respectively(F; ) [-»1, denotes the increasing, respectjvdecreasing, filtration generated by
(zt)rerr,01- Jamison’s construction of Bernstein processes [24] is still valid in the jump case. It requires the data of
a probability measure onR¢ x R and a Bernstein transition kernel, i.e. a kerh@l, ;, 7, dk, u, ) satisfying the
counterpart of the Chapman—Kolmogorov equation:

/h(s, j,t,B,u,l)h(s,j,u,dl,v,m)=/h(s,j,t,dk,v,m)h(t,k,u,A,v,m), (7.2)
A B

for A, B € B(R?). From [24] we know that there exists for these data a unique (in general not Markovian) Bernstein
processz;)se(r,v) SUCh that

(@) P(z; €B, z,€C)=v(B x (),
(b) P(z; € Blzs,2u) =h(s,zg,t,B,u,z,), r <s <t <u<v.

The finite dimensional distribution @t; ), <[ iS given by

P(z, €A, z4€B1,...,2,, € By, 2y €C)
= / v(dj,dl) / h(r,i,t1,dky,v,m)--- / h(th-1, kn—1, tn, dky, v, m), (7.3)
AxC B By
of. [24].

Our construction of Markovian Bernstein processes did not follow, however, the above procedure. Instead, we
started from the data @ andV, definingH = U + V (i V) (Definition 2.1), i.e. from the Lévy proces$& ):c(r.v],
and from boundary conditiong’ andn,, allowing to construct a Markov transition kernels with the solutions of
the adjoint heat equations (3.4). Then we showed that the corresponding Markov process is a Bernstein process.
Conversely, under the additional hypesis (7.4) and (7.5) on the kernels, j, t, dk,u,l) of a Bernstein
process, it is possible to show that if a Bernstein process is Markovian then it is the process described in
Theorem 3.2. This extends Theorem 3.1 of [24] and Theorem 3.3 of [31] to the case ihetk, u, dl) and
h'(s,dj,t, k) are not absolutely continuous with respect to a reference measure.

Theorem 7.1.Assume that/ and H are adjoint with respect to a measure Then the conditions
h(s, j.t,dk,u,Dh(s, j,u,dl) = h(s, j,t,dk)h(t, k,u,dl), r(dj)-a.e, (7.4)
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and
h(s, j,t,dk,u,Dh (s, dj,u,l) =hV(s,dj,t,)nT(t,dk,u, 1), r(dD)-a.e, (7.5)
are equivalent. Moreover,

(8) Let (z¢):¢r.v] denote the Bernstein process with kerhé, j, ¢, dk, u, ) satisfying(7.4). Then the following
are equivalent
(i) the processz;):crr,v1 is forward Markovian andp(z, k, u, dl) is absolutely continuous with respect to
h(t, k,u,dl),
(i) there exists a measurg (di) and a positive density function, (m) such that

P(zr €A, zy €B) = / ny (di)h(r, i, v, dm)n, (m).
AxXB

(b) Assume thak(s, j, ¢, dk, u,l) satisfieq7.5). Then the following are equivalent
(iii) there exists a positive density functigi(i) and a probabilitymeasure;, (dm) such that

P(zz €A, zyeB) = / n (R (r, di, v, mn, (dm).
AxB
(iv) thTe processz; ):c[rv] IS backward Markovian ang* (s, dj, t, k) is absolutely continuous with respect to
If n* (}ldi(;fi;}‘t(}];ikdi) andn, (dl) = n,(1)L(dl) are absolutely continuous with respect to a fixed measure
then(i), (i), (iii) and(iv) are equivalent.
Proof. Under the adjointness hypothesisifand H T with respect to.:
hY(s, dj, t, k)r(dk) = h(u, j, t, dk)r(d})),
conditions (7.4) and (7.5) are equivalent since, then,
h(s, j,t,dk,u,Dh(s, j,u,dDr(dj) =h(s,j,t,dk,u,l)hT(s,dj,u,l)A(dl),
and
h(s, j.t,dk)h(t, k,u, dDAMdj) = hT(s,dj, t, k)r@Dh @, dk, u, D).

The implications (ii)= (i), (iv) = (iii) follows from Propositions 7.4, 7.5, and &> (ii), (iii) = (iv) will follow
from Propositions 7.2, 7.3. Unddné self-adjointness assumpii¢b.7), the equivalence (& (iii) follows from
Propositions 5.1 and 5.2, which show that the Bernstein praggss;, .1 is forward Markovian if and only if it is
backward Markovian. O

Proposition 7.2.Assume that the Bernstein kerngh, j, 7, dk, u, ) satisfies

h(s, j,t,dk,u,Dh(s, j,u,dl) =h(s, j, t,dk)h(t, k,u,dl), ps(dj)-a.e, (7.6)

where p; is the law ofzs, r <s < v. If the Bernstein proces&;);e[r»] iS forward Markovian andp(z, k, v, dm)
is absolutely continuous with respect/i, k, v, dm), then there exists a measuyg(di) and a positive density
functionn, (m) such that

P(zy €di,zy €dm) =) (di)h(r,i,v,dm)n,(m), r <. (7.7)
Moreover we have
k
prictdiy = "N i1, an), (7.8)

Nyl
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with
n,(k):/nv(m)h(t,k,v,dm), n;"(dk):/n;"(di)h(r, it,dk), r<t<o. (7.9)
R4 R4

Proof. Letus assume tha&t;); <[] IS Markovian, with transition kerngh(z, k, u, dl). Let p, (di) denote an initial
law of (z¢)se[r,v- We have

P(z, €A, z €B, zy eC)=/pr(di)/p(r,i,t,dk)/p(t,k,v,dm). (7.10)
A B C
On the other hand,
P(z, €A, z €B, 7y eC)=/pr(di)/p(r,i,v,dm)/h(r, i,t,dk,v,m). (7.11)
A C B

Equating (7.10) and (7.11), we obtain
pr i, t,dk)p(t,k,v,dm) = p(r,i,v,dm)h(r,i,t,dk,v,m),
which, using (7.6), gives
p(r,i, t,dk) p(t, k,v,dm)

) ‘1 1d =h 3 .7 7d 3 712
P iy v.dm) =h(r. i, v, dm) e (7.12)
and
V(A X C):/pr(di)/p(r,i,v,dm)
A C
i 1, dk kv, d
= [ ot P vy P,
h(r,i,t,dk) h(t,k,v,dm)
AxC
Let us fix (10, ko) € Ry x R¢, and define
(to, ko, v, dm)
nu(m) = c(to, ko) o0 2 71 (7.13)

h(to, ko, v, dm)’
and

) 1 p(,i, to,dko) )

*di) = di), 7.14

1D = e ko) i to, gy "4 (7.14)

wherec(to, ko) is a normalization constant equalig (ko) after integrating in/m the relation

ny(m)h(to, ko, v, dm) = c(t0, ko) p(t0, ko, v, dm).
From (7.10), (7.12), (7.13) and (7.14) we have
P(z, €di,zy €dm) = p,(di)p(r,i,v,dm) =n;(di)h(r,i,v, dm)n,(m),
i.e. (7.7) holds. Finally, from (7.3) and (7.6) we have
P(z, €di, z; e dk) = / n;k(di)h(r, i,v,dm)n,(m)h(r,i,t,dk,v, m)
Rd
:/n;"(di)h(r, i,t,dk)h(t, k,v,dm)n,(m)

Rd
=, (dih(r,i,t,dk)n, k),
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andP(z, € di) =n}(di)n, (@), which proves (7.8). O
In the backward Markovian case we have the followiegult, which is proved similarly to Proposition 7.2.

Proposition 7.3.Assume that the Bernstein kerngh, j, 7, dk, u, ) satisfies
h(s, j,t,dk,u,Dh (s, dj,u,l) =h¥(s,dj, ¢, nT(t,dk,u, 1), pu(dD)-a.e, (7.15)

wherep, is the law ofz,, r <u < v. If the Bernstein procesg; ):<(rv] is backward Markovian ang*(r, di, t, k)
is absolutely continuous with respect &d(r, di, r, k), then there exists a positive density functigii) and a
measurey, (dm) such that

P(zr €di,zy €dm) =n,()RT(r, di, v, m)n* (dm).
Moreover we have
ny (k)
;5 (m)

p*(t, dk,v,m) = nY@, dk, v, m), (7.16)

with
n(dk) = / no(dm)h'(t, dk,v.m), n}(k)= / nr R (r.di k), r<t<v.
R4 R4
The following is a converse to Proposition 7.2.

Proposition 7.4.Assume that there exists a measyféZi) and a positive density functiop, (m) such that

VAXx B)=P(z, €A, zp € B) = / ni(dih(r, i, v, dm)n,(m). (7.17)
AxXB

Then the Bernstein process;);c[r»] With kernelh(s, j, t,dk,u,l) satisfying the condition§7.4) or (7.5) is
forward Markovian andp(z, k, u, dl) is absolutely continuous with respectit¢, &, u, dl), and given by(7.8).

Proof. From (7.3), (7.4) and (7.17) we have
P(zy €dka, ..., 2z, €dky,zy €dl)
= / nj(di)h(r’ i? 11, dkl) o 'h(tnv knv u, dl) / Wv(m)h(uv lv v, dm)
R4 R4
fRd ny(m)h(u,l,v,dm)
fRd Uv(m)h(tn’ ki’h v, dm) ’

= P(zyy €dky, ..., 2z, €dky)h(ty, ky,u,dl)

hence
fRd ny(m)h(u,l,v,dm)

(ty, kn,u,dl) =
Pl T 110 (M)At K v, d)

h(ty, kn,u,dl). O

Of course, from (7.3), (7.5) and (7.18), it is also true that

Proposition 7.5.Assume that there exists a positive density funajfafn) and a measure, (dm) such that

P(zr€A, zy€B) = / nEh (r, di, v, myny(dm). (7.18)
AXB
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Then the Bernstein proce&s ):c[r,») With kernelh(s, j, ¢, dk, u, I) satisfying(7.4)or (7.5)is backward Markovian
and p*(s, dj, t, k) is absolutely continuous with respectit(s, dj, ¢, k), and given by(7.16)

8. Variational characterization

In this section we use the approach to stochastic control for jump processes of [15,29], to obtain a variational
characterization of the Markovian Bernstein processes (or reversible diffusions) with jumps considered before. We
consider the stochastic control problemyinf(z, k; f) with action functional

J(t.k: f) = Eq. [/ L(z(s), fs)ds —log nv(Z(v))], (8.1)
t

whereE; i) denotes the conditional expectation gifen= k}, and the Lagrangiah (k, f) is defined informally
as

Lk, f)=Lylog f (k) + %Hf(k), feS®Y), f>0,

whereL ; is defined at the beginning of Section 3.2. We have explicitly

[ f0 = Flhty) | k) flty)
L(k’f)‘/ < o T o 0w

1
)v(dy) + E(V log f (k), Vlog f (k)), + U (k)
R4

8f(k,y) 1
=/8(W)V(dﬁ + §(V|09f(k), Vlog f (k) + U k),

Rd
with g(x) = (1 + x) log(1+ x) — x and§f (k, y) = f(k + y) — f (k). In particular, wherf = n,,

1
L(k,n) = Ly, logn; (k) + mHm(k)

1 9
=L, lo k —— —n(k
ne l0gn; ( )+Tlr(k) 8t771()

d
=Ly, logn, (k) + % logn; (k)
= D, logn; (k).

Proposition 8.1.The dynamic programming equation with final boundary condition

JdA .

=7 (0 +min[£;4:K) + Lk, /)] =0, Ay =—logn,, (8:2)
associated to the action functioné8.1) has the solutiord; = —logn;, the minimum inf being attained on
fi1(k) = n;(k), i.e. whenA, is solution of the Hamilton—-Jacobi—Bellman equation

0A;

1
& B =—Uk) — E(ABAt(k) —(VAL(K), VAL(K)) )

+ /(e*At“ﬂ)“r(k) — 1+ Ly <aly, VA((K)) dv(y) — (¢, VA (). (8.3)

R4
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Proof. We first show that fog, (k) > O:

. 1
min[—L, logg: (k) + L(k, f;)] = —— Hg: (k), (8.4)
f g1 (k)

and that the minimum is attained fgr = g;. Let us define

F(k’y)z_fz(k+y)loggz(k+y) fz(k+y)|ogfz(k+y)_fz(k+y) gk +y)
fi (k) g (k) fi (k) fi (k) fi (k) g (k)
We have
L(k, fi) — Ly 10gg (k) — ——Hn; (k)
z(k)
gt(k)
=—L¢log - Hun; (k
709 T T O e
1/v v v v
=/F(k, nvdy) + = <ﬁ(k)—7f'(k) ﬁ(k) ff' (k)>
Rd
>/F(k,y)v(dy).
R4

Now, for alla > 0,
i I — ) =0,
g;lﬂrg(za—i—a Ooga—a+e )
hence taking = — log(g; (k + y)/g:(k)) anda = f; (k + y)/f,(k) we haveF (k, y) > 0, and
1 1
L(k, fi) — L1098 — gﬂgz =Ly, log & 7 L+ = 7 Hfz - g—ng > 0.

The minimum (zero) being attained with=g;, i.e.:

. 1
. t

Letting A; = —logg;, the dynamic programming equation (8.2) becomes
JdA
4 e He A =0,
at
with solutionA; = — logn; . Finally, from the relation
1 \Y \Y
ApA; = ——ABg,+<ﬁ ﬁ)
8 8 &t
we have
L (k) = ! U (k)g: (k) — (¢, Vg (k) 1A (k)
_ —c _Z
(k) Hg, 2 (k) 8t » V8t > B8t
- /(gr(k +y) —gik) — (v, Vgt(k)>1{y<1})‘/(d}’))
R4

1
=U (k) +(c, VA (k)) + (ABAt (VA1 VA),)

_ /(e—Az(k-H‘)-i-Az(k) — 14+ 1{|y|<l}<y’ VAI))dv,

R4
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which yields (8.3). O

In the backward case we consider the action functional which is, informally, the time reversed of (8.1):
t
J*(t,k; f*) = Eq.p [/ L*(Z(s),f*)ds—logn;‘(z(r))] (8.5)

with LagrangianL*(k, f*) defined now as

L*(k, f*)=—L%.log f*(k) + HYf*(k), f*eS®RD.

fxk)
We have

8* f*(k, 1
L*(k, f) =/g(M)v(dy) + =(Vlog f*(k), Vlog f*(k)), + U (k),
(k) 2
R4
with 8* f*(k, y) = f*(k — y) — f*(k). In particular,
L*(k,n}) = —Dj logn; (k).

Similarly we have the following proposition.

Proposition 8.2.The backward dynamic programming equation with initial boundary condition

A* .
att (k) + n}Ln[— A7 (k) + Lk, f7)] =0, Ay =—logn;, (8.6)
associated t8.5) has solutionA} = —logn;, the minimum inf* being attained atf* (k) = n;(k), and A} is
solution of the backward Hamilton—Jacobi—Bellman equation
aA;k 1 * * *
W(k) =U(k) + 5(ABA, (k) —(VA} (k), VA} (k) )
- /(e*f‘?‘(k*”“‘?‘(k) —1—1y<yly, VAF®)) dv(y) — (c, VAF(K)). (8.7)
R4

In summary, we have shown here that the diffusion processes with jumps constructed before can also be regarde
as minima of some stochastic action functionals associated with the stArting
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