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Abstract

We prove quenched and annealed moderate deviation principle in large time for random additive functional of Brownian
motion fé v(Bs)ds, where B is ad-dimensional Brownian motion, angis a stationary Gaussian field froRf’ with value
in R, independent of the Brownian motion. The speed of the moderate deviations is linked to the decay of correlation of the
random field. The results are proved in dimensiog 3. These random additive functionals are the central object in the study
of diffusion processes with random drift; = W; + jé V(Xs5)ds, whereV is a centered Gaussian shear flow random field
independent of the BrowniaW .
0 2004 Elsevier SAS. All rights reserved.

Résumé

Soit B un mouvement Brownied-dimensionnel, etv(x), x € ]Rd) un champ Gaussien stationnaire centré indépendant de
Nous prouvons un principe de déviations modérées en temps long pour la fonctionnelle additive ej[{éataigeds, lorsque
d < 3. Ce principe est obtenu lorsqu’une réalisation du chamst fixée, ou lorsqu’on moyenne sur l'aléawdé a vitesse dans
les déviations modérées dépend de la vitesse de décorrélatiolCds fonctionnelles additives sont I'objet central dans I'étude
de diffusion dans des champs de vitesse aléatoires cisaillés.
0 2004 Elsevier SAS. All rights reserved.
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1. Introduction
In this paper, we continue our investigation of the large deviations properties in large time for diff@sjomns
random incompressible velocity fields

dX;, =dW,+V(t,X,)dt; Vrvandom E(V)=0; div(V)=0.
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Such a process serves as a model for diffusion in a random media (incompressible turbulent flow, porous)nedia
As such, it has been thoroughly studied, under various assumptions on the randdim(de# for instance [3,4,
24,7,8,14-19,26,27,32)).

We focus here on the Gaussian shear flow model: we assum# tisatime independent, with the following
simple spatial structure:

Forallx = (x1,x2) e R x R,  V(x1,x2) = (0, v(xl)),

where(v(x1); x1 € R?) is a centered stationary Gaussian field with valu® jrand with covariance

¢ (k)

Ik d=es = @

K(x =y =E(@uy) = / CA
R4
¢ is a rapidly decreasing function at infinity, which plays the role of an ultraviolet cut-off. The paraméter

positive, and describes the decay of correlation at infinity. &or d, K is rapidly decreasing at infinity. For
O<a<d, K(x)x<|x||~*. The famous Kolmogorov-41 law describing the statistical behaviarfof turbulent
o

flows, would correspond to a negative valuenot —2/3 (with an additional infrared cut-off), which is outside
the scope of this paper. For this reason, and becauseitidependence, the special case we are studying is more
appropriate to describe diffusion in porous media. It was actually introduced in this setting by Matheron and de
Marsily in [28].

Note that in presence of the shear flow structure, the diffuXiois given by

{ X1:=Wais;
Xo: = Wo, + [g v(Wyy)ds.

Hence, the study ok, for large time is reduced to the study of random additive functional of Brownian motion
Y, & [é v(Byg)ds. In [28], the mean square displaceme?‘y[YtZ] is estimated for a field which is §-correlated,
and for the annealed lawy (i.e. when we average over both the Brownian motion and the velocity field). Almost
at the same time, Kesten and Spitzer [25] provédeatral limit theorem” for the discrete analoguelof For the
model defined by (1) and (2), this study is done by Avellaneda and Majda [3], and by Horntrop and Majda [24].
All these papers exhibit super-diffusive behaviortofat least in a certain range of the parameters, and this is the
reason why this kind of model has received so much attention.

The problem we address here, is the study of the moderate deviatigfgls(cﬂs) ds in the model given by (1).
More precisely, we look for rough asymptoticslarge time for the probability of events like

'
A 1
Az{m/v(Bs)ds>y}, y >0,
0

with respect to the annealed meas#geand the quenched o (i.e. in frozen environment), and for a scaling
m(t) such thain(z) > 1. We speak about “moderate deviations”, singe) is chosen to be negligible with respect
to the large deviations normalizations given in [9,1]. More precisely, it is proved in [9] that

2)

- 1
1
37z / v(Bs)ds > y:| ~ exp(—tla (y)), 3)
- 0
while [1] establishes that

SUI

1
_t\/log(t)

P

(@)

t
/U(Bs)ds > yj| ~ exp(—th (y)). 4)
0
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It is to note that in (3) and (4), the scaling%? andt,/log(r) do not depend on the covariance functinbut on
the choice of a Gaussian statistic farOn the other hand, the rate functiohsand/, depend onk. A formal
computation from (3) and (4) using the behaviodgtnd/, near the origin, would lead to

P 1 t By)d ~e t m(t)
0 m(t)/v( s)ds >y |~ xp<— “<t3/2y)>
0

MmO 4 ®)
%GXp(—Ca(ol, d)wlyp-%—omd)’
t 2+and
for 114" < m(1) <« 13/
t
P i/U(B )ds > < < ))
0 m(t) , * Y Iog(t
m@)aarl-aa 4 (6)
~e < g (o, d) ————1y IO‘N’),
Iog(t)w

for 1t *T\/Iog(t <K m(t) K t/log(r).

Actually, estimates (5) and (6) are the main results of this paper (see Theorems 2 and 4). They are pio¥el for
and form(¢) such that

1 <m(t) < t¥2, inthe annealed case; (7)
t <m(t) K ty/log(r), inthe quenched one. (8)

They can be straightforwardly interpreted in terms of the diffusioficf. Corollaries 3 and 5), and show a
super-diffusive behavior of this diffusion: taking for instame&) = ¢, Corollary 5 states that the probability f&r
to travel during a time to a distance, is much larger than in the usual diffusive case.

The constant€, («, d) andC,(«, d) are given by variational formulas, and are non degenerate for/ < 4
Note that in this domain ofarameters, the quenched rate functiosallivays convex, whereas the annealed one
is convex only forx A d < 2.

The proof of (5) and (6) has little to do with the formal computations made above. Let us describe it briefly
in the annealed situation. First of all, note that becaugeehon-convexity of the annealed rate functional, it is
hopeless to use the Gartner—Ellis method (i.e. to pass bggheaplace transform) in order to obtain (5). Indeed,
this strategy would lead to a rate functional, which is a Legendre transform, henceforth convex. Instead, we prove
(5) by a contraction principle. The first remark is that by Brownian scaling invariance, the problem is to find the
probability of{(L,,2; v} > y} (r > 0), where

o L, 2 fo 8, ds is the Brownian occupation measure;

o v (x)& Ev(rx) is a kind of coarse-graining of the field, on a large seai@be chosen later in such a way that
t/r¢>1;

e and(-; -) is the duality bracket.

Now, the results of Donsker and Varadhan [12] give a large deviation principle (LDR) ferwith speed/r2
and rate functior. On the other hand, when< m, we prove a LDP fow, restricted to finite volume, with speed
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m?re/d /12 and rate functiorL.. Therefore, in the annealed case, a contraction principle should yield a LDP, for
when one equals the speed rates for each marginal LDP, i.e. when

eromd

2
t/rc= e (9)
Moreover, the rate functional should be
Z(y) = If{LGO) + L@); (15 ) = v}

This leads to (5). Following this simple strategy, we are confronted to two technical problems. The first one is that
L, ;.2 andv, satisfy LDP in weak topologies where the function «) — (u; u) is not continuous. We have thus
to smoothen the Brownian occupation measure. We succeed in this regularizatiod wigen

The second one is thdt, ,. does not satisfy a full LDP, i.e. the LDP upper bound is only valid for compact
sets. We have thus to proceed to a compactification. Tétbod we have chosen, has been developed by Donsker
and Varadhan in [13] to study the large deviations for the volume of the Wiener sausage. It consists in replacing
the Brownian motion orR¢, by the Brownian motion on a torus of large radius. In [13], this projection on a
torus clearly decreases the volume of the Wiener sausage. In our situation, such a monotony is no more obvious,
and in order to make this comparison possible, we impose an additional assumption on the covariance function
(ol = ¢(0)), which we believe to be only an artefact of the method.

In the quenched case, the power function in the rate functional is convex in the domain of parameters where
C,(, d) is positive. Therefore, the Gartner—Ellis methsdhere appropriate to obih the quenched upper bound.
Denoting byo (R) the Brownian exit time of a ball of radiug, and using Brownian scaling invariance, our
problem is then more or less equivalent to look for rough asymptotics of the log-Laplace transform restricted to
o(Rt/r?) >1/r?

2

r t
” IOgEo[eXp<r—2a(L,/rz; v,)); O’(Rt/rz) > t/r21|

t/r2 (10)

2
= rTlogEo[eXp(oc / vy (By) ds); U(Rt/rz) > t/r{|.
0

By Feynman-Kac formula, this behavior is related ke t(quenched) behavior of the principal eigenvalue
A(av;, B(O, Rt/r?)) of the random operatc%'A + av;, with Dirichlet conditions on the boundary &0, Rz/r?2).

Similar quantities have been thoroughtydied both in the annealed and imetquenched setting, for different
scalings, and for different kinds of potential see for instance Sznitman [34], Merkl and Withrich [29,31,30]
for the case of a Poissonian potential; Gartner and Molchanov [22,23], Biskup and Kénig [5] for the i.i.d case;
Gartner and Konig [20], Gartner, Konig and Molchanov [21] for more general potentials, including Gaussian
ones. Except for [34], all these papers are based on a lemma whose first version appeared in Gartner and Konig
[20], and whose great merit is to enable the compactificain fairly general situations. This lemma asserts
that A(av;, B(O, Rt/r?)) is comparable with mip (avy, B(x;, A)) where theB(x;, A) are balls of fixed size

A coveringB(0, Rt/r?). Now using the LDP fow,, it can be proved that this minimum has an a.s. limit, as soon
asr is chosen so that

t m2ra/\d
ﬁzexp< p ) (11)

This leads to the upper bound in (6).
Note that forr satisfying (11), we are actually interested in asymptotics for

t

-1
Eolexpl — = (") [ wByyas) |. (12)
|Og(t)2/0[/\d t
0
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We are thus in a different asymptotic regime than the above cited papers, which except for [29,31,30], give
asymptotics for

t
Eg |:exp(oc / v(By) ds)],
0

in relation with the parabolic Anderson model.

The quenched lower bound is obtained by forcing the Brownian motion to stay in a region where thddield
performing a large deviation.

We end this introduction with two remarks. The first one concerns the ranges of the seé&lrgjven by (7)
and (8). The expression “moderate deviations” is usuald to designate the deviations for all the normalizations
between the central limit theorem, and the &aggviations. At least for the annealed casedadl, the central limit
normalization ig1~*/%/ (see [3,4,24]). Hence our technics do not cover all the range of possible normalizations.
The restrictionn () > t comes from the LDP for,, which is no more valid ifn(z) <« ¢. Note also that even the
formal computation (5) do not cover all the possible normalizations between the central limit theorem and the large
deviations, since A1l< a A 2.

The second remark is to mention that the case whe@nsists of bounded and i.i.d, andr) = ¢, is treated in
[2]. The case at hand in this paper, differs from [2] in essentially two directions: the introduction of correlations,
and the unbondedness of the field. The main effect of correlations is to change the speed for thevL Def
unboudedness causes some difficulties in the regutamizprocedure, which result in the restrictidn< 3. We
believe however that Egs. (5) and (6) should be true, whenever they make sense, i.e. whenever the constants are
non-degeneratex(A d < 4).

The paper is organized as follows. In Section 2, we introduce the notations and state the main results. Section 3
is devoted to the LDP satisfied hy. In Section 4, we prove the LDP for ttenealed case, while the quenched
LDP is addressed in Section 5. Finally, Section 6 gathers some technical lemmas.

2. Notations and results

We begin with some notations used throughout the paper. Whand y are real,x; = max(x, 0), and
X Ay=min(x,y).
WhenD is a subset aR?, we denote by.” (D) the space of measurable functions such fhatf (x)|7 dx < oc.

The norm inL? (D) will be denoted byl - ||, p or simply by|| - ||, whenD = R?. The conjugate element gfis

denoted byp’ (ﬁ =1- %), and(-; -) is used for the duality bracket betwe&#r andL”’, or more generally for
the duality between measures and functions. When it makes seissiée convolution operator.
When f € L2(R?), f is its Fourier transform. Wheji is in the Schwartz space of rapidly decreasing functions

anda €10, d[, R, (f) is the convolution operator by the Riesz potential,

f» 4

13
|x — y|d— (13)

Ra(f)(x) = /
Rd

We recall some standard results on the operaRar,svhich can be found for instance in [33] (see Lemma 2, p. 117,
and Theorem 1, p. 119). First of all, whgnandg are Schwartz functions,

F k)& (k
(f: Ral)) = / % dk. (14)
Rd
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Moreover,R,, can be extended to a continuous operator betwigespaces:

d 1 1 «
Vpe }1, —[, VIeLP®RY), RN, <CIfllp for===——. (15)
o q p d
Ro will by analogy denote the identity operator.
Finally, a family(Z;, r e R™) of random variables with values in the topological sp&ds said to satisfy a full
LDP, with speed(¢) (v(¢) > 1), and good rate functiohif and only if

1. I:Z+ R* has compact level sets.
2. LD lower bound.

1
For all open seG of Z, liminf — logP[Z; € G] > — inf I(2).
t—00 v(t) z€G
3. LD upper bound.

. 1 .
For all closed sef of Z, Ilimsup——IlogP[Z; € F]< — inf I(z).
o0 V(1) zeF

The LDP is said to be a weak one/ifs only lower semicontinuous, and the upper bound is only valid for compact
subsets ofZ.

The Gaussian field. Let (v(x), x € R?) be a centered stationary Gaussian field with valueR,indefined on a
probability spacéX’, G, P). E will denote the expectation with respectlitpso that the covariance function ois
defined byK (x — y) £ E[v(x)v(y)].

We assume thathas a spectral densify, which is smooth, except at the origin, and which is rapidly decreasing
at infinity. We will write

s 00

Dy |k|d—a)+’

(16)
wherea > 0, andg : R? — R™ is even, smooth and rapidly decreasitthout loss of generality, we assume that
$(0) =1.

D being integrablek (x) = fRd €% D(k) dk is continuous, and tends to zero at infiniky.attains its maximal
value at 0. Actuallygp being rapidly decreasings is infinitely differentiable, with bounded derivatives. Hence,
E[(v(x) — v(¥))?] = 2(K (0) — K (x — y)) < C||lx — y||?, and it follows from Kolmogorov continuity criterion that
v admits a continuous version.

The parametes is linked to the decay oK at infinity. Fora > d, K is rapidly decreasing at infinity. Note
that in this situationX is integrable, and that by Fourier inverse transfofk (x) dx = D(0) = ¢(0) = 1. For
O<wa<d, K(x)=|x|™9, sothatk is notin L1(RY).

o

ForA > 0andr > 0, let Q(A) £ [—A; AlY, andv (x) = m#(t)v(rx)ﬂQ(A)(x). v will be viewed as a random

variable with values inL2(Q(A)) endowed with the weak topology defined by duality with test functions of
L?(Q(A)). Akey result in all the sequel, is the following large deviation principle.

Theorem 1.Assume that, m andr are linked in such a way that< m(¢) andr(z) > 1. Whenr — oo, for all
A >0, v/ satisfies a full LDP or.?(Q(A)) with speedn?r® /12, and good rate function
1 f(k)|?
La@w2  sup {<u, PRy QrAC] dk},

ITATEE 17)
fELZ(Q(A)) sz ||k||(d o)+

where f denotes thd.2-Fourier transform off .



F. Castell / Ann. I. H. Poincaré — PR 40 (2004) 337-366 343

The diffusion in random Gaussian shear flovet {B;,r € Rt} be a d-dimensional Brownian motion,
independent of the random field E, denotes expectation under the Wiener measure startingsfrdrarz > 0,

let L, £ 71[6 3, ds be the Brownian occupation measure. The magsult of this paper concerns moderate
deviations estimates fadf; £ m—%t) [é v(Bs)ds = (L, %v) under the “quenched” measuRg, and the “annealed”
onePy £ P ® Py. What is meant by “moderate deviations”, is estimates of events suthas y| < ¢}, under the
quenched and annealed measures.

In establishing these moderate deviations results,ees the large deviations results of Donsker and Varadhan
[12] aboutL, viewed as a random variable with value in the space of probability meagdigR?). ML(RY) is
endowed with the topology of weak convergence defibg duality with bounded and continuous test functions.
In this topological spacd,, satisfies a weak large deviation principle with speedd rate functior defined by

ﬁw):{z Joa IVV/FIPdx i dp=f dx, (18)
otherwise.

We introduce now some notations related to the Brownian motion. First of all, ®Hism@ domain ofR?, o (D)
is the exit time ofD. If D = Q(A), o (D) will be denoted bys (A). WhenV is a bounded measurable function
onD, A(V, D) is the principal eigenvalue of the Schrddinger operémr—i— V, with Dirichlet condition on the
boundary ofD:

. 1
AV, D)= inf {—<f;—Af+Vf>; ||f||2,D=1}

feCx (D)

= { /IIVfII dx—/Vf dx; | fliep= 1}
fECw(D)

= inf {L(w)—(wV)}
neM3(D)

whereMg(D) denotes the space of probabilityeasures with compact supportih
In relation withY , we define the diffusion in the random shear flow drift. Far R?*1, letx; € R andxs e R
be defined by the decompositien= (x1, x2). Let V be the random field oR?** with values inR?*?1 defined by

V(x)=V(x1,x2) = (0, v(x1). (19)

Let W, = (B, Z;) (Z: € R, t e R") be a standard Brownian motion &f+1 independent o¥/, and letX be the
solution of the stochastic differential equation

Itis plain thatX,, = B, and X, = Z; + fé v(Bs)ds = Z; + m(t)Y;. MoreoverZ andY are independent, so that
estimates orY lead straightforwardly to estimates an

The annealed moderate deviation principle

Theorem 2.Assume thad < 3, thatr < m(r) <« +¥/2, and thatp reaches its maximal value at
There exists a constait, («, d) € 10, +oo[ given by the variational formula@4), (35), (36) such that under

~ Lo R . 4 4—and .
the annealed measurgy, Y; satisfies a full LDP inR, with speedv, (1) £ m2rard /t2+aﬁd and rate function
4
Cq(a,d)|y|ZFerd.

Remark. The additional assumption afis only needed in the LD upper bound, and we think it is unnecessary.
Let us enlighten a little more this last claim. As alreadplained in the introduction, this assumption is needed to
make possible the compactification method of Donsker and Varadhan. But assume for a moment that we are in the
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domaina A d < 2, where the rate functional is convex. Then we can use the Gartner—Ellis method to obtain the LD
upper bound. Proceeding in such a way, we obtla¢ LD upper bound without the assumptiondan

As a corollary of the annealed moderate deviationsifowe obtain the annealed moderate deviations for the
diffusion X.

Corollary 3. Assume thaf < 3, thatr < m(t) < r%/2, and thatg reaches its maximal value @t
For x = (x1, x2) € R?*1, let I (x) be defined by

Cala, d)|xo|¥@Herd | if x1 =0;

21
400, otherwise. (1)

I(x1,x2) = {
Under the annealed measufe, m—%t)X, satisfies a full LDP irfR¢+1, with speedy, (1) and rate functiony.

Remark. Here again, the additional assumptiongois only needed in the upper bound.

Proof. Forall§ > 0,
= ()= o]= 2 Gomio) | 2
m(t) Y Z:/m(t)

HenceY$ > 0,
m(t) Y;

We have thus proved that’; and(g) are exponentially equivalent (cf. Deifiion 4.2.10 of [11]), and Theorem 2
implies Corollary 3 (see Theorem 4.2.13 of [11])D

lim
t—00 v, (1)

log 150[

The quenched moderate deviation principle

Theorem 4.Assume thad < 3, and thatr < m(r) < t,/log(z). There exists a constagy, («, d) € 10, +-o00[ given
by the variational formuld53), such that under the quenched measBseY; satisfies a full LDP irR, with speed
vy (1) & t(m/t/log(1))¥ @ ) and rate functiorC, (e, d)|y|#/ @9,

Again, we deduce from the qudmed moderate deviations fat, a similar statement for the diffusiox.

Corollary 5. For x = (x1, x2) € R4t let J (x) be defined by

4
J(x1, x2) = { Co@ dlxglzma, a1 =0, (22)
+00, otherwise.

Assume thad < 3, and thatr < m () < t,/log(t). Under the quenched measupg, ﬁx, satisfies a full LDP in
RI*1, with speedy, (1) and rate functiory.

Proof. The result follows again from the exponential equivalence under the quenched meaguea - O

3. Large deviations for the Gaussian field
The aim of this section is to prove Theorem 1, i.e. the LDP for

A al
vy (x) = Ev(rx)]lQ(A)(x).
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We begin with the lower bound. Fap € L>(Q(A)), I a finite set,f; € L2(Q(A)), ande > 0, set
V(uo: (fier, ) 2 {u e L(Q(A)); G, £i) = (o, )] < e}

These sets form a basis of the weak topology.860(A)). The lower bound follows then from

Lemma 6.Letz, m andr be linked in such a way that< m(z), andr(¢) > 1. For all A > 0, for all finite set/, for
all uo, f; in L2(Q(A)),

2
lim lim ;a logP[v? € V(uo: (fi)ier.€)] = —Lauo).

e—>0 500 M

Proof. We can assume without loss of generality that the functiinare linearly independent ii?(Q(A)).
Let N £ |I], and Z the element oR"Y, whoseith coordinate i f;, vtA). Z is a centered Gaussian vector, with
covariance matrix? given by

.2
0=z [ KC@-w)swsedray.
0(A)xQ(A)
Note that fora > d, K is rapidly decreasing. Hence"fK(r( — ¥)) fj(y)dy converges tof; in L2(R?) when
r— 00, and lim_ ’"tr (crt ij=({fi, fi) = f,, f,) (remind that/ K (x) dx = ¢(0) = 1).
On the other side, wham € 10, d[,

2y ok/r) 4
Ez_g;_( 2)1] ’

o, ). .
t
t ’ [lkcfl ==

fi(k )f, (k) dk.
R4
It follows then from Lemma 21 in Sectio6 and dominated convergence that

m2roz

; A A dk
M7 ("’Z)f!-fzf HOL WO

We have thus proved that

] era/\d
lim 5
t—00 t

2y _ | 20 F dk_ o 2
0 ) j —/fz(k)f](k)W—(C’oo)wo (23)

Note that by linear independence of the functighsthe limiting matrix is positive definite, and the same is true
for at for sufficiently larger. Settingzo = ({f;, u0))ie;, and denoting for € R?, ||z||( 2)1= z(at) 1z, we have

P[vf € V(uo: (fiier.€)] =P[I1Z — 20l < €]

llz)I?
/ eXp‘ (02) 1) dz
de’l(a )

lz—zollco <&

1 1)’ 2"
>exp<_§<||zo||(otz)1+8 Z|(a,2),-,;1\) )J_(S—)
i,j - de’f(cr

logdets?) = 0. Hence,

By (23), lim o0

2raAd
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2
lim 2t IogIP’[vt € V(uo; (fidier. )]

{—o0 MAr?

- 1 i (2ol N m2rand 5 -11\2
—= 1 Z 2,and & —F5— O,
7 25 0 (%%2)—1 z : 2 4 i

ij ’

1 )’
=—§<||zo||<ago>1+8 Z|("°2°)f’f|) '
LJ

Letting ¢ go to zero leads to

2
lim lim zta logP[vi € V(uo; (fidier. €)]

e—>0{ 500 MAr

1
> —Zllz0ll2 2 -2 = — sup{ (z.zo0) — —||z||
2 1<0162)

zeRN

- sup{< Zaﬁ) |||%|:|(§lf)+ dk} > —L 4 (ug). O

zeRN

The weak large deviations upper bound (i.e. the upper bound for compact subsets) is a consequence of
Theorem 4.5.1 in [11] and of the following lemma.

Lemma 7.Lett, m andr be linked in such a way that< m(¢), andr(t) > 1. Forall A > 0, forall f € L2(Q(A)),
2 2. .and Foiyi2
. t mer n 1 | f (k)|
R4

Proof. Thislemmais a straightforward consequence of the facttifatf) is a centered Gaussian random variable
with variances?, and of limit (23). O

Theorem 1 is thus proved as soon as the exponential tightness is established. Since closed f@li¢Ai)
are weakly relatively compact, it is enough to prove

Lemma 8.Lett, m andr be linked in such a way that< m(¢), andr(¢) > 1. Forall A > 0,

2

Moreover,L 4 is a good rate functiofi.e. has compact level s¢ts

Proof. The goodness of 4 is a consequence of the lower bound and of (25), which is therefore the only point to
prove.

The operatok; : f € L2(Q(A)) — K, * f = ,;—22 [ K(r(-—y))f(y)dy is a trace-class operator it?(Q(A)),
whose trace is

2 2
tr(K,) = # / K(r(x —x))dx = CAdK(O)#. (26)
0(4)
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Let then(f;) be an orthonormal basis @f2(Q(A)) of eigenfunctions ofk;, associated to the eigenvalugs
Writing the decomposition of on this basis yields

ZZ\/)TiZifi,

where the random variablé are i.i.d with common lawV'(0, 1). Hence [lv |5 =3, 2 Z2, andVa < z—=,

Blexe(t v/ 19)] =[] =5

Takingi = Tk We get

(K)'

tr(Ky) >

P[| || L% <ex < L* ) I1 ! < exp( L > ex
v ~ TN s < T — X T s < P E)
#l2” T A K1) )\ Zeman Ko)

t

since logl — x) > —2x for all x € [0, 1/2]. Now,

eromd 4

Amax(K;) =r*"*  sup K(r(x—y))f(x)f(y)dxdy

£ f12=1
- o/
Flfla=1d Ilk][@=e)+

by Lemma 21. By (26), we get then thak such thatL? > CK (0)A¢,

era/\d tz
Bl 1> 12 < exp " (12~ o3 ) )

for some constant§i, C> (depending o, «, ¢, A). Sincem(t) > ¢, this ends the proof of Lemma 8.0

|/ ()7 dk < C(d, )| lloo AL,

4. Annealed moderate deviations

This section is devoted to the proof of Theorem 2. Using scaling invariance of the Brownian motion,

| .
(Lt, L) = (Ly)p2; ve), wherev,; (x) £ %v(rx). We set for convenience=1/r?.

In aII the sequelys is a smooth, non negative, rotationally invariant function with suppog i), such that
[¥(x)dx =1; and fors > 0, setyrs (x) = ¥ (x/8)/8¢.

Step 1. Smoothing the field

Lemma 9.Letr, m ands be linked in such a way that< m < 132, andt = "2 ¢ (i.e.r = (13/m?) Fara > 1),
Ford < 3,andforalle > 0,

lim lim }IOQI;OH(Lr;Ut—WB*Ut” >e] = —o0.

§—>0t—>o0 T
Proof. Since

lim sup-— Iog Po(o(RT) < 7) = —R?/2, (27)

T—>00
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and sincey and—v have the same law, it is enough to prove th&t> 0, Ve > 0,

P ——] ~
lim lim =logPo[(L<; v — Y5 % v;) > €; o(RT) > 7] = —00.

§—0t—o0 T

We begin to prove a quenched bowrdthe probattity of the event
A2 {(Les v — s % v;) > & 0(RT) > T}

For A >0 andj € Z¢, let Q;(A) be the box of centet; = 2jA and radius4; i.e., Q;(A) = x; + [—A, A]4.

We partitionQ (Rt) with such boxes. The following lemma, whose proof is given in Section 6, gives estimates of
Po(A) in terms of max lvell2.0;(a) where the maximum runs over the indices of boxegA) which intersect
Q(R7).

Lemma 10. For d < 3, there exists constant§1, C2> (depending only ord,i) such thatP-a.s., for all
§,R,A, e >0,

PO[( 3V — Ys kvp) = 8G(R7:)>r]

a2
/2 ol o rey Cae/(@+D) 11/ A2
<C1 1+ —d + T expy —t 2 1 et s
A € (v/6 max,; lvell2,0;ca+8)¥ @+D

where the maximum runs over the indigesf the boxeg) ; (A) which interseciQ(Rt).

Apply now Holder inequality to getp > 1,

5 il 472 | P10 b/ +D) Up
Po(A) < C1€° AZ]E[<1+ LI %) } E[exp{_f pCae ” |
A € / (\/gmaxj' ||U; ||2,Qj(A+8))4/(d+l)

The proof of Lemma 9 is then completed if we show

Vp >0, VR >0, Ilmsup IogIE[||v,||oo Q(Rt)] 0; (28)
—>00
. P
VA >0, Vp>0, limsuplimsup= IogIE[ Ty /ma ”v’”2=Qj<A>] = —00. (29)

y—oo t—oo T

Limit (28) is an easy consequence of Lemma 23 in Section 6. Turning to (29), note thatfor &l|
— . p
Ele Fv/me HU:HZQ““] <P[max|vllz,0,a) > L]+ €777
J

< ZP[”UIHZ,Q]-(A) > L] +e—rLLp
J

d
Rt X
< C<7> P[llvll2,004) = L] +€7 727,
by stationarity. Hence, for all. > 0,
— 1 —ty/max; [vellf (4, Y
tll)mooglogIE[e 2iM] < max — 15 zle IogIP[||v,||2 o) = L]t

(29) follows from Lemma 8 by sending firgtto oo, and thenL. to co. O
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Step 2. Annealed lower bound_emma 9 states the exponential equivalence between,), and(L;; ¥s * v;).
Hence, the problem is reduced to find annealed deviationdfanys * v;).

Lemma 11.For u € L2(R%), set

A 1 1fwR } 1 / 20 )
L = su ; —— | ———dk} =—= k k +dk. 30
w2 o fuin=3 [ o} =3 [l fi @
For 8 > 0andy € R?, define
Is(y) = inf{L(w) + L(u); pe MiRY), ue LARY), (u; s *u) =y}. (31)

Letr, m ands be such that <m « 32, andt = ’:L:r“/\d. Forall § >0, forall y e R?, and alle > 0,
o1 - .
liminf — log Po[|(L+; ¥s * v;) — y| < &] = —inf{Z5(2); |1z — yl <e}.

Proof. Let A > 0 be fixed.
130[|(L,; Y5 % vp) — y| < 8] > 130[|(Lr; Ys * vp) — y| <ég; 0(A) > r].

On{o(A) > t}, only the values of; on Q(A + §) are relevant, so that we can replagdy v{”‘s in the right hand
side of the above inequality. Lefy € M?(Q(A)) andug € L2(Q(A + 8)) be such thal(io; Vs * ug) — y| < €. By
continuity of the function(u, u) € M?(Q(A)) x L2(Q(A + 8)) — (u; ¥s * u) (see Lemma 24 in Section 6), one
can find weak neighborhoodj (1g) andV»(ug) such that

ueVi(uo) andu € Va(uo) = [(ws s xu) — y| <e.
One get then by independencewcind B
Po[|(Le: s+ v1) — y| < €] = Po[o(A) > 1. Ly € Va(uo) [P[v/ T € Vi(uo)].

It follows now from the large deviations results @n andv;* ™ that for allA > 0,

o1 ~
liminf ~log Po[|[(L<; W5 x vy) — y| <] > —L(1o) — Lats(uo).
Taking the supremum omg andug leads to a lower bound with the rate functional
Tas(y) 2inf{L(w) + Lass@); e MG(Q(A)), ue LX(Q(A+98)), (s vsu)=y};

i.e. iminf,_ o 2109 Pol|(L+; s % v;) — y| < el > —inf{Za 5(2); |z — y| < &}. We send now to oo. It is easy to
see that the infimum definiri§ can be restricted to probability measuvdth compact support. More precisely,

inf{Zs(2); |z — y| <e} =inf{L(w) + L@w); ue MIRY), ue LAR?),

Therefore,

(s s xu) — y| < e}

limsupinf{Za15(2); 1z — y| <&} <inf{Zs(2); 12—yl <&} (32)
A—00
Indeed, letw € MI(R?), andu € L2(RY) be such thal(u; s * u) — y| < e. Let A be such thage € M9(Q(A)).
Then(w; Ws * u) = (u; s * (U] pca+s))), and
10 1f0P
L(u) > SUP{(MQ = 2] ks dk; f e LZ(Q(A +5))} =Laysulgats)),

which implies (32). O
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From Lemma 11, we deduce the lower bound({fbs; v;).

Corollary 12. Letr, m andt be such that <m « %2, andt = ’%Zr‘“d. Assumel! < 3. Then, for ally € R, and
all ¢ > 0,

o1 ~
liminf = log Po[|(Le: vr) — y| < ] = —Cala, d)|y|7rerd, (33)
t—>o00 T

whereC,(a, d) € 10, +o0[ is given by the variational formulas

Cale,d) =inH{ L) + Lw); € MiR?), u € LPRY), (u; u) =1} (34)
= inf{ﬁ(u) + <;I;'(Z)>2; e MiRY), ue LZ(Rd)} (35)
aAnd 2/(2+and) 2 . LZ(u)E(M)a/\d 1/(24+and)
() ()l TR 0
Proof. Set
Z(y) = inf{L(w) + L1): u € MiRY); u e L2®RY: (puiu) =y} (37)

By Lemmas 9 and 11, it is enough to prove that:

(i) limsupinf{Zs(2); |z — y| <&} <Z(y); (38)
§—0
(i) Z(y) = Calar, d)|y|¥/ @D, (39)

We begin to show (38). Take andu, such thatu; u) = y andL(u) + L(u) < oo. By Lemma 22, there exists
such that

(s W5 %) — y| = (s s ) — (3 )| < CVB flull2L() D4,
Hence, fors < o(e, u, w), |(1; V5 * u) — y| < &, and for sucts,
inf{Zs(2); |z —yl<e} <L)+ Lw).

w andu being arbitrary, this leads to (38).
Let us now prove (39). First of all, making the change of variable> yAu (A € R), and noting that
L(wyu) = 22y2L(u), itis easy to see that

70 = inf{ 20 + 5220 . (40)
u,p <I’La I/l)

We now apply dilations. Fax > 0, u such thatZ(u) < oo, andu € L2(R?), set

d
duy(x) = )»dd—'u(kx) dx, and u;(x)=u(x).
X
Then(uw; uy) = (s u), L(y) = A2L(w), andL (uy) = A~ L(u). Doing these changes of variables in (40), then
optimizing in A yields (39), withC, (o, d) given by expression (36). The two other expressions (34) and (35) are
obtained by taking = 1 in (37) and (40). It remains now to prove tl@ai(«, d) €10, oo[, and this is the statement
of Lemma 25 of Section 6. O
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Step 3. Annealed upper bound

Lemma 13.Letr, m ands be such that < m « %2, andt = ':'—;r“/\d. Assume thap reaches its maximal value
at0. Forall y e R, and all§ > 0, let

)’2

(Rid—a), (s * 1) Wrs * )

Is(y) = inf{ﬁ(u) +3 RS Ml(Rd)}- (41)

Then,

. 1 ~
limsup=log Po[ (L<; s  vr) = y] < —Is(y).

t—oo T

Proof. Pp-a.s., for alla > 0,

P[(Le: Y5 %) 2 y] < e‘f“}'E[exp(a f ys * vf(Bs)ds)}
0

2
_ e exp<f% / / PN (= ) s % Le @) * Le (v) dx dy>.

Note that the functiony; * L. is in L (R?) for all p, since the same is true fg;. Now, forany s € N , L, (R?),

k o
//r““’K(r(x—y))f(X)f(y)dxdy=/”,;,S||(@%ol))+|f(k)‘2dk

SRR
S ke
=(Ria-a)+ () f).
Now, fora < d, and for positive functiory,

(Ria—a+(f); f) = / %’;(Hy)

fx+2iA)f(y+2jA)
- Z ) dxd
lx —y 4230 — A~

dk since 0< ¢ <1,

dxdy

0(A)xQ(A) 1-i€Z
X
< fa( A)fA(yA)dxdy
da(xa, ya)®
0(A)x Q(A)

where forx € R?, x4 denotes the projection afon the torusT (A) of radiusA; d, is the Riemanian metric on the
torus7 (A),
da(xa,ya) = min{||x —y—2jA|; j€ Zd};

and f, is the periodized functiorfs (x4) = Z;ezd fx+2jA).
On the other side, faz > d, it is clear thatif f is positive,

2
[rwar= [ ¥ raraintar< [ (Srarzin) a= [ oo
o(a) jez! o) 0(4)
Applying all the preceding tg' = y5 x L., we are led to
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// rO‘/\dK(r(x - .V))I/IS * L (x)¥s x Lo (y)dxdy

{/T(A)(wé*Lr)/z_;(xA)dxA, if a >d;
= Ws*L)a(xa)(WsxLe)a(ya) i
ffT(A) e T dxadys, o <d.

But, fors < 24,

4

1 1
(s Loaten) = [ 3 sl +2i4 = Bl ds =+ [ s(daca. B) ds
0

iezd 0

where B is the Brownian on the torug (A). Let L4 be the occupation measure Bf, and ' : (x4, y4) —
Ys(da(xa, ya)). We have proved thatp-a.s., for alle > 0, for all A > 0,

2

_ a
P[(Le; Ysxvy) > y] <e™ eXp('f?Fa,A(L?)); (42)

with
) Sy W * 10 (xa) dxa for o > d;
Fsa:pe M1(7T(A)) — A A (43)
’ (s xu) (xa) (g %) (ya)
T L) dA(;A,yf\)“ A dxa dyy forO<a<d.

Taking the optimak in (42), then integrating with respect &, yields

2
- y
Po[(Lc; s % v) > y] < Eo[exp(—fmﬂ'

We are now in a favorable position to apply Varadhan integral lemma. Indegdsatisfies a full LDP in
M1(7 (A)) (endowed with the weak convergence) with speeshd good rate functiofi 4. Moreover the function

e Mi(T(A) — —m is obviously bounded above by 0, and is u.s.c. (see Lemma 26 in Section 6). It
follows then from Lemma 4.3.6 in [11] that for all > 0

. 1 -

lim sup—log Po[(Lx; Y v;) 2 y] < —I5,a(y)

t—0o0

2 (44)

_y
2F5 a(w)
Take now the limitA — oo. The result follows from Lemma 27.0

Wherel(;,A(y)éinf{ +£A(u);ueM1(T(A))}.

We let nows go to 0. Sincey and—v have the same law, Theorem 2 is an obvious consequence of the following
lemma.

Lemma 14.Letr, m ands be such that < m « %2, andr = ’:L;r“d. Assume that < 3 and that¢ reaches its
maximal value af. For all y e R™
. 1 - 4
limsup=log Po[(L+; v) > y] < —Cala, d)|y|Zrend,
T

t—0o0

whereC,(«, d) is defined in Corollar 2.

Proof. LetO<e¢ < y. Forall§ >0,
Po[{Lz;ve) = y] < Po[({Les s % vy) =y —e] + Po[[(Le; v — ¥s % vy)| > ¢].
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Thus, by Lemma 9, the only thing to show is that foralt R*,
liminf 7;(y) > Ca(a, d)yZran.

To this end, we are first going to prove that

y2

2(R (4=, (3); 1)

Fix L > liminfs_. o I5(y). For a sequencé,) converging to 0, one gets probabilitiés, = f, dx satisfying for
all n,

liminf 75 (y) > inf{ﬁ(u) + TR= Ml(Rd)}. (45)

)’2

L
2R, (U3, * s Vo, * )
But, for all § > 0 and allx such thatC (i) < oo (f will denote the density oft)
(Rea—a), W5 5 £): ¥ % ) = (Ria—a) (s £)]
<201 fllg | Ria=ays s * f = f) ||q

L(pn) +

q9 P

<2 fllg s = f— fllp. if pe }1‘ by (15),

Td—a)y
1y and | 1
<CsYP L)y 2 T2, if pe[l;2]andg’ € [1

[andlzl—i(d_a”
d

d
,— | by (68) and Lemma 22
<d—2>+[ v (68)

The above sequence of inequalities holds as soon as one candatisfying all the above requirements. It can be
easily checked that this indeed the case fat < 3. Hence, we obtain for the sequencg

;oand 1
(Red—ay. s, * f): Ws, % o) = (Ria—ars (f): )| <COP L2 T2,
and this implies that

y2

2<R(d7a)+(§_l;)§ f,—’;)
This ends the proof of (45).
By the action of dilationdu — du; = A% du(ix), it is easy to see that the infimum in (45) is equal to

Cala, d)y¥/@rerd) where by definitionC, (. d) is the value of the infimum fop = 1. It remains now to check
thatC,(a, d) = C,(a, d). For that purpose, note that farsuch thatZ () < oo (du = f dx)

1
(R () f)=sup{ (s u) = L@w); u € L3RY)}.

y2

2Ra—ay, (s, * fu); Vs, * fn)

inf{ﬁ(u) + } < Iirlrrliorlf{ﬁ(un) + } < L.

; _ 42 ; ; ()2 . 2d
Since for allx € R, and allu, L(Au) = A°L(u), this supremum is also equal to $t—£{g(7, u € L*(R%)}. Hence
Ca(ar, d) = C4(a, d) (Where we use expression (35)@f(«, d)). O

5. Quenched moderate deviations

In this section, we prove Theorem 4. The proof goes as follows. We begin to regularize the Brownian occupation
measure forl < 3 (Section 5.1). We turn next to the upper bound (Section 5.2), which is obtained by the Gartner—
Ellis method. The computation of the log-Laplace tramnsf is made possible using the localization lemma of
[20], and the large deviations of the field. Finally, we obtain in Section 5.3 the lower bound, by forcing the

Brownian motion to stay during time intervgd, t] in a spatial region of size = (';—22 log(z))Y**¥, where the
field is performing a large deviation.
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5.1. Smoothing the field

Lemma 15.Letr, m, andr be such that < m <« t,/log(7), andr‘“d':'—z2 =log(7) (i.e.r = ((+2log(t)) /m?)/erd >
1). Ford < 3, P-a.s., for alle > 0,
. . 1
lim suplim sup=log Po[|(L+; vi — ¥s * v,)| > &] = —o0.
T

§—0 t—>00

Proof. Using estimate (27), Lemma 10 and Lemma a8tally (70)), it is sufficient to prove that

P-as., YVA>0, I|im supmax|v[l2,0;a) < o0, (46)

t—00 J
the maximum involving~ (Rt/A)? terms. But, by Lemma 8YA > 0, there exist& and Lo (depending o)
such that forl > Lo,

P[mjax||vt||2,Q_/(A) > L] < ZP[”W“Z,QJ-(A) > L]
J

< CtP[llvillz, 04y > L]

d _romdmZL_Z 4 12
<Ct% 2 ¢ =Cr%"C.

Thus, choosind. large enough, it follows from Borel-Cantelli lemma tffat.s.,VA > 0, there exist€ (A), such
that limsup_, .o max; llvrll2,0;4) <C. O

5.2. Quenched upper bound

As in the annealed case, we begin with an upper bound for the regularized version of).
Lemma 16.Letr, m, andt be such that < m « t,/log(#), and r‘“d’?—; =log(r). P-a.s.,Va € QT, V6§ e Q,
Yy > 0,
. 1
limsup=log Po[(L<; ¥s * v;) > y]
T

t—00

< —ay —inf{LG) —alp; Y5 xu); pe MuRY), ue L2RY), L) <d}.

Proof. Exactly as in the proof of Lemma 10, it is possible to find some (deterministic) conStasuich that
VA > 0,VR > 0,

Po[(Le: s % vr) > y] < Po[o(RT) < t]+ Po[{Lr: s % 1) > y: 0(RT) > 1]
< Po[o(RT) <] + e Tavel 42 o7 min; Aa (W) Q(A)) (47)

where the minimum runs over the indices of box2gs(A) intersectingQ (Rt). We have thus to study the a.s.
behavior of the minimum of eigenvalues. By stationaity,c R,

R d
Plmini(atws 0 0,4) <] < (55 ) Flalacws x s o)) <51

Now, the functionu € L2(Q(A + 8)) — A(a(¥s * u); Q(A)) is continuous for the weak topology @f? (see
Lemma 28 in Section 6). Hence, by the large deviations upper bound for thefielae gets that for = g m? /i
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Jim_ % logP[mina.(a(ys * v): Qj(4)) < x] < d —INf{Lars(w): Ma(s xu). Q(4)) <x}.
So, as soon as satisfies

d< ir’)f{LAJrs(u);k(a(%*u), 0(A)) < x}, (48)
Borel-Cantelli lemma applied along sequences of the fgife: € leads to

liminfmini(a(ys x v,,); Q;(A)) > x. (49)
n—oo J

We want now to take in (49) the optimal allowedi.e. we want to invert the relation (48) with respectito
Note that if

x < igf{)\(a(llfa xu), Q(A)); Lats(u) <d}, (50)

then each: such that,(a(ys * u), Q(A)) < x is necessarily such thdt, s(u) > d. In other words, ifx satisfies
(50), then

inf{La+s (0; 2(a(ys x1), 0(A) <x} > d,

with strict inequality if the infimum is rea@, which is actuallythe case by goodness 6f, 5 and continuity
of u > A(a(ys * u); Q(A)). Hence, ifx satisfies (50), it also satisfies (48) and therefore (49). TVusj, A, R,
P-a.s.,

lim min2(ays «v); Qj(A)) > inf{i(a(ys w), Q(A); Lats) <d

t—oo J

ZLH,E{E(“) —a(p; ys*u); Lays(u) <d}, (51)

where the limis taken along sequences = €. One can then deduce the same result for genersince for
T € [1y; Tutal,

S,neipx(a(ws xv.); 0j(A)) > (r/rnﬂ)zjgninlx(a(rm/r)zwsr/rm *Vy,.15 Qj(Ar/rns1))

> (r/rap)? min A(aWs * vy,,1; Qj(Ar/ray1))
JE€Int+1

2
.
—a(("—;l - 1>||¢5||2+ s —v s
r n+1

whereJ, 11 is the set of indices such thék; (Ar/r,41) intersectQ(Rt,1r/ra+1). The result follows now from
the fact that,,+1/r tends to 1. The details are left to the reader.
Putting (47) and (51) together, and lettiRgend to infinity along sequences, yields

max ||vs, 4l o . _ar ,
‘2) jednit n+1 Z’Q-’(rn+1 +4)

) 1
limsup=log Po[(L+, ¥rs * v;) > y]

t—oo T

c .
<—ay+ -5 — inf {LG0) —atus ys % u); Lats(u) <d}
A% e MAQ(A) ueL2(Q(A+5))

c .
< —ay+ -5 —Inf{LG0 = al; Yy xu); pe MaR?; we LR, L) <d}.

We take now the limitA — oo to get Lemma 16. O
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Letting § go to zero in Lemma 16 leads to

Lemma 17.Letr, m, andz be such that < m « t,/log(r), and r‘”\d'" = log(t). Assume that/ < 3. Then,
P-a.s.,Vy >0,

llmsup log Po[(L+; ve) = y] < —=Cylar, )y, (52)
t—00
whereC, («, d) €10, +-o0o[ is given by
2 Ad 1/and
(W) L(w)*
C d _— . 53
/@ D= (“ﬂ{ d?(p; u)* }> (53)

Proof. We begin to prove that
hmmﬂmvmn—ame*m Lw)<d}> mﬂﬁwJ—Mm u); L(u) <d}, (54)

and we can assume that the liminfin the above expression is finite. Let them infs_.oinf, , {L(w) —a{w; ¥s*
u); L(u) <d}. Note that sincd.(—u) = L(u),

Lni{ﬁ(u)—a(u; Ys xu); L(u)<d} =Ln£{£(u)—a|<u; Ws * u)|;
intH{Lw) —a(usu); L) <dp=int{Lw) —al(w;

L(u) <d}, (55)

; L(u) <d}. (56)

Let now (§,) be a sequence realizing the liminf in (54), and dgt and u,, be such thatL(u,) < d, and
L(in) — al(pn: s, * un)| <I. Setf, = 2. Then,

L(pn) <1+ al(pn; ¥s, * un)|
<l +a\/L(Mn)HR(d—§)+ s, = fi),

and
2d

1
<I4avd|ys, * full, for ,= by (15)

<l +avd| fallp
<1+ CavdL(u) " by (68)
Ford < 3,a Ad < 4, we deduce from the above bounds that,stif,,) < co. Hence,
(s Wo, * ttn) — (i un)] < L)Y | R (fa = s, * )],
-2z

and

1
SCVdA|\ fu =Y, * fullp for ==1- : (57)
p 2d
gczuLﬂ*”Vba”P by Lemma 22,
<cs!”
It follows that
inf{L(w) —al(u; u)|; Lw) <d} < Lun) — al|(mn; un)|
< L(n) = a| (s s, % un)| + Casy!? <1+ Casy/”".
This proves (54). We deduce from (54), Lemmas 15 and 16ff@ms.,.va € Q 1, Vy > 0,
lim sup— |09 Po[(L+;vr) > y] < —ay — inli{ﬁ(u) —al(w;u)|; L) <d}. (58)
t—>00 u,
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The change of variable — iu yields now

. . d
M{E(M)—ahu;u); L(u)éd}=bﬁ£{£(u)—a ml(u;u)l}.
Hence, by dilations,

L L(u) <d) =—C,(a.d)ya®erd, (59)

m{ﬁ(u) — al(u; u)

where

e d)_(l_a/\d> dz(oc/\d)omdsu (1 ) —_
O o G G B Pt |

By Lemma 25,@,, (o, d) €]0, oo[. Lemma 17 is now obtained by taking the infimum with respeat t0Q™ in
(58). O

5.3. Quenched lower bound

Step 1. A.s. behavior of the field

Lemma 18.Letr, m, andr be such that < m « t,/log(?), andr“/\‘“f—z2 =log(r).Forall§ >0, >0, A > 0, and

for all uo € L2(Q(A + 8)) such thatl 4,5 (uo) < d, P-a.s., fort sufficiently larggalong a subsequenad =",
n > 0), one can find a bog ; (A) intersectingQ(z/log(r)) such that

s * v — ¥s % uo(: —xj)Hoo,Qj(m Se.

Proof. Let H be the complex Hilbert spade”(R?, D(k) dk). For F C R?, let Hr be the subspace @f spanned
by the functionde *; x € F}, and leter be the orthogonal projection diiz. Set
d(t) =sup{ller,ep,l; F1, F2 closed subsets @<, dist(F1, F») > t}
=sup|{(f,9)u; f € Hr, g € Hpy |1 fllm = liglln = 1; Fu, F> closed subsets &, dist(F1, F2) > t}.
From our assumptiongyz) is rapidly decreasing when>> d, andd (¢) decreases like ® for o < d. Let F; be the

o-algebras (v(x); x € F;). Then, for f1 (respectivelyf2) bounded?;-measurable (respectivelf-measurable),
one has (see for instance Lemma 5.12 in [10])

2

E( 1l f2l) < [T Nt accistry, - (60)

i=1
LetJ ={j ez j/2eZ% Q;(A) C Q(r/log(r))}, so that forj, jo € J,
dist(Q,(A), Qj,(A)) = 2A.

Forje J,setA; = {v; ||[¥s*v, — s *uo(- _xj)”oo,Qj(A) > ¢}. Aj is measurable w.r&i (v(x); x erQ;(A+94)).
Adapting the proof in [10] of the hypermixing property of Gaussian field tatgmensional case leads to

k(z) [ od T
P Aj | < TTPpra Y= @Hd@rAa=5) where 2 = .
[ﬂ j} l_[ (4] ’ log(r)A

jeld jelJ

By stationarity, we obtain then
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IS @+d@'r(a—-6)) 2
[ﬂA} P[lls % v — s % uolloc,g(a) > ¢ 7=t HHAEr A=
jelJ

~P[[1Ws * v — s * uolloo, 0(a) > 8]”',
for ¢ sufficiently large. Now{u € L?2(Q(A + 8)); ||[¥s * u — Vs * uolloo, 0(4) < €} is @ weak neighborhood af.
By the large deviations for?, if 8 is such thatl o5 (uo) < B < d, we get fort sufficiently large that

rand 2

Plvj e, = ¥sxuol = x| 0,0 > el < (1 e‘r—zﬁ)c(log'fﬁf’.

The result is now a consequence of Borel-Cantelli lemnta.

Step 2. Lower bound

Lemma 19.Assume that, m, ands are such that < m « t,/log(z), andr‘“d m? =log(r). Forall § > 0, ¢ > 0,
A>0,VyeR,P-as,,

liminf = |09 Po[[{Lc; ¥+ vs) — y| < €] = =Tas (),

t—00
where

Tas(0) 2inf{L(); ne MIQ(A)); ue L3 (Q(A+8)); Lays(w) <d; (u, s *u) =y},
and theliminf is taken along subsequencgs= n" (1 > 0).
Proof. Fix n > 0. Let uo € M3(Q(A)) andug € L2(Q(A + 8)) be such that 15 (uo) < d, (1o, Vs * ug) =y
and L(uo) < Ja.s(y) + n. SinceL(ug) < d, P-a.s. one can find fot sufficiently large along a sequence, a box
Qj,(A) in Q(z/log(z)) where|ys v, — s * uo(- — xj0)||oo,Qjo(A) < ¢/4. The lower bound is then obtained by

forcing the Brownian motion to go fast in this box, to remain there for the rest of the time, and to look there like
mo(- — xj,). We introduce thereforg(i.o0) a weak neighborhood @fg in M1(Q(A)), such that

1€ V(no) = [ (s ¥s * uo) — y| < e/4.

In what follows,0; is the shift along Brownian trajectorieg; (w) = w(s + -)). Then,

Po[[{Lc; W+ vr) — y| < ¢]

T
log(7)
> Po[

1
_/w
T
0
T

(Q,O(A)) s >T— —Iog(r); L,,% 91097 Exj, + V(Mo):|

&
< —: . —xi | <
\4’ @l ]O|\ s

C7G)
e . T
[ / Vs vr(Bo)| < |og<r>_xj°|<l] lelngflpo[ g € V(W0 0(4) > 7 |09(T)]7

by Markov property, and translation invariance of the Brownian motion. Hence

liminf ~ log Po[[(L+; s % vr) — y| <]
t—oo T
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L L o)
.. &
>—£(uo)+htr2|orgf;logPo[; / Vs * vy (Bs) SZ, Bm;,)—xjoKl]'
0
It remains now to show that
liminf < log Po| | B)l<E: |B <1i|=o0 61
iminf —logPo| | = [ vs*vi(Bo)| < 3 m—xmh >0, (61)
0

to end the proof of Lemma 19. But

097y
1 £
P0|: . / Ys * v (By)| < vk B@ — Xy <1:|
0
= P E/w*v<3)<f-3 —x"<1'cr ¢ N
= 10 . J 8 t\Ds Sy fo90) jol x4 |Og(‘L’) |Og(l’) .
Ono(z/log(r)) > t/log(t),
7/log(z) i i
1 1 og(rt/log(r)) ¢
- By)ds| < —— <C——M—
. / Ys * vy (By) ds log(2) lve lloo, 0 (z/l0g(z)) < C log(2) o
0

by (70). Hence this quantity is less tha4 for larger. Moreover, sincex ;| < t/10g(t), Po(|Bz/log(r) — X jo| <
1) < e €7/109(1) "and (61) follows now from (27). O

Inverting “vVy € R” and “P-a.s.” in Lemma 19, we get the lower bound for alE Q. This in turn implies the
lower bound for ally since

limsupJa,s(yn) < Ja,s(3). (62)
Yn—=>Yy

Indeed, by the change of variable> Au, one can see that
d I
Lays(u)

from which (62) is easily deduced.
At this point, we have thus shown that f@i’;’r—m =log(zr), Vs > 0,YA > 0,Ve > 0,P-a.s.Vy € R,

Jas() =Li¢n£{£(u); Iyl < Wi s * u)

T |
liminf = log Po[|(L+; s * v;) — y| < €]
t—o00 T
> —inf{L(n); ne M?(Q(A)), ue LZ(Q(A +6)), L) <d,
We want now to take the limit — oo in Q. Fors > 0 andy in R, set
Ts() & inf{L(w); we MiRY), ue LARY), L) <d, (u, ¥s+u) =y}.

Itis easy to see that iff/;(z); |z — y| < €} can be restricted to probability measures with compact support. Since
La(u|a) < L(u), it follows then that

limsupinf{74.5(2); |z — y| <&} <inf{J5(2); Iz — y| < &}.

A—00

(s Y5 xu) — y| <e}.
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From this remark, we deduce that féaz’t’;—w =log(t), Vs > 0,Ve > 0,P-a.s..Vy € R,

T | .
liminf —log Po[[(Z; s+ vi) — y[ < e] > —Inf{ T2 Iz -yl <}, (63)
the liminf being always taken along subsequences. We letsngavto 0 inQ to obtain
Lemma 20.Letr, m, andz be such that < m « t,/log(z), and r‘“d’f—: =log(t). Assume that/ < 3. P-a.s.,
Vy e R, Ve > 0,
o1
liminf — log P0[|(LT; V) — y| < 8]
t—>o00 T
> —inf{L(); pe MiRY); ue L2XRY); L(u) <d; {u,u) =y} (64)
4
=—Cy(a,d)|y|ana, (65)

where thdiminf is taken along sequencgssuch thatr, = n" (5 > 0).

Proof. The firstinequality (64) uses the same kind of arguments as the one used previously (see (57)). To compute
the infimum, we apply successively the change of variable Au, and then dilations. O

We have thus proved the lower bound along sequencasch that, = n". The result for generalis left to the
reader.

6. Technical lemmas

Lemma 21.For all « > 0, there exists a constant = C(«, d) such that for allA > 0, for all f € L2(Q(A)),

| f (k)12

(d—a) 2
R4

Proof. Fora > d, the resultis just a consequence of Parseval equality. Let us assumestiati[. Then,va > 0,
A

1 2
T3

7 2 7 2 £ 2
e [ s [ O i o

R ikl <A llkll =2 0
Now, || £ llee < II £ ll1 < A4/2|| £ ||2. Taking the optimal. in the preceding inequality yields the resulta
Proof of Lemma 10. Before proving Lemma 10, we are going to establish the following lemma, which will be of
constant use throughout the paper.

Lemma 22.Assumel < 3. There exist€ > 0, such thatvu € M1(R?%) such thatC(u) < oo,

du du

i <C8YP L)@t/
dx  dx W

p

Vpell,2l, |vsx*

Proof. Let f be the density of. with respect to Lebesgue measure. $et/f. Theng € HX(RY), and||g|» = 1.
By Sobolev embedding theoreme L4 (R?) for all q € [2, +00] whend = 1; for all ¢ € [2, +00[ whend = 2;
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and for allg € [2, dijz] whend > 3. Moreover, for all admissibleg, we have (see for instance the proofs of
Theorem VIII.7 and of Corollaries 1X.10 and 1X.11 in [6])

1-d(3-3) dG—9)
lglly <Cligll, 2 “IVel, = .

Hence, taking into account thig|> = 1 and tha'q|Vg||§ =2L(u), we get

gell,oo] ifd=1,
Iflly <CL@Y ', where{qellool ifd=2, (68)
gell, 74) ifd>3.

(67)

By Hoélder inequality, we get then

L r<2 ifd=1;
IV £l < CLGOYAU IS, < CL@ M7, for Yr<2  ifd=2; (69)
r<gt; ifd>s.
Hencef belongs to the Sobolev spad&™”, and it follows (see for instance Theorem 5, p. 155 in [33]) that

IfCHD+ =D =202 2
/ o dr < CIVfI2.

Therefore, setting\;(y) = f(y +1) + f(y — 1) — 2f(y),
1
Wos f ~ f13=17 / / dy1dy2 ¥ (D) (32) / dx Ay () Ay ()

1
<3 / dy v ()1 Asy s / dy ¥ () Bsy

) 2o\ 2 Il Asyl12\ 2
< ||f||r/</dyw Ml +> (/dy ”y”d;z)
CSNf 11V £l
41,4
CsL(w)2’ T2t by (68) and (69).

The above sequence of inequalitiesis valid fot t <2 if d =1, and 1< r <2 ford = 2. If d > 3, we have to
choose- such that < ;47 andr’ < 745. Thisis equivalent to say th4t< r < -%4;. Henced = 3 andr = 3/2. At
this point, we have established Lemma 22 fo& 2. The case € [1, 2] comes from the interpolation inequality,

and the factthatys = f — fll1<2. O

<
<

We return now to the proof of Lemma 10. Remind that

T
A= {(v, B); }/(vt —Ys*xv)(Bs)ds 2 ¢; o(RT) > t}~
T
0
Let @4 be any periodic function with period call(A). Vy > 0,

T

Po(A) <€V Eg |:exp</ (v (v — Y5 % v) — CDA)(BS)ds); o(R7) > ri|e"‘“'°°,
0

Using spectral estimates on Schrédinger semigroup (see for instance Theorem 1.2, p. 93 in [34]), we obtain

d/2q — _ _ _ — D4
Po(A) < C[L+ (2 (3 101 oo, (ko) + 1B lloo))/2]e T 75— 1Palln) g thly (v —vis3u)~@3 Q(RD)
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We now use a lemma borrowed from [20], or more precisely the version of this lemma which is Lemma 4.6 of
[5]. According to this lemma one can find a periodic functibp such that|® 4|l < C/A? for a constanC
depending only o, and such that for all bounded measurable functioon Q (Rt),

MV — @45 Q(RT)) 2 minA(V; Q;(A)).
J

ThereforeP-a.s..Vy >0,

d/2 ‘
Po(A) < c[1+ (r (ynw lo.0(ke) + %)) }e““ACz)efmm.var%*v»;QﬂA».
Now,
] . du du 0
My (e = Ps % v); Qj(A)) =infy L) —y [ v i Vs * o ) e MI(Qj(A) ¢
It follows then from Lemma 22 that-a.s.,Vy > 0,

My (v — ¥s % v0); Q(A))

>inf{LG0) = yllvll2,0;(a+8C8 LG Y% e M3(0;(4)))

S inflx—cC _ 5172, (d+D)/4
x>o{x Ylvell2,0;a+8087x }
= —Fd(J/51/2||Uz||2.,Q]-(A+5)),
where ford < 2, Fy(x) £ Cx¥ @9 F3(x) £ +001,-c, andC is a constant which depends only ény. Hence,
P-a.s..¥§,y, A, R,

1\\"? —t(ye—S5—Fa(ysY2max; |vill2, 0 (a))
Py(A) <Cl1+ (7 y||v,||oo,Q(R,)+F e A2 ylvellz 050

We now optimize the term in the exponential with respectytoi.e. we choosey o £@~/(@+D(§1/2
ma; [|v:ll2,0;a+s)) ¥ @), This produces an inequality of the form

£d/2
Po(A) < C1|:1+ d +

/2
0525 ey ( 7e4/@+D) )dﬂ}
gd/? (8Y2max; [|vr 12,0, (5+4))¥ @+D

p{ o4/(d+D) -
x expy —Cot }e A2
(8Y2max; [[vll2,0;5+a) ¥ @+D

Absorbing the polynomial term in the exponential term, leads now to the result of Lemmanl0.

Lemma 23.Letm, r,t be such thatt = £ > 1.

m

1
P-a.s, limsu v <1, 70
P R O logu k) 1| lee-et0) (70)
tP
Vp>03C(p,d,K(0)st. E[lvlll, oirr)] < Cﬁ(pr (rR7)?). (71)

Proof. [[vtlleo,0(rR7) = é||v||oo,Q(,Rr). Since suUpc o+ rr) El[v(x)%] = K (0), and

E[(v(x) — v(»)’] = 2(K (0) = K (x — y)) < Cllx — ¥l
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standard estimates on Gaussian processes (sestan@® Theorem 2.4 in [35]) state that there exigtsuch that
Yu > uo,

(Rtru)?
P[Ivlloo,0¢Rr) = u] < C Pl X >

u
K (0)4/2 K (0)
It follows now from Borel-Cantelli lemma th&t-a.s.,

} ,  whereX ~N(0,1).

1
limsu v rro) <1,
moup 2dK(O)|og(rRt)” oo, 000
which is just (70). Moreover,

o
E[IIv1Z, orey] = P / uP PVl oo, 0(rRe) = u]du < C(1+ (RTr)?),
0
for a constanC depending o, p, K (0). This implies (71). O

Lemma 24.Forall A, B,§ > 0, (i, u) € M1(Q(A)) x L2(Q(B)) — (u, Vs * u) is continuous in the product of
weak topologies.

Proof. Let (u,) be a sequence weakly convergingt& Mi1(Q(A)), and(u,) a sequence weakly converging to
u in L2(Q(B)). One has sypllunll2 < oo, and this implies that the sequengg * u,, is an equicontinuous and
uniformly bounded sequence of continuous functions converging pointwigg:ta. By Arzela—Ascoli theorem,
iMoo [|¥s * uy — Vs * 1] co = 0. The result follows now from the inequality

(s Wrs ) = (s Wo s un) | < | (i = s s % )| + W5 % — Ys *uplloo. O

Lemma 25.For o > 0 andd € N such thatx A d < 4,

2 and
0< inf{iL LW

o) ; MeMl(Rd), ueLz(Rd)} < 00.

Proof. Itis clear that the infimum is finite, and we have just to prove that it is strictly positive forl < 4. Now,
for all u € L2(R?) and allx such thatC(x) < oo, setting f = &

= E'
(w; u) < \/L(M)HR(J—EW N,
1
<CYL@|fll, for S =1

and
2d

< CVLL)? = CJL@L) S forand <Aby(68). O

by (15),

Lemma 26.For all A > 0and all§ > 0, Fs5 4 (defined by43))is continuous, whem1(7 (A)) is endowed with
the weak convergence.

Proof. Let (u,) be a sequence M 1(7 (A)) which converges weakly tp. For all x4 in 7(A), 1//({‘ * n(xa)
converges ta//(g“ * ((x4), and sup ||1//§‘ * U lloo < |¥slleo- The result follows from domnated convergence, and

the fact that forr €10, d[, [ 4, [z, % <o00. O

Lemma 27.For § > 0,andA > 0, let I5 and I5 4 be defined by41)and(44). Then, for ally e R and all § > 0,
limsupls a(y) = Is(y).

A—00
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Proof. Let L > limsup,_, ., I5s,4(y). For sufficiently largeA, let s € M1(7(A)) be such thatCa(ua) +
ﬁzm < L. Let f4 be the density ofus. f4 is viewed as a periodic function with periodd2 Note that

translatingfs does not change the value©jf (1.4) and of F5 4 (it 4). It has been proved in [13] that this translation
can be done in such a way that

fa(x)dx <C/VA, withdQ(A) 2 [x e Q(A); Vie(l,....d} x| > A— VA
30(4)

We truncate now 4 in order to define a new probabilify4 on R4, Let T be a smooth function,& 7 < 1,7 =0

onQ(A), T =10nQ(A)\IQ(A), and letdjis = % dx. Itis also proven in [13] thal’ can be chosen
in such away that (jia) < £a(a) + %.

It remains now to prove that
Fs. A(na) < (Rid—a), (Ws % La): ¥s * fia) + O(A). (72)

SetKs(x) = s * (Ra—a),) (¥s)(x) and

Vs (da(xa, X NVs@a(yaY)) ;1 ;.
fT(A) fT(A) AL dx dy, forO<a<d,

Jroa Vs(dalxa, X)) ¥s(da(ya, x)y)) dx)y fora > d;

Ks a(xa, ya) & [

so that

Fs.a(iua) = / / Ks a(xa, ya)duaxa)dua(ya),
T(A) T (A)
(Rd—ay, (s * [1a); l/fa*[LA)=//K5(X—y)dﬁA(X)dﬁA(y).
Rde

Sincey;s is an allL?-spaces| K|« < oo by the continuity properties of the opera®(;—_q), . In the same way,
sup, [1Ks.4lleo < 00. Hence

(Rd—ay, (s % [1a); Vs * fia) — F5.a(1a)

> / / dxdyfa(x) fa) [T )T (y)Ks(x — y) — Ks a(xa, ya)]

0(A) 0(A)
=T1+ T+ T3,

where

= / / Fa@) fa)(Ks(x — y) — K5, a(xa, ya)) dx dy,
0(4) 0(A)

2= / / (T(x) = 1) fax) fa() Ks(x — y)dxdy,
0(4) 0(A)

T3= / / T()(T(y) — 1) fa(x) fa(W) Ks(x — y)dx dy.
0(4) 0(A)

Note that
IT2| + T3] < 2[| K5l o / fa(x)dx < C/VA.
90(A)
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To evaluately, we partitionQ(A) x Q(A) in three domains
D1 = {(x, y) € 0(A) x Q(A); llx—yll<A-— 28};
Dy = {(x, y) € Q(A) x Q(A); llx —yll =2 A—25, da(xa, ya) < \/Z}Q
D3 = {(x, y) € Q(A) x Q(A); llx —yll =2 A—25, dal(xa, ya) > «/X}.
By definition,D2, c dQ(A) x dQ(A), so that

2
‘/ fa(x) fa)(Ks(x —y) — Ks,a(xa, )’A))dXdY‘ < C( / fA(X)dX) < C/A.
Dy 900(A)

Note that||x — y|| =da (x4, ya) as soon agx — y|| < A. Therefore, oD,

f f 1//a(dA(XA>X/A))1//a(dA(yAsy;\))d
R JRA da(xly,y)*

Jra Vs daxa, X, N Vs(da(ya, x)dx’  fora>d.

In any caseKs(x —y) > K5 a(xa, ya) oOnDy.
Finally, note that SUp >4 Ks(x) < C/A” and SUR, (xavi) VA Ks. a(xa, ya) < C/A%2. Hence,

x'dy forO<a<d,
Ks(x —y)=

/ Fa@) fa()(Ks(x — y) — Ks,a(xa, ya))dxdy| < C/A%2,
D3
This ends the proof of (72) and of Lemma 271

Lemma 28.Forall A, B> 0, forall § > 0,u € L2(Q(B)) — A(¥s *u, Q(A)) is continuous for the weak topology
of L2(Q(B)).

Proof. Let (u,) be a sequence converging weaklyitoThen (s * u,) iS a sequence of continuous functions,
converging uniformly tay; * u. Hence,

M xun, Q(A) = inf - {L() — (3 s xun) }
HeME(Q(A))
is the infimum of continuous functions, and is therefore u.s.c. To prove the lower-semicontinuity; let
liminf,— oo A(¥s * u,, Q(A)), and letu, € M?(Q(A)) be such thatC(u,) — (un; ¥s * uy) <. (uy) is a
tight sequence, and it converges (at least along a subsequence) to a probability measSubeing I.s.c.,
liminf,— o L(u,) > L(w). Moreover,

[(ns s # tn) — (s s x )| < | (tn — s s )| + 1Ws % un — Vs # ] oo
Therefore{u,, ¥s * u,) — (u; Ys*xu). O
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